TRIGONOMETRÍA 1 (Resumen)

•   Definiciones en triángulos rectángulos
         cateto opuesto                             ...
cos x




tg x




•      Recorrido
            – 1 ≤ sen x ≤ 1      – 1 ≤ cos x ≤ 1          – ∞ < tg x < +∞,        ∀x

...
Áng. que difieren en 180º: α y 180º+α                      Ángulos complementarios: α y 90º–α
                            ...
• Otras fórmulas útiles
Teorema de Pitágoras

             a               Sólo en triángulos rectángulos:
 c             ...
Próxima SlideShare
Cargando en…5
×

Trigonometria 1(resumen)

3.032 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
3.032
En SlideShare
0
De insertados
0
Número de insertados
11
Acciones
Compartido
0
Descargas
70
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Trigonometria 1(resumen)

  1. 1. TRIGONOMETRÍA 1 (Resumen) • Definiciones en triángulos rectángulos cateto opuesto hipotenusa sen α = cosec α = hipotenusa cateto opuesto cateto contiguo hipotenusa cos α = sec α = hipotenusa cateto contiguo cateto opuesto cateto contiguo tg α = cotg α = cateto contiguo cateto opuesto • Razones de 30º, 60º y 45º 1 3 2 sen 30º = sen 60º = sen 45º = 2 2 2 3 1 2 cos 30º = cos 60º = cos 45º = 2 2 2 3 tg 60º = 3 tg 45º = 1 tg 30º = 3 • Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r sen α = cosec α = r y cos α = x sec α = r y . P(x, y) r x y x x tg α = cotg α = x y • Signos de las razones según los cuadrantes sen x cos x tg x cosec x + + sec x – + cotg x – + – – – + + – • Las razones en la circunferencia trigonométrica (radio = 1) sen x Prof. R. Mohigefer – IES V Centenario (Sevilla) Página 1 de 4
  2. 2. cos x tg x • Recorrido – 1 ≤ sen x ≤ 1 – 1 ≤ cos x ≤ 1 – ∞ < tg x < +∞, ∀x • Fórmulas fundamentales 1 sen α 1) cotg α = 5) tg α = tg α cos α 1 cos α 2) sec α = 6) cotg α = cos α sen α 1 1 3) cosec α = 7) 1 + tg 2α = sen α cos 2 α 4) sen α + cos 2 α = 1 2 8) 1 + cotg 2α = 1 sen 2α • Relaciones entre razones de distintos ángulos Ángulos opuestos: α y – α Ángulos suplementarios: α y 180º–α α 180 – α α sen (– α) = – sen α sen (180º – α) = sen α cos (– α) = cos α cos (180º – α) = – cos α tg (– α) = – tgα tg (180º – α) = – tgα –α Prof. R. Mohigefer – IES V Centenario (Sevilla) Página 2 de 4
  3. 3. Áng. que difieren en 180º: α y 180º+α Ángulos complementarios: α y 90º–α α α sen (180º +α) = – sen α 90 – α sen (90º – α) = cos α cos (180º +α) = – cos α cos (90º – α) = sen α tg (180º +α) = tg α tg (90º – α) = cotgα 180º + α Áng. que difieren en 90º: α y α + 90º 90º+α sen (90º + α) = cos α α cos (90º + α) = – sen α tg (90º + α) = – cotg α • Resolución de triángulos no rectángulos Teorema de los senos A a b c c b = = sen A sen B sen C B a C Observaciones relativas al Teorema de los senos: 1) Sirve para resolver un triángulo conocidos dos ángulos y un lado o dos lados y el ángulo opuesto a uno de ellos. 2) Cuando se calcula un ángulo hay, en principio, dos soluciones: α y 180º – α. Hay que comprobar si ambas son válidas: La suma de los tres ángulos no puede superar 180º, y un triángulo tiene, a lo sumo, un solo ángulo obtuso. 3) Si en un problema determinado podemos optar por aplicar el Teorema de los se- nos o el Teorema del coseno, hay que elegir siempre el del coseno (porque el de los senos puede aportar dos soluciones falsamente válidas en estos casos). Teorema del coseno A c b a2 = b2 + c2 – 2 b c cos A b2 = a2 + c2 – 2 a c cos B C c2 = a2 + b2 – 2 a b cos C B a Observaciones relativas al Teorema del coseno: 1) Sirve para resolver un triángulo conocidos los tres lados o dos lados y el ángulo comprendido entre ellos. 2) Si en un problema determinado podemos optar por aplicar el Teorema de los se- nos o el Teorema del coseno, hay que elegir siempre el del coseno (porque el de los senos puede aportar dos soluciones falsamente válidas en estos casos). Prof. R. Mohigefer – IES V Centenario (Sevilla) Página 3 de 4
  4. 4. • Otras fórmulas útiles Teorema de Pitágoras a Sólo en triángulos rectángulos: c a2 = b2 + c2 b Teorema de la altura h Sólo en triángulos rectángulos: h2 = m·n m n Teorema del cateto c b Sólo en triángulos rectángulos: c2 = m·a m n b2 = n·a a=m+n Fórmula de Herón Calcula el área de un triángulo cualquiera conocidos sus tres lados. Si llamamos p al perímetro del triángulo, esto es: p = a + b + c, se tiene: S = p ( p − a )( p − b)( p − c) Prof. R. Mohigefer – IES V Centenario (Sevilla) Página 4 de 4

×