SlideShare una empresa de Scribd logo
1 de 42
Constitutive Modeling and Simulation of Shape Memory Polymers Defense Proposal ADVISOR: DR I.J. RAO DATE : 11/17/2008 MAHESH KHANOLKAR
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What Are Shape Memory Materials? ,[object Object],[object Object],[object Object],[object Object],Trigger
Overview of SMP’s ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
How Shape Memory Polymers Work Original: Chemical Cross-Links Temporary: Glassy Phase Lendlein et al. Original: Crystalline Hard domains (Physical cross-links) Temporary: Crystallites Original: Chemical Cross-Links Temporary: Crystallites
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Types of  Shape Memory Materials
Shape Memory Polymers  Representative Application Biodegradable Shape Memory Polymer for Suturing wounds. (Langer 2002)
Shape Memory Polymers  Representative Application   Time series photographs that show the recovery of a shape-memory tube. (a)- (f) Start to finish of the process takes a total of 10 s at 50°C  (Marc Behl et al 2007).
Shape Memory Polymers   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Shape Memory Mechanism in CSMP’s Deform Cool Unload Heat Amorphous polymer Cross-link Crystallite Legend Melting Crystallization T > T r T < T r State 1 State 4 State 2 State 3 Stretch Nominal Stress 1 2 3 4
Shape Memory Mechanism in GSMP’s Deform Cool Unload Heat Amorphous polymer Cross-link Glassy polymer Legend Glass Transition T > T r T < T r State 1 State 4 State 2 State 3 Stretch Nominal Stress 1 2 3 4
Modeling (Salient Features) ‏ ,[object Object],[object Object],[object Object],[object Object],[object Object]
Modeling (Salient Features) ‏ ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Modeling Framework ,[object Object],[object Object],[object Object],[object Object],[object Object]
Modeling - Natural Configurations ,[object Object],[object Object],[object Object],[object Object],Deform Unload
Modeling - Natural Configurations Natural configurations associate with a viscoelastic melt
Modeling   - Glassy SMP  (Amorphous Rubbery Phase) ,[object Object],[object Object],[object Object]
Modeling – Glassy SMP ,[object Object],[object Object],[object Object],Little Change in length on cooling, iso-stress, Mather(2006)
Modeling – Glassy SMP (Mixture of rubbery and glassy phase) ,[object Object],[object Object],Current configuration of glassy phase Current configuration of amorphous phase Natural configuration of amorphous phase
Modeling – Glassy SMP (Mixture of rubbery and glassy phase) ,[object Object],[object Object],[object Object],[object Object],[object Object]
Modeling – Glassy SMP (Mixture of rubbery and glassy phase) Natural Configurations associated with the glassy-rubbery phase solid phase mixture
Modeling – Glassy SMP Cycle - Equations ,[object Object],[object Object],[object Object]
Modeling – Glassy SMP Cycle - Equations ,[object Object],[object Object]
Modeling – Glassy SMP Cycle Stress–strain–temperature diagram illustrating the thermo mechanical behavior of a shape memory polymer under different strain/stress constraint conditions
Simulation and Results (Uniaxial Deformation Cycle GSMP) Stress vs Strain for the complete SMP Cycle  T L  (K) 273 T g  (K) 343 T H  (K) 358 (Mpa) 8.8 MPa (Mpa) 750 MPa
Simulation and Results (Uniaxial Deformation Cycle GSMP) Stress vs Temperature
Simulation and Results (Uniaxial Deformation Cycle GSMP) Stress vs Strain plot (Yiping Liu et al, 2005)
Nanoparticle Reinforced Glassy SMP ,[object Object],[object Object],[object Object],[object Object],[object Object]
Simulation and Results (Uniaxial Deformation Cycle GSMP)  Effect of Nanoreinforcemnts Elastic moduli of the SMP and SMP composite at 26 and 118°C (Yiping Liu et al 2003) .
Simulation and Results (Uniaxial Deformation Cycle GSMP)  Effect of Nanoreinforcemnts Stress vs Strain Above the glass transition
Torsion of a Cylinder Undeformed Cylinder  Deformation after  applying Torsion  Motion:  Deformation gradient: M (in sec -2 ) (MPa) (MPa)  0.33 120 1200 0.00007 0.256 50
Simulation and Results: Torsion of a Cylinder Moment vs Time (Torsion of a cylinder)
Simulation and Results: Torsion of a Cylinder Moment vs Shear (Torsion of a cylinder)
Simulation and Results: Torsion of a Cylinder Shear vs Time (Torsion of a cylinder)
Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Applied load to the Element
Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 1  Large Deformation on the single element
Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 2  Constraining the element to retain its temporary shape
Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 3  Removing load – Small amount of strain recovery
Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 4  Back to Original Shape
Conclusion and Future Work ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]

Más contenido relacionado

La actualidad más candente

Introduction to Composite Materials
Introduction to Composite MaterialsIntroduction to Composite Materials
Introduction to Composite Materials
Dr Carl Zweben
 
Application &amp; manufacturing process of polymer matrix composites
Application &amp; manufacturing process of polymer matrix compositesApplication &amp; manufacturing process of polymer matrix composites
Application &amp; manufacturing process of polymer matrix composites
Ashraf Ali
 
Diagramas de equilibrio hierro carbono
Diagramas de equilibrio   hierro carbonoDiagramas de equilibrio   hierro carbono
Diagramas de equilibrio hierro carbono
Brayan Herrera
 

La actualidad más candente (20)

functionally graded material
functionally graded materialfunctionally graded material
functionally graded material
 
Shape memory alloys
Shape memory alloysShape memory alloys
Shape memory alloys
 
Shape Memory Alloys (SMAs)
Shape Memory Alloys (SMAs)Shape Memory Alloys (SMAs)
Shape Memory Alloys (SMAs)
 
Polymers and its Viscoelastic Nature
Polymers and its Viscoelastic NaturePolymers and its Viscoelastic Nature
Polymers and its Viscoelastic Nature
 
FG materials.pptx
FG materials.pptxFG materials.pptx
FG materials.pptx
 
Shape Memory Alloy ppt
Shape Memory Alloy pptShape Memory Alloy ppt
Shape Memory Alloy ppt
 
Introduction to Composite Materials
Introduction to Composite MaterialsIntroduction to Composite Materials
Introduction to Composite Materials
 
Polymer matrix composites [pmc]
Polymer matrix composites [pmc]Polymer matrix composites [pmc]
Polymer matrix composites [pmc]
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix composites
 
shape memory alloys
shape memory alloysshape memory alloys
shape memory alloys
 
Advanced High Strength Steels and their Heat Treatment processes
Advanced High Strength Steels and their Heat Treatment processesAdvanced High Strength Steels and their Heat Treatment processes
Advanced High Strength Steels and their Heat Treatment processes
 
Application &amp; manufacturing process of polymer matrix composites
Application &amp; manufacturing process of polymer matrix compositesApplication &amp; manufacturing process of polymer matrix composites
Application &amp; manufacturing process of polymer matrix composites
 
overview of functionally graded materials
overview of functionally graded materialsoverview of functionally graded materials
overview of functionally graded materials
 
CHAPTER 6 Strength, creep and fracture of polymers.ppt
CHAPTER 6 Strength, creep and fracture of  polymers.pptCHAPTER 6 Strength, creep and fracture of  polymers.ppt
CHAPTER 6 Strength, creep and fracture of polymers.ppt
 
Diagramas de equilibrio hierro carbono
Diagramas de equilibrio   hierro carbonoDiagramas de equilibrio   hierro carbono
Diagramas de equilibrio hierro carbono
 
SMART Materials
SMART MaterialsSMART Materials
SMART Materials
 
5 Shape Memory Alloy basics
5 Shape Memory Alloy basics5 Shape Memory Alloy basics
5 Shape Memory Alloy basics
 
Mme 323 materials science week 11-12 - failure
Mme 323 materials science   week 11-12 - failureMme 323 materials science   week 11-12 - failure
Mme 323 materials science week 11-12 - failure
 
Composite matierals lecture 2
Composite matierals lecture 2Composite matierals lecture 2
Composite matierals lecture 2
 
Implantation srim trim
Implantation  srim trimImplantation  srim trim
Implantation srim trim
 

Destacado (8)

Polymer memory
Polymer memoryPolymer memory
Polymer memory
 
Application and advances of polymers
Application and advances of polymersApplication and advances of polymers
Application and advances of polymers
 
Bio resin based natural fibre composites and their applications
Bio resin based natural fibre composites and their applicationsBio resin based natural fibre composites and their applications
Bio resin based natural fibre composites and their applications
 
Polymers and polymer composites
Polymers and polymer compositesPolymers and polymer composites
Polymers and polymer composites
 
Polymer composites
Polymer compositesPolymer composites
Polymer composites
 
Compatibilization in bio-based and biodegradable polymer blends
Compatibilization in bio-based and biodegradable polymer blendsCompatibilization in bio-based and biodegradable polymer blends
Compatibilization in bio-based and biodegradable polymer blends
 
Ppt of biodegradable packaging
Ppt of biodegradable packagingPpt of biodegradable packaging
Ppt of biodegradable packaging
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix composites
 

Similar a Presentation

DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...
DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...
DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...
AnonymousClyy9N
 
Plastics Mechanical Properties
Plastics   Mechanical PropertiesPlastics   Mechanical Properties
Plastics Mechanical Properties
ibaiges
 
Nano comp lam method
Nano comp lam methodNano comp lam method
Nano comp lam method
skrokkam
 
Dynamic Mechanical Analyzer
Dynamic Mechanical AnalyzerDynamic Mechanical Analyzer
Dynamic Mechanical Analyzer
David Kumar
 

Similar a Presentation (20)

Dynamic mechanical analysis(DMA)
Dynamic mechanical analysis(DMA)Dynamic mechanical analysis(DMA)
Dynamic mechanical analysis(DMA)
 
adlatest(1).pptx
adlatest(1).pptxadlatest(1).pptx
adlatest(1).pptx
 
Em2004 270
Em2004 270Em2004 270
Em2004 270
 
TALAT Lecture 1601: Process modelling applied to age hardening aluminium alloys
TALAT Lecture 1601: Process modelling applied to age hardening aluminium alloysTALAT Lecture 1601: Process modelling applied to age hardening aluminium alloys
TALAT Lecture 1601: Process modelling applied to age hardening aluminium alloys
 
Report on Nitinol
Report on NitinolReport on Nitinol
Report on Nitinol
 
Thermo mechanical characterization and damage of polymer materials:Applicatio...
Thermo mechanical characterization and damage of polymer materials:Applicatio...Thermo mechanical characterization and damage of polymer materials:Applicatio...
Thermo mechanical characterization and damage of polymer materials:Applicatio...
 
F1135359
F1135359F1135359
F1135359
 
DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...
DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...
DESIGN AND FABRICATION OF SOLAR THERMAL WATER HEATER USING ALUMINIUM THIN FIL...
 
Crimson Publishers-Stimulus Activated Shape Switching in Shape Memory Materia...
Crimson Publishers-Stimulus Activated Shape Switching in Shape Memory Materia...Crimson Publishers-Stimulus Activated Shape Switching in Shape Memory Materia...
Crimson Publishers-Stimulus Activated Shape Switching in Shape Memory Materia...
 
Me 1999-mar4 - predicting durability
Me 1999-mar4 - predicting durabilityMe 1999-mar4 - predicting durability
Me 1999-mar4 - predicting durability
 
Plastics Mechanical Properties
Plastics   Mechanical PropertiesPlastics   Mechanical Properties
Plastics Mechanical Properties
 
Nano comp lam method
Nano comp lam methodNano comp lam method
Nano comp lam method
 
1 shape memory_polymers
1 shape memory_polymers1 shape memory_polymers
1 shape memory_polymers
 
shape memory alloys
shape memory alloysshape memory alloys
shape memory alloys
 
Dynamic Mechanical Analyzer
Dynamic Mechanical AnalyzerDynamic Mechanical Analyzer
Dynamic Mechanical Analyzer
 
Several Kinds of Thermal Analysis Technologies of Measuring Glass Transition ...
Several Kinds of Thermal Analysis Technologies of Measuring Glass Transition ...Several Kinds of Thermal Analysis Technologies of Measuring Glass Transition ...
Several Kinds of Thermal Analysis Technologies of Measuring Glass Transition ...
 
8 iiste photo 7
8 iiste photo 78 iiste photo 7
8 iiste photo 7
 
Thermo-mechanical-fatigue_modelling_by_AbhinavAshish.pptx
Thermo-mechanical-fatigue_modelling_by_AbhinavAshish.pptxThermo-mechanical-fatigue_modelling_by_AbhinavAshish.pptx
Thermo-mechanical-fatigue_modelling_by_AbhinavAshish.pptx
 
Dma
DmaDma
Dma
 
Lecture: Mechanical Properties: Macro Viewpoint
Lecture: Mechanical Properties: Macro ViewpointLecture: Mechanical Properties: Macro Viewpoint
Lecture: Mechanical Properties: Macro Viewpoint
 

Presentation

  • 1. Constitutive Modeling and Simulation of Shape Memory Polymers Defense Proposal ADVISOR: DR I.J. RAO DATE : 11/17/2008 MAHESH KHANOLKAR
  • 2.
  • 3.
  • 4.
  • 5. How Shape Memory Polymers Work Original: Chemical Cross-Links Temporary: Glassy Phase Lendlein et al. Original: Crystalline Hard domains (Physical cross-links) Temporary: Crystallites Original: Chemical Cross-Links Temporary: Crystallites
  • 6.
  • 7. Shape Memory Polymers Representative Application Biodegradable Shape Memory Polymer for Suturing wounds. (Langer 2002)
  • 8. Shape Memory Polymers Representative Application   Time series photographs that show the recovery of a shape-memory tube. (a)- (f) Start to finish of the process takes a total of 10 s at 50°C (Marc Behl et al 2007).
  • 9.
  • 10. Shape Memory Mechanism in CSMP’s Deform Cool Unload Heat Amorphous polymer Cross-link Crystallite Legend Melting Crystallization T > T r T < T r State 1 State 4 State 2 State 3 Stretch Nominal Stress 1 2 3 4
  • 11. Shape Memory Mechanism in GSMP’s Deform Cool Unload Heat Amorphous polymer Cross-link Glassy polymer Legend Glass Transition T > T r T < T r State 1 State 4 State 2 State 3 Stretch Nominal Stress 1 2 3 4
  • 12.
  • 13.
  • 14.
  • 15.
  • 16. Modeling - Natural Configurations Natural configurations associate with a viscoelastic melt
  • 17.
  • 18.
  • 19.
  • 20.
  • 21. Modeling – Glassy SMP (Mixture of rubbery and glassy phase) Natural Configurations associated with the glassy-rubbery phase solid phase mixture
  • 22.
  • 23.
  • 24. Modeling – Glassy SMP Cycle Stress–strain–temperature diagram illustrating the thermo mechanical behavior of a shape memory polymer under different strain/stress constraint conditions
  • 25. Simulation and Results (Uniaxial Deformation Cycle GSMP) Stress vs Strain for the complete SMP Cycle T L (K) 273 T g (K) 343 T H (K) 358 (Mpa) 8.8 MPa (Mpa) 750 MPa
  • 26. Simulation and Results (Uniaxial Deformation Cycle GSMP) Stress vs Temperature
  • 27. Simulation and Results (Uniaxial Deformation Cycle GSMP) Stress vs Strain plot (Yiping Liu et al, 2005)
  • 28.
  • 29. Simulation and Results (Uniaxial Deformation Cycle GSMP) Effect of Nanoreinforcemnts Elastic moduli of the SMP and SMP composite at 26 and 118°C (Yiping Liu et al 2003) .
  • 30. Simulation and Results (Uniaxial Deformation Cycle GSMP) Effect of Nanoreinforcemnts Stress vs Strain Above the glass transition
  • 31. Torsion of a Cylinder Undeformed Cylinder Deformation after applying Torsion Motion: Deformation gradient: M (in sec -2 ) (MPa) (MPa) 0.33 120 1200 0.00007 0.256 50
  • 32. Simulation and Results: Torsion of a Cylinder Moment vs Time (Torsion of a cylinder)
  • 33. Simulation and Results: Torsion of a Cylinder Moment vs Shear (Torsion of a cylinder)
  • 34. Simulation and Results: Torsion of a Cylinder Shear vs Time (Torsion of a cylinder)
  • 35.
  • 36. Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Applied load to the Element
  • 37. Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 1 Large Deformation on the single element
  • 38. Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 2 Constraining the element to retain its temporary shape
  • 39. Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 3 Removing load – Small amount of strain recovery
  • 40. Simulation and Results: Large Deformation on a single cubic element using UMAT (ABAQUS) Step 4 Back to Original Shape
  • 41.
  • 42.