SlideShare una empresa de Scribd logo
1 de 21
CORRIENTE ALTERNA
En la vida cotidiana el uso de la energía eléctrica es cada día más
indispensable, siendo una de las razones su forma limpia, en
comparación con otras formas de energía, sobre todo la proveniente
de combustibles fósiles. Este hecho provocó que en algún momento
de la historia tuviese que decidirse si se utilizaba la corriente
continua (CC), estudiada anteriormente o la corriente alterna (CA),
objeto de este capítulo, para el suministro domestico, industrial y
comercial.
Está discusión como es de conocimiento general, cedió la razón a la
corriente alterna, una de las razones es el fácil transporte de grandes
cantidades de energía entre puntos distantes, a grandes diferencias de
potencial y bajas corrientes, lo que lleva consigo el hecho de una
baja pérdida energética por efecto Joule, lo que no ocurre con la
corriente continua.
La CA una vez generada y distribuida a grandes distancias, es
disminuida en su diferencia de potencial y aumentada su corriente, lo
que permite su uso doméstico, comercial e industrial. Este
procedimiento es posible gracias a la existencia de una gran
diversidad de transformadores que se encuentran instalados en las
redes eléctricas de las ciudades.
GENERADORES CORRIENTE ALTERNA
Los generadores de corriente alterna tal como su nombre lo indica, son aquellos en que la
corriente en el circuito no es constante, y su forma variable es de tipo alternada, es decir en
un sentido y en otro, repetidamente. La figura muestra un esquema de generador de
corriente alterna.
Al observar la figura se aprecia una espira de área A y N vueltas, donde los extremos están
unidos a dos anillos separados y conectados por contacto con el circuito externo.
Esta espira gira en un campo magnético uniforme B, lo que indica que el área proyectada
perpendicular al campo varía, provocando que el flujo magnético correspondiente sea
variable y cambie alternadamente dado el giro sobre el eje.
Este efecto de acuerdo a la ley de Faraday Lenz, produce una fem inducida en la espira, es
decir, una fem alterna
Links de interés
http://www.walter-fendt.de/ph14s/
http://micro.magnet.fsu.edu/electromag/java/
GENERADORES CORRIENTE ALTERNA
En primer lugar el flujo magnético sobre la espira es: A BcosΦ = θ
En segundo lugar el flujo magnético sobre las N espiras es variable dado que el ángulo
varía periódicamente y la espira gira con MCU, es decir tθ = ω + δ
donde ω es la rapidez angular y δ es el ángulo en t=0 (desfase)
Derivando el flujo respecto del tiempo y aplicando la Ley de Faraday Lenz se obtiene
d
N ABcos( t ) N AB sen( t )
dt
Φ
⇒ Φ = ω + δ ⇒ = − ω ω + δ
N A B sen( t )∴ ε = ω ω + δ
La expresión muestra que la fem inducida es función del tiempo y ésta dependencia es
además alterna, propiedad dada por la función seno
GENERADORES CORRIENTE ALTERNA
Analizando la expresión de la fem inducida y teniendo presente las características de la
función seno se observa que su amplitud es constante NABω, valor que corresponde a la
fem máxima y su período T=2π/ω ó equivalentemente de frecuencia f=ω/2π.
De lo que se deduce que la diferencia de potencial pico-pico es 2εmáx , siendo εmáx=NABω,
por lo que podemos escribir la expresión de la fem inducida alterna como:
N A B sen( t )ε = ω ω + δ
max sen(2 f t )ε = ε π + δ
ε
t
0
εmax
T
δ
Ecuación y Gráfico del generador de CA
CIRCUITO R en C. A.
El primer circuito que se analizará es una resistencia R conectada a una fuente de CA,
como el mostrado en la figura.
Rε
Suponiendo que la fuente es ideal, que la resistencia está
conectada directamente a la fem de ella y que el ángulo de
desfase inicial es π/2, se tiene:
R max R maxV sen(2 f t / 2) V cos(2 f t )= ε = ε π + π = π
donde ω es la frecuencia angular de la fuente,
VRmax= εmax y la fase de la fem es la misma en la
resistencia y la fuente.
R R maxV V cos( t)= ω
max sen( t / 2)ε = ε ω + π
VR
t
0
VRmax
T
R max
R R max
V
IR V V cos( t ) I cos( t )
R
= = ω ⇒ = ω donde: R max
max
V
I
R
= ⇒
maxI I cos(2 f t )= π
Nota: La corriente y la diferencia de potencial en una resistencia conectada a un circuito de
CA están en fase
Por otra parte aplicando la ley de Ohm, se puede obtener la corriente del circuito.
I
t
0
Imax
T
Ecuación y Gráfico de la corriente en un
circuito alimentado por un generador de CA
CIRCUITO R en C. A.
La potencia disipada en el circuito por efecto Joule (calor), varia con el tiempo debido a
que la corriente es variable en el tiempo
La gráfica muestra la potencia en función del
tiempo, donde se observa que varía desde 0 a
su valor máximo I2
maxR:
2 2
maxP RI R(I cos( t ))= = ω
2 2
maxP RI cos (2 f t )= π
P
t
0
2
max
1
I R
2
2
maxI R
El valor que se utiliza en la práctica de la potencia instantánea, es su valor promedio Pm,
por lo que utilizando el valor promedio de la función coseno, se obtiene:
2
m max
1
P I R
2
=
CIRCUITO R en C. A.
VALORES EFICACES en C. A.
Se llama valor eficaz de una corriente alterna, al valor que tendría una corriente continua
que produjera la misma potencia que dicha corriente alterna, al aplicarla sobre una misma
resistencia. Este valor corresponde a la raíz cuadrada de los cuadrados de los promedios
(rms sigla en ingles) de la función seno o coseno.
Valor eficaz de una corriente alterna Ief
[ ]
22 2 2 2
ef m max max m maxm
1
I I I cos( t) (I cos ( t)) I
2
= = ω = ω = ⇒ ef max
1
I I
2
=
Valor eficaz de una diferencia de potencial alterna Vef
[ ]
22 2 2 2
ef m max max m maxm
1
V V V cos( t) (V cos ( t)) V
2
= = ω = ω = ⇒ ef max
1
V V
2
=
Valor eficaz de la potencia alterna Pef
[ ] 2
ef m max max max max mm
P (VI) (V cos( t))(I cos( t)) V I (cos ( t))= = ω ω = ω ⇒ ef max max
1
P V I
2
=
CIRCUITO L en C. A.
El segundo circuito que se analizará es una inductancia L conectada a una fuente de CA,
como el mostrado en la figura.
Suponiendo que la fuente y la inductancia son ideales, esto es
no tienen resistencia propia, que la inductancia está conectada
directamente a la fem y que el ángulo de desfase inicial es π/2,
se tiene: max maxsen( t / 2) cos( t)ε = ε ω + π = ε ω
Lε
Por su parte la diferencia de potencial en un inductor VL esta dada por: L
dI
V L
dt
=
L L max L,maxV 0 V cos( t) V cos( t)−ε = ⇒ = ε = ε ω = ω
Aplicando la Ley de las mayas al circuito se tiene:
L,max
dI
V cos( t) L
dt
ω =
donde: max L,maxVε =
reemplazando en la ecuación de VL queda:
CIRCUITO L en C. A.
L,maxV
I sen( t)
L
= ω
ω
Por lo tanto, la diferencia de potencial y la corriente en el inductor son, respectivamente:
L L,maxV V cos( t)= ω Dado que: sen t cos( t)
2
π 
ω + = ω ÷
 
L L,maxV V sen t
2
π 
= ω + ÷
 
t
0
εmax
T
Imax
reordenando los términos se puede obtener la expresión de la corriente en el circuito
L,max L,max
L,max L,max
V VdI
V cos( t) L LdI V cos( t)dt : dI cos( t)dt I sen( t) Cte
dt L L
ω = ⇒ = ω = ω ⇒ = ω +
ω∫ ∫
El valor de la constante de integración, debe ser tal que cumpla con la condición de la
ley de las mayas, donde resulta que para este caso es cero.
Nótese la diferencia de potencial en la inductancia está desfasada
en π/2 (adelantada) respecto de la corriente en el circuito
Por otra parte el valor máximo de la corriente en el circuito es:
L,max
max
V
I
L
=
ω
CIRCUITO L en C. A.
Donde se define la reactancia o impedancia inductiva, por: LX L= ω
Nota: A diferencia de la resistencia la impedancia inductiva depende de la frecuencia de
la fuente, y la unidad de medida es el Ohm.
La potencia instantánea en la inductancia del circuito es PL=VLI es decir:
L L L,max L,max L,max L,max L,max L,max
1
P V I V sen t I sen( t) V I cos( t) sen( t) V I sen(2 t)
2 2
π 
= = ω + ω = ω ω = ω ⇒ ÷
 
de donde se deduce que para un ciclo de oscilación de la corriente, la potencia oscila dos
veces, siendo además la potencia media nula, hecho que indica que la inducción no disipa
energía, por lo menos para una inductancia ideal donde la resistencia de ella sea cero
L L,maxP P sen(2 t)= ω
CIRCUITO C en C. A.
El tercer circuito que se analizará es una capacitancia C conectada a una fuente de CA,
como el mostrado en la figura.
Suponiendo que la fuente y la capacitancia son ideales, esto es
no tienen resistencia propia, que la capacitancia está conectada
directamente a la fem y que el ángulo de desfase inicial es π/2,
se tiene: max maxsen( t / 2) cos( t)ε = ε ω + π = ε ω
Cε
Por su parte la diferencia de potencial en la capacitancia VC esta dada por: C
Q
V
C
=
C C max C,maxV 0 V cos( t) V cos( t)− ε = ⇒ = ε = ε ω = ω
Aplicando la Ley de las mayas al circuito se tiene:
C,maxQ CV cos( t)= ω
donde: max C,maxVε =
reemplazando en la ecuación de VC queda:
reordenando los términos se puede obtener la expresión de la corriente en el circuito
C,max
dQ
I CV sen( t)
dt
= = −ω ω
CIRCUITO C en C. A.
siendo: max C,maxI CV= ω
Dado que: sen t cos( t)
2
π 
ω − = − ω ÷
 
maxI I sen( t)= − ω
maxI I sen( t)= − ω
C C,maxV V cos( t)= ω
Por lo tanto, la diferencia de potencial y la corriente en la capacitancia son,
respectivamente:
C C,maxV V sen t
2
π 
= − ω − ÷
 
t
0
εmax
T
Imax
Nótese la diferencia de potencial en la reactancia esta
desfasada en -π/2 (retrasada) respecto de la corriente
en el circuito
Por otra parte el valor máximo de la corriente en el circuito es:
C,max
max C,max
V
I CV
1/ C
= ω =
ω
Donde se define la reactancia o impedancia capacitiva, por: C
1
X
C
=
ω
Nota: Análogamente al caso anterior la impedancia capacitiva depende de la frecuencia
de la fuente, y la unidad de medida es el Ohm.
CIRCUITO C en C. A.
La potencia instantánea en la capacitancia del circuito es PC=VCI es decir:
C C C,max max C,max max C,max max
1
P V I V cos( t)( I sen( t)) V I cos( t) sen( t) V I sen(2 t)
2
= = ω − ω = − ω ω = − ω ⇒
de donde se deduce que para un ciclo de oscilación de la corriente, la potencia oscila dos
veces, siendo además la potencia media nula, hecho que indica que la capacitancia no
disipa energía, por lo menos para una capacitancia ideal donde la resistencia de ella sea
cero
C C,maxP P sen(2 t)= − ω
CIRCUITO LRC en C. A.
En cuarto lugar se analizará un circuito serie compuesto por una inductancia L, una
resistencia R y una capacitancia C, conectados a una fuente de CA, como se muestra en la
figura.
Suponiendo que la fuente entrega una diferencia de potencial:
max cos( t)ε = ε ω
al aplicar la ley de las mayas al circuito se obtiene:
C
ε
R
L
L R CV V V 0ε − − − = ⇒ max
dI Q
cos( t) L IR 0
dt C
ε ω − − − =
2 2
max max2 2
d Q dQ Q d Q dQ Q
cos( t) L R 0 cos( t) L R
dt dt C dt dt C
ε ω − − − = ⇒ ε ω = + + ec. del circuito
al resolver la ecuación diferencial lineal no homogénea de segundo orden, se obtiene la
corriente del circuito, siendo ésta:
maxI I cos( t )= ω − δ
CIRCUITO LRC en C. A.
Por su parte la corriente máxima del circuito queda dada por:
max max
max 2 2
L C
I
Z R (X X )
ε ε
= =
+ −
El valor XL-XC se le llama comúnmente reactancia total y al valor Z se le llama
impedancia del circuito serie LRC, por lo que se puede escribir:
http://www.sc.ehu.es/sbweb/fisica/elecmagnet/induccion/alterna/alterna.htm
http://www.walter-fendt.de/ph14s/accircuit_s.htm
http://www.walter-fendt.de/ph14s/osccirc_s.htm
http://es-sun2.fernuni-hagen.de/JAVA/RLCircuit/rlcircuit.html
http://webphysics.ph.msstate.edu/jc/library/21-5/index.html
Links de Interés
max
I cos( t )
Z
ε
= ω − δ
donde el ángulo de desfase queda dado por : L CX X
tan
R
−
δ =
constante de fase de un circuito LRC serie
ωt-δ
VR
VC
VL
ωt
δ
Vf
Si representamos la diferencia de potencial aplicada al circuito Vf (=Vf,max cos (ωt+δ)) en
un diagrama de fasores, se pueden obtener la corriente en el circuito, el ángulo de fase, la
reactancia total y la impedancia de manera más sencilla:
Fasores en un circuito LRC de C. A.
Por la ley de las mayas, se tiene: f R L CV V V V= + +
r r r r
expresando a través de los módulos de los fasores, queda:
2 2
f R L C R,max L,max C,maxV V V V V (V V )= + + = + −
r r r
VL-VC
además se sabe que los valores máximos son:
R,max max L,max max L C,max max CV I R ; V I X ; V I X= = =
reemplazando:
2 2 2 2
f max max L max C max L C maxV (I R) (I X I X ) I R (X X ) I Z= + − = + − =
También de la figura se puede obtener el ángulo de fase:
L C max L max C L C
maxR
V V I X I X X X
tan
I R RV
− − −
δ = = =
r r
r
Por su parte la potencia que disipa un circuito RLC se debe a la presencia de las resistencia
conectada en él y su valor es P=I2
R ó
2 2 2
max maxP R(I cos( t )) RI cos ( t )= ω − δ = ω − δ ⇒
CIRCUITO LRC en C. A.
2 2
m max ef
1
P RI I R
2
= =
XC
XL
ωt-δωt
δ R
Z
XL-XC
A partir del diagrama fasorial se puede obtener que:
R
cos( )
Z
δ =
el término cos δ, se llama factor de potencia del circuito
y como Imax=Vf,max/Z queda:
m f ,max max f ,ef ef
1
P V I cos( ) V I cos( )
2
= δ = δ
Resonancia en un circuito LRC de C. A.
Si se conecta un condensador C inicialmente cargado a una inductancia L, (circuito LC) se
establecerá una corriente en el circuito producto de la energía almacenada en el
condensador (energía eléctrica) y por efecto de la corriente se irá generando un campo
magnético variable en la inductancia que almacenará una energía magnética en el campo
de inducción creado de está forma. Si se deja conectado el circuito, la corriente en el
crecerá hasta un valor máximo y la carga en el condensador disminuirá hasta cero,
momento en el cual la corriente en el circuito empezará a disminuir y la carga en el
condensador empezará a crecer, este proceso se repetirá indefinidamente (con frecuencia
ω0=1/√LC), si la inductancia y el condensador son ideales, es decir no tienen resistencia.
Si la inducción y el condensador se conectan con una resistencia formando un circuito
serie, el proceso oscilatorio será semejante al del circuito LC, con la diferencia que la
energía electromagnética ya no permanecerá constante, dado que la resistencia disipa
energía al medio por efecto Joule. Lo que sí es importante observar es que la frecuencia del
oscilador (ω0=1/√LC) no cambia por la inclusión de la resistencia en el circuito.
En el primer caso se ha obtenido un oscilador armónico simple y en el segundo caso un
oscilador armónico amortiguado. La pregunta es ¿De qué manera se podrá mantener la
oscilación del circuito si en la realidad todos los circuitos tienen resistencia?
La respuesta a la pregunta anterior se puede resolver agregando al circuito un dispositivo
que entregue al circuito una cantidad de energía a la misma tasa que el circuito la está
disipando. Este dispositivo capaz de entregar energía a una determinada frecuencia es un
generador de corriente alterna.
Es de hacer notar que el oscilador posee una frecuencia de oscilación que es propia de él,
llamada frecuencia natural del oscilador (ω0=1/√LC), dado que, depende sólo de las
características de fabricación del condensador y la inducción. Por su parte la fuente es
capaz de generar C.A. con frecuencia (ωf) que depende de su construcción. De tal forma se
tienen dos componentes independientes en el proceso de mantener un circuito LRC
oscilando con energía electromagnética constante, uno el circuito LRC serie y otro la
fuente de C.A. que se conecta al circuito.
Resonancia en un circuito LRC de C. A.
Generador C.A.
Circuito LRC
0
1
LC
ω =
fω
Resonancia en un circuito LRC de C. A.
Una situación que merece especial atención es cuando un circuito LRC serie de frecuencia
natural ω0 se conecta a una fuente de CA con frecuencia ω0, en tal caso el circuito entra en
resonancia con la fuente, por lo que la corriente del circuito será máxima.
Para que la corriente sea máxima en el circuito se debe cumplir que la impedancia sea
mínima, reactancia capacitiva sea igual a la reactancia inductiva, o equivalentemente la
impedancia sea mínima, matemáticamente:
2 2
L C
L C min max
Z R (X X )
Si X X Z I1
I
Z
= + −

= ⇒ ⇒
µ 

En tal condición de funcionamiento del circuito se puede comprobar que:
2
L C f f f 0
f
1 1 1
i) Si X X L
C LC LC
= ⇒ ω = ⇒ ω = ⇒ ω = = ω
ω
L C
L C
X X
ii) Si X X tan( ) 0 0
R
−
= ⇒ δ = = ⇒ δ =
L Ciii) Si X X 0 cos( ) 1= ⇒ δ = ⇒ δ =

Más contenido relacionado

La actualidad más candente

Resistencia de entrada, salida y ganancia de
Resistencia de entrada, salida y ganancia deResistencia de entrada, salida y ganancia de
Resistencia de entrada, salida y ganancia dejeymer anaya
 
Recortadores y Sujetadores de señales.
Recortadores y Sujetadores de señales.Recortadores y Sujetadores de señales.
Recortadores y Sujetadores de señales.Carlos Zúñiga
 
Diodo, tipos y su curva característica
Diodo, tipos y su curva característicaDiodo, tipos y su curva característica
Diodo, tipos y su curva característicaRuben Fuentes
 
Analisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo ordenAnalisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo ordenUniversidad Nacional de Loja
 
Relé o relevadores
Relé o relevadoresRelé o relevadores
Relé o relevadoresjmmr14
 
IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...
IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...
IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...Enrique Farfán Quiroz
 
Metodos de medicion de resistencia
Metodos de medicion de resistenciaMetodos de medicion de resistencia
Metodos de medicion de resistenciaWUILFREDO MARTINEZ
 
Teorema de Thevenin y Norton
Teorema de Thevenin y NortonTeorema de Thevenin y Norton
Teorema de Thevenin y NortonJesu Nuñez
 
Presentación1 leyes kirchoff-exposicion
Presentación1 leyes kirchoff-exposicionPresentación1 leyes kirchoff-exposicion
Presentación1 leyes kirchoff-exposicionAmelia Zarate Montes
 
Principios de Medida - Nivel
Principios de Medida - NivelPrincipios de Medida - Nivel
Principios de Medida - NivelJames Robles
 
Laboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de KirchhoffLaboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de KirchhoffJesu Nuñez
 
Corriente continua & corriente alterna
Corriente continua & corriente alternaCorriente continua & corriente alterna
Corriente continua & corriente alternajoan_ballester
 
Borrador de clases Sistemas de Potencia versión 5
Borrador de clases Sistemas de Potencia versión 5Borrador de clases Sistemas de Potencia versión 5
Borrador de clases Sistemas de Potencia versión 5Julio Molina
 
Resonancia y respuesta en frecuencia de circuitos rlc
Resonancia y respuesta en frecuencia de circuitos rlcResonancia y respuesta en frecuencia de circuitos rlc
Resonancia y respuesta en frecuencia de circuitos rlcLexandro Suarez Zambrano
 

La actualidad más candente (20)

Resistencia de entrada, salida y ganancia de
Resistencia de entrada, salida y ganancia deResistencia de entrada, salida y ganancia de
Resistencia de entrada, salida y ganancia de
 
Recortadores y Sujetadores de señales.
Recortadores y Sujetadores de señales.Recortadores y Sujetadores de señales.
Recortadores y Sujetadores de señales.
 
Practica 1
Practica 1 Practica 1
Practica 1
 
Diodo, tipos y su curva característica
Diodo, tipos y su curva característicaDiodo, tipos y su curva característica
Diodo, tipos y su curva característica
 
CORRIENTE ALTERNA
CORRIENTE ALTERNACORRIENTE ALTERNA
CORRIENTE ALTERNA
 
Sensores de temperatura
Sensores de temperaturaSensores de temperatura
Sensores de temperatura
 
Analisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo ordenAnalisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo orden
 
Relé o relevadores
Relé o relevadoresRelé o relevadores
Relé o relevadores
 
IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...
IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...
IDENTIFICACIÓN DE TERMINALES Y MEDICIÓN DE RESISTENCIA ÓHMICA Y DE AISLAMIENT...
 
Metodos de medicion de resistencia
Metodos de medicion de resistenciaMetodos de medicion de resistencia
Metodos de medicion de resistencia
 
Teorema de Thevenin y Norton
Teorema de Thevenin y NortonTeorema de Thevenin y Norton
Teorema de Thevenin y Norton
 
Circuitos de C.A en estado estacionario
Circuitos de C.A en estado estacionarioCircuitos de C.A en estado estacionario
Circuitos de C.A en estado estacionario
 
Presentación1 leyes kirchoff-exposicion
Presentación1 leyes kirchoff-exposicionPresentación1 leyes kirchoff-exposicion
Presentación1 leyes kirchoff-exposicion
 
Principios de Medida - Nivel
Principios de Medida - NivelPrincipios de Medida - Nivel
Principios de Medida - Nivel
 
Laboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de KirchhoffLaboratorio de Leyes de Kirchhoff
Laboratorio de Leyes de Kirchhoff
 
Corriente continua & corriente alterna
Corriente continua & corriente alternaCorriente continua & corriente alterna
Corriente continua & corriente alterna
 
Borrador de clases Sistemas de Potencia versión 5
Borrador de clases Sistemas de Potencia versión 5Borrador de clases Sistemas de Potencia versión 5
Borrador de clases Sistemas de Potencia versión 5
 
Control automatico
Control automaticoControl automatico
Control automatico
 
Stancom
StancomStancom
Stancom
 
Resonancia y respuesta en frecuencia de circuitos rlc
Resonancia y respuesta en frecuencia de circuitos rlcResonancia y respuesta en frecuencia de circuitos rlc
Resonancia y respuesta en frecuencia de circuitos rlc
 

Destacado (8)

Historia y usos de la Corriente alterna
Historia y usos de la Corriente alternaHistoria y usos de la Corriente alterna
Historia y usos de la Corriente alterna
 
S2 circuitos de corriente alterna 2015
S2 circuitos de corriente alterna 2015S2 circuitos de corriente alterna 2015
S2 circuitos de corriente alterna 2015
 
Circuitos En Corriente Alterna
Circuitos En Corriente AlternaCircuitos En Corriente Alterna
Circuitos En Corriente Alterna
 
Temas de fisica Circuitos de corriente alterna
Temas de fisica  Circuitos de corriente alternaTemas de fisica  Circuitos de corriente alterna
Temas de fisica Circuitos de corriente alterna
 
Circuitos Corriente Alterna
Circuitos Corriente AlternaCircuitos Corriente Alterna
Circuitos Corriente Alterna
 
V corriente alterna 1
V corriente alterna 1V corriente alterna 1
V corriente alterna 1
 
VENTAJAS Y DESVENTAJAS
VENTAJAS Y DESVENTAJAS VENTAJAS Y DESVENTAJAS
VENTAJAS Y DESVENTAJAS
 
Tema corriente alterna
Tema corriente alternaTema corriente alterna
Tema corriente alterna
 

Similar a Corriente alterna: Generación y aplicaciones

Similar a Corriente alterna: Generación y aplicaciones (20)

3987296.ppt
3987296.ppt3987296.ppt
3987296.ppt
 
Corriente alterna (1)
Corriente alterna (1)Corriente alterna (1)
Corriente alterna (1)
 
CORRIENTE ALTERNA 6.pdf
CORRIENTE ALTERNA 6.pdfCORRIENTE ALTERNA 6.pdf
CORRIENTE ALTERNA 6.pdf
 
Corriente alterna 10
Corriente alterna 10Corriente alterna 10
Corriente alterna 10
 
Práctica 5
Práctica 5Práctica 5
Práctica 5
 
Transitorios trafo b
Transitorios trafo bTransitorios trafo b
Transitorios trafo b
 
Alterna
AlternaAlterna
Alterna
 
Exposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedioExposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedio
 
Potencia en corriente alterna
Potencia en corriente alternaPotencia en corriente alterna
Potencia en corriente alterna
 
3ra_Clase.ppt
3ra_Clase.ppt3ra_Clase.ppt
3ra_Clase.ppt
 
Tippens fisica 7e_diapositivas_31b
Tippens fisica 7e_diapositivas_31bTippens fisica 7e_diapositivas_31b
Tippens fisica 7e_diapositivas_31b
 
trabajo de teoria de sistema
trabajo de teoria de sistematrabajo de teoria de sistema
trabajo de teoria de sistema
 
circuitos en rc fisica 3
circuitos en rc fisica 3 circuitos en rc fisica 3
circuitos en rc fisica 3
 
Potencia electrica en ca
Potencia electrica en caPotencia electrica en ca
Potencia electrica en ca
 
Uso-del-Multimetro.ppt
Uso-del-Multimetro.pptUso-del-Multimetro.ppt
Uso-del-Multimetro.ppt
 
Exposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricosExposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricos
 
Corriente alterna
Corriente alternaCorriente alterna
Corriente alterna
 
Circuitos de corriente alterna
Circuitos de corriente alternaCircuitos de corriente alterna
Circuitos de corriente alterna
 
Telecomunicaciones Grupo 5 CA
Telecomunicaciones Grupo 5 CATelecomunicaciones Grupo 5 CA
Telecomunicaciones Grupo 5 CA
 
01 señal senoidal
01 señal senoidal01 señal senoidal
01 señal senoidal
 

Corriente alterna: Generación y aplicaciones

  • 1. CORRIENTE ALTERNA En la vida cotidiana el uso de la energía eléctrica es cada día más indispensable, siendo una de las razones su forma limpia, en comparación con otras formas de energía, sobre todo la proveniente de combustibles fósiles. Este hecho provocó que en algún momento de la historia tuviese que decidirse si se utilizaba la corriente continua (CC), estudiada anteriormente o la corriente alterna (CA), objeto de este capítulo, para el suministro domestico, industrial y comercial. Está discusión como es de conocimiento general, cedió la razón a la corriente alterna, una de las razones es el fácil transporte de grandes cantidades de energía entre puntos distantes, a grandes diferencias de potencial y bajas corrientes, lo que lleva consigo el hecho de una baja pérdida energética por efecto Joule, lo que no ocurre con la corriente continua. La CA una vez generada y distribuida a grandes distancias, es disminuida en su diferencia de potencial y aumentada su corriente, lo que permite su uso doméstico, comercial e industrial. Este procedimiento es posible gracias a la existencia de una gran diversidad de transformadores que se encuentran instalados en las redes eléctricas de las ciudades.
  • 2. GENERADORES CORRIENTE ALTERNA Los generadores de corriente alterna tal como su nombre lo indica, son aquellos en que la corriente en el circuito no es constante, y su forma variable es de tipo alternada, es decir en un sentido y en otro, repetidamente. La figura muestra un esquema de generador de corriente alterna. Al observar la figura se aprecia una espira de área A y N vueltas, donde los extremos están unidos a dos anillos separados y conectados por contacto con el circuito externo. Esta espira gira en un campo magnético uniforme B, lo que indica que el área proyectada perpendicular al campo varía, provocando que el flujo magnético correspondiente sea variable y cambie alternadamente dado el giro sobre el eje. Este efecto de acuerdo a la ley de Faraday Lenz, produce una fem inducida en la espira, es decir, una fem alterna
  • 3. Links de interés http://www.walter-fendt.de/ph14s/ http://micro.magnet.fsu.edu/electromag/java/ GENERADORES CORRIENTE ALTERNA En primer lugar el flujo magnético sobre la espira es: A BcosΦ = θ En segundo lugar el flujo magnético sobre las N espiras es variable dado que el ángulo varía periódicamente y la espira gira con MCU, es decir tθ = ω + δ donde ω es la rapidez angular y δ es el ángulo en t=0 (desfase) Derivando el flujo respecto del tiempo y aplicando la Ley de Faraday Lenz se obtiene d N ABcos( t ) N AB sen( t ) dt Φ ⇒ Φ = ω + δ ⇒ = − ω ω + δ N A B sen( t )∴ ε = ω ω + δ La expresión muestra que la fem inducida es función del tiempo y ésta dependencia es además alterna, propiedad dada por la función seno
  • 4. GENERADORES CORRIENTE ALTERNA Analizando la expresión de la fem inducida y teniendo presente las características de la función seno se observa que su amplitud es constante NABω, valor que corresponde a la fem máxima y su período T=2π/ω ó equivalentemente de frecuencia f=ω/2π. De lo que se deduce que la diferencia de potencial pico-pico es 2εmáx , siendo εmáx=NABω, por lo que podemos escribir la expresión de la fem inducida alterna como: N A B sen( t )ε = ω ω + δ max sen(2 f t )ε = ε π + δ ε t 0 εmax T δ Ecuación y Gráfico del generador de CA
  • 5. CIRCUITO R en C. A. El primer circuito que se analizará es una resistencia R conectada a una fuente de CA, como el mostrado en la figura. Rε Suponiendo que la fuente es ideal, que la resistencia está conectada directamente a la fem de ella y que el ángulo de desfase inicial es π/2, se tiene: R max R maxV sen(2 f t / 2) V cos(2 f t )= ε = ε π + π = π donde ω es la frecuencia angular de la fuente, VRmax= εmax y la fase de la fem es la misma en la resistencia y la fuente. R R maxV V cos( t)= ω max sen( t / 2)ε = ε ω + π VR t 0 VRmax T
  • 6. R max R R max V IR V V cos( t ) I cos( t ) R = = ω ⇒ = ω donde: R max max V I R = ⇒ maxI I cos(2 f t )= π Nota: La corriente y la diferencia de potencial en una resistencia conectada a un circuito de CA están en fase Por otra parte aplicando la ley de Ohm, se puede obtener la corriente del circuito. I t 0 Imax T Ecuación y Gráfico de la corriente en un circuito alimentado por un generador de CA CIRCUITO R en C. A.
  • 7. La potencia disipada en el circuito por efecto Joule (calor), varia con el tiempo debido a que la corriente es variable en el tiempo La gráfica muestra la potencia en función del tiempo, donde se observa que varía desde 0 a su valor máximo I2 maxR: 2 2 maxP RI R(I cos( t ))= = ω 2 2 maxP RI cos (2 f t )= π P t 0 2 max 1 I R 2 2 maxI R El valor que se utiliza en la práctica de la potencia instantánea, es su valor promedio Pm, por lo que utilizando el valor promedio de la función coseno, se obtiene: 2 m max 1 P I R 2 = CIRCUITO R en C. A.
  • 8. VALORES EFICACES en C. A. Se llama valor eficaz de una corriente alterna, al valor que tendría una corriente continua que produjera la misma potencia que dicha corriente alterna, al aplicarla sobre una misma resistencia. Este valor corresponde a la raíz cuadrada de los cuadrados de los promedios (rms sigla en ingles) de la función seno o coseno. Valor eficaz de una corriente alterna Ief [ ] 22 2 2 2 ef m max max m maxm 1 I I I cos( t) (I cos ( t)) I 2 = = ω = ω = ⇒ ef max 1 I I 2 = Valor eficaz de una diferencia de potencial alterna Vef [ ] 22 2 2 2 ef m max max m maxm 1 V V V cos( t) (V cos ( t)) V 2 = = ω = ω = ⇒ ef max 1 V V 2 = Valor eficaz de la potencia alterna Pef [ ] 2 ef m max max max max mm P (VI) (V cos( t))(I cos( t)) V I (cos ( t))= = ω ω = ω ⇒ ef max max 1 P V I 2 =
  • 9. CIRCUITO L en C. A. El segundo circuito que se analizará es una inductancia L conectada a una fuente de CA, como el mostrado en la figura. Suponiendo que la fuente y la inductancia son ideales, esto es no tienen resistencia propia, que la inductancia está conectada directamente a la fem y que el ángulo de desfase inicial es π/2, se tiene: max maxsen( t / 2) cos( t)ε = ε ω + π = ε ω Lε Por su parte la diferencia de potencial en un inductor VL esta dada por: L dI V L dt = L L max L,maxV 0 V cos( t) V cos( t)−ε = ⇒ = ε = ε ω = ω Aplicando la Ley de las mayas al circuito se tiene: L,max dI V cos( t) L dt ω = donde: max L,maxVε = reemplazando en la ecuación de VL queda:
  • 10. CIRCUITO L en C. A. L,maxV I sen( t) L = ω ω Por lo tanto, la diferencia de potencial y la corriente en el inductor son, respectivamente: L L,maxV V cos( t)= ω Dado que: sen t cos( t) 2 π  ω + = ω ÷   L L,maxV V sen t 2 π  = ω + ÷   t 0 εmax T Imax reordenando los términos se puede obtener la expresión de la corriente en el circuito L,max L,max L,max L,max V VdI V cos( t) L LdI V cos( t)dt : dI cos( t)dt I sen( t) Cte dt L L ω = ⇒ = ω = ω ⇒ = ω + ω∫ ∫ El valor de la constante de integración, debe ser tal que cumpla con la condición de la ley de las mayas, donde resulta que para este caso es cero. Nótese la diferencia de potencial en la inductancia está desfasada en π/2 (adelantada) respecto de la corriente en el circuito
  • 11. Por otra parte el valor máximo de la corriente en el circuito es: L,max max V I L = ω CIRCUITO L en C. A. Donde se define la reactancia o impedancia inductiva, por: LX L= ω Nota: A diferencia de la resistencia la impedancia inductiva depende de la frecuencia de la fuente, y la unidad de medida es el Ohm. La potencia instantánea en la inductancia del circuito es PL=VLI es decir: L L L,max L,max L,max L,max L,max L,max 1 P V I V sen t I sen( t) V I cos( t) sen( t) V I sen(2 t) 2 2 π  = = ω + ω = ω ω = ω ⇒ ÷   de donde se deduce que para un ciclo de oscilación de la corriente, la potencia oscila dos veces, siendo además la potencia media nula, hecho que indica que la inducción no disipa energía, por lo menos para una inductancia ideal donde la resistencia de ella sea cero L L,maxP P sen(2 t)= ω
  • 12. CIRCUITO C en C. A. El tercer circuito que se analizará es una capacitancia C conectada a una fuente de CA, como el mostrado en la figura. Suponiendo que la fuente y la capacitancia son ideales, esto es no tienen resistencia propia, que la capacitancia está conectada directamente a la fem y que el ángulo de desfase inicial es π/2, se tiene: max maxsen( t / 2) cos( t)ε = ε ω + π = ε ω Cε Por su parte la diferencia de potencial en la capacitancia VC esta dada por: C Q V C = C C max C,maxV 0 V cos( t) V cos( t)− ε = ⇒ = ε = ε ω = ω Aplicando la Ley de las mayas al circuito se tiene: C,maxQ CV cos( t)= ω donde: max C,maxVε = reemplazando en la ecuación de VC queda:
  • 13. reordenando los términos se puede obtener la expresión de la corriente en el circuito C,max dQ I CV sen( t) dt = = −ω ω CIRCUITO C en C. A. siendo: max C,maxI CV= ω Dado que: sen t cos( t) 2 π  ω − = − ω ÷   maxI I sen( t)= − ω maxI I sen( t)= − ω C C,maxV V cos( t)= ω Por lo tanto, la diferencia de potencial y la corriente en la capacitancia son, respectivamente: C C,maxV V sen t 2 π  = − ω − ÷   t 0 εmax T Imax Nótese la diferencia de potencial en la reactancia esta desfasada en -π/2 (retrasada) respecto de la corriente en el circuito
  • 14. Por otra parte el valor máximo de la corriente en el circuito es: C,max max C,max V I CV 1/ C = ω = ω Donde se define la reactancia o impedancia capacitiva, por: C 1 X C = ω Nota: Análogamente al caso anterior la impedancia capacitiva depende de la frecuencia de la fuente, y la unidad de medida es el Ohm. CIRCUITO C en C. A. La potencia instantánea en la capacitancia del circuito es PC=VCI es decir: C C C,max max C,max max C,max max 1 P V I V cos( t)( I sen( t)) V I cos( t) sen( t) V I sen(2 t) 2 = = ω − ω = − ω ω = − ω ⇒ de donde se deduce que para un ciclo de oscilación de la corriente, la potencia oscila dos veces, siendo además la potencia media nula, hecho que indica que la capacitancia no disipa energía, por lo menos para una capacitancia ideal donde la resistencia de ella sea cero C C,maxP P sen(2 t)= − ω
  • 15. CIRCUITO LRC en C. A. En cuarto lugar se analizará un circuito serie compuesto por una inductancia L, una resistencia R y una capacitancia C, conectados a una fuente de CA, como se muestra en la figura. Suponiendo que la fuente entrega una diferencia de potencial: max cos( t)ε = ε ω al aplicar la ley de las mayas al circuito se obtiene: C ε R L L R CV V V 0ε − − − = ⇒ max dI Q cos( t) L IR 0 dt C ε ω − − − = 2 2 max max2 2 d Q dQ Q d Q dQ Q cos( t) L R 0 cos( t) L R dt dt C dt dt C ε ω − − − = ⇒ ε ω = + + ec. del circuito al resolver la ecuación diferencial lineal no homogénea de segundo orden, se obtiene la corriente del circuito, siendo ésta: maxI I cos( t )= ω − δ
  • 16. CIRCUITO LRC en C. A. Por su parte la corriente máxima del circuito queda dada por: max max max 2 2 L C I Z R (X X ) ε ε = = + − El valor XL-XC se le llama comúnmente reactancia total y al valor Z se le llama impedancia del circuito serie LRC, por lo que se puede escribir: http://www.sc.ehu.es/sbweb/fisica/elecmagnet/induccion/alterna/alterna.htm http://www.walter-fendt.de/ph14s/accircuit_s.htm http://www.walter-fendt.de/ph14s/osccirc_s.htm http://es-sun2.fernuni-hagen.de/JAVA/RLCircuit/rlcircuit.html http://webphysics.ph.msstate.edu/jc/library/21-5/index.html Links de Interés max I cos( t ) Z ε = ω − δ donde el ángulo de desfase queda dado por : L CX X tan R − δ = constante de fase de un circuito LRC serie
  • 17. ωt-δ VR VC VL ωt δ Vf Si representamos la diferencia de potencial aplicada al circuito Vf (=Vf,max cos (ωt+δ)) en un diagrama de fasores, se pueden obtener la corriente en el circuito, el ángulo de fase, la reactancia total y la impedancia de manera más sencilla: Fasores en un circuito LRC de C. A. Por la ley de las mayas, se tiene: f R L CV V V V= + + r r r r expresando a través de los módulos de los fasores, queda: 2 2 f R L C R,max L,max C,maxV V V V V (V V )= + + = + − r r r VL-VC además se sabe que los valores máximos son: R,max max L,max max L C,max max CV I R ; V I X ; V I X= = = reemplazando: 2 2 2 2 f max max L max C max L C maxV (I R) (I X I X ) I R (X X ) I Z= + − = + − = También de la figura se puede obtener el ángulo de fase: L C max L max C L C maxR V V I X I X X X tan I R RV − − − δ = = = r r r
  • 18. Por su parte la potencia que disipa un circuito RLC se debe a la presencia de las resistencia conectada en él y su valor es P=I2 R ó 2 2 2 max maxP R(I cos( t )) RI cos ( t )= ω − δ = ω − δ ⇒ CIRCUITO LRC en C. A. 2 2 m max ef 1 P RI I R 2 = = XC XL ωt-δωt δ R Z XL-XC A partir del diagrama fasorial se puede obtener que: R cos( ) Z δ = el término cos δ, se llama factor de potencia del circuito y como Imax=Vf,max/Z queda: m f ,max max f ,ef ef 1 P V I cos( ) V I cos( ) 2 = δ = δ
  • 19. Resonancia en un circuito LRC de C. A. Si se conecta un condensador C inicialmente cargado a una inductancia L, (circuito LC) se establecerá una corriente en el circuito producto de la energía almacenada en el condensador (energía eléctrica) y por efecto de la corriente se irá generando un campo magnético variable en la inductancia que almacenará una energía magnética en el campo de inducción creado de está forma. Si se deja conectado el circuito, la corriente en el crecerá hasta un valor máximo y la carga en el condensador disminuirá hasta cero, momento en el cual la corriente en el circuito empezará a disminuir y la carga en el condensador empezará a crecer, este proceso se repetirá indefinidamente (con frecuencia ω0=1/√LC), si la inductancia y el condensador son ideales, es decir no tienen resistencia. Si la inducción y el condensador se conectan con una resistencia formando un circuito serie, el proceso oscilatorio será semejante al del circuito LC, con la diferencia que la energía electromagnética ya no permanecerá constante, dado que la resistencia disipa energía al medio por efecto Joule. Lo que sí es importante observar es que la frecuencia del oscilador (ω0=1/√LC) no cambia por la inclusión de la resistencia en el circuito. En el primer caso se ha obtenido un oscilador armónico simple y en el segundo caso un oscilador armónico amortiguado. La pregunta es ¿De qué manera se podrá mantener la oscilación del circuito si en la realidad todos los circuitos tienen resistencia?
  • 20. La respuesta a la pregunta anterior se puede resolver agregando al circuito un dispositivo que entregue al circuito una cantidad de energía a la misma tasa que el circuito la está disipando. Este dispositivo capaz de entregar energía a una determinada frecuencia es un generador de corriente alterna. Es de hacer notar que el oscilador posee una frecuencia de oscilación que es propia de él, llamada frecuencia natural del oscilador (ω0=1/√LC), dado que, depende sólo de las características de fabricación del condensador y la inducción. Por su parte la fuente es capaz de generar C.A. con frecuencia (ωf) que depende de su construcción. De tal forma se tienen dos componentes independientes en el proceso de mantener un circuito LRC oscilando con energía electromagnética constante, uno el circuito LRC serie y otro la fuente de C.A. que se conecta al circuito. Resonancia en un circuito LRC de C. A. Generador C.A. Circuito LRC 0 1 LC ω = fω
  • 21. Resonancia en un circuito LRC de C. A. Una situación que merece especial atención es cuando un circuito LRC serie de frecuencia natural ω0 se conecta a una fuente de CA con frecuencia ω0, en tal caso el circuito entra en resonancia con la fuente, por lo que la corriente del circuito será máxima. Para que la corriente sea máxima en el circuito se debe cumplir que la impedancia sea mínima, reactancia capacitiva sea igual a la reactancia inductiva, o equivalentemente la impedancia sea mínima, matemáticamente: 2 2 L C L C min max Z R (X X ) Si X X Z I1 I Z = + −  = ⇒ ⇒ µ   En tal condición de funcionamiento del circuito se puede comprobar que: 2 L C f f f 0 f 1 1 1 i) Si X X L C LC LC = ⇒ ω = ⇒ ω = ⇒ ω = = ω ω L C L C X X ii) Si X X tan( ) 0 0 R − = ⇒ δ = = ⇒ δ = L Ciii) Si X X 0 cos( ) 1= ⇒ δ = ⇒ δ =