Your SlideShare is downloading. ×
Ecuaciones exactas por factor integrante,lineales,bernoulli
Próxima SlideShare
Cargando en...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Ecuaciones exactas por factor integrante,lineales,bernoulli

18,484
views

Published on

Aquí se explica como resolver ecuaciones diferenciales por 3 métodos distintos

Aquí se explica como resolver ecuaciones diferenciales por 3 métodos distintos


0 comentarios
2 Me gusta
Estadísticas
Notas
  • Sea el primero en comentar

Sin descargas
reproducciones
reproducciones totales
18,484
En SlideShare
0
De insertados
0
Número de insertados
0
Acciones
Compartido
0
Descargas
277
Comentarios
0
Me gusta
2
Insertados 0
No embeds

Denunciar contenido
Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
No notes for slide

Transcript

  • 1. Ecuaciones Diferenciales Exactas <br />Una Expresión diferencial M(x,y)+N(x,y)dy es una diferencial exacta en una región Rdel plano xy ésta corresponde a la diferencial de alguna función fx,y definida en R. Una ecuación deferencial de primer orden de la forma:<br />M(x,y)+N(x,y)dy=0<br />Se dice que es una ecuación exacta si la expresión del lado izquierdo es diferencial exacta por ejemplo<br />2xydx + (x2-1)dy=0<br />Verificamos si tiene diferencial exacto<br />∂M∂y= 2xy = 2x <br />∂N∂x= x2-1 = 2x<br />El teorema que se presenta a continuación, muestra que la igualdad de las derivadas parciales ∂M∂y, ∂N∂x no es una coincidencia<br />Criterio para una ecuación diferencial exacta<br />Sea M(x,y) y N(x,y) continuas y que tienen primeras derivadas parciales continuas en una región rectangular R definida por a<x<b,c<y<d. Entonces una condición necesaria y suficiente para que M(x,y)dx+N(x,y)dy sea una ecuación diferencial exacta es <br />∂M∂y =∂N∂x<br />Proceso algebraico para resolver la ecuación se resume mediante la expresión matemática:<br /> fx,y=M(x,y)+[Nx,y+ ∂∂yM(x,y)dx]dy<br />Ejemplo1<br />4y+2x-5dx+6y+4x-1dy=0<br />∂M∂y= 4y+2x-5=4 <br />∂N∂x=4x+6y-1=4<br />fx,y= (4y+2x-5) dx+ [4x+6y-1- ∂∂y 4y+2x-5dx]dy<br />fx,y=4xy+x2-5x+ [4x+6y-1- ∂∂y(4xy+x2-5x)]dy<br />fx,y=4xy+x2-5x+4x+6y-1-4xdy<br />fx,y=4xy+x2-5x+ 6y-1dy<br />fx,y=4xy+x2-5x+3y2+C <br />Ecuaciones Diferenciales Exactas por factor integrante<br />Donde: μ Es el factor, que le permite a la expresión ser exactaSi una ecuación diferencial no es exacta, pudiera llegar a serlo si se la multiplica por una función especial μ(x,y)llamada factor integrante, tal que<br />∂M∂y ≠∂N∂x<br />μx,y= ep(x)dx μx,y= ep(y)dy<br />μx,y[Mx,y+Nx,ydy]=0 <br />Forma o método de solución.<br />Si la ecuación diferencial posee un factor integrante respecto a x (es decir, p(x)), entonces se puede encontrar por medio de la fórmula siguiente: <br />px=My-NxN<br />Si la ecuación diferencial posee un factor integrante respecto a y (es decir, p(y)), entonces se puede encontrar por medio de la fórmula siguiente:<br />py=Ny-MxM<br />Ejemplo:<br />3x2ydx+ydy=0<br />∂M∂y ≠∂N∂x∂M∂y 3x2y=3x2<br />∂N∂x y=0<br />Como no es una ecuación diferencial exacta procedemos a sacar el factor integrante para volverla exacta.<br />py=0-3x23x2y<br />py=-1y<br />μx,y= ep(y)dy<br />μx,y= e-1ydy= e-lny=elny-1=1y<br />1y3x2ydx+ydy=0∴3x2dx+dy=0<br />fx,y= (3x2) dx+ [1- ∂∂y 3x2dx]dy<br />fx,y=x3+dy ∴fx,y=x3+y+c<br />Ecuaciones diferenciales lineales<br />Se llama ecuación diferencial lineal de primer orden a toda ecuación de la forma:<br />axy'+bxy=cx<br />Donde ax,bx,c(x) son funciones únicamente de la variable x.<br />Donde:qx=0 Entonces es homogénea y se resuelve por variables separablesqx≠0 Entonces es homogénea y se resuelve porFactor integranteVariación de parámetrosPara las ecuaciones lineales de primer orden expresadas en su forma normal:<br />y'+pxy=qx<br /> μx= ep(x)dx<br />y=1ux*qx*uxdx<br />Ejemplo:<br />xdy=xsinx-ydx<br />dydxx=xsinx-y<br />dydx=sinx-yx ∴y'+ yx=sinx<br />px=1x qx=sinx<br />μx= e1xdx ∴ elnx ∴ x <br />y=1x*(sinx*x)dx<br />y=1x-xcosx+sinx ∴ y=sinxx-cosx+cx<br />Ecuaciones de bernoulli<br />La ecuación diferencial<br />dydx+pxy=f(x)yn,<br />Donde:px y fx son funciones reales y continuas en un intervalo [a,b] y n es una constante real diferente de 0 y 1. La sustitución de u=y1-n ->dudxObservación: cuando n=0 la ecuación de Bernoulli se reduce a una ecuación separable y cuando n=1 se trata de una ecuación lineal, casos ya estudiados.Donde n es cualquier número real, se llama ecuación de bernoulli. <br />Ejemplo:<br />xdydx-y=x2y2<br />xy2dydx-y3= x2y2y2<br />xy2dydx-y3= x2 <br />u= -y3<br />Du= -3y2dy <br />-3xy2dydx+3u= -3x2<br />-xdydx+3u= -3x2<br />dudx-3ux=3xμ=e3dxx=e-3lnx = x-3<br />d x-3u= x-3(3x)dx<br /> x-3u=3x-2dx<br />x-3u=-3x-1+c<br /> u=-3x-1+cx3<br /> u= -3x2+x3c<br /> -y3=-3x2-x3c<br />