Prof. Llendy Gil 1
Clase II
Estadística y Probabilidad IIAnalizar los enfoques para asignar
probabilidades.
Prof. Llendy Gil
2
Introducción
Una vez estudiado los conceptos básicos de probabilidad y su definición. Es
Conveniente an...
Prof. Llendy Gil 3
PROBABILIDAD CLASICA
Parte del supuesto de que los resultados de un experimento son igualmente
posibles...
Prof. Llendy Gil 4
PROBABILIDAD CLASICA
Ejemplo: Considere el experimento de lanzar un dado. ¿ Cuál es la
probabilidad del...
Prof. Llendy Gil 5
Ya lazamos los dados y sabes todos los posibles resultados. Pero Hay tres
resultados favorables que son...
Prof. Llendy Gil 6
PROBABILIDAD EMPIRICA
Es el segundo tipo de probabilidad, se basa en el numero de veces que
ocurre el e...
Prof. Llendy Gil 7
Ejemplo:
En una encuesta realizada a 500 profesores de la ciudad de Chiclayo, se
encontró que 320 de el...
Prof. Llendy Gil 8
PROBABILIDAD Y SUS VALORES
Una probabilidad puede asumir cualquier valor desde 0 hasta 1.
- Cuanto mas...
Prof. Llendy Gil 9
REGLA DE LA SUMA DE PROBABILIDADES
Si los eventos A y B son mutuamente excluyentes , la probabilidad de...
Prof. Llendy Gil 10
Se utiliza para calcular la probabilidad de ocurrencia simultánea de dos o más
eventos .Si los eventos...
Prof. Llendy Gil 11
Si los eventos A y B son independientes , entonces la ocurrencia de un
evento no tiene efecto sobre l...
Prof. Llendy Gil 12
PROBABILIDAD CONDICIONAL
La probabilidad de que ocurra un evento B cuando se sabe que ha ocurrido algú...
Prof. Llendy Gil 13
Ejemplo:
Un profesor de matemáticas da clases en una sección matutina y una vespertina
de introducción...
Prof. Llendy Gil 14
Si A1, A2 ,... , A n son:
Sucesos incompatibles 2 a 2.
Y cuya unión es el espacio muestral ( A1 A2 ......
Prof. Llendy Gil 15
Ejemplos
El 20% de los empleados de una empresa son ingenieros y otro 20% son
economistas. El 75% de l...
Prof. Llendy Gil 16
Diagrama del Árbol
Para la construcción de un diagrama en árbol se partirá poniendo una rama para
cada...
Prof. Llendy Gil 17
Ejemplos
Una clase consta de seis niñas y 10 niños. Si se escoge un comité de tres al
azar, hallar la ...
Prof. Llendy Gil 18
Resultados
2.-) Seleccionar exactamente dos niños y una niña.
1.-) Seleccionar tres niños
3.-) Selecci...
Prof. Llendy Gil 19
BERENSON, M.L. y D.M. LEVINE. 1984. Estadística para Administración y Economía. Conceptos
y Aplicacion...
Próxima SlideShare
Cargando en…5
×

Clase ii estii-c2300813

1.824 visualizaciones

Publicado el

Clase II Estadistica

Publicado en: Entretenimiento y humor
0 comentarios
1 recomendación
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
1.824
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
24
Comentarios
0
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.

Clase ii estii-c2300813

  1. 1. Prof. Llendy Gil 1 Clase II Estadística y Probabilidad IIAnalizar los enfoques para asignar probabilidades.
  2. 2. Prof. Llendy Gil 2 Introducción Una vez estudiado los conceptos básicos de probabilidad y su definición. Es Conveniente analizar dos perspectivas para asignar probabilidades: los enfoques objetivos y subjetivo. La probabilidad objetiva se subdivide en a) probabilidad clásica y b ) Probabilidad empírica ENFOQUE DE LA PROBABILIDAD OBJETIVO SUJETIVO PROBABILIDAD CLASICA PROBABILIDAD EMPIRICA PARTE DE INFORMACION DISPONIBLE SE BASA EN REULTADOS IGUALMENTE PROBABLES SE SUSTENTA EN LAS FRECUENCIAS RELATIVAS
  3. 3. Prof. Llendy Gil 3 PROBABILIDAD CLASICA Parte del supuesto de que los resultados de un experimento son igualmente posibles. De acuerdo con el punto de vista clásico, la probabilidad de un evento que se esta llevando a cabo se calcula dividiendo el numero de resultados favorables entre el numero de posibles resultados. P(C) Probabilidad de un Evento = Número de resultados favorables Número total de posibles resultados
  4. 4. Prof. Llendy Gil 4 PROBABILIDAD CLASICA Ejemplo: Considere el experimento de lanzar un dado. ¿ Cuál es la probabilidad del evento “ cae un numero par de puntos? Los Posibles resultados son: Un punto Dos puntos Tres puntos Un Cuatro Un Cinco Un seis Continua
  5. 5. Prof. Llendy Gil 5 Ya lazamos los dados y sabes todos los posibles resultados. Pero Hay tres resultados favorables que son ( un dos, un cuatro, un seis) en el conjunto de seis resultados Igualmente posibles. Por consiguiente: P(C) Probabilidad de un Evento = Número de resultados favorables Número total de posibles resultados P ( N par) = 3 6 Número de resultados favorables Número total de posibles resultados
  6. 6. Prof. Llendy Gil 6 PROBABILIDAD EMPIRICA Es el segundo tipo de probabilidad, se basa en el numero de veces que ocurre el evento como proporción del numero de intentos conocidos Número de veces que el evento ocurre Número total de observaciones P(E) Probabilidad Empírica = La probabilidad de que un evento ocurra representa una fracción de los Eventos similares que sucedieron en el pasado. Este enfoque se basa en la Llamada LEY DE LOS GRANDES NUMEROS. La claves para determinar probabilidad de forma empírica consiste en que una mayor cantidad de Observaciones proporcionaran un calculo mas preciso de la probabilidad
  7. 7. Prof. Llendy Gil 7 Ejemplo: En una encuesta realizada a 500 profesores de la ciudad de Chiclayo, se encontró que 320 de ellos se encuentran trabajando en escuelas no estatales. Hallar la probabilidad que al seleccionar aleatoriamente un profesor, esté trabajando en una escuela no estatal Sea el evento A: profesor que trabaja en una escuela no estatal # Veces que ocurrió A = 320 # Total de veces que se repitió el experimento = 500 Número de veces que el evento ocurre Número total de observaciones P ( A) = 320 500 0.64=
  8. 8. Prof. Llendy Gil 8 PROBABILIDAD Y SUS VALORES Una probabilidad puede asumir cualquier valor desde 0 hasta 1. - Cuanto mas se aproxime a cero una probabilidad, es mas improbable que ocurra mas improbable que ocurra También puede indicarse como una fracción decimal común 0.70,… 0.20 También puede indicarse como una fracción común 7/10, 27/100……
  9. 9. Prof. Llendy Gil 9 REGLA DE LA SUMA DE PROBABILIDADES Si los eventos A y B son mutuamente excluyentes , la probabilidad de ocurrencia de A o de B es: P (A ∪ B) = P (A) + P (B) Ejemplo: Si lanzamos un dado ¿ Cual es la probabilidad de que salga 2 o 3? S =Espacio Muestral 1, 2,3,4,5,6 Evento A P ( A) = 1/6 Evento B P( B) = 1/6 Donde P (A ∪ B) = P (A) + P (B) 1/6+ 1/6 = 2/6 = 1/3 = 0.33P (A ∪ B) =
  10. 10. Prof. Llendy Gil 10 Se utiliza para calcular la probabilidad de ocurrencia simultánea de dos o más eventos .Si los eventos A y B son dependientes , entonces la ocurrencia de un evento tiene efecto sobre la probabilidad de ocurrencia del otro evento, por lo tanto la ocurrencia simultánea de los eventos es: REGLA DE LA MULTIPLICACIÓN P(A ∩ B) = P(A) P(B/A) Ejemplo : Suponga que se extrae dos cartas, una a la vez sin reemplazo, de una baraja ordinaria. ¿Cuál es la probabilidad de que ambas cartas sean ases? A: un as en la primera extracción B: un as en la segunda extracción P(A ∩B) = P(A).P(B/A) = (4/52).(3/51) = 0.0045
  11. 11. Prof. Llendy Gil 11 Si los eventos A y B son independientes , entonces la ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro, por lo tanto la ocurrencia simultánea de los eventos es: P(A ∩B) = P(A) P(B) Ejemplos : Supongamos que lanzamos un par de dados legales una sola vez. ¿Cuál es la probabilidad de obtener un 2 en el primer dado y un 4 en el segundo? A: Obtener 2 en el primer dado B: Obtener 4 en el segundo dado P(A ∩ B) = P(A) P(B) = 1/6 x 1/6 = 1/36
  12. 12. Prof. Llendy Gil 12 PROBABILIDAD CONDICIONAL La probabilidad de que ocurra un evento B cuando se sabe que ha ocurrido algún otro evento A, se denomina PROBABILIDAD CONDICIONADA y se designa como P(B/A). Él símbolo P(B/A) se lee como la probabilidad de que ocurra B sabiendo que ocurrió A o sencillamente probabilidad de B dado A. Las probabilidades condicionadas están relacionadas a probabilidades asociadas a los eventos definidos en sub poblaciones o espacios muéstrales reducidos. Se dice que la probabilidad de ocurrencia de un evento dado es condicionada, si esta se afecta por la ocurrencia de otro evento presente. P(B/A) = (P(B ∩A) = P ( BA) P ( A) P ( A) si, P(A)# 0
  13. 13. Prof. Llendy Gil 13 Ejemplo: Un profesor de matemáticas da clases en una sección matutina y una vespertina de introducción al cálculo. Sea: A = {el profesor da una mala conferencia matutina} y B = {el profesor da una mala conferencia vespertina}. Si P(A) = 0.3, P(B) = 0.2 y P(AB) = 0.1, calcule las siguientes probabilidades a) P(B/A) b) P(B/A) c) P(B/A) Calculamos: a) P (B/A)= 0.1/0.3 = 0.33 b) P ( B/A) = 0.3 - 0.1 0.3 = 0.67 Condicional c) P (B/A) = 0.2 - 0.1 0.7 = 0.14
  14. 14. Prof. Llendy Gil 14 Si A1, A2 ,... , A n son: Sucesos incompatibles 2 a 2. Y cuya unión es el espacio muestral ( A1 A2 ... An = E). Y B es otro suceso. Resulta que: Teorema de Bayes 1. Las probabilidades p(A1) se denominan probabilidades a priori. 2. Las probabilidades p(Ai/B) se denominan probabilidades a posteriori. 3. Las probabilidades p(B/Ai) se denominan verosimilitudes
  15. 15. Prof. Llendy Gil 15 Ejemplos El 20% de los empleados de una empresa son ingenieros y otro 20% son economistas. El 75% de los ingenieros ocupan un puesto directivo y el 50% de los economistas también, mientras que los no ingenieros y los no economistas solamente el 20% ocupa un puesto directivo. ¿Cuál es la probabilidad de que un empleado directivo elegido al azar sea ingeniero?
  16. 16. Prof. Llendy Gil 16 Diagrama del Árbol Para la construcción de un diagrama en árbol se partirá poniendo una rama para cada una de las posibilidades, acompañada de su probabilidad. En el final de cada rama parcial se constituye a su vez, un nudo del cual parten nuevas ramas, según las posibilidades del siguiente paso, salvo si el nudo representa un posible final del experimento (nudo final). Hay que tener en cuenta: que la suma de probabilidades de las ramas de cada nudo ha de dar 1.
  17. 17. Prof. Llendy Gil 17 Ejemplos Una clase consta de seis niñas y 10 niños. Si se escoge un comité de tres al azar, hallar la probabilidad de: 1.-) Seleccionar tres niños
  18. 18. Prof. Llendy Gil 18 Resultados 2.-) Seleccionar exactamente dos niños y una niña. 1.-) Seleccionar tres niños 3.-) Seleccionar exactamente dos niñas y un niño.
  19. 19. Prof. Llendy Gil 19 BERENSON, M.L. y D.M. LEVINE. 1984. Estadística para Administración y Economía. Conceptos y Aplicaciones. Edit. Interamericana. México, D.F. CABALLERO, W. 1981. Introducción a la Estadística. Instituto Interamericano de Cooperación para la Agricultura (IICA). San José, Costa Rica. CHAO, L.L. 1993. Estadística para las Ciencias Administrativas. 3ra. Edic. Edit. McGraw-Hill. Bogotá, Colombia. HERNANDEZ, S.R.; C. FERNANDEZ COLLADO y P. BAPTISTA LUCIO. 1991. Metodología de la Investigación. Edit. McGraw-Hill Interamericana de México, S.A. de C.V. México. INFANTE, GS y G.P. ZARATE de LARA. 1990. Métodos Estadístico. Un enfoque interdisciplinario. 2da. Edi. Edit. Trillas. México, D.F. . BIBLIOGRAFIA CONSULTADA

×