 En teoría de números, el último teorema de
Fermat, o teorema de Fermat-Wiles, es uno
de los teoremas más famosos en la h...
 El teorema fue conjeturado por Pierre de
Fermat en 1637, pero no fue demostrado
hasta 1995 por Andrew Wiles ayudado por ...
 El siguiente mayor paso fue hecho por la
matemática Sophie Germain. Un caso especial dice
que si p y 2p + 1 son ambos pr...
 Leonhard Euler demostró el caso n = 3. El 4 de
agosto de 1735 Euler escribió a Goldbach
reclamando tener una demostració...
 No fue hasta 1825 que Peter Gustav Lejeune
Dirichlet y Legendre generalizaron para n=5 la
demostración de Euler. Lamé de...
Teorema de fermat
Próxima SlideShare
Cargando en…5
×

Teorema de fermat

273 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
273
En SlideShare
0
De insertados
0
Número de insertados
2
Acciones
Compartido
0
Descargas
5
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Teorema de fermat

  1. 1.  En teoría de números, el último teorema de Fermat, o teorema de Fermat-Wiles, es uno de los teoremas más famosos en la historia de la matemática. Utilizando la notación moderna, se puede enunciar de la siguiente manera: Si n es un número entero mayor que 2, entonces no existen números enteros positivos x, y y z, tales que se cumpla la igualdad:
  2. 2.  El teorema fue conjeturado por Pierre de Fermat en 1637, pero no fue demostrado hasta 1995 por Andrew Wiles ayudado por el matemático Richard Taylor. La búsqueda de una demostración estimuló el desarrollo de la teoría algebraica de números en el siglo XIX y la demostración del teorema de la modularidad en el siglo XX.
  3. 3.  El siguiente mayor paso fue hecho por la matemática Sophie Germain. Un caso especial dice que si p y 2p + 1 son ambos primos, entonces la expresión de la conjetura de Fermat para la potencia p implica que uno de los x, y ó z es divisible por p. En consecuencia la conjetura se divide en dos casos:  Caso 1: Ninguno de los x, y, z es divisible por p.  Caso 2: Uno y sólo uno de x, y, z es divisible por p.Sophie Germain probó el caso 1 para todo p menor que 100 y Adrien-Marie Legendre extendió sus métodos a todos los números menores que 197. Aquí se encontró que el caso 2 no estaba demostrado ni siquiera para p = 5, por lo que fue evidente que era en el caso 2 en el que había que concentrarse. Este caso también se dividía entre varios casos posibles.
  4. 4.  Leonhard Euler demostró el caso n = 3. El 4 de agosto de 1735 Euler escribió a Goldbach reclamando tener una demostración para el caso n = 3. En Álgebra (1770) se encontró una falacia en la demostración de Euler. Corregirla directamente era demasiado difícil, pero otros aportes anteriores de Euler permitían encontrar una solución correcta por medios más simples. Por esto se consideró que Euler había demostrado ese caso. Del análisis de la demostración fallida de Euler surgió la evidencia de que ciertos conjuntos de números complejos no se comportaban de igual manera que los enteros.
  5. 5.  No fue hasta 1825 que Peter Gustav Lejeune Dirichlet y Legendre generalizaron para n=5 la demostración de Euler. Lamé demostró el caso n=7 en 1839.  Entre 1844 y 1846 Ernst Kummer demostró que la factorización no única podía ser salvada mediante la introducción de números complejos ideales. Un año después Kummer afirma que el número 37 no es un primo regular (Ver: Números de Bernoulli). Luego se encuentra que tampoco 59 y 67 lo son. Kummer, Mirimanoff, Wieferich, Furtwänger, Vandiver y otros extienden la investigación a números más grandes. En 1915 Jensen demuestra que existen infinitos primos irregulares. La investigación se estanca por esta vía de la divisibilidad, a pesar de que se logran comprobaciones para n menor o igual a 4.000.000.

×