• Compartir
  • Enviar por correo
  • Insertar
  • Me gusta
  • Guardar
  • Contenido privado
Ejercicios de análisis de sensibilidad
 

Ejercicios de análisis de sensibilidad

on

  • 7,387 reproducciones

Ejercicios de análisis de sensibilidad

Ejercicios de análisis de sensibilidad

Estadísticas

reproducciones

reproducciones totales
7,387
reproducciones en SlideShare
7,387
reproducciones incrustadas
0

Actions

Me gusta
0
Descargas
105
Comentarios
3

0 insertados 0

No embeds

Accesibilidad

Categorias

Detalles de carga

Uploaded via as Microsoft Word

Derechos de uso

© Todos los derechos reservados

Report content

Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar

13 de 3 anterior siguiente Comentar

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
  • ctm deja las respuestas tambien pos u.u'
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
  • es para toda una semana jaja
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
  • disculpa tienes el taller o los 4 primeros puntos resueltos o un link en donde pueda encontrar los resultados me gustaria comparar
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
Publicar comentario
Edite su comentario

    Ejercicios de análisis de sensibilidad Ejercicios de análisis de sensibilidad Document Transcript

    • EJERCICIOS DE ANÁLISIS DE SENSIBILIDADEjercicio 1. (Investigación de Operaciones. Herbert Moskowitz y Gordon Wright) Considere el siguienteproblema de producción. Sea: X1 = número de unidades de producto 1 a producir diariamente X2 = número de unidades de producto 2 a producir diariamenteLa producción de ambos productos requiere de tiempo de procesamiento en dos departamentos D1 y D2, lasutilidades unitarias para los productos 1 y 2, y los tiempos de proceso requeridos en D1 y D2 se dan en elsiguiente modelo primal:Maximizar: Z = 200X1 + 300X2Sujeto a X1 + 2X2 ≤ 32 (D1) X2 ≤ 8 (D2) X1 , X2 ≥ 0Es decir, para construir una unidad completa del Producto 1 se requiere una hora en D1 y cero horas en D2. Paraconstruir una unidad completa del producto 2 se requieren dos horas en D1 y una hora en D2. La capacidad enhoras de D1 es de 32 horas y de D2 es de 8 horas.La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término X1 X2 S1 S2 base (solución) X1 32 1 2 1 0 S2 8 0 1 0 1 Zj Cj - Zj1. Termine de llenar la tabla óptima.2. ¿Cuántas unidades de cada producto deben producirse diariamente para maximizar las utilidades?3. ¿Cuánto tiene que incrementarse la utilidad unitaria del Producto 2, con el fin de que sea rentable producir elproducto 2?4. ¿Cuánto puede cambiar la utilidad unitaria del producto 1 para que no cambie la solución actual?5. Si la utilidad unitaria del producto 1 aumenta en $50, ¿en cuánto aumenta la utilidad total?6. Si tuviera oportunidad de incrementar el número de horas disponibles del Departamento 2, ¿en cuántas horaslo incrementaría? (Sin cambiar el sistema de producción actual)7. Si tuviera oportunidad de incrementar el número de horas disponibles del Departamento 1, ¿en cuántas horaslo incrementaría? (Sin cambiar el sistema de producción actual).8. Si el número de horas disponibles del Departamento 1 aumenta en 10 horas, ¿cuál sería la nueva utilidad?
    • Ejercicio 2. (Investigación de Operaciones. Herbert Moskowitz y Gordon Wright). La Kansas Companymanufactura tres productos P1, P2, P3. Cada producto requiere de dos materiales principales: acero y aluminio.La administración desea conocer los niveles de producción X1, X2 y X3 para P1, P2 y P3, respectivamente, quemaximicen la utilidad total.El siguiente modelo de PL describe el problema de producción de la Kansas Company.Maximizar: Z = 30X1 + 10X2 + 50X3Sujeto a 6X1 + 3X2 + 5X3 ≤ 450 3X1 + 4X2 + 5X3 ≤ 300 X1 , X2 , X3 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término X1 X2 X3 S1 S2 base (solución) 150 3 -1 0 1 -1 60 3/5 4/5 1 0 1/5 Zj Cj - Zj1. Termine de llenar la tabla óptima.2. ¿Qué cantidad de productos P1, P2 y P3 debe producir la Kansas Company para maximizar la utilidad total?3. La utilidad unitaria de P2 es $10. ¿Cuánto tiene que aumentar su precio con el fin de que sea rentableproducirlo?4. La utilidad unitaria de P1 es $30. ¿Cuánto tiene que aumentar este precio con el fin de que P1 sea producidopor la Kansas Company?5. ¿Cuánto puede cambiar la utilidad unitaria de P3 para que no cambie la solución actual?6. Si la utilidad unitaria del P3 aumenta en $40, ¿en cuánto aumenta la utilidad total?7. Si tuviera oportunidad de incrementar la cantidad de acero disponible, ¿en cuántas unidades lo incrementaría?(Sin cambiar el sistema de producción actual).8. Si tuviera oportunidad de incrementar la cantidad de aluminio disponible, ¿en cuántas unidades loincrementaría? (Sin cambiar el sistema de producción actual).9. La compañía tiene una disponibilidad diaria de 450 toneladas de acero. Suponga que puede obtener 50toneladas adicionales sin ningún costo extra. ¿La compañía debería adquirir las 50 toneladas de acero? ¿Cuálsería la nueva solución y utilidad? Explique claramente su respuesta.10. La compañía tiene una disponibilidad diaria de 300 toneladas de aluminio. Suponga que puede obtener 30toneladas adicionales a un costo extra de $8,50 por tonelada. ¿La compañía debería adquirir las 30 toneladas dealuminio adicionales? ¿Cuál sería la nueva solución y utilidad? Explique su respuesta.
    • Ejercicio 3. (Investigación de Operaciones. Herbert Moskowitz y Gordon Wright). La Ohio Steel produce dostipos de vigas de acero en su planta de Warren, Ohio. Cada uno de estos tipos de viga requiere de trabajo demáquina y finalización antes de ser vendidos. Los requerimientos de producción y finalización son dados en lasiguiente tabla: Tipo de viga Trabajo de máquina (horas Finalización (horas requeridas) requeridas) 1 1 2 2 2 3La planta de Warren, Ohio, tiene una capacidad semanal de 300 horas de máquina, y 200 horas de finalización.La contribución del tipo 1 a las utilidades es de $12 por unidad y la del tipo 2 es de $8.El siguiente modelo de PL describe el problema de producción de la Ohio Steel:Maximizar: Z = 12X1 + 8X2Sujeto a X1 + 2X2 ≤ 300 2X1 + 3X2 ≤ 200 X1 , X2 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término X1 X2 S1 S2 base (solución) 200 0 1/2 1 -1/2 100 1 3/2 0 1/2 Zj Cj - Zj1. Termine de llenar la tabla óptima.2. ¿Cuántas vigas de tipo 1 y 2 deberían ser producidas en Warren si el objetivo de la Ohio Steel es lamaximización de la utilidad semanal?3. ¿Cuánto debería estar decidida la Ohio Steel a pagar por una hora adicional de tiempo de máquina?4. La utilidad unitaria de la viga tipo 1 es $12. ¿Cuánto puede cambiar la utilidad unitaria de la viga tipo I paraque no cambie la solución actual5. ¿Cuánto tiene que aumentar la utilidad de la viga tipo 2 con el fin de que sea producido por la Ohio Steel?6. Si tuviera oportunidad de incrementar la cantidad de horas en trabajo de máquina, ¿en cuántas horas loincrementaría? (Sin cambiar el sistema de producción actual).7. Si tuviera oportunidad de incrementar la cantidad de horas de finalización, ¿en cuántas unidades loincrementaría? (Sin cambiar el sistema de producción actual).8. La compañía tiene una disponibilidad semanal de 300 horas de trabajo máquina. Suponga que puede obtener50 horas adicionales de trabajo máquina sin ningún costo extra. ¿La compañía debería adquirir las 50 horasadicionales de trabajo máquina? ¿Cuál sería la nueva solución y utilidad? Explique claramente su respuesta.9. La compañía tiene una disponibilidad semanal de 200 horas de trabajo de finalización. Suponga que puedeobtener 30 horas adicionales a un costo extra de $2,5 por hora. ¿La compañía debería adquirir las 30 horas detrabajo de finalización adicionales? ¿Cuál sería la nueva solución y utilidad? Explique su respuesta.
    • Ejercicio 4. (Investigación de Operaciones. Herbert Moskowitz y Gordon Wright). La Alaska Snowbiles Inc(ASI) produce las mayores líneas de carros de nieve. Las dos líneas, llamadas la Aleutian y la Kodiak, van através de las mismas líneas de ensamble y prueba. La ASI considera que estas líneas van a ser recursos escasos, acausa de la limitación en la disponibilidad de tiempo de mano de obra directa en cada una de las líneas.Producir y probar un Aleutian requiere dos horas en la línea de ensamble y una hora en la línea de prueba.Producir y probar un Kodiak requiere tres horas en la línea de ensamble y 1,5 horas en la línea de prueba. La ASItiene un máximo de 16 horas por día (dos turnos) disponibles en la línea de ensamble y un máximo de 18 horaspor día en la línea de prueba.Cada Aleutian aporta una contribución a la utilidad de $150 y cada Kodiak de $200. La meta de la ASI esutilizar sus facilidades de producción de tal manera que la utilidad total obtenida por día sea maximizada.El siguiente modelo de PL describe el problema de producción de la Ohio Steel:Maximizar: Z = 150X1 + 200X2Sujeto a 2X1 + 3X2 ≤ 16 X1 + 1,5X2 ≤ 18 X1 , X2 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término X1 X2 S1 S2 base (solución) 8 1 3/2 1/2 0 10 0 0 -1/2 1 Zj Cj - Zj1. Termine de llenar la tabla óptima.2. ¿Cuántos carros de nieve Aleutian y Kodiak debería producir la ASI diariamente para lograr su meta?3. La compañía tiene una disponibilidad diaria de 16 horas en la línea de ensamble. Suponga que puede obtener14 horas adicionales para la línea de ensamble sin ningún costo extra. ¿La compañía debería adquirir las 14horas adicionales en la línea de ensamble? ¿Cuál sería la nueva solución y utilidad? Explique claramente surespuesta.4. La compañía tiene una disponibilidad diaria de 18 horas en la línea de prueba. Suponga que puede obtenertambién 15 horas adicionales para la línea de prueba sin ningún costo extra. ¿La compañía debería adquirir las15 horas adicionales para la línea de prueba? ¿Cuál sería la nueva solución y utilidad? Explique su respuesta.5. ¿Cuánto debería estar decidida la Alaska Snowbiles a pagar por una hora adicional para la línea de ensamble?6. La utilidad unitaria de la Aleutian es de $150. ¿Cuánto puede cambiar la utilidad unitaria de la Aleutian paraque no cambie la solución actual7. ¿Cuánto tiene que aumentar la utilidad de la Kodiak con el fin de que sea producido por la ASI?8. Si tuviera oportunidad de incrementar la cantidad de horas en la línea de ensamble, ¿en cuántas horas loincrementaría? (Sin cambiar el sistema de producción actual).9. Si tuviera oportunidad de incrementar la cantidad de horas en la línea de prueba, ¿en cuántas unidades loincrementaría? (Sin cambiar el sistema de producción actual).
    • Ejercicio 5. (Investigación de Operaciones. Herbert Moskowitz y Gordon Wright). La Montana SilverCorporation (MSC) produce tres tipos diferentes de juegos de plata para Té para comercializar: un juego de lujollamado el Hanover; un juego regular, el Concord; y un juego económico, el Manchester. El departamento demercadeo de la MSC ha hecho una encuesta de mercado para determinar el número esperado de juegos, quepuede ser razonable producir para vender cada mes. Los resultados de la entrevista hicieron concluir que laprobabilidad de venta de más de 150 Hanover al mes es muy pequeña. Sin embargo, tantos juegos de Concord yManchester pueden ser producidos como vendidos.Cada uno de estos juegos requiere oro, plata y plomo. La MSC compra oro y plomo de proveedores externos aun costo de $130 y $0,60 por onza. El costo de producción de la plata de la MSC es estimado en alrededor de$45 por onza. Un Hanover terminado requiere 2 onzas de oro, 6 onzas de plata y 300 onzas de plomo. UnConcord terminado requiere 1,5 onzas de oro, 4 onzas de plata y 250 onzas de plomo. Un Manchester terminadorequiere 1 onza de oro, 2 onzas de plata y 200 onzas de plomo. La provisión mensual de los metales está limitadaa 100 onzas de oro, 700 onzas de plata y 5000 onzas de plomo.La MSC es solamente uno de los muchos productores de juegos similares al Hanover, Concord y Manchester, yademás tiene que vender estos juegos a un precio establecido por el mercado. Actualmente, el Hanover puede servendido a $2010 por juego, el Concord a $1525 el juego, y el Manchester a $1040 el juego.El siguiente modelo de PL describe el problema de producción de la MSC.Maximizar: 2010X1 + 1525X2 + 1040X3 – (2X1 + 1,5X2 + X3)*130 – (6X1 + 4X2 + 2X3 )*45 – (300X1 + 250X2 + 200X3)*0,6 Z = 1300X1 + 1000X2 + 700X3Sujeto a 2X1 + 1,5X2 + X3 ≤ 100 6X1 + 4X2 + 2X3 ≤ 700 300X1 + 250X2 + 200X3 ≤ 5000 X1 , X2 , X3 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables 2do término X1 X2 X3 S1 S2 S3 en la base (solución) 200/3 0 -1/6 -1/3 1 0 -1/150 600 0 -1 -2 0 1 -1/50 50/3 1 5/6 2/3 0 0 1/300 Zj Cj - Zj1. Termine de llenar la tabla óptima.2. La MSC desea averiguar cuántos juegos de cada tipo producir para maximizar las utilidades mensuales.3. La compañía tiene una disponibilidad mensual de 100 onzas de oro. Suponga que puede obtener 20 onzas deoro adicionales sin ningún costo extra. ¿La compañía debería adquirir las 20 onzas adicionales? ¿Cuál sería lanueva solución y utilidad? Explique claramente su respuesta.4. La compañía tiene una disponibilidad mensual de 5000 onzas de plomo. Suponga que puede obtener también1000 onzas adicionales de plomo sin ningún costo extra. ¿La compañía debería adquirir las 1000 onzasadicionales de plomo? ¿Cuál sería la nueva solución y utilidad? Explique su respuesta.5. ¿Cuánto debería estar dispuesta la MSC a pagar, por encima del costo normal, por una onza adicional de oro?6. ¿Cuánto debería estar dispuesta la MSC a pagar, por encima del costo normal, por una onza adicional deplomo?7. La utilidad unitaria de la Hanover es de $1300. ¿Cuánto puede cambiar la utilidad unitaria de la Hanover paraque no cambie la solución actual?8. ¿Cuánto tiene que aumentar la utilidad de la Concord para que sea producido por la MSC?9. Si tuviera oportunidad de incrementar la cantidad de onzas de plomo disponibles, ¿en cuántas onzas loincrementaría? (Sin cambiar el sistema de producción actual).
    • Ejercicio 6. (Investigación de Operaciones. Herbert Moskowitz y Gordon Wright). La Nevada Gold Company(NGC) produce artesanías en collares de oro de 14K, de alta calidad para hombres y para mujeres; cada collarrequiere dos procesos: moldeo y finalización. Un collar de mujeres requiere 8 unidades de moldeo y 12 unidadesde finalización. Un collar de hombres requiere 10 unidades de moldeo y 8 unidades de finalización. Se tiene unadisponibilidad diaria de 200 unidades de moldeo y 240 unidades de finalización, para la manufactura de collares.La utilidad por la venta de los collares es de $35 y $45 para hombres y mujeres, respectivamente.La NGC desea saber cuál es la combinación de collares de hombres y de mujeres que debería producir con el finde maximizar las utilidades diarias. Haga un análisis post-óptimo sobre las utilidades unitarias.El siguiente modelo de PL describe el problema de producción de la NGC:Maximizar: Z = 35X1 + 45X2Sujeto a 10X1 + 8X2 ≤ 200 8X1 + 12X2 ≤ 240 X1 , X2 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término X1 X2 S1 S2 base (solución) 60/7 1 0 3/14 -1/7 100/7 0 1 -1/7 5/28 Zj Cj - Zj1. Termine de llenar la tabla óptima.2. ¿Cuántos collares de hombre y collares de mujer debería producir la NGC diariamente para maximizar lasutilidades?3. La utilidad unitaria de los collares para hombre es de $35. ¿Cuánto puede cambiar la utilidad unitaria de estoscollares sin que cambie la solución actual?4. ¿Cuál sería la nueva solución si la utilidad de los collares para hombres aumentara hasta $57 por unidad?5. La utilidad unitaria de de los collares para mujeres es de $45. ¿Cuánto puede cambiar la utilidad unitaria deestos collares sin que cambie la solución actual?6. Si tuviera oportunidad de incrementar la cantidad de unidades de moldeo disponible, ¿en cuántas unidades loincrementaría? (Sin cambiar el sistema de producción actual).7. Si tuviera oportunidad de incrementar la cantidad de unidades de finalización disponible, ¿en cuántas unidadeslo incrementaría? (Sin cambiar el sistema de producción actual).8. La compañía tiene una disponibilidad diaria de 200 unidades de moldeo. Suponga que puede obtener 70unidades adicionales de moldeo sin ningún costo extra. ¿La compañía debería adquirir las 70 unidadesadicionales de moldeo? ¿Cuál sería la nueva solución y utilidad? Explique claramente su respuesta.9. La compañía tiene una disponibilidad diaria de 240 unidades de finalización. Suponga que puede obtener 35unidades adicionales a un costo extra de $2,0 por unidad. ¿La compañía debería adquirir las 35 unidades definalización adicionales? ¿Cuál sería la nueva solución y utilidad? Explique su respuesta.
    • Ejercicio 7. (Modelos cuantitativos para administración. K. Roscoe Davis & Patrick McKeown).Considere elsiguiente problema de PL:Maximizar: Z = 2X1 - X2 + X3Sujeto a 3X1 + X2 + X3 ≤ 60 (recurso 1) X1 - X2 + 2X3 ≤ 10 (recurso 2) X1 + X2 – X3 ≤ 20 (recurso 3) X1 , X2 , X3 ≥ 0La tabla ¿óptima? para este problema es la siguiente: Cj Cb Variables 2do término X1 X2 X3 S1 S2 S3 en la base (solución) 10 0 0 1 1 -1 -2 15 1 0 0,5 0 0,5 0,5 5 0 1 -1,5 0 -0,5 0,5 Zj Cj - Zj1. Termine de llenar la tabla. Si esta tabla es óptima, responda las preguntas que aparecen enseguida; si no lo es,lleve a cabo el pivoteo (continúe el procedimiento) para encontrar la tabla óptima y después responda lassiguientes preguntas:2. Para la solución óptima del problema de PL se fabricarían ________ unidades de X1, _________ unidades deX2, y ________ unidades de X3, dando como resultado una utilidad máxima de ________. Para esta soluciónhabrá ________ unidades del recurso 1 que no se utilizarán, _________ unidades del recurso 2 que no seutilizarán, y _________ unidades del recurso 3 que no se utilizarán.3. De manera similar, si existiera disponible una unidad más del recurso 2, estaríamos dispuestos a pagar unprecio adicional de $________ para obtenerlo.4. Si se obtuvieran cinco unidades adicionales del recurso 2 al precio original, los nuevos valores de X1, X”, X3y Z serían: X1= _______ , X2 = ________ , X3 = ________ , Z = ________ .5. ¿Cuánto tendría que aumentar la utilidad de X3 para que estuviéramos dispuesto a fabricarlo?6. ¿Cuánto podría cambiar la utilidad de X2 antes de que afectara la tabla óptima? Aumentar en ________ ydisminuir en __________.7. ¿Cuánto puede cambiar la disponibilidad del recurso 3 sin afectar la tabla óptima? Aumentar en ________ ydisminuir en __________.8. La utilidad unitaria de X1 de $2. ¿Cuánto puede cambiar la utilidad unitaria de X1 sin que cambie la soluciónactual?9. ¿Cuál sería la nueva solución si la utilidad unitaria de X1 aumentara hasta $4 por unidad?
    • Ejercicio 8. (Modelos cuantitativos para administración. K. Roscoe Davis & Patrick McKeown).Considere elsiguiente problema de PL:Maximizar: Z = 2X1 + 4X2 + 3X3Sujeto a 3X1 + 4X2 + 4X3 ≤ 60 (recurso 1) 2X1 + X2 + 2X3 ≤ 40 (recurso 2) X1 + 3X2 + 2X3 ≤ 80 (recurso 3) X1 , X2 , X3 ≥ 0La tabla ¿óptima? para este problema es la siguiente: Cj Cb Variables 2do término X1 X2 X3 S1 S2 S3 en la base (solución) 20/3 1/3 1 0 1/3 -1/3 0 50/3 5/6 0 1 -1/6 2/3 0 80/3 -5/3 0 0 -2/3 -1/3 1 Zj Cj - Zj1. Termine de llenar la tabla. Si esta tabla es óptima, responda las preguntas que aparecen enseguida; si no lo es,lleve a cabo el pivoteo (continúe el procedimiento) para encontrar la tabla óptima y después responda lassiguientes preguntas:2. Para la solución óptima del problema de PL se fabricarían ________ unidades de X1, _________ unidades deX2, y ________ unidades de X3, dando como resultado una utilidad máxima de ________. Para esta soluciónhabrá ________ unidades del recurso 1 que no se utilizarán, _________ unidades del recurso 2 que no seutilizarán, y _________ unidades del recurso 3 que no se utilizarán.3. Si existieran unidades adicionales disponibles del recurso 1 con un costo superior (por encima del normal) de$1, ¿cuántas unidades compraría usted?4. Si existieran unidades adicionales disponibles del recurso 2 sin ningún costo extra, ¿cuántas unidadesadquiriría usted para maximizar las utilidades sin afectar la mezcla actual de producción?5. ¿Cuánto puede cambiar la utilidad de X1 sin afectar la solución actual?6. ¿Cuánto puede cambiar la utilidad de X2 sin afectar la solución actual?7. ¿Cuál es el intervalo de factibilidad del recurso 1?, es decir, ¿cuánto puede cambiar su disponibilidad?8. Si existieran 15 unidades adicionales disponibles del recurso 2 sin ningún costo extra, ¿se deberían adquirirestas unidades adicionales del recurso 2? Si su respuesta es afirmativa, ¿cuál sería la nueva solución y la nuevautilidad? Explique claramente su respuesta.9. ¿Cuál sería la nueva solución si la utilidad unitaria de X2 aumentara hasta $7 por unidad?
    • Ejercicio 9. (Modelos cuantitativos para administración. K. Roscoe Davis & Patrick McKeown).Considere elsiguiente problema de PL:Maximizar: Z = -X1 + 3X2 - 3X3Sujeto a 3X1 - X2 + 2X3 ≤ 7 (recurso A) -2X1 + 4X2 ≤ 12 (recurso B) -4X1 + 3X2 + 8X3 ≤ 10 (recurso C) X1 , X2 , X3 ≥ 0La tabla ¿óptima? para este problema es la siguiente: Cj Cb Variables 2do término X1 X2 X3 S1 S2 S3 en la base (solución) 4 1 0 0,8 0,4 0,1 0 5 0 1 0,4 0,2 0,3 0 11 0 0 10 1 -0,5 1 Zj Cj - Zj1. Termine de llenar la tabla. Si esta tabla es óptima, responda las preguntas que aparecen enseguida; si no lo es,lleve a cabo el pivoteo (continúe el procedimiento) para encontrar la tabla óptima y después responda lassiguientes preguntas:2. Para la solución óptima del problema de PL se fabricarían ________ unidades de X1, _________ unidades deX2, y ________ unidades de X3, dando como resultado una utilidad máxima de ________. Para esta soluciónhabrá ________ unidades del recurso 1 que no se utilizarán, _________ unidades del recurso 2 que no seutilizarán, y _________ unidades del recurso 3 que no se utilizarán.3. Si se cambiara a 12 la cantidad del recurso A, ¿qué efecto tendría esto sobre las utilidades? ¿En qué forma semodificaría la solución óptima?4. ¿Cuánto puede cambiarse el recurso B, en cualquier dirección?5. ¿Cuál es el sobrecosto que usted estaría dispuesto a pagar por una unidad adicional del recurso C?6. ¿Cuánto tendría que aumentar la utilidad de X3 para que pudiera incluirse en la base óptima?7. Si existieran 10 unidades adicionales disponibles del recurso B sin ningún costo extra, ¿se deberían adquirirestas unidades adicionales del recurso 2? Si su respuesta es afirmativa, ¿cuál sería la nueva solución y la nuevautilidad? Explique claramente su respuesta.8. ¿Cuál sería la nueva solución si la utilidad unitaria de X2 aumentara hasta $5 por unidad?9. Si existieran unidades adicionales disponibles del recurso B con un costo superior (por encima del normal) de$0,5 ¿cuántas unidades compraría usted?
    • Ejercicio 10. Una compañía produce chamarras y bolsas de cuero. Una chamarra necesita 4 m2 de cuero y unabolsa sólo 1.5 m2. El tiempo de trabajo invertido es de 7 y 2 horas, respectivamente. El precio de compra delcuero es de $20 / m2 y el costo por hora de trabajo se estima en $15. El distribuidor de cuero garantiza unaentrega de 1200 m2 de cuero semanalmente, pero no puede proveer ninguna cantidad adicional. La fuerza detrabajo con que cuenta la compañía es de 1750 horas por semana. El precio de venta de las chamarras es de $305y de las bolsas de $100.Un modelo de P.L. para optimizar las utilidades de la compañía es:X1 = Número de chamarras a fabricar semanalmenteX2 = Número de bolsas a fabricar semanalmenteMaximizar: Z = 120X1 + 40X2Sujeto a 4X1 + 1.5X2 ≤ 1200 7X1 + 2X2 ≤ 1750 X1 , X2 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término X1 X2 S1 S2 base (solución) 560 0 1 14/5 -8/5 90 1 0 -4/5 3/5 Zj Cj - Zja) Complete la tabla anterior.b) Complete y subraye donde sea necesario.El plan óptimo de producción semanal consiste en producir _____ bolsas de cuero y _____ chamarras. (No seconsumen / Se utilizan / Se pierde parte de) todos los recursos disponibles en la semana. El precio sombra de larestricción que corresponde a las pieles es de _____, esto significa que por cada metro cuadrado adicional decuero, (los precios / los gastos / las utilidades) (disminuirán / aumentarán) en _____. (Es posible / No es posible)incrementar las utilidades comprando una cantidad adicional de piel sin que cambie la base. Un cambio en labase significa que (se seguirá produciendo la misma cantidad de chamarras y bolsas / no se seguirá produciendola misma cantidad de chamarras y bolsas).c) Complete y subraye donde sea necesario.El almacén de la compañía tiene espacio para almacenar 1300 m2 de cuero. Debido a una escasez de cuero, unsegundo proveedor le ofrece 75 m2 a $25 / m2, pero no vende una cantidad menor. Un tercer proveedor puedesurtirle cualquier cantidad de piel a $28 / m2. Suponga que se puede vender cualquier cantidad adicional dechamarras y bolsas que se fabriquen. Si la compañía cuenta con el capital necesario con el objetivo de lograr unincremento óptimo en las utilidades, la compañía (no comprará / comprará) el cuero al segundo proveedor ycomprará _____ m2 de cuero al tercer proveedor. El incremento que se logrará en las utilidades es de $______.La utilidad semanal será entonces de $_______. La compañía está dispuesta a pagar hasta _____ por una horaextra de trabajo.
    • Ejercicio 11. (Métodos cuantitativos para los negocios. Anderson, Sweeney & Williams) Par es un pequeño fabricante deequipo y accesorios de golf cuyo distribuidor lo convenció de que existe un mercado tanto para la bolsa de golf estándarcomo para el modelo de lujo. Un análisis de los requerimientos de fabricación dio como resultado la tabla siguiente quemuestra las necesidades de tiempo (en horas) de producción para las tres operaciones de manufacturas requeridas, y laestimación de la utilidad por bolsa. Corte Costura Terminado UtilidadBolsa estándar 3/4 1/2 2 $10Bolsa de lujo 1 1 1 $9El director de manufactura estima que durante los siguientes tres meses estarán disponibles 630 horas de tiempo de corte,600 horas de tiempo de costura y 708 horas de tiempo de terminado para la producción de las bolsas de golf tanto estándarcomo de lujo. Si la empresa desea maximizar la contribución total a la utilidad, ¿cuántas unidades de cada modelo deberáfabricar?Un modelo de P.L. para optimizar las utilidades de la compañía es:X1= bolsas de golf estándar a producirX2= bolsas de golf de lujo a producirMaximizar Z= 10X1 + 9X2Sujeto a 0,75X1 + X2 ≤ 630 0,50X1 + X2 ≤ 600 2X1 + X2 ≤ 708 X1 , X2 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término (solución) X1 X2 S1 S2 S3 base 12 0 0 1 -5/6 -1/6 564 0 1 0 4/3 -1/3 72 1 0 0 -2/3 2/3 Zj Cj - Zj1. Termine de llenar la tabla óptima.2. Para la solución óptima del problema de PL se fabricarían ________ bolsas de golf estándar y _________ bolsas de golfde lujo, dando como resultado una utilidad máxima de ________. Para esta solución habrán ________ horas en la operaciónde costura que no se utilizarán, _________ horas en operación de corte que no se utilizarán, y _________ horas enoperación de terminado que no se utilizarán.3. El departamento de contabilidad revisa su estimación de contribución a la utilidad para la bolsa de lujo a $18 dólares porbolsa. ¿En qué afecta esto a la solución del problema? Explique y justifique claramente su respuesta.4. ¿Cuál es el sobrecosto que usted estaría dispuesto a pagar por una hora adicional de la operación de terminado?5. Aparece disponible una nueva materia prima de bajo costo para la bolsa estándar, y la contribución a la utilidad por bolsaestándar puede incrementarse a $20 dólares por bolsa (suponga que la contribución a la utilidad de la bolsas de lujo siguesiendo $9 dólares). ¿En qué afecta esto a la solución del problema? Explique y justifique claramente su respuesta.6. Se puede obtener nuevo equipo de costura que incrementaría la capacidad de la operación de costura a 700 horas. ¿En quéafecta esto a la solución del problema? Explique y justifique claramente su respuesta.7. Si existieran 50 horas adicionales en terminado sin ningún costo extra, ¿se deberían adquirir estas horas adicionales enterminado? Si su respuesta es afirmativa, ¿cuál sería la nueva solución y la nueva utilidad? Explique claramente surespuesta.8. Si se pudieran adquirir 10 horas adicionales en la operación de corte con un costo superior (por encima del normal) deUS$1,5 ¿cuántas horas adquiriría usted? Explique y justifique claramente su respuesta.
    • Ejercicio 12. Una empresa que fabrica artículos de cuero tiene como productos básicos carteras y zapatos. Lautilidad por cada cartera es de $8.000 y por cada par de zapatos es de $11.000. Cada cartera requiere 8 dm2 decuero, 6 dm2 de sintético y 12 mts de hilo; cada par de zapatos requiere de 5 dm2 de cuero, 5 dm2 de sintético y6 mts de hilo.La empresa dispone diariamente de 2000 dm2 de cuero, 1200 dm2 de sintético y 1800 mts de hilo. Determinar elnivel de producción en cada artículo con el fin de obtener el mayor beneficio diario.Un modelo de P.L. para optimizar las utilidades de la compañía es:X1=cantidad de carteras a producirX2=cantidad de zapatos a producirMaximizar Z=8000X1 + 11000X2 Sujeto a 8X1 + 5X2 ≤ 2000 6X1 + 5X2 ≤ 1200 12X1+6X2 ≤ 1800 X1 , X2 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término X1 X2 S1 S2 S3 base (solución) 800 2 0 1 -1 0 240 6/5 1 0 1/5 0 360 24/5 0 0 -6/5 1 Zj Cj - Zj1. Termine de llenar la tabla.2. Para la solución óptima del problema de PL se fabricarían ________ carteras y _________ pares de zapatos,dando como resultado una utilidad máxima de ________. Para esta solución se tendrán ________ dm2 de cueroa que no se utilizarán, _________ dm2 de cuero sintético que no se utilizarán, y _________ mts de hilo que nose utilizarán.3. El departamento de contabilidad revisa su estimación de contribución a la utilidad para las carteras a $11.000por unidad. ¿En qué afecta esto a la solución del problema? Explique y justifique claramente su respuesta.4. ¿Cuál es el sobrecosto que usted estaría dispuesto a pagar por un dm2 adicional de sintético?5. Aparece disponible una nueva materia prima de bajo costo para los zapatos, y la contribución a la utilidad porpar de zapatos puede incrementarse a $12.500 por par de zapatos (suponga que la contribución a la utilidad delas carteras sigue siendo $8.000). ¿En qué afecta esto a la solución del problema? Explique y justifiqueclaramente su respuesta.6. Se puede obtener 100 dm2 de cuero adicional de un nuevo proveedor de cuero sin ningún costo adicional oextra. ¿Qué cantidad compraría usted de este nuevo proveedor? ¿En qué afecta esto a la solución del problema?Explique y justifique claramente su respuesta.7. Si existieran 250 dm2 de sintéticos disponibles de un nuevo proveedor sin ningún costo extra, ¿se deberíanadquirir? Si su respuesta es afirmativa, ¿cuál sería la nueva solución y la nueva utilidad? Explique claramente surespuesta.8. Si se pudieran adquirir 200 mts de hilo adicionales con un costo superior (por encima del normal) de $10¿cuántos mts de hilo adquiriría usted? Explique y justifique claramente su respuesta.
    • Ejercicio 13. (Soo Tang Tan) Maderas Boise ha decidido entrar al lucrativo negocio de las casas prefabricadas. En unprincipio, planea ofrecer dos modelos: estándar y de lujo. Cada casa se fabrica previamente y se monta parcialmente en lafábrica, mientras que el montaje final se realiza en el sitio de la instalación. La cantidad (en dólares) de material deconstrucción necesario, la cantidad de trabajo necesario en la prefabricación y montaje parcial en la fábrica, la cantidad detrabajo necesario para el montaje final, y la ganancia por unidad son las siguientes: Modelo Modelo de Para la producción del primer año, se ha presupuestado una Estándar lujo suma de $8´400.000 para el material de construcción; el Material ($) 6.000 8.000 número de horas de trabajo disponibles para laborar en la Trabajo en la fábrica 240 200 fábrica (para la prefabricación y el montaje parcial) no debe (horas) exceder de 218.400 horas, mientras que la cantidad de Trabajo en sitio de 180 234 trabajo para el montaje final debe ser menor o igual a instalación (horas) 234.360 horas de trabajo. Ganancia 3.400 4.000Determinar cuántas casas de cada tipo de producir Boise para maximizar su ganancia en esta nueva empresa (los estudios demercado han confirmado que no debe haber problemas con las ventas).Un modelo de P.L. para optimizar las utilidades de la compañía es:X1= cantidad de casas modelo estándar a producir X2= cantidad de casas modelo de lujo a producirMaximizar Z= 3.400X1 + 4.000X2 Sujeto a 6000X1 + 8000X2 ≤ 8.400.000 240X1 + 200X2 ≤ 218.400 180X1 + 234X2 ≤ 234.360 X1 , X2 ≥ 0La tabla óptima para este problema es la siguiente: Cj Cb Variables en la 2do término (solución) X1 X2 S1 S2 S3 base 420.000 0 0 1 25/14 -250/7 210 1 0 0 13/1120 -5/504 840 0 1 0 -1/112 1/84 Zj Cj - Zj1. Termine de llenar la tabla.2. Para la solución óptima del problema de PL se fabricarían ________ casas modelo estándar y _________ casas modelode lujo, dando como resultado una ganancia máxima de ___________. Para esta solución se tendrán ________ pesos paracompra de materiales que no se utilizarán, _________ horas de trabajo en la fábrica que sobrarán, y _________ horas detrabajo en sitio que también sobrarán.3. El gerente de Maderas Boise cree que ajustando su proceso de compra la contribución a la utilidad para las casas modeloestándar será de $4.500 por unidad. ¿En qué afecta esto a la solución del problema? Explique y justifique claramente surespuesta.4. ¿Cuál es el sobrecosto (extra) que usted estaría dispuesto a pagar por una hora de trabajo en la fábrica?5. Por la demanda en alza de las casas modelos de lujo la contribución a la utilidad por cada casa modelo de lujo puedeincrementarse a $4.500 (suponga que la contribución a la utilidad de las casas modelo estándar sigue siendo $3.400). ¿Enqué afecta esto a la solución del problema? Explique y justifique claramente su respuesta.6. Contratando personal en fábrica se pueden obtener 33.600 horas de trabajo en fábrica, sin ningún costo adicional o extra.¿Se contratarían esas 33.600 horas adicionales? ¿En qué afecta esto a la solución del problema? Explique y justifiqueclaramente su respuesta.7. Contratando personal para trabajo en sitio se pueden obtener 11.592 horas de trabajo en sitio, sin ningún costo adicional oextra. ¿Usted las contrataría? Si su respuesta es afirmativa, ¿cuál sería la nueva solución y la nueva utilidad? Expliqueclaramente su respuesta.8. Se puede adquirir un préstamo en un banco para tener más recursos disponibles para compra de materiales. El banco lepresta a una tasa del 1% mensual. ¿Cuánto dinero prestaría al banco? Explique y justifique claramente su respuesta.