SlideShare una empresa de Scribd logo
1 de 133
Descargar para leer sin conexión
Sec on 2.4
    The Product and Quo ent Rules
             V63.0121.011: Calculus I
           Professor Ma hew Leingang
                  New York University


               February 23, 2011


.
Announcements

   Quiz 2 next week on
   §§1.5, 1.6, 2.1, 2.2
   Midterm March 7 on all
   sec ons in class (covers
   all sec ons up to 2.5)
Help!
 Free resources:
      Math Tutoring Center
      (CIWW 524)
      College Learning Center
      (schedule on Blackboard)
      TAs’ office hours
      my office hours
      each other!
Objectives
   Understand and be able
   to use the Product Rule
   for the deriva ve of the
   product of two func ons.
   Understand and be able
   to use the Quo ent Rule
   for the deriva ve of the
   quo ent of two
   func ons.
Outline
 Deriva ve of a Product
    Deriva on
    Examples
 The Quo ent Rule
    Deriva on
    Examples
 More deriva ves of trigonometric func ons
   Deriva ve of Tangent and Cotangent
   Deriva ve of Secant and Cosecant
 More on the Power Rule
   Power Rule for Nega ve Integers
Recollection and extension

 We have shown that if u and v are func ons, that

                         (u + v)′ = u′ + v′
                         (u − v)′ = u′ − v′

 What about uv?
Is the derivative of a product the
product of the derivatives?

              (uv)′ = u′ v′ ?
                    .
Is the derivative of a product the
product of the derivatives?

                              (uv)′ = u′ v′ !
                                    .




 Try this with u = x and v = x2 .
Is the derivative of a product the
product of the derivatives?

                          (uv)′ = u′ v′ !
                                .




 Try this with u = x and v = x2 .
      Then uv = x3 =⇒ (uv)′ = 3x2 .
Is the derivative of a product the
product of the derivatives?

                          (uv)′ = u′ v′ !
                                .




 Try this with u = x and v = x2 .
      Then uv = x3 =⇒ (uv)′ = 3x2 .
      But u′ v′ = 1 · 2x = 2x.
Is the derivative of a product the
product of the derivatives?

                          (uv)′ = u′ v′ !
                                .




 Try this with u = x and v = x2 .
      Then uv = x3 =⇒ (uv)′ = 3x2 .
      But u′ v′ = 1 · 2x = 2x.
 So we have to be more careful.
Mmm...burgers
 Say you work in a fast-food joint. You want to make more money.
 What are your choices?




               .
Mmm...burgers
 Say you work in a fast-food joint. You want to make more money.
 What are your choices?
    Work longer hours.




               .
Mmm...burgers
 Say you work in a fast-food joint. You want to make more money.
 What are your choices?
    Work longer hours.
    Get a raise.




               .
Mmm...burgers
 Say you work in a fast-food joint. You want to make more money.
 What are your choices?
      Work longer hours.
      Get a raise.
 Say you get a 25 cent raise in
 your hourly wages and work 5
 hours more per week. How
 much extra money do you
 make?
                .
Mmm...burgers
 Say you work in a fast-food joint. You want to make more money.
 What are your choices?
      Work longer hours.
      Get a raise.
 Say you get a 25 cent raise in
 your hourly wages and work 5
 hours more per week. How
 much extra money do you
 make?
              .
   ∆I = 5 × $0.25 = $1.25?
Mmm...burgers
 Say you work in a fast-food joint. You want to make more money.
 What are your choices?
      Work longer hours.
      Get a raise.
 Say you get a 25 cent raise in
 your hourly wages and work 5
 hours more per week. How
 much extra money do you
 make?
              .
   ∆I = 5 × $0.25 = $1.25?
Money money money money
 The answer depends on how much you work already and your
 current wage. Suppose you work h hours and are paid w. You get a
  me increase of ∆h and a wage increase of ∆w. Income is wages
  mes hours, so

          ∆I = (w + ∆w)(h + ∆h) − wh
             FOIL
             = w · h + w · ∆h + ∆w · h + ∆w · ∆h − wh
             = w · ∆h + ∆w · h + ∆w · ∆h
A geometric argument
 Draw a box:

               ∆h       w ∆h   ∆w ∆h


                h       wh     ∆w h

                    .
                         w      ∆w
A geometric argument
 Draw a box:

               ∆h       w ∆h     ∆w ∆h


                h       wh        ∆w h

                    .
                         w        ∆w

               ∆I = w ∆h + h ∆w + ∆w ∆h
Cash flow
 Supose wages and hours are changing con nuously over me. Over
 a me interval ∆t, what is the average rate of change of income?
                  ∆I   w ∆h + h ∆w + ∆w ∆h
                     =
                  ∆t            ∆t
                        ∆h     ∆w       ∆h
                     =w     +h     + ∆w
                         ∆t     ∆t      ∆t
Cash flow
 Supose wages and hours are changing con nuously over me. Over
 a me interval ∆t, what is the average rate of change of income?
                   ∆I   w ∆h + h ∆w + ∆w ∆h
                      =
                   ∆t            ∆t
                         ∆h     ∆w       ∆h
                      =w     +h     + ∆w
                          ∆t     ∆t      ∆t
 What is the instantaneous rate of change of income?
                 dI       ∆I   dh  dw
                    = lim    =w +h    +0
                 dt ∆t→0 ∆t    dt  dt
Eurekamen!
 We have discovered
 Theorem (The Product Rule)
 Let u and v be differen able at x. Then

                      (uv)′ (x) = u(x)v′ (x) + u′ (x)v(x)

 in Leibniz nota on
                          d         du      dv
                             (uv) =    ·v+u
                          dx        dx      dx
Sanity Check
 Example
 Apply the product rule to u = x and v = x2 .
Sanity Check
 Example
 Apply the product rule to u = x and v = x2 .

 Solu on

      (uv)′ (x) = u(x)v′ (x) + u′ (x)v(x) = x · (2x) + 1 · x2 = 3x2

 This is what we get the “normal” way.
Which is better?

 Example
 Find this deriva ve two ways: first by direct mul plica on and then
 by the product rule:
                      d [                       ]
                          (3 − x2 )(x3 − x + 1)
                      dx
Which is better?
 Example

           d [                       ]
               (3 − x2 )(x3 − x + 1)
           dx
Which is better?
 Example

                           d [                       ]
                               (3 − x2 )(x3 − x + 1)
                           dx

 Solu on
 by direct mul plica on:
            d [                     ] FOIL d [ 5                    ]
               (3 − x2 )(x3 − x + 1) =        −x + 4x3 − x2 − 3x + 3
            dx                            dx
Which is better?
 Example

                           d [                       ]
                               (3 − x2 )(x3 − x + 1)
                           dx

 Solu on
 by direct mul plica on:
            d [                     ] FOIL d [ 5                    ]
               (3 − x2 )(x3 − x + 1) =        −x + 4x3 − x2 − 3x + 3
            dx                            dx
                                       = −5x4 + 12x2 − 2x − 3
Which is better?
 Example

                         d [                       ]
                             (3 − x2 )(x3 − x + 1)
                         dx

 Solu on
 by the product rule:
                 (            )                       (               )
          dy       d                                    d 3
             =        (3 − x ) (x − x + 1) + (3 − x )
                            2    3                 2
                                                           (x − x + 1)
          dx       dx                                   dx
Which is better?
 Example

                         d [                       ]
                             (3 − x2 )(x3 − x + 1)
                         dx

 Solu on
 by the product rule:
                 (            )                       (               )
          dy       d                                    d 3
             =        (3 − x ) (x − x + 1) + (3 − x )
                            2    3                 2
                                                           (x − x + 1)
          dx       dx                                   dx
             = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
Which is better?
 Example

                         d [                       ]
                             (3 − x2 )(x3 − x + 1)
                         dx

 Solu on
 by the product rule:
                 (            )                       (               )
          dy       d                                    d 3
             =        (3 − x ) (x − x + 1) + (3 − x )
                            2    3                 2
                                                           (x − x + 1)
          dx       dx                                   dx
             = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
Which is better?
 Example

                         d [                       ]
                             (3 − x2 )(x3 − x + 1)
                         dx

 Solu on
 by the product rule:
                 (            )                       (               )
          dy       d                                    d 3
             =        (3 − x ) (x − x + 1) + (3 − x )
                            2    3                 2
                                                           (x − x + 1)
          dx       dx                                   dx
             = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
Which is better?
 Example

                         d [                       ]
                             (3 − x2 )(x3 − x + 1)
                         dx

 Solu on
 by the product rule:
                 (            )                       (               )
          dy       d                                    d 3
             =        (3 − x ) (x − x + 1) + (3 − x )
                            2    3                 2
                                                           (x − x + 1)
          dx       dx                                   dx
             = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
Which is better?
 Example

                         d [                       ]
                             (3 − x2 )(x3 − x + 1)
                         dx

 Solu on
 by the product rule:
                 (            )                       (               )
          dy       d                                    d 3
             =        (3 − x ) (x − x + 1) + (3 − x )
                            2    3                 2
                                                           (x − x + 1)
          dx       dx                                   dx
             = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
Which is better?
 Example

                         d [                       ]
                             (3 − x2 )(x3 − x + 1)
                         dx

 Solu on
 by the product rule:
                 (            )                       (               )
          dy       d                                    d 3
             =        (3 − x ) (x − x + 1) + (3 − x )
                            2    3                 2
                                                           (x − x + 1)
          dx       dx                                   dx
             = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
             = −5x4 + 12x2 − 2x − 3
One more
 Example
     d
 Find x sin x.
     dx
One more
 Example
     d
 Find x sin x.
     dx
 Solu on

                                (       )          (         )
                 d                  d                d
                    x sin x =          x sin x + x      sin x
                 dx                 dx               dx
One more
 Example
     d
 Find x sin x.
     dx
 Solu on

                              (      )           (          )
                 d               d                  d
                    x sin x =       x sin x + x        sin x
                 dx             dx                  dx
                            = 1 · sin x + x · cos x
One more
 Example
     d
 Find x sin x.
     dx
 Solu on

                              (      )           (          )
                 d               d                  d
                    x sin x =       x sin x + x        sin x
                 dx             dx                  dx
                            = 1 · sin x + x · cos x
                            = sin x + x cos x
Mnemonic
 Let u = “hi” and v = “ho”. Then

           (uv)′ = vu′ + uv′ = “ho dee hi plus hi dee ho”
Musical interlude

   jazz bandleader and
   singer
   hit song “Minnie the
   Moocher” featuring “hi
   de ho” chorus
   played Cur s in The Blues
   Brothers
                               Cab Calloway
                                1907–1994
Iterating the Product Rule
 Example
 Use the product rule to find the deriva ve of a three-fold product uvw.
Iterating the Product Rule
 Example
 Use the product rule to find the deriva ve of a three-fold product uvw.

 Solu on

                  (uvw)′                .
Iterating the Product Rule
 Example
 Use the product rule to find the deriva ve of a three-fold product uvw.

 Solu on

                  (uvw)′ = ((uv)w)′ .
Iterating the Product Rule
 Example
                              Apply the product
 Use the product rule to find the deriva ve of a three-fold product uvw.
                              rule to uv and w
 Solu on

                  (uvw)′ = ((uv)w)′ .
Iterating the Product Rule
 Example
                              Apply the product
 Use the product rule to find the deriva ve of a three-fold product uvw.
                              rule to uv and w
 Solu on

                  (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ .
Iterating the Product Rule
 Example
 Use the product rule to find the deriva ve of a three-fold product uvw.product
                                                            Apply the
                                                           rule to u and v
 Solu on

                  (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ .
Iterating the Product Rule
 Example
 Use the product rule to find the deriva ve of a three-fold product uvw.product
                                                            Apply the
                                                           rule to u and v
 Solu on

                  (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ .
                         = (u′ v + uv′ )w + (uv)w′
Iterating the Product Rule
 Example
 Use the product rule to find the deriva ve of a three-fold product uvw.

 Solu on

                  (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ .
                         = (u′ v + uv′ )w + (uv)w′
                         = u′ vw + uv′ w + uvw′
Iterating the Product Rule
 Example
 Use the product rule to find the deriva ve of a three-fold product uvw.

 Solu on

                  (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ .
                         = (u′ v + uv′ )w + (uv)w′
                         = u′ vw + uv′ w + uvw′


 So we write down the product three mes, taking the deriva ve of each factor
 once.
Outline
 Deriva ve of a Product
    Deriva on
    Examples
 The Quo ent Rule
    Deriva on
    Examples
 More deriva ves of trigonometric func ons
   Deriva ve of Tangent and Cotangent
   Deriva ve of Secant and Cosecant
 More on the Power Rule
   Power Rule for Nega ve Integers
The Quotient Rule
 What about the deriva ve of a quo ent?
The Quotient Rule
 What about the deriva ve of a quo ent?
                                                 u
 Let u and v be differen able func ons and let Q = . Then
                                                 v
                               u = Qv
The Quotient Rule
 What about the deriva ve of a quo ent?
                                                 u
 Let u and v be differen able func ons and let Q = . Then
                                                 v
                               u = Qv
 If Q is differen able, we have
                            u′ = (Qv)′ = Q′ v + Qv′
The Quotient Rule
 What about the deriva ve of a quo ent?
                                                 u
 Let u and v be differen able func ons and let Q = . Then
                                                 v
                               u = Qv
 If Q is differen able, we have
                          u′ = (Qv)′ = Q′ v + Qv′
                           ′   u′ − Qv′     u′ u v′
                       =⇒ Q =           = − ·
                                   v        v   v v
The Quotient Rule
 What about the deriva ve of a quo ent?
                                                 u
 Let u and v be differen able func ons and let Q = . Then
                                                 v
                               u = Qv
 If Q is differen able, we have
                          u′ = (Qv)′ = Q′ v + Qv′
                           ′   u′ − Qv′     u′ u v′
                    =⇒ Q =              = − ·
                                   v        v   v v
                      ( u )′ u′ v − uv′
              =⇒ Q′ =        =
                        v          v2
The Quotient Rule
 What about the deriva ve of a quo ent?
                                                 u
 Let u and v be differen able func ons and let Q = . Then
                                                 v
                               u = Qv
 If Q is differen able, we have
                             u′ = (Qv)′ = Q′ v + Qv′
                              ′   u′ − Qv′     u′ u v′
                        =⇒ Q =             = − ·
                                      v        v   v v
                         ( u )′ u′ v − uv′
                 =⇒ Q′ =        =
                           v          v2
 This is called the Quo ent Rule.
The Quotient Rule
 We have discovered
 Theorem (The Quo ent Rule)
                                                      u
 Let u and v be differen able at x, and v(x) ̸= 0. Then is
                                                      v
 differen able at x, and
                  ( u )′           u′ (x)v(x) − u(x)v′ (x)
                           (x) =
                    v                       v(x)2
Verifying Example
 Example
                                          (        )
                                     d        x2                             d
 Verify the quo ent rule by compu ng                   and comparing it to      (x).
                                     dx       x                              dx
Verifying Example
 Example
                                          (        )
                                     d        x2                             d
 Verify the quo ent rule by compu ng                   and comparing it to      (x).
                                     dx       x                              dx

 Solu on
                 ( 2)       ( )
            d     x     x dx x2 − x2 dx (x) x · 2x − x2 · 1
                          d           d
                      =                    =
            dx     x            x2                 x2
                        x2         d
                      = 2 =1=         (x)
                        x          dx
Mnemonic
 Let u = “hi” and v = “lo”. Then
       ( u )′ vu′ − uv′
             =           = “lo dee hi minus hi dee lo over lo lo”
         v        v2
Examples

 Example
     d 2x + 5
  1.
     dx 3x − 2
     d sin x
  2.
     dx x2
     d      1
  3.     2+t+2
     dt t
Solution to first example
 Solu on


      d 2x + 5
      dx 3x − 2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                        d                      d
                =
      dx 3x − 2                 (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                        d                      d
                =
      dx 3x − 2                 (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                        d                      d
                =
      dx 3x − 2                 (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                        d                      d
                =
      dx 3x − 2                 (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                        d                      d
                =
      dx 3x − 2                 (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                        d                      d
                =
      dx 3x − 2                 (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                           d                   d
                =
      dx 3x − 2                  (3x − 2)2
                  (3x − 2)(2) − (2x + 5)(3)
                =
                          (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                           d                   d
                =
      dx 3x − 2                  (3x − 2)2
                  (3x − 2)(2) − (2x + 5)(3)
                =
                          (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                           d                   d
                =
      dx 3x − 2                  (3x − 2)2
                  (3x − 2)(2) − (2x + 5)(3)
                =
                          (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                           d                   d
                =
      dx 3x − 2                  (3x − 2)2
                  (3x − 2)(2) − (2x + 5)(3)
                =
                          (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                           d                   d
                =
      dx 3x − 2                  (3x − 2)2
                  (3x − 2)(2) − (2x + 5)(3)
                =
                          (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                           d                   d
                =
      dx 3x − 2                  (3x − 2)2
                  (3x − 2)(2) − (2x + 5)(3)
                =
                          (3x − 2)2
                  (6x − 4) − (6x + 15)
                =
                       (3x − 2)2
Solution to first example
 Solu on


      d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2)
                           d                    d
                =
      dx 3x − 2                  (3x − 2)2
                  (3x − 2)(2) − (2x + 5)(3)
                =
                          (3x − 2)2
                  (6x − 4) − (6x + 15)         19
                =                      =−
                       (3x − 2)2            (3x − 2)2
Examples

 Example         Answers
     d 2x + 5               19
  1.              1. −
     dx 3x − 2           (3x − 2)2
     d sin x
  2.
     dx x2
     d      1
  3.     2+t+2
     dt t
Solution to second example
 Solu on


           d sin x
                   =
           dx x2
Solution to second example
 Solu on


           d sin x x2
                  =
           dx x2
Solution to second example
 Solu on


                      d
           d sin x x2 dx sin x
                  =
           dx x2
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x
                      d
                  =
           dx x2
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                      d                d
                  =
           dx x2
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                      d                d
                  =
           dx x2             (x2 )2
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                      d                d
                  =
           dx x2             (x2 )2

                   =
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                       d               d
                  =
           dx x2             (x2 )2
                    x2
                  =
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                       d               d
                  =
           dx x2             (x2 )2
                    x2 cos x
                  =
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                       d               d
                  =
           dx x2             (x2 )2
                    x2 cos x − 2x
                  =
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                       d               d
                  =
           dx x2             (x2 )2
                    x2 cos x − 2x sin x
                  =
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                       d               d
                  =
           dx x2             (x2 )2
                    x2 cos x − 2x sin x
                  =
                             x4
Solution to second example
 Solu on


           d sin x x2 dx sin x − sin x dx x2
                       d               d
                  =
           dx x2             (x2 )2
                    x2 cos x − 2x sin x
                  =
                             x4
                    x cos x − 2 sin x
                  =
                            x3
Another way to do it
 Find the deriva ve with the product rule instead.
 Solu on
                d sin x    d (             )
                     2
                        =      sin x · x−2
                dx x      dx
                          (          )               (        )
                             d             −2            d −2
                        =       sin x · x + sin x ·         x
                            dx                           dx
                        = cos x · x−2 + sin x · (−2x−3 )
                        = x−3 (x cos x − 2 sin x)


 No ce the technique of factoring out the largest nega ve power,
 leaving posi ve powers.
Examples

 Example         Answers
     d 2x + 5              19
  1.              1. −
     dx 3x − 2         (3x − 2)2
     d sin x         x cos x − 2 sin x
  2.              2.
     dx x2                   x3
     d      1
  3.     2+t+2
     dt t
Solution to third example
 Solu on


           d      1
           dt t2 + t + 2
Solution to third example
 Solu on


           d      1        (t2 + t + 2)(0) − (1)(2t + 1)
                         =
           dt t2 + t + 2            (t2 + t + 2)2
Solution to third example
 Solu on


           d      1        (t2 + t + 2)(0) − (1)(2t + 1)
                         =
           dt t2 + t + 2            (t2 + t + 2)2
                                2t + 1
                         =− 2
                             (t + t + 2)2
A nice little takeaway
 Fact
                                                1
 Let v be differen able at x, and v(x) ̸= 0. Then is differen able at
                                                v
 0, and                      ( )′
                               1         v′
                                   =− 2
                               v         v

 Proof.
               ( )
          d     1    v·   d
                          dx (1)−1·   d
                                      dx v     v · 0 − 1 · v′   v′
                   =                         =                =− 2
          dx    v              v2                    v2         v
Examples

 Example         Answers
     d 2x + 5              19
  1.              1. −
     dx 3x − 2         (3x − 2)2
     d sin x         x cos x − 2 sin x
  2.              2.
     dx x2                   x3
     d      1              2t + 1
  3.              3. − 2
     dt t2+t+2         (t + t + 2)2
Outline
 Deriva ve of a Product
    Deriva on
    Examples
 The Quo ent Rule
    Deriva on
    Examples
 More deriva ves of trigonometric func ons
   Deriva ve of Tangent and Cotangent
   Deriva ve of Secant and Cosecant
 More on the Power Rule
   Power Rule for Nega ve Integers
Derivative of Tangent
 Example
      d
 Find    tan x
      dx
Derivative of Tangent
 Example
      d
 Find    tan x
      dx

 Solu on

                       (           )
       d          d        sin x
          tan x =
       dx         dx       cos x
Derivative of Tangent
 Example
      d
 Find    tan x
      dx

 Solu on

                       (           )
       d          d        sin x           cos x · cos x − sin x · (− sin x)
          tan x =                      =
       dx         dx       cos x                        cos2 x
Derivative of Tangent
 Example
      d
 Find    tan x
      dx

 Solu on

                     (       )
       d           d sin x        cos x · cos x − sin x · (− sin x)
          tan x =               =
       dx         dx cos x                     cos2 x
                  cos2 x + sin2 x
                =
                      cos2 x
Derivative of Tangent
 Example
      d
 Find    tan x
      dx

 Solu on

                     (       )
       d           d sin x        cos x · cos x − sin x · (− sin x)
          tan x =               =
       dx         dx cos x                     cos2 x
                  cos2 x + sin2 x     1
                =                 =
                      cos2 x        cos2 x
Derivative of Tangent
 Example
      d
 Find    tan x
      dx

 Solu on

                     (       )
       d           d sin x        cos x · cos x − sin x · (− sin x)
          tan x =               =
       dx         dx cos x                     cos2 x
                  cos2 x + sin2 x     1
                =         2x
                                  =     2x
                                            = sec2 x
                      cos           cos
Derivative of Cotangent
 Example
      d
 Find    cot x
      dx
Derivative of Cotangent
 Example
      d
 Find    cot x
      dx
 Answer

                 d             1
                    cot x = − 2 = − csc2 x
                 dx          sin x
Derivative of Cotangent
 Example
      d
 Find    cot x
      dx

 Solu on


       d          d ( cos x )   sin x · (− sin x) − cos x · cos x
          cot x =             =
       dx         dx sin x                    sin2 x
Derivative of Cotangent
 Example
      d
 Find    cot x
      dx

 Solu on


       d          d ( cos x )    sin x · (− sin x) − cos x · cos x
          cot x =             =
       dx         dx sin x                     sin2 x
                  − sin2 x − cos2 x
                =
                       sin2 x
Derivative of Cotangent
 Example
      d
 Find    cot x
      dx

 Solu on


       d          d ( cos x )    sin x · (− sin x) − cos x · cos x
          cot x =             =
       dx         dx sin x                     sin2 x
                  − sin2 x − cos2 x         1
                =                   =− 2
                       sin2 x             sin x
Derivative of Cotangent
 Example
      d
 Find    cot x
      dx

 Solu on


       d          d ( cos x )    sin x · (− sin x) − cos x · cos x
          cot x =             =
       dx         dx sin x                     sin2 x
                  − sin2 x − cos2 x         1
                =                   = − 2 = − csc2 x
                       sin2 x             sin x
Derivative of Secant
 Example
      d
 Find    sec x
      dx
Derivative of Secant
 Example
      d
 Find    sec x
      dx

 Solu on

                           (           )
           d          d          1
              sec x =
           dx         dx       cos x
Derivative of Secant
 Example
      d
 Find    sec x
      dx

 Solu on

                           (           )
           d          d          1             cos x · 0 − 1 · (− sin x)
              sec x =                      =
           dx         dx       cos x                     cos2 x
Derivative of Secant
 Example
      d
 Find    sec x
      dx

 Solu on

                          (    )
           d           d     1     cos x · 0 − 1 · (− sin x)
              sec x =            =
           dx         dx cos x               cos2 x
                       sin x
                    =
                      cos2 x
Derivative of Secant
 Example
      d
 Find    sec x
      dx

 Solu on

                          (    )
           d           d     1        cos x · 0 − 1 · (− sin x)
              sec x =             =
           dx         dx cos x                  cos2 x
                       sin x    1      sin x
                    =        =      ·
                      cos2 x cos x cos x
Derivative of Secant
 Example
      d
 Find    sec x
      dx

 Solu on

                          (    )
           d           d     1        cos x · 0 − 1 · (− sin x)
              sec x =             =
           dx         dx cos x                  cos2 x
                       sin x    1      sin x
                    =        =      ·         = sec x tan x
                      cos2 x cos x cos x
Derivative of Cosecant
 Example
      d
 Find    csc x
      dx
Derivative of Cosecant
 Example
      d
 Find    csc x
      dx
 Answer

                 d
                    csc x = − csc x cot x
                 dx
Derivative of Cosecant
 Example
      d
 Find    csc x
      dx

 Solu on

                           (           )
           d          d          1             sin x · 0 − 1 · (cos x)
              csc x =                      =
           dx         dx       sin x                    sin2 x
Derivative of Cosecant
 Example
      d
 Find    csc x
      dx

 Solu on

                         (     )
           d          d      1     sin x · 0 − 1 · (cos x)
              csc x =            =
           dx         dx sin x              sin2 x
                        cos x
                    =− 2
                        sin x
Derivative of Cosecant
 Example
      d
 Find    csc x
      dx

 Solu on

                         (     )
           d          d      1      sin x · 0 − 1 · (cos x)
              csc x =            =
           dx         dx sin x               sin2 x
                        cos x      1     cos x
                    =− 2 =−            ·
                        sin x    sin x sin x
Derivative of Cosecant
 Example
      d
 Find    csc x
      dx

 Solu on

                         (     )
           d          d      1      sin x · 0 − 1 · (cos x)
              csc x =            =
           dx         dx sin x               sin2 x
                        cos x      1     cos x
                    =− 2 =−            ·        = − csc x cot x
                        sin x    sin x sin x
Recap: Derivatives of
trigonometric functions
    y          y′
   sin x      cos x      Func ons come in pairs
                         (sin/cos, tan/cot, sec/csc)
   cos x    − sin x
                         Deriva ves of pairs follow
   tan x      sec2 x     similar pa erns, with
   cot x   − csc2 x      func ons and
                         co-func ons switched
   sec x   sec x tan x   and an extra sign.
   csc x − csc x cot x
Outline
 Deriva ve of a Product
    Deriva on
    Examples
 The Quo ent Rule
    Deriva on
    Examples
 More deriva ves of trigonometric func ons
   Deriva ve of Tangent and Cotangent
   Deriva ve of Secant and Cosecant
 More on the Power Rule
   Power Rule for Nega ve Integers
Power Rule for Negative Integers
 We will use the quo ent rule to prove
 Theorem

                           d −n
                              x = (−n)x−n−1
                           dx
 for posi ve integers n.
Power Rule for Negative Integers
 We will use the quo ent rule to prove
 Theorem

                           d −n
                              x = (−n)x−n−1
                           dx
 for posi ve integers n.

 Proof.
Power Rule for Negative Integers
 We will use the quo ent rule to prove
 Theorem

                           d −n
                              x = (−n)x−n−1
                           dx
 for posi ve integers n.

 Proof.

    d −n   d 1
       x =
    dx     dx xn
Power Rule for Negative Integers
 We will use the quo ent rule to prove
 Theorem

                           d −n
                              x = (−n)x−n−1
                           dx
 for posi ve integers n.

 Proof.
                    d n
    d −n   d 1      dx x
       x =       =− n 2
    dx     dx xn   (x )
Power Rule for Negative Integers
 We will use the quo ent rule to prove
 Theorem

                           d −n
                              x = (−n)x−n−1
                           dx
 for posi ve integers n.

 Proof.
                     d n
    d −n   d 1       dx x   nxn−1
       x =       = − n 2 = − 2n
    dx     dx xn    (x )     x
Power Rule for Negative Integers
 We will use the quo ent rule to prove
 Theorem

                           d −n
                              x = (−n)x−n−1
                           dx
 for posi ve integers n.

 Proof.
                     d n
    d −n   d 1       dx x   nxn−1
       x =     n
                 = − n 2 = − 2n = −nxn−1−2n
    dx     dx x     (x )     x
Power Rule for Negative Integers
 We will use the quo ent rule to prove
 Theorem

                           d −n
                              x = (−n)x−n−1
                           dx
 for posi ve integers n.

 Proof.
                     d n
    d −n   d 1       dx x   nxn−1
       x =     n
                 = − n 2 = − 2n = −nxn−1−2n = −nx−n−1
    dx     dx x     (x )     x
Summary
  The Product Rule: (uv)′ = u′ v + uv′
                     ( u )′ vu′ − uv′
  The Quo ent Rule:        =
                       v          v2
  Deriva ves of tangent/cotangent, secant/cosecant
         d                           d
           tan x = sec2 x              sec x = sec x tan x
        dx                          dx
         d                           d
           cot x = − csc2 x            csc x = − csc x cot x
        dx                          dx
  The Power Rule is true for all whole number powers, including
  nega ve powers:
                            d n
                              x = nxn−1
                           dx

Más contenido relacionado

La actualidad más candente

Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.pptJaysonFabela1
 
Inverse Function.pptx
Inverse Function.pptxInverse Function.pptx
Inverse Function.pptxSerGeo5
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functionsBarbara Knab
 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functionsitutor
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsMatthew Leingang
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functionsCharliez Jane Soriano
 
partialderivatives
partialderivativespartialderivatives
partialderivativesyash patel
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleMatthew Leingang
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equationsswartzje
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul HamidMohd. Noor Abdul Hamid
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
Lesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric FunctionsLesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric FunctionsMatthew Leingang
 
Solving quadratics by graphing
Solving quadratics by graphingSolving quadratics by graphing
Solving quadratics by graphingchrystal_brinson
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionMatthew Leingang
 
PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functionscoolhanddav
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their GraphsMohammed Ahmed
 

La actualidad más candente (20)

Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Inverse Function.pptx
Inverse Function.pptxInverse Function.pptx
Inverse Function.pptx
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
 
Simultaneous equations (2)
Simultaneous equations (2)Simultaneous equations (2)
Simultaneous equations (2)
 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functions
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
Chapter 5 Direct Variation
Chapter 5 Direct VariationChapter 5 Direct Variation
Chapter 5 Direct Variation
 
partialderivatives
partialderivativespartialderivatives
partialderivatives
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equations
 
Differentiation using First Principle - By Mohd Noor Abdul Hamid
Differentiation using First Principle  - By Mohd Noor Abdul HamidDifferentiation using First Principle  - By Mohd Noor Abdul Hamid
Differentiation using First Principle - By Mohd Noor Abdul Hamid
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
Lesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric FunctionsLesson14: Derivatives of Trigonometric Functions
Lesson14: Derivatives of Trigonometric Functions
 
Solving quadratics by graphing
Solving quadratics by graphingSolving quadratics by graphing
Solving quadratics by graphing
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functions
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 

Destacado

Lesson 9: The Product and Quotient Rules (handout)
Lesson 9: The Product and Quotient Rules (handout)Lesson 9: The Product and Quotient Rules (handout)
Lesson 9: The Product and Quotient Rules (handout)Matthew Leingang
 
Lesson 24: Areas, Distances, the Integral (Section 021 slides)
Lesson 24: Areas, Distances, the Integral (Section 021 slides)Lesson 24: Areas, Distances, the Integral (Section 021 slides)
Lesson 24: Areas, Distances, the Integral (Section 021 slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)Matthew Leingang
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Matthew Leingang
 
Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Matthew Leingang
 
Lesson 7: The Derivative (slides)
Lesson 7: The Derivative (slides)Lesson 7: The Derivative (slides)
Lesson 7: The Derivative (slides)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 6: Limits Involving Infinity (slides)
Lesson 6: Limits Involving Infinity (slides)Lesson 6: Limits Involving Infinity (slides)
Lesson 6: Limits Involving Infinity (slides)Matthew Leingang
 
Lesson 12: Linear Approximations and Differentials (slides)
Lesson 12: Linear Approximations and Differentials (slides)Lesson 12: Linear Approximations and Differentials (slides)
Lesson 12: Linear Approximations and Differentials (slides)Matthew Leingang
 
Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Matthew Leingang
 
Lesson 3: The Limit of a Function (slides)
Lesson 3: The Limit of a Function (slides)Lesson 3: The Limit of a Function (slides)
Lesson 3: The Limit of a Function (slides)Matthew Leingang
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Matthew Leingang
 

Destacado (20)

Lesson 9: The Product and Quotient Rules (handout)
Lesson 9: The Product and Quotient Rules (handout)Lesson 9: The Product and Quotient Rules (handout)
Lesson 9: The Product and Quotient Rules (handout)
 
Lesson 24: Areas, Distances, the Integral (Section 021 slides)
Lesson 24: Areas, Distances, the Integral (Section 021 slides)Lesson 24: Areas, Distances, the Integral (Section 021 slides)
Lesson 24: Areas, Distances, the Integral (Section 021 slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)Lesson 25: Evaluating Definite Integrals (Section 041 slides)
Lesson 25: Evaluating Definite Integrals (Section 041 slides)
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)Lesson 4: Calcuating Limits (slides)
Lesson 4: Calcuating Limits (slides)
 
Lesson 7: The Derivative (slides)
Lesson 7: The Derivative (slides)Lesson 7: The Derivative (slides)
Lesson 7: The Derivative (slides)
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 6: Limits Involving Infinity (slides)
Lesson 6: Limits Involving Infinity (slides)Lesson 6: Limits Involving Infinity (slides)
Lesson 6: Limits Involving Infinity (slides)
 
Lesson 12: Linear Approximations and Differentials (slides)
Lesson 12: Linear Approximations and Differentials (slides)Lesson 12: Linear Approximations and Differentials (slides)
Lesson 12: Linear Approximations and Differentials (slides)
 
Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
Lesson 3: The Limit of a Function (slides)
Lesson 3: The Limit of a Function (slides)Lesson 3: The Limit of a Function (slides)
Lesson 3: The Limit of a Function (slides)
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 

Similar a Lesson 9: The Product and Quotient Rules (slides)

Lesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesLesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesMatthew Leingang
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleMatthew Leingang
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleMatthew Leingang
 
Lesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient RuleLesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient RuleMatthew Leingang
 
Algebra digital textbook gopika
Algebra digital textbook gopikaAlgebra digital textbook gopika
Algebra digital textbook gopikagopikarchandran
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesMatthew Leingang
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus OlooPundit
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivativescanalculus
 
C2 st lecture 3 handout
C2 st lecture 3 handoutC2 st lecture 3 handout
C2 st lecture 3 handoutfatima d
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Mel Anthony Pepito
 
Implicit Differentiation, Part 1
Implicit Differentiation, Part 1Implicit Differentiation, Part 1
Implicit Differentiation, Part 1Pablo Antuna
 
Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Matthew Leingang
 
3009 implicitdefere
3009 implicitdefere3009 implicitdefere
3009 implicitdeferejbianco9910
 
Lesson 29: Integration by Substition
Lesson 29: Integration by SubstitionLesson 29: Integration by Substition
Lesson 29: Integration by SubstitionMatthew Leingang
 
3009 implicitdefere
3009 implicitdefere3009 implicitdefere
3009 implicitdeferejbianco9910
 
Integration by Parts, Part 1
Integration by Parts, Part 1Integration by Parts, Part 1
Integration by Parts, Part 1Pablo Antuna
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]Hazrul156
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential goodgenntmbr
 

Similar a Lesson 9: The Product and Quotient Rules (slides) (20)

Lesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesLesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient Rules
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Lesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient RuleLesson 9: The Product and Quotient Rule
Lesson 9: The Product and Quotient Rule
 
Lesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient RuleLesson 12: The Product and Quotient Rule
Lesson 12: The Product and Quotient Rule
 
Algebra digital textbook gopika
Algebra digital textbook gopikaAlgebra digital textbook gopika
Algebra digital textbook gopika
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivatives
 
C2 st lecture 3 handout
C2 st lecture 3 handoutC2 st lecture 3 handout
C2 st lecture 3 handout
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Implicit Differentiation, Part 1
Implicit Differentiation, Part 1Implicit Differentiation, Part 1
Implicit Differentiation, Part 1
 
Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)
 
3009 implicitdefere
3009 implicitdefere3009 implicitdefere
3009 implicitdefere
 
Lesson 29: Integration by Substition
Lesson 29: Integration by SubstitionLesson 29: Integration by Substition
Lesson 29: Integration by Substition
 
3009 implicitdefere
3009 implicitdefere3009 implicitdefere
3009 implicitdefere
 
125 5.1
125 5.1125 5.1
125 5.1
 
Integration by Parts, Part 1
Integration by Parts, Part 1Integration by Parts, Part 1
Integration by Parts, Part 1
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential good
 
125 11.1
125 11.1125 11.1
125 11.1
 

Más de Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Matthew Leingang
 

Más de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)
 

Último

MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 

Último (20)

MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

Lesson 9: The Product and Quotient Rules (slides)

  • 1. Sec on 2.4 The Product and Quo ent Rules V63.0121.011: Calculus I Professor Ma hew Leingang New York University February 23, 2011 .
  • 2. Announcements Quiz 2 next week on §§1.5, 1.6, 2.1, 2.2 Midterm March 7 on all sec ons in class (covers all sec ons up to 2.5)
  • 3. Help! Free resources: Math Tutoring Center (CIWW 524) College Learning Center (schedule on Blackboard) TAs’ office hours my office hours each other!
  • 4. Objectives Understand and be able to use the Product Rule for the deriva ve of the product of two func ons. Understand and be able to use the Quo ent Rule for the deriva ve of the quo ent of two func ons.
  • 5. Outline Deriva ve of a Product Deriva on Examples The Quo ent Rule Deriva on Examples More deriva ves of trigonometric func ons Deriva ve of Tangent and Cotangent Deriva ve of Secant and Cosecant More on the Power Rule Power Rule for Nega ve Integers
  • 6. Recollection and extension We have shown that if u and v are func ons, that (u + v)′ = u′ + v′ (u − v)′ = u′ − v′ What about uv?
  • 7. Is the derivative of a product the product of the derivatives? (uv)′ = u′ v′ ? .
  • 8. Is the derivative of a product the product of the derivatives? (uv)′ = u′ v′ ! . Try this with u = x and v = x2 .
  • 9. Is the derivative of a product the product of the derivatives? (uv)′ = u′ v′ ! . Try this with u = x and v = x2 . Then uv = x3 =⇒ (uv)′ = 3x2 .
  • 10. Is the derivative of a product the product of the derivatives? (uv)′ = u′ v′ ! . Try this with u = x and v = x2 . Then uv = x3 =⇒ (uv)′ = 3x2 . But u′ v′ = 1 · 2x = 2x.
  • 11. Is the derivative of a product the product of the derivatives? (uv)′ = u′ v′ ! . Try this with u = x and v = x2 . Then uv = x3 =⇒ (uv)′ = 3x2 . But u′ v′ = 1 · 2x = 2x. So we have to be more careful.
  • 12. Mmm...burgers Say you work in a fast-food joint. You want to make more money. What are your choices? .
  • 13. Mmm...burgers Say you work in a fast-food joint. You want to make more money. What are your choices? Work longer hours. .
  • 14. Mmm...burgers Say you work in a fast-food joint. You want to make more money. What are your choices? Work longer hours. Get a raise. .
  • 15. Mmm...burgers Say you work in a fast-food joint. You want to make more money. What are your choices? Work longer hours. Get a raise. Say you get a 25 cent raise in your hourly wages and work 5 hours more per week. How much extra money do you make? .
  • 16. Mmm...burgers Say you work in a fast-food joint. You want to make more money. What are your choices? Work longer hours. Get a raise. Say you get a 25 cent raise in your hourly wages and work 5 hours more per week. How much extra money do you make? . ∆I = 5 × $0.25 = $1.25?
  • 17. Mmm...burgers Say you work in a fast-food joint. You want to make more money. What are your choices? Work longer hours. Get a raise. Say you get a 25 cent raise in your hourly wages and work 5 hours more per week. How much extra money do you make? . ∆I = 5 × $0.25 = $1.25?
  • 18. Money money money money The answer depends on how much you work already and your current wage. Suppose you work h hours and are paid w. You get a me increase of ∆h and a wage increase of ∆w. Income is wages mes hours, so ∆I = (w + ∆w)(h + ∆h) − wh FOIL = w · h + w · ∆h + ∆w · h + ∆w · ∆h − wh = w · ∆h + ∆w · h + ∆w · ∆h
  • 19. A geometric argument Draw a box: ∆h w ∆h ∆w ∆h h wh ∆w h . w ∆w
  • 20. A geometric argument Draw a box: ∆h w ∆h ∆w ∆h h wh ∆w h . w ∆w ∆I = w ∆h + h ∆w + ∆w ∆h
  • 21. Cash flow Supose wages and hours are changing con nuously over me. Over a me interval ∆t, what is the average rate of change of income? ∆I w ∆h + h ∆w + ∆w ∆h = ∆t ∆t ∆h ∆w ∆h =w +h + ∆w ∆t ∆t ∆t
  • 22. Cash flow Supose wages and hours are changing con nuously over me. Over a me interval ∆t, what is the average rate of change of income? ∆I w ∆h + h ∆w + ∆w ∆h = ∆t ∆t ∆h ∆w ∆h =w +h + ∆w ∆t ∆t ∆t What is the instantaneous rate of change of income? dI ∆I dh dw = lim =w +h +0 dt ∆t→0 ∆t dt dt
  • 23. Eurekamen! We have discovered Theorem (The Product Rule) Let u and v be differen able at x. Then (uv)′ (x) = u(x)v′ (x) + u′ (x)v(x) in Leibniz nota on d du dv (uv) = ·v+u dx dx dx
  • 24. Sanity Check Example Apply the product rule to u = x and v = x2 .
  • 25. Sanity Check Example Apply the product rule to u = x and v = x2 . Solu on (uv)′ (x) = u(x)v′ (x) + u′ (x)v(x) = x · (2x) + 1 · x2 = 3x2 This is what we get the “normal” way.
  • 26. Which is better? Example Find this deriva ve two ways: first by direct mul plica on and then by the product rule: d [ ] (3 − x2 )(x3 − x + 1) dx
  • 27. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx
  • 28. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by direct mul plica on: d [ ] FOIL d [ 5 ] (3 − x2 )(x3 − x + 1) = −x + 4x3 − x2 − 3x + 3 dx dx
  • 29. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by direct mul plica on: d [ ] FOIL d [ 5 ] (3 − x2 )(x3 − x + 1) = −x + 4x3 − x2 − 3x + 3 dx dx = −5x4 + 12x2 − 2x − 3
  • 30. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by the product rule: ( ) ( ) dy d d 3 = (3 − x ) (x − x + 1) + (3 − x ) 2 3 2 (x − x + 1) dx dx dx
  • 31. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by the product rule: ( ) ( ) dy d d 3 = (3 − x ) (x − x + 1) + (3 − x ) 2 3 2 (x − x + 1) dx dx dx = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
  • 32. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by the product rule: ( ) ( ) dy d d 3 = (3 − x ) (x − x + 1) + (3 − x ) 2 3 2 (x − x + 1) dx dx dx = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
  • 33. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by the product rule: ( ) ( ) dy d d 3 = (3 − x ) (x − x + 1) + (3 − x ) 2 3 2 (x − x + 1) dx dx dx = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
  • 34. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by the product rule: ( ) ( ) dy d d 3 = (3 − x ) (x − x + 1) + (3 − x ) 2 3 2 (x − x + 1) dx dx dx = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
  • 35. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by the product rule: ( ) ( ) dy d d 3 = (3 − x ) (x − x + 1) + (3 − x ) 2 3 2 (x − x + 1) dx dx dx = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1)
  • 36. Which is better? Example d [ ] (3 − x2 )(x3 − x + 1) dx Solu on by the product rule: ( ) ( ) dy d d 3 = (3 − x ) (x − x + 1) + (3 − x ) 2 3 2 (x − x + 1) dx dx dx = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1) = −5x4 + 12x2 − 2x − 3
  • 37. One more Example d Find x sin x. dx
  • 38. One more Example d Find x sin x. dx Solu on ( ) ( ) d d d x sin x = x sin x + x sin x dx dx dx
  • 39. One more Example d Find x sin x. dx Solu on ( ) ( ) d d d x sin x = x sin x + x sin x dx dx dx = 1 · sin x + x · cos x
  • 40. One more Example d Find x sin x. dx Solu on ( ) ( ) d d d x sin x = x sin x + x sin x dx dx dx = 1 · sin x + x · cos x = sin x + x cos x
  • 41. Mnemonic Let u = “hi” and v = “ho”. Then (uv)′ = vu′ + uv′ = “ho dee hi plus hi dee ho”
  • 42. Musical interlude jazz bandleader and singer hit song “Minnie the Moocher” featuring “hi de ho” chorus played Cur s in The Blues Brothers Cab Calloway 1907–1994
  • 43. Iterating the Product Rule Example Use the product rule to find the deriva ve of a three-fold product uvw.
  • 44. Iterating the Product Rule Example Use the product rule to find the deriva ve of a three-fold product uvw. Solu on (uvw)′ .
  • 45. Iterating the Product Rule Example Use the product rule to find the deriva ve of a three-fold product uvw. Solu on (uvw)′ = ((uv)w)′ .
  • 46. Iterating the Product Rule Example Apply the product Use the product rule to find the deriva ve of a three-fold product uvw. rule to uv and w Solu on (uvw)′ = ((uv)w)′ .
  • 47. Iterating the Product Rule Example Apply the product Use the product rule to find the deriva ve of a three-fold product uvw. rule to uv and w Solu on (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ .
  • 48. Iterating the Product Rule Example Use the product rule to find the deriva ve of a three-fold product uvw.product Apply the rule to u and v Solu on (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ .
  • 49. Iterating the Product Rule Example Use the product rule to find the deriva ve of a three-fold product uvw.product Apply the rule to u and v Solu on (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ . = (u′ v + uv′ )w + (uv)w′
  • 50. Iterating the Product Rule Example Use the product rule to find the deriva ve of a three-fold product uvw. Solu on (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ . = (u′ v + uv′ )w + (uv)w′ = u′ vw + uv′ w + uvw′
  • 51. Iterating the Product Rule Example Use the product rule to find the deriva ve of a three-fold product uvw. Solu on (uvw)′ = ((uv)w)′ . = (uv)′ w + (uv)w′ . = (u′ v + uv′ )w + (uv)w′ = u′ vw + uv′ w + uvw′ So we write down the product three mes, taking the deriva ve of each factor once.
  • 52. Outline Deriva ve of a Product Deriva on Examples The Quo ent Rule Deriva on Examples More deriva ves of trigonometric func ons Deriva ve of Tangent and Cotangent Deriva ve of Secant and Cosecant More on the Power Rule Power Rule for Nega ve Integers
  • 53. The Quotient Rule What about the deriva ve of a quo ent?
  • 54. The Quotient Rule What about the deriva ve of a quo ent? u Let u and v be differen able func ons and let Q = . Then v u = Qv
  • 55. The Quotient Rule What about the deriva ve of a quo ent? u Let u and v be differen able func ons and let Q = . Then v u = Qv If Q is differen able, we have u′ = (Qv)′ = Q′ v + Qv′
  • 56. The Quotient Rule What about the deriva ve of a quo ent? u Let u and v be differen able func ons and let Q = . Then v u = Qv If Q is differen able, we have u′ = (Qv)′ = Q′ v + Qv′ ′ u′ − Qv′ u′ u v′ =⇒ Q = = − · v v v v
  • 57. The Quotient Rule What about the deriva ve of a quo ent? u Let u and v be differen able func ons and let Q = . Then v u = Qv If Q is differen able, we have u′ = (Qv)′ = Q′ v + Qv′ ′ u′ − Qv′ u′ u v′ =⇒ Q = = − · v v v v ( u )′ u′ v − uv′ =⇒ Q′ = = v v2
  • 58. The Quotient Rule What about the deriva ve of a quo ent? u Let u and v be differen able func ons and let Q = . Then v u = Qv If Q is differen able, we have u′ = (Qv)′ = Q′ v + Qv′ ′ u′ − Qv′ u′ u v′ =⇒ Q = = − · v v v v ( u )′ u′ v − uv′ =⇒ Q′ = = v v2 This is called the Quo ent Rule.
  • 59. The Quotient Rule We have discovered Theorem (The Quo ent Rule) u Let u and v be differen able at x, and v(x) ̸= 0. Then is v differen able at x, and ( u )′ u′ (x)v(x) − u(x)v′ (x) (x) = v v(x)2
  • 60. Verifying Example Example ( ) d x2 d Verify the quo ent rule by compu ng and comparing it to (x). dx x dx
  • 61. Verifying Example Example ( ) d x2 d Verify the quo ent rule by compu ng and comparing it to (x). dx x dx Solu on ( 2) ( ) d x x dx x2 − x2 dx (x) x · 2x − x2 · 1 d d = = dx x x2 x2 x2 d = 2 =1= (x) x dx
  • 62. Mnemonic Let u = “hi” and v = “lo”. Then ( u )′ vu′ − uv′ = = “lo dee hi minus hi dee lo over lo lo” v v2
  • 63. Examples Example d 2x + 5 1. dx 3x − 2 d sin x 2. dx x2 d 1 3. 2+t+2 dt t
  • 64. Solution to first example Solu on d 2x + 5 dx 3x − 2
  • 65. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2
  • 66. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2
  • 67. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2
  • 68. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2
  • 69. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2
  • 70. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2
  • 71. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2 (3x − 2)(2) − (2x + 5)(3) = (3x − 2)2
  • 72. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2 (3x − 2)(2) − (2x + 5)(3) = (3x − 2)2
  • 73. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2 (3x − 2)(2) − (2x + 5)(3) = (3x − 2)2
  • 74. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2 (3x − 2)(2) − (2x + 5)(3) = (3x − 2)2
  • 75. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2 (3x − 2)(2) − (2x + 5)(3) = (3x − 2)2
  • 76. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2 (3x − 2)(2) − (2x + 5)(3) = (3x − 2)2 (6x − 4) − (6x + 15) = (3x − 2)2
  • 77. Solution to first example Solu on d 2x + 5 (3x − 2) dx (2x + 5) − (2x + 5) dx (3x − 2) d d = dx 3x − 2 (3x − 2)2 (3x − 2)(2) − (2x + 5)(3) = (3x − 2)2 (6x − 4) − (6x + 15) 19 = =− (3x − 2)2 (3x − 2)2
  • 78. Examples Example Answers d 2x + 5 19 1. 1. − dx 3x − 2 (3x − 2)2 d sin x 2. dx x2 d 1 3. 2+t+2 dt t
  • 79. Solution to second example Solu on d sin x = dx x2
  • 80. Solution to second example Solu on d sin x x2 = dx x2
  • 81. Solution to second example Solu on d d sin x x2 dx sin x = dx x2
  • 82. Solution to second example Solu on d sin x x2 dx sin x − sin x d = dx x2
  • 83. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2
  • 84. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2
  • 85. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2 =
  • 86. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2 x2 =
  • 87. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2 x2 cos x =
  • 88. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2 x2 cos x − 2x =
  • 89. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2 x2 cos x − 2x sin x =
  • 90. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2 x2 cos x − 2x sin x = x4
  • 91. Solution to second example Solu on d sin x x2 dx sin x − sin x dx x2 d d = dx x2 (x2 )2 x2 cos x − 2x sin x = x4 x cos x − 2 sin x = x3
  • 92. Another way to do it Find the deriva ve with the product rule instead. Solu on d sin x d ( ) 2 = sin x · x−2 dx x dx ( ) ( ) d −2 d −2 = sin x · x + sin x · x dx dx = cos x · x−2 + sin x · (−2x−3 ) = x−3 (x cos x − 2 sin x) No ce the technique of factoring out the largest nega ve power, leaving posi ve powers.
  • 93. Examples Example Answers d 2x + 5 19 1. 1. − dx 3x − 2 (3x − 2)2 d sin x x cos x − 2 sin x 2. 2. dx x2 x3 d 1 3. 2+t+2 dt t
  • 94. Solution to third example Solu on d 1 dt t2 + t + 2
  • 95. Solution to third example Solu on d 1 (t2 + t + 2)(0) − (1)(2t + 1) = dt t2 + t + 2 (t2 + t + 2)2
  • 96. Solution to third example Solu on d 1 (t2 + t + 2)(0) − (1)(2t + 1) = dt t2 + t + 2 (t2 + t + 2)2 2t + 1 =− 2 (t + t + 2)2
  • 97. A nice little takeaway Fact 1 Let v be differen able at x, and v(x) ̸= 0. Then is differen able at v 0, and ( )′ 1 v′ =− 2 v v Proof. ( ) d 1 v· d dx (1)−1· d dx v v · 0 − 1 · v′ v′ = = =− 2 dx v v2 v2 v
  • 98. Examples Example Answers d 2x + 5 19 1. 1. − dx 3x − 2 (3x − 2)2 d sin x x cos x − 2 sin x 2. 2. dx x2 x3 d 1 2t + 1 3. 3. − 2 dt t2+t+2 (t + t + 2)2
  • 99. Outline Deriva ve of a Product Deriva on Examples The Quo ent Rule Deriva on Examples More deriva ves of trigonometric func ons Deriva ve of Tangent and Cotangent Deriva ve of Secant and Cosecant More on the Power Rule Power Rule for Nega ve Integers
  • 100. Derivative of Tangent Example d Find tan x dx
  • 101. Derivative of Tangent Example d Find tan x dx Solu on ( ) d d sin x tan x = dx dx cos x
  • 102. Derivative of Tangent Example d Find tan x dx Solu on ( ) d d sin x cos x · cos x − sin x · (− sin x) tan x = = dx dx cos x cos2 x
  • 103. Derivative of Tangent Example d Find tan x dx Solu on ( ) d d sin x cos x · cos x − sin x · (− sin x) tan x = = dx dx cos x cos2 x cos2 x + sin2 x = cos2 x
  • 104. Derivative of Tangent Example d Find tan x dx Solu on ( ) d d sin x cos x · cos x − sin x · (− sin x) tan x = = dx dx cos x cos2 x cos2 x + sin2 x 1 = = cos2 x cos2 x
  • 105. Derivative of Tangent Example d Find tan x dx Solu on ( ) d d sin x cos x · cos x − sin x · (− sin x) tan x = = dx dx cos x cos2 x cos2 x + sin2 x 1 = 2x = 2x = sec2 x cos cos
  • 106. Derivative of Cotangent Example d Find cot x dx
  • 107. Derivative of Cotangent Example d Find cot x dx Answer d 1 cot x = − 2 = − csc2 x dx sin x
  • 108. Derivative of Cotangent Example d Find cot x dx Solu on d d ( cos x ) sin x · (− sin x) − cos x · cos x cot x = = dx dx sin x sin2 x
  • 109. Derivative of Cotangent Example d Find cot x dx Solu on d d ( cos x ) sin x · (− sin x) − cos x · cos x cot x = = dx dx sin x sin2 x − sin2 x − cos2 x = sin2 x
  • 110. Derivative of Cotangent Example d Find cot x dx Solu on d d ( cos x ) sin x · (− sin x) − cos x · cos x cot x = = dx dx sin x sin2 x − sin2 x − cos2 x 1 = =− 2 sin2 x sin x
  • 111. Derivative of Cotangent Example d Find cot x dx Solu on d d ( cos x ) sin x · (− sin x) − cos x · cos x cot x = = dx dx sin x sin2 x − sin2 x − cos2 x 1 = = − 2 = − csc2 x sin2 x sin x
  • 112. Derivative of Secant Example d Find sec x dx
  • 113. Derivative of Secant Example d Find sec x dx Solu on ( ) d d 1 sec x = dx dx cos x
  • 114. Derivative of Secant Example d Find sec x dx Solu on ( ) d d 1 cos x · 0 − 1 · (− sin x) sec x = = dx dx cos x cos2 x
  • 115. Derivative of Secant Example d Find sec x dx Solu on ( ) d d 1 cos x · 0 − 1 · (− sin x) sec x = = dx dx cos x cos2 x sin x = cos2 x
  • 116. Derivative of Secant Example d Find sec x dx Solu on ( ) d d 1 cos x · 0 − 1 · (− sin x) sec x = = dx dx cos x cos2 x sin x 1 sin x = = · cos2 x cos x cos x
  • 117. Derivative of Secant Example d Find sec x dx Solu on ( ) d d 1 cos x · 0 − 1 · (− sin x) sec x = = dx dx cos x cos2 x sin x 1 sin x = = · = sec x tan x cos2 x cos x cos x
  • 118. Derivative of Cosecant Example d Find csc x dx
  • 119. Derivative of Cosecant Example d Find csc x dx Answer d csc x = − csc x cot x dx
  • 120. Derivative of Cosecant Example d Find csc x dx Solu on ( ) d d 1 sin x · 0 − 1 · (cos x) csc x = = dx dx sin x sin2 x
  • 121. Derivative of Cosecant Example d Find csc x dx Solu on ( ) d d 1 sin x · 0 − 1 · (cos x) csc x = = dx dx sin x sin2 x cos x =− 2 sin x
  • 122. Derivative of Cosecant Example d Find csc x dx Solu on ( ) d d 1 sin x · 0 − 1 · (cos x) csc x = = dx dx sin x sin2 x cos x 1 cos x =− 2 =− · sin x sin x sin x
  • 123. Derivative of Cosecant Example d Find csc x dx Solu on ( ) d d 1 sin x · 0 − 1 · (cos x) csc x = = dx dx sin x sin2 x cos x 1 cos x =− 2 =− · = − csc x cot x sin x sin x sin x
  • 124. Recap: Derivatives of trigonometric functions y y′ sin x cos x Func ons come in pairs (sin/cos, tan/cot, sec/csc) cos x − sin x Deriva ves of pairs follow tan x sec2 x similar pa erns, with cot x − csc2 x func ons and co-func ons switched sec x sec x tan x and an extra sign. csc x − csc x cot x
  • 125. Outline Deriva ve of a Product Deriva on Examples The Quo ent Rule Deriva on Examples More deriva ves of trigonometric func ons Deriva ve of Tangent and Cotangent Deriva ve of Secant and Cosecant More on the Power Rule Power Rule for Nega ve Integers
  • 126. Power Rule for Negative Integers We will use the quo ent rule to prove Theorem d −n x = (−n)x−n−1 dx for posi ve integers n.
  • 127. Power Rule for Negative Integers We will use the quo ent rule to prove Theorem d −n x = (−n)x−n−1 dx for posi ve integers n. Proof.
  • 128. Power Rule for Negative Integers We will use the quo ent rule to prove Theorem d −n x = (−n)x−n−1 dx for posi ve integers n. Proof. d −n d 1 x = dx dx xn
  • 129. Power Rule for Negative Integers We will use the quo ent rule to prove Theorem d −n x = (−n)x−n−1 dx for posi ve integers n. Proof. d n d −n d 1 dx x x = =− n 2 dx dx xn (x )
  • 130. Power Rule for Negative Integers We will use the quo ent rule to prove Theorem d −n x = (−n)x−n−1 dx for posi ve integers n. Proof. d n d −n d 1 dx x nxn−1 x = = − n 2 = − 2n dx dx xn (x ) x
  • 131. Power Rule for Negative Integers We will use the quo ent rule to prove Theorem d −n x = (−n)x−n−1 dx for posi ve integers n. Proof. d n d −n d 1 dx x nxn−1 x = n = − n 2 = − 2n = −nxn−1−2n dx dx x (x ) x
  • 132. Power Rule for Negative Integers We will use the quo ent rule to prove Theorem d −n x = (−n)x−n−1 dx for posi ve integers n. Proof. d n d −n d 1 dx x nxn−1 x = n = − n 2 = − 2n = −nxn−1−2n = −nx−n−1 dx dx x (x ) x
  • 133. Summary The Product Rule: (uv)′ = u′ v + uv′ ( u )′ vu′ − uv′ The Quo ent Rule: = v v2 Deriva ves of tangent/cotangent, secant/cosecant d d tan x = sec2 x sec x = sec x tan x dx dx d d cot x = − csc2 x csc x = − csc x cot x dx dx The Power Rule is true for all whole number powers, including nega ve powers: d n x = nxn−1 dx