SlideShare una empresa de Scribd logo
1 de 61
Descargar para leer sin conexión
Section	5.5
                         Integration	by	Substitution

                                V63.0121, Calculus	I



                                   April	28, 2009


       Announcements
               Quiz	6	this	week	covering	5.1–5.2
               Practice	finals	on	the	website. Solutions	Friday

.      .
Image	credit: kchbrown
                                                       .   .     .   .   .   .
Outline


  Announcements

  Last	Time: The	Fundamental	Theorem(s)	of	Calculus

  Substitution	for	Indefinite	Integrals
     Theory
     Examples

  Substitution	for	Definite	Integrals
     Theory
     Examples



                                           .   .      .   .   .   .
Office	Hours	and	other	help



      Day        Time      Who/What          Where	in	WWH
       M      1:00–2:00    Leingang	OH            624
              5:00–7:00    Curto	PS               517
       T      1:00–2:00    Leingang	OH            624
              4:00–5:50    Curto	PS               317
      W       2:00–3:00    Leingang	OH            624
      R     9:00–10:00am   Leingang	OH            624
      F       2:00–4:00    Curto	OH              1310




                                         .     .   .   .    .   .
Final	stuff

               Final	is	May	8, 2:00–3:50pm	in	19W4	101/102
               Old	finals	online, including	Fall	2008
               Review	sessions: May	5	and	6, 6:00–8:00pm, SILV 703




                                                                   .

.
Image	credit: Pragmagraphr
                                                       .   .   .       .   .   .
Resurrection	Policy
        If	your	final	score	beats	your	midterm	score, we	will	add	10%	to
        its	weight, and	subtract	10%	from	the	midterm	weight.




                                                                          .
.
Image	credit: Scott	Beale	/	Laughing	Squid
                                                   .   .   .    .   .         .
Outline


  Announcements

  Last	Time: The	Fundamental	Theorem(s)	of	Calculus

  Substitution	for	Indefinite	Integrals
     Theory
     Examples

  Substitution	for	Definite	Integrals
     Theory
     Examples



                                           .   .      .   .   .   .
Differentiation	and	Integration	as	reverse	processes


   Theorem	(The	Fundamental	Theorem	of	Calculus)
    1. Let f be	continuous	on [a, b]. Then
                               ∫ x
                            d
                                    f(t) dt = f(x)
                            dx a

    2. Let f be	continuous	on [a, b] and f = F′ for	some	other
       function F. Then
                         ∫ b
                             f(x) dx = F(b) − F(a).
                           a




                                                 .   .   .   .   .   .
Techniques	of	antidifferentiation?


   So	far	we	know	only	a	few	rules	for	antidifferentiation. Some	are
   general, like
                ∫                   ∫           ∫
                  [f(x) + g(x)] dx = f(x) dx + g(x) dx




                                               .   .    .   .    .     .
Techniques	of	antidifferentiation?


   So	far	we	know	only	a	few	rules	for	antidifferentiation. Some	are
   general, like
                ∫                   ∫           ∫
                  [f(x) + g(x)] dx = f(x) dx + g(x) dx

   Some	are	pretty	particular, like
                    ∫
                           1
                        √         dx = arcsec x + C.
                       x x2 − 1




                                               .       .   .   .   .   .
Techniques	of	antidifferentiation?


   So	far	we	know	only	a	few	rules	for	antidifferentiation. Some	are
   general, like
                ∫                   ∫           ∫
                  [f(x) + g(x)] dx = f(x) dx + g(x) dx

   Some	are	pretty	particular, like
                    ∫
                           1
                        √         dx = arcsec x + C.
                       x x2 − 1
   What	are	we	supposed	to	do	with	that?




                                               .       .   .   .   .   .
So	far	we	don’t	have	any	way	to	find
                         ∫
                               2x
                           √         dx
                              x2 + 1
or                        ∫
                              tan x dx.




                                          .   .   .   .   .   .
So	far	we	don’t	have	any	way	to	find
                         ∫
                               2x
                           √         dx
                              x2 + 1
or                         ∫
                               tan x dx.

Luckily, we	can	be	smart	and	use	the	“anti”	version	of	one	of	the
most	important	rules	of	differentiation: the	chain	rule.




                                            .   .    .   .    .     .
Outline


  Announcements

  Last	Time: The	Fundamental	Theorem(s)	of	Calculus

  Substitution	for	Indefinite	Integrals
     Theory
     Examples

  Substitution	for	Definite	Integrals
     Theory
     Examples



                                           .   .      .   .   .   .
Substitution	for	Indefinite	Integrals



   Example
   Find                ∫
                                x
                           √             dx.
                               x2   +1




                                               .   .   .   .   .   .
Substitution	for	Indefinite	Integrals



   Example
   Find                     ∫
                                     x
                                √             dx.
                                    x2   +1

   Solution
   Stare	at	this	long	enough	and	you	notice	the	the	integrand	is	the
                               √
   derivative	of	the	expression 1 + x2 .




                                                    .   .   .   .   .   .
Say	what?


  Solution	(More	slowly, now)
  Let g(x) = x2 + 1.




                                .   .   .   .   .   .
Say	what?


  Solution	(More	slowly, now)
  Let g(x) = x2 + 1. Then g′ (x) = 2x and	so

                d√         1                 x
                   g(x) = √     g′ (x) = √
                dx       2 g(x)            x2 + 1




                                               .   .   .   .   .   .
Say	what?


  Solution	(More	slowly, now)
  Let g(x) = x2 + 1. Then g′ (x) = 2x and	so

                 d√         1                 x
                    g(x) = √     g′ (x) = √
                 dx       2 g(x)            x2 + 1

  Thus
            ∫                 ∫ (        )
                   x             d√
                √        dx =        g(x) dx
                  x2 + 1        dx
                              √          √
                            = g(x) + C = 1 + x2 + C.




                                               .   .   .   .   .   .
Leibnizian	notation	wins	again



   Solution	(Same	technique, new	notation)
   Let u = x2 + 1.




                                         .   .   .   .   .   .
Leibnizian	notation	wins	again



   Solution	(Same	technique, new	notation)
                                   √                    √
   Let u = x2 + 1. Then du = 2x dx and   1 + x2 =           u.




                                             .      .            .   .   .   .
Leibnizian	notation	wins	again



   Solution	(Same	technique, new	notation)
                                   √             √
   Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So	the
   integrand	becomes	completely	transformed	into
              ∫                ∫            ∫
                     x            1 (   )        1
                 √        dx =   √ 1 du =
                                      2
                                                 √ du
                   x2 + 1          u           2 u




                                          .   .   .   .     .   .
Leibnizian	notation	wins	again



   Solution	(Same	technique, new	notation)
                                   √             √
   Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So	the
   integrand	becomes	completely	transformed	into
              ∫                ∫            ∫
                     x            1 (    )       1
                 √        dx =   √ 1 du =
                                      2
                                                 √ du
                   x2 + 1          u           2 u
                               ∫
                                 1 −1/2
                             =   2u     du




                                          .   .   .   .     .   .
Leibnizian	notation	wins	again



   Solution	(Same	technique, new	notation)
                                   √             √
   Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So	the
   integrand	becomes	completely	transformed	into
              ∫                ∫            ∫
                     x            1 (    )       1
                 √        dx =   √ 1 du =
                                      2
                                                 √ du
                   x2 + 1          u           2 u
                               ∫
                                 1 −1/2
                             =   2u     du
                               √        √
                             = u + C = 1 + x2 + C.




                                          .   .   .   .     .   .
Theorem	of	the	Day



  Theorem	(The	Substitution	Rule)
  If u = g(x) is	a	differentiable	function	whose	range	is	an	interval I
  and f is	continuous	on I, then
                       ∫                   ∫
                                  ′
                          f(g(x))g (x) dx = f(u) du

  or                   ∫                  ∫
                                du
                           f(u)    dx =       f(u) du
                                dx




                                                   .    .   .   .   .     .
A polynomial	example


  Example                                  ∫
  Use	the	substitution u = x2 + 3 to	find       (x2 + 3)3 4x dx.




                                                  .   .    .      .   .   .
A polynomial	example


  Example                                  ∫
  Use	the	substitution u = x2 + 3 to	find       (x2 + 3)3 4x dx.

  Solution
  If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So
              ∫                   ∫             ∫
                 (x + 3) 4x dx = u 2du = 2 u3 du
                   2     3            3


                                  1 4 1 2
                              =     u = (x + 3)4
                                  2    2




                                                  .   .    .      .   .   .
A polynomial	example, the	hard	way



  Compare	this	to	multiplying	it	out:
     ∫                    ∫
         2       3
                             ( 6                 )
       (x + 3) 4x dx =        x + 9x4 + 27x2 + 27 4x dx
                          ∫
                             ( 7                       )
                       =      4x + 36x5 + 108x3 + 108x dx
                          1 8
                      =     x + 6x6 + 27x4 + 54x2
                          2




                                           .   .    .   .   .   .
Compare

  We	have
        ∫
                             1 2
            (x2 + 3)3 4x dx =  (x + 3)4
                             2
          ∫
                             1
            (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2
                             2
  Now
          1 2          1( 8                           )
            (x + 3)4 =   x + 12x6 + 54x4 + 108x2 + 81
          2            2
                       1                        81
                     = x8 + 6x6 + 27x4 + 54x2 +
                       2                        2
  Is	this	a	problem?


                                           .    .      .   .   .   .
Compare

  We	have
        ∫
                             1 2
            (x2 + 3)3 4x dx =  (x + 3)4 + C
                             2
          ∫
                             1
            (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 + C
                             2
  Now
          1 2          1( 8                           )
            (x + 3)4 =   x + 12x6 + 54x4 + 108x2 + 81
          2            2
                       1                        81
                     = x8 + 6x6 + 27x4 + 54x2 +
                       2                        2
  Is	this	a	problem? No, that’s	what +C means!


                                            .    .   .     .   .   .
A slick	example


   Example
       ∫
   Find   tan x dx.




                      .   .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x




                                               .   .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx.




                                               .   .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx. So
             ∫              ∫              ∫
                              sin x          1
                 tan x dx =         dx = −     du
                              cos x          u




                                               .    .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx. So
             ∫              ∫               ∫
                               sin x          1
                 tan x dx =          dx = −     du
                               cos x          u
                          = − ln |u| + C




                                               .     .   .   .   .   .
A slick	example


   Example
       ∫
                                     sin x
   Find   tan x dx. (Hint: tan x =         )
                                     cos x
   Solution
   Let u = cos x. Then du = − sin x dx. So
             ∫              ∫               ∫
                               sin x          1
                 tan x dx =          dx = −     du
                               cos x          u
                          = − ln |u| + C
                        = − ln | cos x| + C = ln | sec x| + C




                                                 .    .   .     .   .   .
Outline


  Announcements

  Last	Time: The	Fundamental	Theorem(s)	of	Calculus

  Substitution	for	Indefinite	Integrals
     Theory
     Examples

  Substitution	for	Definite	Integrals
     Theory
     Examples



                                           .   .      .   .   .   .
Theorem	(The	Substitution	Rule	for	Definite	Integrals)
If g′ is	continuous	and f is	continuous	on	the	range	of u = g(x),
then             ∫                    ∫
                     b                         g(b)
                         f(g(x))g′ (x) dx =           f(u) du.
                 a                            g(a)




                                                       .    .    .   .   .   .
Example ∫
              π
Compute           cos2 x sin x dx.
          0




                                     .   .   .   .   .   .
Example ∫
                π
Compute             cos2 x sin x dx.
            0

Solution	(Slow	Way)                    ∫
First	compute	the	indefinite	integral       cos2 x sin x dx and	then
evaluate.




                                                .    .    .   .       .   .
Example ∫
                π
Compute             cos2 x sin x dx.
            0

Solution	(Slow	Way)                             ∫
First	compute	the	indefinite	integral                cos2 x sin x dx and	then
evaluate. Let u = cos x. Then du = − sin x dx and
         ∫                     ∫
            cos2 x sin x dx = − u2 du

                                     = − 1 u3 + C = − 1 cos3 x + C.
                                         3            3

Therefore
                    ∫    π
                                                                π
                             cos2 x sin x dx = − 1 cos3 x
                                                 3              0
                                                                    = 2.
                                                                      3
                     0



                                                            .        .     .   .   .   .
Solution	(Fast	Way)
Do	both	the	substitution	and	the	evaluation	at	the	same	time.




                                           .    .   .    .      .   .
Solution	(Fast	Way)
Do	both	the	substitution	and	the	evaluation	at	the	same	time. Let
u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1.




                                            .   .    .   .    .     .
Solution	(Fast	Way)
Do	both	the	substitution	and	the	evaluation	at	the	same	time. Let
u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So
                ∫    π                       ∫   −1
                         cos2 x sin x dx =            −u2 du
                 0                           1
                                             ∫   1
                                        =            u2 du
                                             −1
                                             1 3 1              2
                                        =    3 u −1         =
                                                                3
                                                                  .




                                                        .         .   .   .   .   .
An	exponential	example
  Example√
         ∫   ln       8         √
  Find        √           e2x       e2x + 1 dx
         ln       3




                                                 .   .   .   .   .   .
An	exponential	example
  Example√
         ∫   ln       8         √
  Find        √           e2x       e2x + 1 dx
         ln       3

  Solution
  Let u = e2x , so du = 2e2x dx. We	have
                          ∫        √                                     ∫
                              ln        8         √                  1       8√
                                √           e2x       e2x + 1 dx =                u + 1 du
                           ln       3                                2   3




                                                                              .      .   .   .   .   .
An	exponential	example
  Example√
         ∫   ln       8         √
  Find        √           e2x       e2x + 1 dx
         ln       3

  Solution
  Let u = e2x , so du = 2e2x dx. We	have
                          ∫        √                                         ∫
                              ln        8         √                      1        8√
                                √           e2x       e2x + 1 dx =                     u + 1 du
                           ln       3                                    2    3

  Now	let y = u + 1, dy = du. So
                  ∫       8√                              ∫    9                   ∫       9
             1                             1                       √          1
                                u + 1 du =                             y dy =                  y1/2 dy
             2        3                    2               4                  2        4
                                                                         9
                                                       1 2                    1           19
                                                      = · y3/2               = (27 − 8) =
                                                       2 3               4    3           3

                                                                                   .           .    .    .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1




                                                  .   .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx.




                                                  .   .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x          e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx. Then
                           ∫        √                                       ∫
                               ln       8            √                  1       9√
                                                2x
                                √           e            e2x   + 1 dx =              u du
                           ln       3                                   2   4




                                                                                 .      .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x          e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx. Then
                           ∫        √                                       ∫
                               ln       8            √                  1       9√
                                                2x
                                √           e            e2x   + 1 dx =              u du
                           ln       3                                   2   4
                                                                                 9
                                                                         1 3/2
                                                                     =     u
                                                                         3       4




                                                                                 .      .   .   .   .   .
Another	way	to	skin	that	cat

   Example√
          ∫   ln       8         √
   Find        √           e2x          e2x + 1 dx
          ln       3

   Solution
   Let u = e2x + 1, so	that du = 2e2x dx. Then
                           ∫        √                                       ∫
                               ln       8            √                  1       9√
                                                2x
                                √           e            e2x   + 1 dx =              u du
                           ln       3                                   2   4
                                                                      1 3/2 9
                                                                     =  u
                                                                      3     4
                                                                      1           19
                                                                     = (27 − 8) =
                                                                      3            3


                                                                                 .      .   .   .   .   .
A third	skinned	cat


   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
          √
   Let u =         e2x + 1, so	that

                                 u2 = e2x + 1




                                                  .   .   .   .   .   .
A third	skinned	cat


   Example√
          ∫   ln       8         √
   Find        √           e2x       e2x + 1 dx
          ln       3

   Solution
          √
   Let u =         e2x + 1, so	that

                                 u2 = e2x + 1 =⇒ 2u du = 2e2x dx




                                                          .   .    .   .   .   .
A third	skinned	cat


   Example√
          ∫   ln       8         √
   Find        √           e2x        e2x + 1 dx
          ln       3

   Solution
          √
   Let u =         e2x + 1, so	that

                                 u2 = e2x + 1 =⇒ 2u du = 2e2x dx

   Thus                      ∫         √          ∫
                                  ln    8             3                      3
                                                                       1 3           19
                                      √       =           u · u du =     u       =
                                 ln       3       2                    3     2       3




                                                                             .       .    .   .   .   .
Example
Find      ∫              ( )      ( )
              3π/2
                       5  θ      2 θ
                     cot     sec      dθ.
          π               6        6




                                     .      .   .   .   .   .
Example
Find                ∫              ( )      ( )
                        3π/2
                                 5  θ      2 θ
                               cot     sec      dθ.
                     π              6        6

Before	we	dive	in, think	about:
       What	“easy”	substitutions	might	help?
       Which	of	the	trig	functions	suggests	a	substitution?




                                               .      .   .   .   .   .
Solution
        θ              1
Let φ =   . Then dφ = dθ.
        6              6
    ∫ 3π/2       ( )      ( )        ∫ π/4
                5 θ      2 θ
            cot      sec      dθ = 6       cot5 φ sec2 φ dφ
     π            6        6          π/6
                                     ∫ π/4
                                           sec2 φ dφ
                                 =6
                                      π/6    tan5 φ




                                          .   .    .   .      .   .
Solution
        θ              1
Let φ =   . Then dφ = dθ.
        6              6
    ∫ 3π/2       ( )      ( )        ∫ π/4
                5 θ      2 θ
            cot      sec      dθ = 6       cot5 φ sec2 φ dφ
     π            6        6          π/6
                                     ∫ π/4
                                           sec2 φ dφ
                                 =6
                                      π/6    tan5 φ

Now	let u = tan φ. So du = sec2 φ dφ, and
        ∫   π/4                  ∫   1
                  sec2 φ dφ              −5
    6                       =6     √ u        du
        π/6         tan5 φ       1/ 3
                                 (           )   1
                                      1                     3
                          =6         − u−4         √
                                                        =     [9 − 1] = 12.
                                      4          1/ 3       2


                                                        .     .    .   .      .   .
Graphs

        ∫   3π/2       ( )      ( )            ∫   π/4
                        θ      2 θ
        .            5
                   cot     sec      dθ         .         6 cot5 φ sec2 φ dφ
        π               6        6             π/6

    y
    .                                      y
                                           .




    .                       .        . .
                                       θ           . .          .
                                                                φ
                           .
                           π      3π               ππ
                                  .                . .
                                    2              64

                                                     .      .   .    .   .    .
Graphs

             ∫   π/4                          ∫   1
             .             5       2
                       6 cot φ sec φ dφ       .   √       6u−5 du
             π/6                              1/ 3

         y
         .                                y
                                          .




         .       . .           .
                               φ                  . ..
                                                     u
                 ππ                            1 . 1
                 . .                          .√
                 64                              3
                                          .           .     .   .   .   .
Summary: What	do	we	substitute?


      Linear	factors (ax + b) are	easy	substitutions: u = ax + b,
      du = a dx
      Look	for function/derivative	pairs in	the	integrand, one	to
      make u and	one	to	make du:
          xn and xn−1 (fudge	the	coefficient)
          sine	and	cosine	(fudge	the	minus	sign)
          ex and ex
          ax and ax (fudge	the	coefficient)
          √         1
            x and √ (fudge	the	factor	of 2)
                     x
                   1
          ln x and
                   x




                                               .   .    .   .       .   .

Más contenido relacionado

La actualidad más candente

Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
A Jorge Garcia
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
Matthew Leingang
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
Matthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Matthew Leingang
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
Eight Regression Algorithms
Eight Regression AlgorithmsEight Regression Algorithms
Eight Regression Algorithms
guestfee8698
 

La actualidad más candente (19)

Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Math refresher
Math refresherMath refresher
Math refresher
 
Lesson 9: The Product and Quotient Rules (slides)
Lesson 9: The Product and Quotient Rules (slides)Lesson 9: The Product and Quotient Rules (slides)
Lesson 9: The Product and Quotient Rules (slides)
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Lesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient RuleLesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient Rule
 
Cross-Validation
Cross-ValidationCross-Validation
Cross-Validation
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Lecture 1: linear SVM in the primal
Lecture 1: linear SVM in the primalLecture 1: linear SVM in the primal
Lecture 1: linear SVM in the primal
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Supervised Prediction of Graph Summaries
Supervised Prediction of Graph SummariesSupervised Prediction of Graph Summaries
Supervised Prediction of Graph Summaries
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 Foils
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Eight Regression Algorithms
Eight Regression AlgorithmsEight Regression Algorithms
Eight Regression Algorithms
 

Similar a Lesson 27: Integration by Substitution (Section 4 version)

Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
Matthew Leingang
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivatives
canalculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Matthew Leingang
 

Similar a Lesson 27: Integration by Substitution (Section 4 version) (20)

Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivatives
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 
125 5.1
125 5.1125 5.1
125 5.1
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
125 11.1
125 11.1125 11.1
125 11.1
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Core 2 indefinite integration
Core 2 indefinite integrationCore 2 indefinite integration
Core 2 indefinite integration
 

Más de Matthew Leingang

Más de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Último

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Último (20)

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 

Lesson 27: Integration by Substitution (Section 4 version)

  • 1. Section 5.5 Integration by Substitution V63.0121, Calculus I April 28, 2009 Announcements Quiz 6 this week covering 5.1–5.2 Practice finals on the website. Solutions Friday . . Image credit: kchbrown . . . . . .
  • 2. Outline Announcements Last Time: The Fundamental Theorem(s) of Calculus Substitution for Indefinite Integrals Theory Examples Substitution for Definite Integrals Theory Examples . . . . . .
  • 3. Office Hours and other help Day Time Who/What Where in WWH M 1:00–2:00 Leingang OH 624 5:00–7:00 Curto PS 517 T 1:00–2:00 Leingang OH 624 4:00–5:50 Curto PS 317 W 2:00–3:00 Leingang OH 624 R 9:00–10:00am Leingang OH 624 F 2:00–4:00 Curto OH 1310 . . . . . .
  • 4. Final stuff Final is May 8, 2:00–3:50pm in 19W4 101/102 Old finals online, including Fall 2008 Review sessions: May 5 and 6, 6:00–8:00pm, SILV 703 . . Image credit: Pragmagraphr . . . . . .
  • 5. Resurrection Policy If your final score beats your midterm score, we will add 10% to its weight, and subtract 10% from the midterm weight. . . Image credit: Scott Beale / Laughing Squid . . . . . .
  • 6. Outline Announcements Last Time: The Fundamental Theorem(s) of Calculus Substitution for Indefinite Integrals Theory Examples Substitution for Definite Integrals Theory Examples . . . . . .
  • 7. Differentiation and Integration as reverse processes Theorem (The Fundamental Theorem of Calculus) 1. Let f be continuous on [a, b]. Then ∫ x d f(t) dt = f(x) dx a 2. Let f be continuous on [a, b] and f = F′ for some other function F. Then ∫ b f(x) dx = F(b) − F(a). a . . . . . .
  • 8. Techniques of antidifferentiation? So far we know only a few rules for antidifferentiation. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx . . . . . .
  • 9. Techniques of antidifferentiation? So far we know only a few rules for antidifferentiation. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx Some are pretty particular, like ∫ 1 √ dx = arcsec x + C. x x2 − 1 . . . . . .
  • 10. Techniques of antidifferentiation? So far we know only a few rules for antidifferentiation. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx Some are pretty particular, like ∫ 1 √ dx = arcsec x + C. x x2 − 1 What are we supposed to do with that? . . . . . .
  • 11. So far we don’t have any way to find ∫ 2x √ dx x2 + 1 or ∫ tan x dx. . . . . . .
  • 12. So far we don’t have any way to find ∫ 2x √ dx x2 + 1 or ∫ tan x dx. Luckily, we can be smart and use the “anti” version of one of the most important rules of differentiation: the chain rule. . . . . . .
  • 13. Outline Announcements Last Time: The Fundamental Theorem(s) of Calculus Substitution for Indefinite Integrals Theory Examples Substitution for Definite Integrals Theory Examples . . . . . .
  • 14. Substitution for Indefinite Integrals Example Find ∫ x √ dx. x2 +1 . . . . . .
  • 15. Substitution for Indefinite Integrals Example Find ∫ x √ dx. x2 +1 Solution Stare at this long enough and you notice the the integrand is the √ derivative of the expression 1 + x2 . . . . . . .
  • 16. Say what? Solution (More slowly, now) Let g(x) = x2 + 1. . . . . . .
  • 17. Say what? Solution (More slowly, now) Let g(x) = x2 + 1. Then g′ (x) = 2x and so d√ 1 x g(x) = √ g′ (x) = √ dx 2 g(x) x2 + 1 . . . . . .
  • 18. Say what? Solution (More slowly, now) Let g(x) = x2 + 1. Then g′ (x) = 2x and so d√ 1 x g(x) = √ g′ (x) = √ dx 2 g(x) x2 + 1 Thus ∫ ∫ ( ) x d√ √ dx = g(x) dx x2 + 1 dx √ √ = g(x) + C = 1 + x2 + C. . . . . . .
  • 19. Leibnizian notation wins again Solution (Same technique, new notation) Let u = x2 + 1. . . . . . .
  • 20. Leibnizian notation wins again Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. . . . . . .
  • 21. Leibnizian notation wins again Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ ∫ x 1 ( ) 1 √ dx = √ 1 du = 2 √ du x2 + 1 u 2 u . . . . . .
  • 22. Leibnizian notation wins again Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ ∫ x 1 ( ) 1 √ dx = √ 1 du = 2 √ du x2 + 1 u 2 u ∫ 1 −1/2 = 2u du . . . . . .
  • 23. Leibnizian notation wins again Solution (Same technique, new notation) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ ∫ x 1 ( ) 1 √ dx = √ 1 du = 2 √ du x2 + 1 u 2 u ∫ 1 −1/2 = 2u du √ √ = u + C = 1 + x2 + C. . . . . . .
  • 24. Theorem of the Day Theorem (The Substitution Rule) If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then ∫ ∫ ′ f(g(x))g (x) dx = f(u) du or ∫ ∫ du f(u) dx = f(u) du dx . . . . . .
  • 25. A polynomial example Example ∫ Use the substitution u = x2 + 3 to find (x2 + 3)3 4x dx. . . . . . .
  • 26. A polynomial example Example ∫ Use the substitution u = x2 + 3 to find (x2 + 3)3 4x dx. Solution If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So ∫ ∫ ∫ (x + 3) 4x dx = u 2du = 2 u3 du 2 3 3 1 4 1 2 = u = (x + 3)4 2 2 . . . . . .
  • 27. A polynomial example, the hard way Compare this to multiplying it out: ∫ ∫ 2 3 ( 6 ) (x + 3) 4x dx = x + 9x4 + 27x2 + 27 4x dx ∫ ( 7 ) = 4x + 36x5 + 108x3 + 108x dx 1 8 = x + 6x6 + 27x4 + 54x2 2 . . . . . .
  • 28. Compare We have ∫ 1 2 (x2 + 3)3 4x dx = (x + 3)4 2 ∫ 1 (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 2 Now 1 2 1( 8 ) (x + 3)4 = x + 12x6 + 54x4 + 108x2 + 81 2 2 1 81 = x8 + 6x6 + 27x4 + 54x2 + 2 2 Is this a problem? . . . . . .
  • 29. Compare We have ∫ 1 2 (x2 + 3)3 4x dx = (x + 3)4 + C 2 ∫ 1 (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 + C 2 Now 1 2 1( 8 ) (x + 3)4 = x + 12x6 + 54x4 + 108x2 + 81 2 2 1 81 = x8 + 6x6 + 27x4 + 54x2 + 2 2 Is this a problem? No, that’s what +C means! . . . . . .
  • 30. A slick example Example ∫ Find tan x dx. . . . . . .
  • 31. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x . . . . . .
  • 32. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. . . . . . .
  • 33. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u . . . . . .
  • 34. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u = − ln |u| + C . . . . . .
  • 35. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solution Let u = cos x. Then du = − sin x dx. So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u = − ln |u| + C = − ln | cos x| + C = ln | sec x| + C . . . . . .
  • 36. Outline Announcements Last Time: The Fundamental Theorem(s) of Calculus Substitution for Indefinite Integrals Theory Examples Substitution for Definite Integrals Theory Examples . . . . . .
  • 37. Theorem (The Substitution Rule for Definite Integrals) If g′ is continuous and f is continuous on the range of u = g(x), then ∫ ∫ b g(b) f(g(x))g′ (x) dx = f(u) du. a g(a) . . . . . .
  • 38. Example ∫ π Compute cos2 x sin x dx. 0 . . . . . .
  • 39. Example ∫ π Compute cos2 x sin x dx. 0 Solution (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. . . . . . .
  • 40. Example ∫ π Compute cos2 x sin x dx. 0 Solution (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. Let u = cos x. Then du = − sin x dx and ∫ ∫ cos2 x sin x dx = − u2 du = − 1 u3 + C = − 1 cos3 x + C. 3 3 Therefore ∫ π π cos2 x sin x dx = − 1 cos3 x 3 0 = 2. 3 0 . . . . . .
  • 42. Solution (Fast Way) Do both the substitution and the evaluation at the same time. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. . . . . . .
  • 43. Solution (Fast Way) Do both the substitution and the evaluation at the same time. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1. So ∫ π ∫ −1 cos2 x sin x dx = −u2 du 0 1 ∫ 1 = u2 du −1 1 3 1 2 = 3 u −1 = 3 . . . . . . .
  • 44. An exponential example Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 . . . . . .
  • 45. An exponential example Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x , so du = 2e2x dx. We have ∫ √ ∫ ln 8 √ 1 8√ √ e2x e2x + 1 dx = u + 1 du ln 3 2 3 . . . . . .
  • 46. An exponential example Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x , so du = 2e2x dx. We have ∫ √ ∫ ln 8 √ 1 8√ √ e2x e2x + 1 dx = u + 1 du ln 3 2 3 Now let y = u + 1, dy = du. So ∫ 8√ ∫ 9 ∫ 9 1 1 √ 1 u + 1 du = y dy = y1/2 dy 2 3 2 4 2 4 9 1 2 1 19 = · y3/2 = (27 − 8) = 2 3 4 3 3 . . . . . .
  • 47. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1 . . . . . .
  • 48. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. . . . . . .
  • 49. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 2x √ e e2x + 1 dx = u du ln 3 2 4 . . . . . .
  • 50. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 2x √ e e2x + 1 dx = u du ln 3 2 4 9 1 3/2 = u 3 4 . . . . . .
  • 51. Another way to skin that cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution Let u = e2x + 1, so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 2x √ e e2x + 1 dx = u du ln 3 2 4 1 3/2 9 = u 3 4 1 19 = (27 − 8) = 3 3 . . . . . .
  • 52. A third skinned cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution √ Let u = e2x + 1, so that u2 = e2x + 1 . . . . . .
  • 53. A third skinned cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution √ Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx . . . . . .
  • 54. A third skinned cat Example√ ∫ ln 8 √ Find √ e2x e2x + 1 dx ln 3 Solution √ Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx Thus ∫ √ ∫ ln 8 3 3 1 3 19 √ = u · u du = u = ln 3 2 3 2 3 . . . . . .
  • 55. Example Find ∫ ( ) ( ) 3π/2 5 θ 2 θ cot sec dθ. π 6 6 . . . . . .
  • 56. Example Find ∫ ( ) ( ) 3π/2 5 θ 2 θ cot sec dθ. π 6 6 Before we dive in, think about: What “easy” substitutions might help? Which of the trig functions suggests a substitution? . . . . . .
  • 57. Solution θ 1 Let φ = . Then dφ = dθ. 6 6 ∫ 3π/2 ( ) ( ) ∫ π/4 5 θ 2 θ cot sec dθ = 6 cot5 φ sec2 φ dφ π 6 6 π/6 ∫ π/4 sec2 φ dφ =6 π/6 tan5 φ . . . . . .
  • 58. Solution θ 1 Let φ = . Then dφ = dθ. 6 6 ∫ 3π/2 ( ) ( ) ∫ π/4 5 θ 2 θ cot sec dθ = 6 cot5 φ sec2 φ dφ π 6 6 π/6 ∫ π/4 sec2 φ dφ =6 π/6 tan5 φ Now let u = tan φ. So du = sec2 φ dφ, and ∫ π/4 ∫ 1 sec2 φ dφ −5 6 =6 √ u du π/6 tan5 φ 1/ 3 ( ) 1 1 3 =6 − u−4 √ = [9 − 1] = 12. 4 1/ 3 2 . . . . . .
  • 59. Graphs ∫ 3π/2 ( ) ( ) ∫ π/4 θ 2 θ . 5 cot sec dθ . 6 cot5 φ sec2 φ dφ π 6 6 π/6 y . y . . . . . θ . . . φ . π 3π ππ . . . 2 64 . . . . . .
  • 60. Graphs ∫ π/4 ∫ 1 . 5 2 6 cot φ sec φ dφ . √ 6u−5 du π/6 1/ 3 y . y . . . . . φ . .. u ππ 1 . 1 . . .√ 64 3 . . . . . .
  • 61. Summary: What do we substitute? Linear factors (ax + b) are easy substitutions: u = ax + b, du = a dx Look for function/derivative pairs in the integrand, one to make u and one to make du: xn and xn−1 (fudge the coefficient) sine and cosine (fudge the minus sign) ex and ex ax and ax (fudge the coefficient) √ 1 x and √ (fudge the factor of 2) x 1 ln x and x . . . . . .