SlideShare a Scribd company logo
1 of 86
Download to read offline
Inverse Trigonometric Functions




                                  Mathematics 4


                                 October 24, 2011


1 of 26
Inverse Trigonometric Functions




                            3
                 If sin x = 5 , what is x?




2 of 26
Inverse Trigonometric Functions




                               3
                    If sin x = 5 , what is x?


          How do we isolate x from the equation above?




2 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


•


•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) →


•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) → x = 2y − 1   The variables are interchanged.

•




 3 of 26
Inverse Trigonometric Functions



Let us recall inverses!
• f (x) = y = 2x − 1


• f −1 (x) → x = 2y − 1    The variables are interchanged.

                   x+1
• f −1 (x) = y =          The y-variable is isolated.
                    2




 3 of 26
Inverse Trigonometric Functions
Let us recall inverses!

                      Given the graph of g(x):




 4 of 26
Inverse Trigonometric Functions
Let us recall inverses!

   The inverse of g(x) can be flipping the graph along the diagonal:




 4 of 26
Inverse Trigonometric Functions
Let us recall inverses!

                     This is the graph of g −1 (x)




 4 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                          f (x) = sin x




 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                          f (x) = sin x




                            No!

 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                           f (x) = sin x




                             No!
           The function f (x) = sin x is NOT one-to-one!



 5 of 26
Inverse Trigonometric Functions

Does the function f (x) = sin x have an inverse?

                           f (x) = sin x




                             No!
           The function f (x) = sin x is NOT one-to-one!
             It does not pass the Horizontal Line Test!


 5 of 26
Inverse Trigonometric Functions

Do any of the six trigonometric functions have inverses?

                          f (x) = sin x




                          f (x) = cos x




 6 of 26
Inverse Trigonometric Functions
Do any of the six trigonometric functions have inverses?

                          f (x) = tan x




                          f (x) = cot x




 6 of 26
Inverse Trigonometric Functions
Do any of the six trigonometric functions have inverses?

                          f (x) = sec x




                          f (x) = csc x




 6 of 26
Inverse Trigonometric Functions


How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                           f (x) = sin x




 7 of 26
Inverse Trigonometric Functions

How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                    f (x) = Sin x, x ∈ [− π , π ]
                                          2 2




 7 of 26
Inverse Trigonometric Functions

How can we isolate x in f (x) = sin x if f (x) is not one-to-one?

                       f (x) = Sin x, x ∈ [− π , π ]
                                             2 2




           Restrict the domain so that it becomes one-to-one.


 7 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


                     f (x) = Sin x, x ∈ [− π , π ]
                                           2 2




 8 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


           Find the graph of the inverse by flipping along the diagonal




 8 of 26
Inverse Trigonometric Functions

The inverse of f (x) = Sin x, x ∈ [− π , π ]
                                     2 2


           f (x) = sin−1 x = Arcsin x = inverse sine of x




 8 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                             Domain:
                             Range:

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                       Domain: x ∈ [−1, 1]
                            Range:

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




                       Domain: x ∈ [−1, 1]
                       Range: y ∈ [− π , π ]
                                     2 2

 9 of 26
The Inverse Sine Function

Properties of f (x) = sin−1 x:




10 of 26
The Inverse Sine Function
Determine the following values:

1. sin−1    1
            2   =


2. Arcsin 1 =


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function
Determine the following values:

1. sin−1    1
            2   =   π
                    6


2. Arcsin 1 =


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) =
               6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) = − π
               6       6


5. sin−1 (sin 4π ) =
               3


 11 of 26
The Inverse Sine Function

Determine the following values:

1. sin−1    1
            2   =   π
                    6

                    π
2. Arcsin 1 =       2


3. sin−1 (sin π ) =
              4
                        π
                        4


4. Arcsin(sin 7π ) = − π
               6       6


5. sin−1 (sin 4π ) = − π
               3       3


 11 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                          f (x) = cos x




12 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                     f (x) = Cos x, x ∈ [0, π]




12 of 26
The Inverse Cosine Function


Graphing the inverse cosine function

                        f (x) = Cos x, x ∈ [0, π]




           Restrict the domain so that it becomes one-to-one.



12 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

                     f (x) = Cos x, x ∈ [0, π]




13 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

       Find the graph of the inverse by flipping along the diagonal




13 of 26
The Inverse Cosine Function


The inverse of f (x) = Cos x, x ∈ [0, π]

           f (x) = cos−1 x = Arccos x = inverse cosine of x




13 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                             Domain:
                             Range:


14 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                       Domain: x ∈ [−1, 1]
                            Range:


14 of 26
The Inverse Cosine Function

Properties of f (x) = cos−1 x:




                       Domain: x ∈ [−1, 1]
                        Range: y ∈ [0, π]


14 of 26
The Inverse cosine Function

Properties of f (x) = cos−1 x:




15 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =


2. Arccos 0 =


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


2. Arccos 0 =


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6
                       5π
                        6


4. cos−1 (cos 7π ) =
               4




16 of 26
The Inverse Cosine Function

Determine the following values:

1. cos−1   1
           2   =   π
                   3


                   π
2. Arccos 0 =      2


3. Arccos(cos 7π ) =
               6
                       5π
                        6


4. cos−1 (cos 7π ) =
               4
                       π
                       4




16 of 26
Pick-up quiz: Quiz # 1

Evaluate the following values:
              √
                2
1. Arcsin(−    2 )

              √
                3
2. Arccos(−    2 )


3. sin−1 (sin 2π )
               3


4. cos−1 (cos 11π )
               6


5. Arcsin(cos 5π )
               3

 17 of 26
Pick-up quiz: Quiz # 1

Evaluate the following values:
              √
               2
1. Arcsin(−   2 )   = −π
                       4

              √
               3        5π
2. Arccos(−   2 )   =    6


3. sin−1 (sin 2π ) =
               3
                        π
                        3


4. cos−1 (cos 11π ) =
               6
                            π
                            6


5. Arcsin(cos 5π ) =
               3
                            π
                            6

 17 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1   4
                                        5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1   4
                                        5


                           sin θ =




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5


                           cos θ =




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                        Let θ = sin−1    4
                                         5

                                     4
                           sin θ =   5

                                     3
                           cos θ =   5




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 1: Evaluate cos(sin−1 4 )
                              5


                              Let θ = sin−1      4
                                                 5

                                             4
                                 sin θ =     5

                                             3
                                 cos θ =     5


           cos θ > 0 because θ = sin−1   4
                                         5   can only be in Q1 or Q4.




18 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                           sin θ =




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                           sin θ = − 2
                                     3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3


                   cos θ =




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3

                                           2
                   cos θ =     1 − −2
                                    3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                        Let θ = sin−1 − 2
                                        3


                             sin θ = − 2
                                       3

                                                   √
                                           2        5
                   cos θ =     1 − −2
                                    3          =   3




19 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 2: Evaluate cos(sin−1 − 3 )
                                2



                             Let θ = sin−1 − 2
                                             3


                                  sin θ = − 2
                                            3

                                                        √
                                                2        5
                        cos θ =     1 − −2
                                         3          =   3


           cos θ > 0 because θ = sin−1   2
                                         3   can only be in Q1 or Q4.



19 of 26
Inverse Trigonometric Functions of Non-Special Angles




Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles



Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1




20 of 26
Inverse Trigonometric Functions of Non-Special Angles



Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1


             sin α = − 2
                       3                      cos β =   1
                                                        6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                   β = cos−1 ( 6 )
                                                        1


             sin α = − 2
                       3                      cos β =   1
                                                        6
                       √                               √
                        5                                35
             cos α =   3                     sin β =    6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles


Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                       β = cos−1 ( 6 )
                                                            1


             sin α = − 2
                       3                          cos β =   1
                                                            6
                       √                                   √
                        5                                    35
             cos α =   3                         sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β




20 of 26
Inverse Trigonometric Functions of Non-Special Angles

Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                         β = cos−1 ( 6 )
                                                              1


             sin α = − 2
                       3                            cos β =  1
                                                             6
                       √                                    √
                        5                                     35
             cos α =   3                          sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β
                              √               √
                               5   1           35
                       =      3    6   − −2
                                          3    6




20 of 26
Inverse Trigonometric Functions of Non-Special Angles

Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 )
                                 3             6


           α = sin−1 (− 2 )
                        3                                β = cos−1 ( 6 )
                                                                     1


             sin α = − 2
                       3                                   cos β =  1
                                                                    6
                       √                                           √
                        5                                            35
             cos α =   3                                 sin β =    6

                  cos(α + β) = cos α cos β − sin α sin β
                              √                      √
                               5      1              35
                       =      3       6    − −2
                                              3      6
                                      √         √
                                          5 + 2 35
                                  =
                                             18

20 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                          f (x) = tan x




21 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                   f (x) = Tan x, x ∈ (− π , π )
                                         2 2




21 of 26
The Inverse Tangent Function


Finding the graph of f (x) = tan−1 x

                      f (x) = Tan x, x ∈ (− π , π )
                                            2 2




           Restrict the domain so that it becomes one-to-one.


21 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


                    f (x) = Tan x, x ∈ (− π , π )
                                          2 2




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


       Find the graph of the inverse by flipping along the diagonal




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




22 of 26
The Inverse Tangent Function


The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




                          Domain:    Range:



22 of 26
The Inverse Tangent Function

The inverse of f (x) = Tan x, x ∈ (− π , π )
                                     2 2


           f (x) = tan−1 x = Arctan x = inverse tangent of x




                          Domain: x ∈ R
                        Range: y ∈ (− π , π )
                                      2 2



22 of 26
Other Inverse Trigonometric Functions
                     f (x) = cot x




                     f (x) = sec x




                     f (x) = csc x




23 of 26
Other Inverse Trigonometric Functions
                 f (x) = Cot x, x ∈ (0, π)




                 f (x) = Sec x, x ∈ [0, π]




                f (x) = Csc x, x ∈ (− π , π )
                                      2 2




23 of 26
Other Inverse Trigonometric Functions
                 f (x) = Cot x, x ∈ (0, π)




                 f (x) = Sec x, x ∈ [0, π]




                f (x) = Csc x, x ∈ (− π , π )
                                      2 2




23 of 26
Other Inverse Trigonometric Functions
                   f (x) = Arccot x




                    f (x) = Arcsec x




                    f (x) = Arccsc x




23 of 26
Other Inverse Trigonometric Functions

           f (x) = Arccot x         Domain: x ∈ R
                                  Range: {0 < y < π}



           f (x) = Arcsec x   Domain: {x ≤ −1} ∪ {x ≥ 1}
                               Range: {0 ≤ y ≤ π, y = π }
                                                      2




           f (x) = Arccsc x   Domain: {x ≤ −1} ∪ {x ≥ 1}
                              Range: {− π ≤ y ≤ π , y = 0}
                                        2       2


24 of 26
Ranges of the Inverse Trigonometric Functions




25 of 26
Ranges of the Inverse Trigonometric Functions




           f (x) = Arcsin(x)     f (x) = Arccos(x)
           f (x) = Arctan(x)     f (x) = Arccot(x)
           f (x) = Arccsc(x)     f (x) = Arcsec(x)

25 of 26
Any questions?




26 of 26

More Related Content

What's hot

Sine and Cosine Functions Ppt
Sine and Cosine Functions PptSine and Cosine Functions Ppt
Sine and Cosine Functions PptDevan Tate
 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureFroyd Wess
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their GraphsMohammed Ahmed
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Matthew Leingang
 
Remainder and Factor Theorem
Remainder and Factor TheoremRemainder and Factor Theorem
Remainder and Factor TheoremTrish Hammond
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functionsLeo Crisologo
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functionssmiller5
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normalsumanmathews
 
Trigonometric Identities.
Trigonometric Identities. Trigonometric Identities.
Trigonometric Identities. jhey2
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
Function transformations
Function transformationsFunction transformations
Function transformationsTerry Gastauer
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equationsswartzje
 
Logarithm
LogarithmLogarithm
Logarithmitutor
 

What's hot (20)

Quadratic functions
Quadratic functionsQuadratic functions
Quadratic functions
 
Sine and Cosine Functions Ppt
Sine and Cosine Functions PptSine and Cosine Functions Ppt
Sine and Cosine Functions Ppt
 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions Lecture
 
Limits
LimitsLimits
Limits
 
Trigonometric Functions and their Graphs
Trigonometric Functions and their GraphsTrigonometric Functions and their Graphs
Trigonometric Functions and their Graphs
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)Lesson 5: Continuity (slides)
Lesson 5: Continuity (slides)
 
EXPONENTS AND RADICALS
EXPONENTS AND RADICALSEXPONENTS AND RADICALS
EXPONENTS AND RADICALS
 
Remainder and Factor Theorem
Remainder and Factor TheoremRemainder and Factor Theorem
Remainder and Factor Theorem
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functions
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normal
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Trigonometric Identities.
Trigonometric Identities. Trigonometric Identities.
Trigonometric Identities.
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
Trigonometric identities
Trigonometric identitiesTrigonometric identities
Trigonometric identities
 
Logarithm
LogarithmLogarithm
Logarithm
 

Viewers also liked

Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]indu thakur
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Matthew Leingang
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric functionAzurah Razak
 
Trigonometric Function Of Any Angle
Trigonometric Function Of Any AngleTrigonometric Function Of Any Angle
Trigonometric Function Of Any Angleguest793408
 
10 4 solving trig equations
10 4 solving trig equations10 4 solving trig equations
10 4 solving trig equationshisema01
 
Trigonometry review slide show
Trigonometry review slide showTrigonometry review slide show
Trigonometry review slide showDr. Prasad Chitale
 
CSEC Mathematics Review - Introduction To Functions & Relations
CSEC Mathematics Review - Introduction To Functions & RelationsCSEC Mathematics Review - Introduction To Functions & Relations
CSEC Mathematics Review - Introduction To Functions & RelationsKevin Small
 
Module on Relations in a function
Module on Relations in a functionModule on Relations in a function
Module on Relations in a functionjune eslao
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsMatthew Leingang
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Fadhel Hizham
 
Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Trianglesjrosebus
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6Debra Wallace
 
The inverse trigonometric functions
The inverse trigonometric functionsThe inverse trigonometric functions
The inverse trigonometric functionsAlfiramita Hertanti
 
t2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functionst2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functionsmath260
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsMatthew Leingang
 
Section 6.2 trigonometric functions unit circle approach
Section 6.2 trigonometric functions unit circle approachSection 6.2 trigonometric functions unit circle approach
Section 6.2 trigonometric functions unit circle approachWong Hsiung
 

Viewers also liked (20)

Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]Inverse trigonometric functions xii[1]
Inverse trigonometric functions xii[1]
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
Lesson 16: Inverse Trigonometric Functions (Section 021 slides)
 
Math12 lesson5
Math12 lesson5Math12 lesson5
Math12 lesson5
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric function
 
Trigonometric Function Of Any Angle
Trigonometric Function Of Any AngleTrigonometric Function Of Any Angle
Trigonometric Function Of Any Angle
 
10 4 solving trig equations
10 4 solving trig equations10 4 solving trig equations
10 4 solving trig equations
 
Trigonometry review slide show
Trigonometry review slide showTrigonometry review slide show
Trigonometry review slide show
 
CSEC Mathematics Review - Introduction To Functions & Relations
CSEC Mathematics Review - Introduction To Functions & RelationsCSEC Mathematics Review - Introduction To Functions & Relations
CSEC Mathematics Review - Introduction To Functions & Relations
 
Module on Relations in a function
Module on Relations in a functionModule on Relations in a function
Module on Relations in a function
 
Lesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric FunctionsLesson 15: Inverse Trigonometric Functions
Lesson 15: Inverse Trigonometric Functions
 
Anunaad 1
Anunaad 1Anunaad 1
Anunaad 1
 
Trigonometric (hayati pravita)
Trigonometric (hayati pravita)Trigonometric (hayati pravita)
Trigonometric (hayati pravita)
 
Trigonometric Functions Right Triangles
Trigonometric Functions Right TrianglesTrigonometric Functions Right Triangles
Trigonometric Functions Right Triangles
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
The inverse trigonometric functions
The inverse trigonometric functionsThe inverse trigonometric functions
The inverse trigonometric functions
 
t2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functionst2 sine and cosine law inverse trig-functions
t2 sine and cosine law inverse trig-functions
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Section 6.2 trigonometric functions unit circle approach
Section 6.2 trigonometric functions unit circle approachSection 6.2 trigonometric functions unit circle approach
Section 6.2 trigonometric functions unit circle approach
 

Similar to Inverse trigonometric functions

WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxExtremelyDarkness2
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfManarKareem1
 
Graphing quadratics
Graphing quadraticsGraphing quadratics
Graphing quadraticslothomas
 
Graphs of trigonometric exponential functions lecture
Graphs of trigonometric exponential functions lectureGraphs of trigonometric exponential functions lecture
Graphs of trigonometric exponential functions lectureAdnanBukhari13
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadraticsswartzje
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6homeworkping3
 
BSFi_Group_2_Final.pptx
BSFi_Group_2_Final.pptxBSFi_Group_2_Final.pptx
BSFi_Group_2_Final.pptxEljon02
 
MA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscapeMA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscapeReyRoluna1
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Tomoya Murata
 
Algebra 2. 9.16 Quadratics 2
Algebra 2.  9.16 Quadratics 2Algebra 2.  9.16 Quadratics 2
Algebra 2. 9.16 Quadratics 2dmatkeson21
 
Exponential_Functions.ppt
Exponential_Functions.pptExponential_Functions.ppt
Exponential_Functions.pptLynSumonod1
 

Similar to Inverse trigonometric functions (20)

Inverse trignometry
Inverse trignometryInverse trignometry
Inverse trignometry
 
0708 ch 7 day 8
0708 ch 7 day 80708 ch 7 day 8
0708 ch 7 day 8
 
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdf
 
Graphing quadratics
Graphing quadraticsGraphing quadratics
Graphing quadratics
 
Graphs of trigonometric exponential functions lecture
Graphs of trigonometric exponential functions lectureGraphs of trigonometric exponential functions lecture
Graphs of trigonometric exponential functions lecture
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Graphing Quadratics
Graphing QuadraticsGraphing Quadratics
Graphing Quadratics
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
BSFi_Group_2_Final.pptx
BSFi_Group_2_Final.pptxBSFi_Group_2_Final.pptx
BSFi_Group_2_Final.pptx
 
MATHS-1.ppt
MATHS-1.pptMATHS-1.ppt
MATHS-1.ppt
 
Unit 2.6
Unit 2.6Unit 2.6
Unit 2.6
 
MA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscapeMA2.pptglobalizarion on economic landscape
MA2.pptglobalizarion on economic landscape
 
Rational Function
Rational FunctionRational Function
Rational Function
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Fun37
Fun37Fun37
Fun37
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
Cse41
Cse41Cse41
Cse41
 
Algebra 2. 9.16 Quadratics 2
Algebra 2.  9.16 Quadratics 2Algebra 2.  9.16 Quadratics 2
Algebra 2. 9.16 Quadratics 2
 
Exponential_Functions.ppt
Exponential_Functions.pptExponential_Functions.ppt
Exponential_Functions.ppt
 

More from Leo Crisologo

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functionsLeo Crisologo
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functionsLeo Crisologo
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functionsLeo Crisologo
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functionsLeo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersLeo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersLeo Crisologo
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examplesLeo Crisologo
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functionsLeo Crisologo
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Leo Crisologo
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examplesLeo Crisologo
 
Sequences and series
Sequences and seriesSequences and series
Sequences and seriesLeo Crisologo
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbersLeo Crisologo
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problemsLeo Crisologo
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent LinesLeo Crisologo
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null casesLeo Crisologo
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problemsLeo Crisologo
 

More from Leo Crisologo (20)

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functions
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functions
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functions
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functions
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Completeness axiom
Completeness axiomCompleteness axiom
Completeness axiom
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examples
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
Functions
FunctionsFunctions
Functions
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examples
 
Permutations
PermutationsPermutations
Permutations
 
Counting examples
Counting examplesCounting examples
Counting examples
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problems
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null cases
 
Circles - analysis problems
Circles - analysis problemsCircles - analysis problems
Circles - analysis problems
 

Recently uploaded

Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 

Recently uploaded (20)

Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

Inverse trigonometric functions

  • 1. Inverse Trigonometric Functions Mathematics 4 October 24, 2011 1 of 26
  • 2. Inverse Trigonometric Functions 3 If sin x = 5 , what is x? 2 of 26
  • 3. Inverse Trigonometric Functions 3 If sin x = 5 , what is x? How do we isolate x from the equation above? 2 of 26
  • 4. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • • 3 of 26
  • 5. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → • 3 of 26
  • 6. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → x = 2y − 1 The variables are interchanged. • 3 of 26
  • 7. Inverse Trigonometric Functions Let us recall inverses! • f (x) = y = 2x − 1 • f −1 (x) → x = 2y − 1 The variables are interchanged. x+1 • f −1 (x) = y = The y-variable is isolated. 2 3 of 26
  • 8. Inverse Trigonometric Functions Let us recall inverses! Given the graph of g(x): 4 of 26
  • 9. Inverse Trigonometric Functions Let us recall inverses! The inverse of g(x) can be flipping the graph along the diagonal: 4 of 26
  • 10. Inverse Trigonometric Functions Let us recall inverses! This is the graph of g −1 (x) 4 of 26
  • 11. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x 5 of 26
  • 12. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x No! 5 of 26
  • 13. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x No! The function f (x) = sin x is NOT one-to-one! 5 of 26
  • 14. Inverse Trigonometric Functions Does the function f (x) = sin x have an inverse? f (x) = sin x No! The function f (x) = sin x is NOT one-to-one! It does not pass the Horizontal Line Test! 5 of 26
  • 15. Inverse Trigonometric Functions Do any of the six trigonometric functions have inverses? f (x) = sin x f (x) = cos x 6 of 26
  • 16. Inverse Trigonometric Functions Do any of the six trigonometric functions have inverses? f (x) = tan x f (x) = cot x 6 of 26
  • 17. Inverse Trigonometric Functions Do any of the six trigonometric functions have inverses? f (x) = sec x f (x) = csc x 6 of 26
  • 18. Inverse Trigonometric Functions How can we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = sin x 7 of 26
  • 19. Inverse Trigonometric Functions How can we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = Sin x, x ∈ [− π , π ] 2 2 7 of 26
  • 20. Inverse Trigonometric Functions How can we isolate x in f (x) = sin x if f (x) is not one-to-one? f (x) = Sin x, x ∈ [− π , π ] 2 2 Restrict the domain so that it becomes one-to-one. 7 of 26
  • 21. Inverse Trigonometric Functions The inverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 f (x) = Sin x, x ∈ [− π , π ] 2 2 8 of 26
  • 22. Inverse Trigonometric Functions The inverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 Find the graph of the inverse by flipping along the diagonal 8 of 26
  • 23. Inverse Trigonometric Functions The inverse of f (x) = Sin x, x ∈ [− π , π ] 2 2 f (x) = sin−1 x = Arcsin x = inverse sine of x 8 of 26
  • 24. The Inverse Sine Function Properties of f (x) = sin−1 x: Domain: Range: 9 of 26
  • 25. The Inverse Sine Function Properties of f (x) = sin−1 x: Domain: x ∈ [−1, 1] Range: 9 of 26
  • 26. The Inverse Sine Function Properties of f (x) = sin−1 x: Domain: x ∈ [−1, 1] Range: y ∈ [− π , π ] 2 2 9 of 26
  • 27. The Inverse Sine Function Properties of f (x) = sin−1 x: 10 of 26
  • 28. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = 2. Arcsin 1 = 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 29. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 2. Arcsin 1 = 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 30. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 31. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 32. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = − π 6 6 5. sin−1 (sin 4π ) = 3 11 of 26
  • 33. The Inverse Sine Function Determine the following values: 1. sin−1 1 2 = π 6 π 2. Arcsin 1 = 2 3. sin−1 (sin π ) = 4 π 4 4. Arcsin(sin 7π ) = − π 6 6 5. sin−1 (sin 4π ) = − π 3 3 11 of 26
  • 34. The Inverse Cosine Function Graphing the inverse cosine function f (x) = cos x 12 of 26
  • 35. The Inverse Cosine Function Graphing the inverse cosine function f (x) = Cos x, x ∈ [0, π] 12 of 26
  • 36. The Inverse Cosine Function Graphing the inverse cosine function f (x) = Cos x, x ∈ [0, π] Restrict the domain so that it becomes one-to-one. 12 of 26
  • 37. The Inverse Cosine Function The inverse of f (x) = Cos x, x ∈ [0, π] f (x) = Cos x, x ∈ [0, π] 13 of 26
  • 38. The Inverse Cosine Function The inverse of f (x) = Cos x, x ∈ [0, π] Find the graph of the inverse by flipping along the diagonal 13 of 26
  • 39. The Inverse Cosine Function The inverse of f (x) = Cos x, x ∈ [0, π] f (x) = cos−1 x = Arccos x = inverse cosine of x 13 of 26
  • 40. The Inverse Cosine Function Properties of f (x) = cos−1 x: Domain: Range: 14 of 26
  • 41. The Inverse Cosine Function Properties of f (x) = cos−1 x: Domain: x ∈ [−1, 1] Range: 14 of 26
  • 42. The Inverse Cosine Function Properties of f (x) = cos−1 x: Domain: x ∈ [−1, 1] Range: y ∈ [0, π] 14 of 26
  • 43. The Inverse cosine Function Properties of f (x) = cos−1 x: 15 of 26
  • 44. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = 2. Arccos 0 = 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 45. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 2. Arccos 0 = 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 46. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 47. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 5π 6 4. cos−1 (cos 7π ) = 4 16 of 26
  • 48. The Inverse Cosine Function Determine the following values: 1. cos−1 1 2 = π 3 π 2. Arccos 0 = 2 3. Arccos(cos 7π ) = 6 5π 6 4. cos−1 (cos 7π ) = 4 π 4 16 of 26
  • 49. Pick-up quiz: Quiz # 1 Evaluate the following values: √ 2 1. Arcsin(− 2 ) √ 3 2. Arccos(− 2 ) 3. sin−1 (sin 2π ) 3 4. cos−1 (cos 11π ) 6 5. Arcsin(cos 5π ) 3 17 of 26
  • 50. Pick-up quiz: Quiz # 1 Evaluate the following values: √ 2 1. Arcsin(− 2 ) = −π 4 √ 3 5π 2. Arccos(− 2 ) = 6 3. sin−1 (sin 2π ) = 3 π 3 4. cos−1 (cos 11π ) = 6 π 6 5. Arcsin(cos 5π ) = 3 π 6 17 of 26
  • 51. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 18 of 26
  • 52. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 sin θ = 18 of 26
  • 53. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 18 of 26
  • 54. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 cos θ = 18 of 26
  • 55. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 3 cos θ = 5 18 of 26
  • 56. Inverse Trigonometric Functions of Non-Special Angles Example 1: Evaluate cos(sin−1 4 ) 5 Let θ = sin−1 4 5 4 sin θ = 5 3 cos θ = 5 cos θ > 0 because θ = sin−1 4 5 can only be in Q1 or Q4. 18 of 26
  • 57. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 19 of 26
  • 58. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = 19 of 26
  • 59. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 19 of 26
  • 60. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 cos θ = 19 of 26
  • 61. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 2 cos θ = 1 − −2 3 19 of 26
  • 62. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 √ 2 5 cos θ = 1 − −2 3 = 3 19 of 26
  • 63. Inverse Trigonometric Functions of Non-Special Angles Example 2: Evaluate cos(sin−1 − 3 ) 2 Let θ = sin−1 − 2 3 sin θ = − 2 3 √ 2 5 cos θ = 1 − −2 3 = 3 cos θ > 0 because θ = sin−1 2 3 can only be in Q1 or Q4. 19 of 26
  • 64. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 20 of 26
  • 65. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 20 of 26
  • 66. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 20 of 26
  • 67. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 20 of 26
  • 68. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β 20 of 26
  • 69. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β √ √ 5 1 35 = 3 6 − −2 3 6 20 of 26
  • 70. Inverse Trigonometric Functions of Non-Special Angles Example 3: Evaluate cos sin−1 (− 2 ) + cos−1 ( 1 ) 3 6 α = sin−1 (− 2 ) 3 β = cos−1 ( 6 ) 1 sin α = − 2 3 cos β = 1 6 √ √ 5 35 cos α = 3 sin β = 6 cos(α + β) = cos α cos β − sin α sin β √ √ 5 1 35 = 3 6 − −2 3 6 √ √ 5 + 2 35 = 18 20 of 26
  • 71. The Inverse Tangent Function Finding the graph of f (x) = tan−1 x f (x) = tan x 21 of 26
  • 72. The Inverse Tangent Function Finding the graph of f (x) = tan−1 x f (x) = Tan x, x ∈ (− π , π ) 2 2 21 of 26
  • 73. The Inverse Tangent Function Finding the graph of f (x) = tan−1 x f (x) = Tan x, x ∈ (− π , π ) 2 2 Restrict the domain so that it becomes one-to-one. 21 of 26
  • 74. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = Tan x, x ∈ (− π , π ) 2 2 22 of 26
  • 75. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 Find the graph of the inverse by flipping along the diagonal 22 of 26
  • 76. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x 22 of 26
  • 77. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x Domain: Range: 22 of 26
  • 78. The Inverse Tangent Function The inverse of f (x) = Tan x, x ∈ (− π , π ) 2 2 f (x) = tan−1 x = Arctan x = inverse tangent of x Domain: x ∈ R Range: y ∈ (− π , π ) 2 2 22 of 26
  • 79. Other Inverse Trigonometric Functions f (x) = cot x f (x) = sec x f (x) = csc x 23 of 26
  • 80. Other Inverse Trigonometric Functions f (x) = Cot x, x ∈ (0, π) f (x) = Sec x, x ∈ [0, π] f (x) = Csc x, x ∈ (− π , π ) 2 2 23 of 26
  • 81. Other Inverse Trigonometric Functions f (x) = Cot x, x ∈ (0, π) f (x) = Sec x, x ∈ [0, π] f (x) = Csc x, x ∈ (− π , π ) 2 2 23 of 26
  • 82. Other Inverse Trigonometric Functions f (x) = Arccot x f (x) = Arcsec x f (x) = Arccsc x 23 of 26
  • 83. Other Inverse Trigonometric Functions f (x) = Arccot x Domain: x ∈ R Range: {0 < y < π} f (x) = Arcsec x Domain: {x ≤ −1} ∪ {x ≥ 1} Range: {0 ≤ y ≤ π, y = π } 2 f (x) = Arccsc x Domain: {x ≤ −1} ∪ {x ≥ 1} Range: {− π ≤ y ≤ π , y = 0} 2 2 24 of 26
  • 84. Ranges of the Inverse Trigonometric Functions 25 of 26
  • 85. Ranges of the Inverse Trigonometric Functions f (x) = Arcsin(x) f (x) = Arccos(x) f (x) = Arctan(x) f (x) = Arccot(x) f (x) = Arccsc(x) f (x) = Arcsec(x) 25 of 26