SlideShare una empresa de Scribd logo
1 de 44
Descargar para leer sin conexión
PEMBUTAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IKAN
SARDIN DENGAN KATALIS ABU AMPAS TEBU

SKRIPSI
OLEH
MASTORI
04/177615/PN/09995

JURUSAN PERIKANAN FAKULTAS PERTANIAN
UNIVERSITAS GADJAH MADA
YOGYAKARTA
2010
i
PEMBUATAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IKAN
SARDIN DENGAN KATALIS ABU AMPAS TEBU

SKRIPSI

Diajukan Kepada
Fakultas Pertanian Universitas Gadjah Mada
Guna Memenuhi Sebagian Persyaratan yang Diperlukan
untuk Memperoleh Gelar Sarjana Perikanan

Oleh
MASTORI
04/177615/PN/09995

PROGRAM STUDI
TEKNOLOGI HASIL PERIKANAN

JURUSAN PERIKANAN FAKULTAS PERTANIAN
UNIVERSITAS GADJAH MADA
YOGYAKARTA
2010
ii
iii
KATA PENGANTAR
Assalamu`alaikum Wr. Wb.
Segala Puji bagi ALLAH SWT., yang telah menganugerahkan Rahmat-NYA, sehingga
Penulis dapat menyelesaikan penelitian dan menyusun skripsi ini. Skripsi ini disusun untuk
memenuhi salah satu syarat dalam memperoleh gelar Sarjana Perikanan di Fakultas Pertanian
Universitas Gadjah Mada, Yogyakarta. Penulis menyadari sepenuhnya bahwa dalam
menyelesaikan penelitian dan menyusun skripsi ini tidak terlepas dari bimbingan, arahan, dan
bantuan dari berbagai pihak. Oleh karena itu, Penulis mengucapkan terima kasih kepada :
1.

Bapak Dr. Ir. Ustadi, M.P. selaku Ketua Jurusan Perikanan sekaligus dosen pembimbing
utama, atas masukan dalam penyusunan skripsi ini.

2.

Bapak Dr. Ir. Latif Sahubawa, M.Si. selaku dosen pendamping, yang telah menuntun dan
mengarahkan dalam perumusan proposal penelitian di laboratorium dan perubahan
laporan akhir, sekaligus menyediakan dana penelitian (diikutkan dalam penelitian
payung).

3.

Bapak Prof. Dr.rer.nat. Drs. Karna Wijaya, M.Eng. selaku dosen penguji, atas masukan
dan saran untuk perbaikan skripsi ini.

4.

Ayahanda Rodin dan Ibunda Warkini tercinta Adeku eko, dewi dan edi tersayang serta
keluarga besar atas curahan cinta, kasih sayang, dan kesabaran.

5.

THP-ers 04 yang telah mendahului, Aldino, Anis, Irvan, Minan, Ririn,Vivin, Diah, Rusli, TJ,
Wawe, Satub, Muji, dan Arum. Yang membarengi Yosafat, dan Timbul. Yang segera menyusul,
Abe, Adisty, Ali, Bagus, Condro, Dito, Dika,Ria, dan Shinta

6.

Rekan Kos Juon Ayub Ginting, Asa,Cino,Abi,Taung, dan Hepi. Rekan sejawat Dimas,Frizka, dian
dan miftah yang ikut membantu penulis selama mengerjakan penelitian, dan semua teman-teman
yang tidak bisa disebut satu persatu

Disadari sepenuhnya bahwa skripsi ini masih jauh dari kesempurnaan, oleh karena itu
penulis mengharapkan saran serta kritik membangun demi perbaikan format dan substansinya.
Penulis juga berharap semoga skripsi ini dapat bermanfaat bagi umat manusia.
Wassalamu`alaikum Wr. Wb.
Yogyakarta, Februari 2010
Mastori
iv
DAFTAR ISI

JUDUL....................................................................................................................
PENGESAHAN......................................................................................................
KATA PENGANTAR ............................................................................................
DAFTAR ISI ..........................................................................................................
DAFTAR TABEL ..................................................................................................
DAFTAR GAMBAR ..............................................................................................
DAFTAR LAMPIRAN ..........................................................................................
INTISARI ...............................................................................................................
ABSTRACT .............................................................................................................

ii
iii
iv
v
vii
viii
ix
x
xi

BAB I. PENDAHULUAN .....................................................................................
A. Latar Belakang .......................................................................................
B. Tujuan ....................................................................................................
C. Manfaat ..................................................................................................

1
1
3
4

BAB II.TINJAUAN RUJUKAN ............................................................................
A. Ikan Sardin .............................................................................................
B. Tepung Ikan ...........................................................................................
C. Minyak Ikan ...........................................................................................
D. Abu Ampas Tebu ...................................................................................
E. Biodiesel .................................................................................................
1. Pengertian biodiesel ............................................................................
2. Biodiesel Minyak Ikan........................................................................
a.Trigliserida .......................................................................................
b.Asam Lemak Bebas .........................................................................
F. Proses Pengolahan Biodiesel ..................................................................
1. Esterifikasi .........................................................................................
2. Transesterifikasi.................................................................................
a. Reaksi Transesterifikasi .................................................................
b. Faktor Penentu Proses Transesterifikasi ........................................
1). Pengaruh Air dan Asam Lemak Bebas ....................................
2). Pengaruh Perbandingan Molar Alkohol dengan Bahan Mentah
3). Pengaruh Jenis Katalis .............................................................
4). Metanolisis Minyak ..................................................................
5). Pengaruh Temperatur ...............................................................
G. Syarat Mutu Biodiesel ...........................................................................

5
5
6
7
7
8
8
9
10
11
11
11
12
12
13
13
13
14
14
14
14

BAB III. BAHAN DAN METODE PENELITIAN ...............................................
A. Bahan dan Alat .................................................................................
B. Rancangan Penelitian .........................................................................
C. Prosedur Penelitian ............................................................................
1. Preparasi dan Analisis Abu Ampas Tebu .......................................

17
17
17
17
17

v
2. Preparasi dan Analisis Minyak Limbah Tepung Ikan Sardin .........
3. Proses Pembuatan Biodiesel dengan Katalis Abu Ampas Tebu.....
4. Parameter ........................................................................................
5. Bagan alir penelitian .......................................................................

18
18
19
20

BAB IV. HASIL DAN PEMBAHASAN ...............................................................
A. Analisis Kadar kalium Abu Ampas Tebu ...........................................
B. Analisis Asam Lemak Bebas Minyak Limbah Tepung Ikan Sardin...
C. Pengaruh Katalis dalam Reaksi Esterifikasi dan Transesterifikasi
terhadap Konversi Biodiesel ...............................................................
1. Reaksi Esterisfikasi..........................................................................
2. Reaksi Transesterifikasi ...................................................................
3. Pengaruh Katalis terhadap Konversi Biodiesel ...............................
D. Komposisi Biodiesel ...........................................................................
E. Kualitas Biodiesel ...............................................................................

21
21
21
22
22
24
25
26
27

BAB V. KESIMPULAN DAN SARAN ................................................................
A. Kesimpulan ..........................................................................................
B. Saran ....................................................................................................

30
30
30

DAFTAR RUJUKAN ............................................................................................
LAMPIRAN ...........................................................................................................

31
34

vi
DAFTAR TABEL

Tabel 1.
Tabel 2.
Tabel 3.
Tabel 4.

Komposisi kimia ampas tebu.................................................................
Persyaratan kualitas biodiesel menurut SNI-04-7182-2006 ..................
Rancangan perlakuan.............................................................................
Persentase konversi metil ester biodiesel dari minyak tepung
ikan sardin dengan metode 1H NMR .....................................................
Tabel 5. Perbandingan sifat fisik biodiesel dengan sifat fisik minyak diesel dan
minyak solar .........................................................................................

vii

8
15
17
22
28
DAFTAR GAMBAR

Gambar 1.
Gambar 2.
Gambar 3.
Gambar 4.
Gambar 5.
Gambar 6.
Gambar 7.
Gambar 8.
Gambar 9.
Gambar10.
Gambar 11.
Gambar 12.
Gambar 13.

Ikan Sardin ........................................................................................
Ampas Tebu (a) dan Abu Ampas Tebu (b) .......................................
Struktur molekul monogliserida, digliserida, dan trigliserida ...........
Struktur molekul asam lemak bebas. .................................................
Reaksi esterifikasi dari asam lemak menjadi metal ester ..................
Reaksi Transesterifikasi dari Trigliserida menjadi ester metal
asam-asam lemak ...............................................................................
Tahapan reaksi transesterifikasi .........................................................
Bagan alir penelitian ..........................................................................
Spektra 1H-NMR Minyak limbah tepung ikan sardin hasil
transesterifikasi tanpa esterifikasi,. ....................................................
Spektra 1H-NMR Biodiesel hasil esterifikasi dilanjutkan
transesterifikasi ..................................................................................
Pengaruh transesterifikasi terhadap konversi total biodiesel .............
Pengaruh konsentrasi katalis abu ampas tebu terhadap konversi total
biodiesel pada transesterifikasi I dan transesterifikasi II ...................
Kromatogram campuran metal ester (melalui transesterifikasi
dengan abu ampas tebu 2%) . ..........................................................

viii

5
8
10
11
12
12
13
20
23
23
25
26
27
DAFTAR LAMPIRAN

Lampiran 1. Perhitungan konversi metil ester dengan metode 1H NMR ............
Lampiran 2. Data Perhitungan Kadar Kalium dalam Abu Ampas Tebu
Metode AAS-Flame .........................................................................
Lampiran 3. Data Hasil FFA dalam Minyak Limbah Tepung Ikan Sardin
Metode Titrasi ..................................................................................
Lampiran 4. Data Hasil Uji Kualitas Biodiesel dari Minyak Limbah Tepung
Ikan Sardin Metode ASTM . ..........................................................
Lampiran 5. Data Hasil Uji Komposisi Biodiesel dari Minyak Limbah Tepung
Ikan Sardin Metode GC-MS ...........................................................
Lampiran 6. Foto Proses Penelitian .......................................................................

ix

35
47
48
49
45
57
INTISARI
PEMBUTAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IKAN SARDIN DENGAN
KATALIS ABU AMPAS TEBU
MASTORI
04/177615/PN/09995
Penelitian pembuatan biodiesel dari limbah minyak tepung ikan sardin dengan
menggunakan katalis abu ampas tebu sebagai katalis basa pada proses transesterifikasi telah
dilakukan. Penelitian ini bertujuan untuk mengetahui kandungan asam lemak bebas minyak
tepung ikan sardin, kandungan kalium abu ampas tebu, cara pembuatan, besarnya konversi,
komposisi, dan karakteristik biodiesel yang dihasilkan. Tahapan proses yang dipelajari adalah
pengaruh reaksi esterifikasi dan tanpa esterifikasi, transesterifikasi (satu tahap dan dua tahap)
dengan perlakuan berat abu ampas tebu (2%, 4%, dan 6% (b/v)). Proses esterifikasi dilakukan
selama 30 menit dengan katalis asam sulfat (H2SO4) sebanyak 1% (v/v) dan proses
transesterifikasi selama 2 jam dengan pereaksi methanol 22% (v/v) pada suhu 60o C. Biodiesel
hasil transesterifikasi dianalisis dengan 1HNMR, GCMS, dan metode ASTM. Hasil analisis
ASTM selanjutnya dibandingkan dengan standar yang ditetapkan ASTMD 6751 dan SNI.
Hasil penelitian menunjukan kandungan asam lemak bebas minyak limbah tepung ikan
sardin sebesar 5,17 bilangan asam. Abu ampas tebu 2% memberikan hasil transesterifikasi
biodiesel paling optimum. Hasil transesterifikasi biodiesel dengan katalis abu ampas tebu
menunjukan mencapai optimum pada persentase 2%. Hasil analisis 1HNMR menunjukan
bahwa hampir seluruh trigliserida telah diubah menjadi metil ester pada proses yang melalui
esterifikasi dan transesterifikasi dua tahap. Analisis dengan GCMS menunjukan telah
terbentuk senyawa metil ester dalam biodiesel yang menyerupai fragmentasi metil ester
palmitat, metil ester palmitoleat, metil ester miristat, dan metil ester pentanoat. Hasil uji
secara fisik terhadap biodiesel yang telah melalui esterifikasi dan transesterifikasi dua tahap
dengan katalis abu ampas tebu meliputi pengukuran kerapatan relatif 0,8442, kekentalan
kinematik 0,856 cSt, kandungan air 0,00%, dan titik tuang -33o C, telah sesuai dengan standar
ASTM D 6751 dan SNI, sedangkan titik nyala 12,5o C, dan residu karbon 2,107% belum
sesuai dengan standar ASTM D 6751 dan SNI dari Dirjen Migas.
.
Kata kunci : biodiesel, limbah minyak tepung ikan, abu ampas tebu, esterifikasi,
transesterifikasi

x
ABSTRACT
MAKING BIODIESEL FROM WASTE OIL OF FLOUR SARDINES USING
SUGARCANE WASTE ASH CATALYST
MASTORI
04/177615/PN/09995

Research on making biodiesel from waste oil sardine flour using sugarcane waste ash
as the base catalyst in the transesterification process has been done. This study aims to
determine the free fatty acid content of oil sardine fish meal, potassium content of the ash
remains of sugar cane, processing, degree of conversion, composition, and characteristics of
biodiesel produced. The specific goal of the research are to know the influence of
esterification reactions and without esterification, transesterification (one stage and two stage)
with a heavy treatment of sugarcane residue ash (2%, 4%, and 6% (w / v)). Esterification
process carried out for 30 minutes with the catalyst sulfuric acid (H2SO4) of 1% (v / v) and the
transesterification process for 2 hours with methanol reactant of 22% (v / v) at a temperature
of 60o C. Biodiesel transesterification results analyzed by 1HNMR, GCMS, and ASTM
methods. Further analysis of the results compared with ASTMD 6751 and SNI standards.
The results showed that the levels of free fatty acid waste oils from sardine fish meal
amounted to 5.17 acid number. The ashes of sugarcane catalyst 2% showed the results of
biodiesel transesterification with achieving the optimum percentage . 1HNMR analysis results
showed that almost all of triglycerides have been converted into methyl esters in the process of
esterification and transesterification through two stages. Analysis using GCMS showed the
methyl ester compounds formed is similar with fragmentation Palmitic methyl ester biodiesel,
methyl ester palmitoleat, Myristic methyl ester, and methyl esters pentanoat. Results of
physical testing of biodiesel that has undergone esterification and transesterification catalyst in
two stages with the remnants of sugarcane ashes including the relative density measurement
0.8442, kinematic viscosity 0.856 cSt, water content 0.00%, and pour point - 33o C, in
accordance with the standards ASTM D 6751 and SNI, while the flash point 12.5o C, and
2.107% carbon residue do not fulfill ASTM D 6751 and SNI from the Director General of Oil
and Gas.
Keywords:biodiesel,waste oil fish flour,sugarcane waste ash,esterification, transesterification.

xi
I. PENDAHULUAN
A. Latar Belakang
Konsumsi Bahan Bakar Minyak dari tahun ketahun terus meningkat untuk
semua negara di dunia, seiring dengan meningkatnya aktivitas industri dan manusia.
Konsumsi energi terbesar berasal dari transportasi darat, diperkirakan saat ini lebih
dari 500 juta mobil yang beroperasi di dunia. Hal itu juga terjadi di Indonesia,
dibuktikan dengan konsumsi energi dari BBM pada tahun 2006 sebesar 58%, gas
bumi 17%, batubara 19%, listrik 11%, dan LPG 2% (Wirawan, 2008). Menurut data
US Embassy, kebanyakan pertumbuhan kendaraan yang pesat justru terjadi dinegaranegara berkembang. Diperkirakan permintaan untuk kendaraan roda empat meningkat
200% di akhir abad ini.
Adanya subsidi BBM di Indonesia akan mempengaruhi pertumbuhan angka
kendaraan bermotor dan pola konsumsi yang boros. Dari 58% konsumsi BBM yang
berasal dari transporatasi darat sebesar 88% dihabiskan oleh sektor transportasi
angkutan jalan dimana 66% diantaranya dikonsumsi oleh mobil pribadi. Ketersediaan
BBM akan semakin menipis (minyak bumi Indonesia diperkirakan habis dalam waktu
15-20 tahun) dan penggunaan yang terus meningkat menyebabkan meningkatnya
kontribusi terhadap pemanasan global. Oleh karena itu, Indonesia harus berupaya
melakukan dan melakasanakan langkah serius dan antisipatif terhadap persoalan
tersebut. Dalam upaya mengantisipasi keadaan ini, kebijakan diversifikasi energi
adalah suatu hal yang sangat tepat (Anonim, 2006a; Anonim, 2006b).
Biodiesel yang merupakan bahan bakar alternatif pengganti bensin, solar, dan
minyak tanah merupakan bahan bakar mesin diesel yang berupa ester alkil/alkil asamasam lemak (umumnya metil ester) yang dibuat dari minyak nabati maupun hewani
(termasuk ikan) melalui proses esterifikasi dan atau transesterifikasi (Anonim, 2006a;
Anonim, 2007). Penelitian pembuatan biodiesel kebanyakan berasal dari bahan baku
nabati. Bahan baku yang popular yang sering dijadikan bahan baku biodiesel antara
lain seperti minyak biji kelapa sawit, minyak kelapa, dan minyak biji jarak. Akan
tetapi akhir-akhir ini sudah ada beberapa penelitian yang memanfaatkan limbah ikan
sebagai sumber bahan baku biodiesel seperti minyak ikan salmon (Harned, 2008),
minyak ikan Pollak Alaska (Sathivel, 2005), dan minyak ikan patin (Turboman,
2006). Bahan baku biodiesel yang bersumber dari bahan pangan akan mendorong
1
terjadinya kompetisi penggunaan. Pemanfaatan minyak limbah ikan untuk dijadikan
bahan bakar alternatif biodiesel sebagai pilihan yang tepat, karena tidak akan terjadi
kompetisi penggunaan. Hal ini dikarenakan limbah ikan merupakan produk nonpangan yang terus menerus dihasilkan.
Industri pengolahan ikan menghasilkan berbagai bagian ikan yang tidak dapat
dimanfaatkan untuk konsumsi masyarakat. Bagian ikan, antara lain kepala, jeroan, dan
kulit, yang tidak termanfaatkan memiliki potensi lemak. Limbah ikan bisa
dimanfaatkan sebagai bahan baku pembutan tepung ikan yang biasanya hasilnya dijual
ke perusahaan pembuatan makanan ternak, dan limbah minyak yang dihasilkan dari
proses pembuatan tepung ikan di jual ke perusahaan farmasi sebagai bahan baku
minyak ber-Omega 3. Pemanfaatan limbah ikan untuk dijadikan tepung ikan dan
minyak

ikan

ber-Omega

3

merupakan

langkah

yang

dipandang

sangat

menguntungkan, tetapi disisi lain dekomposisi minyak ikan menjadi asam lemak
bebas atau FFA (Free Fatty Acid) tidak dapat dihindari. Hal ini akan membuat minyak
ikan tidak dapat dikonsumsi oleh tubuh manusia serta buruk bagi kesehatan karena
FFA termasuk non edible (tidak dapat dicerna oleh tubuh) (Lele, 2005).
Minyak ikan dapat dikonversi menjadi FFA yang non edible sebagai bahan baku
potensial untuk biodiesel, maka pemanfaatannya menjadi biodiesel merupakan
langkah alternatif penting yang perlu dilakukan. Maraknya isu krisis energi dan
pemanasan global semakin mendukung pemanfaatan minyak ikan sebagai bahan bakar
biodiesel lebih urgent dari pada dijadikan sebagai produk lainnya. Hal ini semakin
diperkuat dengan diundangkannya Peraturan Presiden No. 5 tahun 2006 tentang
Kebijakan Energi Nasional serta Instruksi Presiden No. 1 tahun 2006 tentang
penyediaan dan pemanfaatan (termasuk pencarian) Energi Alternatif yang terbarukan
dan aman bagi lingkungan.
Untuk mempercepat proses produksi biodiesel perlu ditambahkan bahan-bahan
katalis untuk mempercepat reaksi transesterifikasi. Jenis katalis yang biasa digunakan
adalah katalis kimia (NaOH dan KOH), namun perlu dipertimbangkan dampaknya
terkait dengan keamanan dan kelestarian lingkungan. Munurut Rahmadi (2008), dari
aspek biaya, penggunaan NaOH relatif lebih murah dan reaktif dibandingkan KOH,
tetapi NaOH sangat higroskopis serta produk akhirnya berupa limbah yang berdampak
pada lingkungan, sedangkan KOH relatif mahal dan kurang reaktif tetapi produk
akhirnya dapat dipakai sebagai pupuk. Berdasarkan pertimbangan biaya dan dampak
2
terhadap lingkungan, maka diperlukan katalis alternatif pengganti KOH yang lebih
murah, ramah lingkungan, dan tersedia di alam. Peranan KOH ini dapat digantikan
oleh unsur kalium yang terdapat pada abu ampas tebu (abu bagase). Menurut Soepardi
(1983) cit Al-Rozi (2007), abu ampas tebu mengandung kurang lebih 30% kalium.
Abu tersebut belum dimanfaatkan samasekali karena merupakan hasil samping
pembakaran ampas tebu yang digunakan sebagai bahan bakar pemasakan sari tebu.
Abu ampas tebu di Yogyakarta sampai saat ini tersedia melimpah karena merupakan
hasil samping pengolahan gula pasir dari pabrik gula Maduksimo.
Kebijakan nasional tentang pembentukan desa energi yang dipusatkan di
perkampungan nelayan agaknya tidak efektif jika sumber bahan baku diambil dari
hasil pertanian seperti jarak, sawit, kelapa serta hasil bumi lainnya. Hal ini
dikarenakan terbatasnya lahan, keahlian, dan aktifitas keseharian nelayan yang lebih
terfokus pada pemanfaatan sumber daya laut (bukan pemanfaatan sumberdaya lahan
pertanian). Oleh karena itu, diperlukan penelitian alternatif untuk mendorong
terciptanya kawasan energi nelayan yang berbasis pada bahan baku sumberdaya laut.
Penelitian pembuatan biodiesel berbahan baku limbah minyak ikan hasil pengolahan
tepung ikan serta jenis limbah hasil perikanan lainnya, diharapkan memberikan
manfaat (nilai positif) untuk dapat mendorong terciptanya kawasan energi nelayan
yang berbasis pada bahan baku sumberdaya laut lokal.
Penelitian ini memanfaatkan sumberdaya laut berupa limbah minyak hasil
pengolahan tepung ikan sardin dari PT Maya Food Industri Pekalongan dan limbah
hasil samping pengolahan gula pasir dari pabrik gula Maduksimo berupa abu ampas
tebu untuk dijadikan biodiesel. Diharapkan di masa yang akan datang,
pemanfaatannya selain dapat meningkatkan nilai ekonomis limbah (value added), juga
dapat memenuhi kebutuhan energi dalam negeri yang ramah lingkungan.
B. Tujuan
1. Mengetahui cara pembuatan biodiesel berbahan baku minyak ikan limbah hasil
pengolahan ikan sardin menggunakan katalis abu ampas tebu.
2. Mengetahui kadar asam lemak bebas limbah minyak tepung ikan sardin, kadar
kalium abu ampas tebu, serta komposisi kimia biodiesel.
3. Mengkaji rasio konversi biodiesel (rendemen) kandidat biodiesel dari limbah
minyak tepung aikan sardin.
3
4. Mengetahui karakteristik biodiesel minyak tepung ikan sardin yang dihasilkan
dengan merujuk pada SNI biodiesel No. 04-7182-2006.
C. Manfaat
Hasil penelitian diharapkan dapat digunakan untuk menambah informasi
teknologi alternatif pembuatan biodiesel dari limbah hasil perikanan guna
meningkatkan nilai ekonomi limbah industri perikanan sumber energi alternatif untuk
usaha masyarakat, serta sumber penghidupan masyarakat pedesaan.

4
II. TINJAUAN RUJUKAN
A. Ikan Sardin (Sardinella sp.)
Menurut FAO (1994) cit Dwiponggo (1982), sesuai dengan “Species
Identification Sheet for Fishery Purpose”, klasifikasi sardin adalah sebagai berikut
Phylum

: Chordata

Subphylum: Vertebrata
Class

: Pisces

Subclass : Malacopterygii
Family

: Clupeidae

Genus

: Sardinella

Spesies

: Sardinella sp.

Genus Sardinella dikelompokkan menjadi dua sub genus yaitu: Amblygaster
BLEEKER dan sub genus Sardinella CV (Dwiponggo, 1982). Dari sub genus
Amblygaster diantaranya yang umum terdapat adalah Sardinella sirm (WALBAUM),
Clupea sirm (WALBAUM), Sardinella lelogaster (BLEEKER) dengan tanda-tanda
umum yaitu bentuk badan bulat memanjang, bagian perut agak membulat dengan sisik
duri yang agak tumpul dan tidak menonjol. Mulai dari bagian atas penutup insang
sampai di batang ekor terdapat sebaris 10-20 bulatan-bulatan kecil dengan warna gelap,
warna sirip ekor kehitam-hitaman, ujung moncong 17-18 cm. Sedangkan dari sub
genus Sardinella longiceps CV, yang sinonimnya sesuai W.L.Y. Chan (1965) cit
Dwiponggo (1982) adalah Sardinella neohowii CV dan Clupea longiceps mempunyai
tanda-tanda umum yaitu : bentuk badan bulat memanjang, perut agak menipis dengan
sisik-sisik duri yang menonjol dan tajam, sirip ekor bercabang, warna badan bagian
atas biru kehijauan, sedangkan bagian bawah putih keperakan. Terdapat noda samarsamar di bawah pangkal sirip punggung bagian depan, moncong agak hitam dan
panjang ikan dapat mencapai 23 cm. Diantara sub genus Sardinella terdapat pula S.
aurita yang hampir menyerupai S. longiceps. Perbedaan yang mencolok adalah jumlah
gillraker yang banyak (Dwiponggo, 1982).
Menurut Hadiwiyoto (1993), sardin merupakan ikan pelagis yang berukuran
kecil. Jenis-jenis ikan sardin yang ada di Indonesia antara lain sardin (Sardinella sirm),
lemuru (Sardinella longiceps) dan tembang (Sardinella fimbriata). Secara umum

5
sardine memiliki ukuran tubuh yang relative kecil, warna punggung biru kehijauan dan
bagian bawah tubuhnya berwarna putih perak. Panjang ikan sardine bisa mencapai 1530 cm dengan sirip punggung terletak di tengah-tengah. Rahang bawah lebih panjang
daripada rahang atas. Bantuk badannya silindris dan mempunyai sisik yang relatif
besar.
Ikan sardine termasuk ikan berlemak (fatty fish). Lemak ini merupakan salah
satu komponen penyebab rasa enak. Kadar lemak tertinggi jenis ini adalah 10 – 15 %
yang cocok untuk diolah menjadi ikan kaleng (Moeljanto, 1992). Komposisi kimia ikan
sardine menunjukkan susunan sebagai berikut: kandungan air 77,92%, protein 19,44%,
dan lemak 0,72% (Burhanuddin, 1984). Sedangkan menurut Notevarp (1951) cit
Burhanuddin. (1984), kandungan protein sardine tidak banyak bervariasi yaitu antara
15-18%.
B. Tepung Ikan
Ikan sebagai sumber protein hewani harus dimanfaatkan secara optimal untuk
bahan makanan bergizi tinggi. Selama ikan dan produk perikanann lainnya masih bisa
dimakan, maka tidaklah layak bila ikan dijadikan tepung ikan. Sisa olahan (berupa
kepala atau isi perut ikan yang merupakan sisa pengalengan ikan atau pengolahan fillet
ikan), atau bila hasil penangkapan pada musim ikan sangat banyak sehingga orang
tidak mampu mengolahnya lagi, diolah menjadi tepung ikan (Moeljanto, 1992). Proses
pengolahan tepung ikan sangat sederhana (PT Maya Food Industri Pekalongan) yaitu
dengan merebus ikan dengan air mendidih, kemudian pengepresan yang hasilnya
dipanaskan dengan uap, dan penggilingan untuk mengecilkan ukuran sebagai tepung
ikan.
Proses produksi tepung ikan menghasilkan limbah berupa air yang mengandung
lemak atau minyak, pengolahan limbah tepung ikan dapat dilakukan dengan
memisahkan air dengan minyak ikan. Minyak ikan kemudian dapat dimanfaatkan
kembali. Pemanfaatan minyak ikan selama ini untuk dijadikan suplemen makanan
karena mengandung senyawa omega 3. Namun demikian, minyak ikan dapat
mengalami dekomposisi menjadi asam lemak bebas (Free Fatty Acid, FFA), yang tidak
dapat dikonsumsi manusia (tidak dapat dicerna oleh tubuh) (Lele, 2005). Oleh karena
itu, minyak ikan harus disimpan secara baik dan memerlukan pelakukan khusus agar

6
dapat digunakan secara aman. Pemanfaatan minyak ikan dapat juga dijadikan sebagai
bahan baku biodiesel.
C. Minyak Ikan
Lemak dari laut bersifat polyunsaturated, yaitu jenis lemak penghasil asam
lemak omega 3. Asam lemak ini biasa terdapat dalam daging ikan seperti sarden,
salmon, makerel dan swordfish (Anonim, 2001). Menurut Tjioe (2007), bila
dibandingkan dengan minyak nabati dan minyak hewani lainnya, minyak ikan
mengandung asam lemak esensial atau asam lemak tidak jenuh dalam jumlah besar.
Kadar omega 3 minyak ikan sardin bervariasi antara 4,48% - 11,80%. Kandungan
omega 3, tergantung jenis, umur tersedianya makanan dan daerah penangkapan.
Minyak ikan mempunyai 18 rantai asam lemak, serta memiliki lima atau enam ikatan
rangkap. Disamping itu, kandungan asam lemak esensialnya tinggi, yang meliputi asam
linoleat, linolenat dan arakhidonat. Hal ini berarti asam lemak esensial itu disebut asam
lemak tak jenuh, banyak mengandung ikatan rangkap (85%), sedangkan 15% sisanya
terdiri atas asam lemak yang jenuh.
Menurut Iskandar (2009), struktur minyak ikan yang begitu kaya akan ikatan
ganda membuatnya mudah teroksidasi dan rusak (berbau tengik) sehingga kurang
cocok untuk disimpan di rak dapur dalam waktu lama. Minyak ikan yang tidak
mengalami proses pemurnian juga banyak mengandung zat-zat beracun seperti dioksin
dan merkuri.
D. Abu Ampas Tebu
Limbah pabrik gula terdiri dari dua macam, yaitu limbah padat dan limbah cair.
Limbah padat terdiri dari blotong dan bagase atau ampas tebu (35%). Limbah cair
berasal dari tetes dan air bekas cucian (Mubyarto dan Daryanti, 1991 cit Al-Rozi,
2007). Bagase terdiri dari sisa batang tebu yang telah diperas niranya, sedangkan abu
bagase adalah sisa pembakaran ampas tebu yang digunakan sebagai bahan pemasakan
sari tebu (Gambar 2). Ketersediaan ampas tebu apabila dikaitkan dengan produksi gula
adalah sekitar empat kali jumlah yang dihasilkan (BBIP, 1988 cit Silvianty, 1994 cit
Al-Rozi, 2007). Apabila produksi gula pertahun sekitar 2 juta ton, maka produksi
ampas tebu pertahun sekitar 8 juta ton. Suprijadi (1987) cit Al-Rozi (2007),
mengatakan bahwa pabrik gula di Indonesia mengolah lebih dari 20 juta ton tebu

7
pertahun, sehingga jumlah ampas tebu pertahun mencapai 30% dari 20 juta ton tebu
atau lebih dari 6 juta ton.

a. Ampas Tebu
b. Abu Ampas Tebu
Gambar 2. Ampas tebu (a) dan abu ampas tebu (b)
Komponen utama bagase antara lain serat kasar, air, dan sejumlah kecil
padatan terlarut. Kompisisi kimia tebu sangat bervariasi terutama dipengaruhi oleh
varietas, tingkat kematangan, dan cara pemanenan. Komposisi kimia bagase (ampas
tebu) disajikan pada Tabel 1. Menurut Soepardi (1976) cit Al-Rozi (2007), abu ampas
tebu mengandung kurang lebih 30% kalium. Abu tersebut belum dimanfaatkan sama
sekali karena merupakan hasil samping pembakaran ampas tebu.
Tabel 1. Komposisi kimia ampas tebu
No.
Komponen
Berat Kering (%)
1. Protein
3,1
2. Lemak
1,5
3. Serat kasar
34,9
4. Ekstrak Bebas Nitrogen
51,7
5. Abu
8,8
Sumber : Harjo (1989) cit Al-Rozi (2007).
E. Biodiesel
1. Pengertian Biodiesel
Biodiesel mengacu pada non-petroleum yang berdasarkan pada bahan bakar
diesel, mengandung rantai alkil pendek (metil atau etil) ester, yang terbentuk melalui
proses transesterifikasi minyak nabati atau lemak hewan yang dapat dipergunakan
sebagai pengganti minyak murni untuk kendaraan (Anonim, 2008a).
Biodiesel memiliki kelebihan dari biosolar (BBM), yaitu: (1) merupakan bahan
bakar yang dapat terurai oleh lingkungan (Bio-degradable) karena biodiesel merupakan
hasil pembakaran yang sempurna sehingga dapat mengurangi emisi karbon dioksida,

8
bebas

sulfur,

mengurangi

partikulat

berbahaya,

mengurangi

asap

hitam,

meminimalisair emisi gas rumah kaca; (2) dari segi sumber perolehannya, biodiesel
merupakan energi yang dapat terbaharukan, sehingga mengurangi ketergantungan
terhadap bahan bakar fosil; (3) dari segi rekayasa mesin, biodiesel tidak memerlukan
modifikasi mesin dalam penggunaannya karena memiliki viskositas yang lebih tinggi
dari solar. Hal ini menjadikan biodiesel berfungsi sebagai pelumas dan mampu
membersihkan injector, serta membuat mesin lebih awet dan mempertinggi efisiensi
mesin. Angka setan (cetane number) dan flash point yang tinggi mengakibatkan energi
yang dihasilkan biodiesel tidak jauh berbeda dengan solar (biodiesel :128.000 BTU,
bisolar biasa: 130.000 BTU), sehingga tenaga yang dihasilkan dari pembakarannya
relatif sama; (4) dari segi harga, untuk saat ini biodiesel lebih murah dari solar
(Anonim, 2006a; Anonim, 2007).
2. Biodiesel Minyak ikan
Bahan baku pembuatan biodiesel dapat diperoleh dari minyak / lemak nabati
maupun hewani. Meskipun sekarang yang paling umum digunakan adalah minyak
nabati, tetapi akhir-akhir ini sudah ada penelitian pemanfaatan minyak hewani sebagai
bahan baku biodiesel, seperti dari minyak limbah ikan. Menurut Destianna (2007),
minyak hewani dan biodiesel tergolong ke dalam golongan besar senyawa-senyawa
organik yang sama, yaitu kelas ester asam-asam lemak. Akan tetapi, minyak hewani
adalah triester asam-asam lemak dengan gliserol, atau trigliserida. Biodiesel adalah
monoester asam-asam lemak dengan metanol. Perbedaan wujud molekuler ini memiliki
beberapa konsekuensi penting dalam penilaian keduanya sebagai kandidat bahan bakar
mesin diesel, yaitu:
(1). Minyak hewani (trigliserida) memiliki berat molekul besar dibandingkan biodiesel
(metil ester), akibatnya trigliserida relatif mudah mengalami perengkahan
(cracking) menjadi aneka molekul kecil serta dapat terpanaskan tanpa kontak
dengan udara (oksigen).
(2). Minyak hewani memiliki kekentalan (viskositas) lebih tinggi dari minyak
diesel/solar maupun biodiesel, sehingga pompa penginjeksi bahan bakar di dalam
mesin diesel tak mampu menghasilkan pengkabutan (atomization) yang baik
ketika minyak hewani disemprotkan ke dalam kamar pembakaran.

9
(3). Struktur molekul minyak hewani lebih bercabang dibanding asam-asam lemak
metil ester, akibatnya angka setana minyak hewani lebih rendah daripada angka
setana metil ester. Angka setana adalah tolok ukur kemudahan menyala/terbakar
suatu bahan bakar di dalam mesin diesel.
Menurut Tjioe (2007), bagian tubuh ikan mengandung minyak dengan
komposisi omega 3 berbeda-beda. Bagian kepala ±12%, tubuh bagian dada ±28%,
daging permukaan ±31,2% dan isi rongga perut ±42,1%. Minyak ikan mengandung
±25% asam lemak jenuh dan 75% asam lemak tidak jenuh. Pada umumnya, lemak ikan
terdiri dari berbagai jenis trigliserida, suatu molekul yang tersusun dari gliserol dan
asam lemak.
Kandungan minyak dalam ikan ditentukan oleh beberapa faktor, yaitu jenis
ikan, jenis kelamin, umur (tingkat kematangan), musim, siklus bertelur, dan letak
geografis perairan habitat hidup. Menurut Anonim (2006c), terdapat 3 jenis asam
lemak pada ikan yaitu: (1) asam lemak tidak jenuh tidak ada ikatan rangkap pada
rantai karbonnya seperti palmitat; (2) asam lemak tidak jenuh tunggal ada satu ikatan
rangkap pada rantai karbonny seperti Oleat; (3) asam lemak tidak jenuh ganda
mempunyai lebih dari satu ikatan rangkap pada rantai karbonnya seperti asam linoleat,
linolenat, eikosapentanoat (EPA), dan dekosaheksanoat (DHA).
Minyak ikan dapat dijadikan biodiesel, bahan-bahan mentah pembuatan
biodiesel adalah: (1) trigliserida, yaitu komponen utama aneka lemak dan minyaklemak, dan (2) asam-asam lemak, yaitu produk samping industri pemulusan (refining)
lemak dan minyak-lemak (Mittelbach, 2004).
a. Trigliserida
Trigliserida adalah triester dari gliserol dengan asam-asam lemak, yaitu
asam-asam karboksilat beratom karbon 6 - 30. Trigliserida banyak dikandung
dalam minyak dan lemak, merupakan komponen terbesar penyusun minyak
hewani. Selain trigliserida, juga terdapat monogliserida dan digliserida. Struktur
molekul ketiga jenis gliserida tersebut seperti terlihat pada Gambar 3.

Gambar 3. Struktur molekul mon-di-dan tri-gliserida (Destianna ,2007)
10
b. Asam lemak bebas
Asam lemak bebas adalah asam lemak yang terpisahkan dari trigliserida,
digliserida, monogliserida, dan gliserin bebas (Cambar 4). Hal ini dapat disebabkan
oleh pemanasan dan terdapatnya air sehingga terjadi proses hidrolisis. Oksidasi
juga dapat meningkatkan kadar asam lemak bebas dalam minyak hewani.

Gambar 4. Struktur molekul asam lemak bebas (Destianna ,2007)
Dalam proses konversi trigliserida menjadi alkil esternya melalui reaksi
transesterifikasi dengan katalis basa, asam lemak bebas harus dipisahkan atau
dikonversi menjadi alkil ester terlebih dahulu karena asam lemak bebas akan
mengkonsumsi katalis. Kandungan asam lemak bebas dalam biodiesel akan
mengakibatkan terbentuknya suasana asam yang dapat menimbulkan korosi pada
peralatan injeksi bahan bakar, membuat filter tersumbat dan terjadi sedimentasi
pada injektor (Anonim, 2006d). Pemisahan atau konversi asam lemak bebas ini
dinamakan tahap esterifikasi.
F. Proses Pengolahan Biodiesel
1. Esterifikasi
Esterifikasi adalah tahap konversi asam lemak bebas menjadi este
menggunakan alkohol yang sering ditambahkan katalis. Katalis yang cocok adalah
zat berkarakter asam kuat seperti asam sulfat, asam sulfonat organik atau resin
(Soerawidjaja, 2006). Menurut Destianna (2007), untuk mendorong agar reaksi
dapat berlangsung sempurna pada temperatur rendah (misalnya paling tinggi 120°
C), reaktan metanol harus ditambahkan dalam jumlah besar (biasanya lebih besar
dari 10 kali nisbah stoikhiometrik), serta air produk ikutan reaksi harus dipisahkan
dari fasa reaksi, yaitu fasa minyak. Melalui kombinasi yang tepat dari kondisi

11
reaksi dan metode pemisahan/pembuangan air, konversi sempurna asam lemak ke
ester metil dapat terbentuk dalam waktu 1 sampai beberapa jam. Reaksi esterifikasi
dapat dilihat pada Gambar 5.

Gambar 5. Reaksi esterifikasi dari asam lemak menjadi metil ester
(Destianna ,2007)
Esterifikasi biasa dilakukan untuk menghasilkan biodiesel dari minyak
berkadar asam lemak bebas tinggi (berangka-asam ≥ 5 mg-KOH/g). Pada tahap ini,
asam lemak bebas akan dikonversikan menjadi metil ester. Tahap esterifikasi biasa
diikuti dengan tahap transesterfikasi. Namun sebelum produk esterifikasi
diumpankan ke tahap transesterifikasi, air dan bagian terbesar katalis asam yang
dikandungnya harus dipisahkan terlebih dahulu.
2. Transesterifikasi
a. Reaksi transesterifikasi
Reaksi Transesterifikasi menurut Destianna (2007), transesterifikasi (biasa
disebut dengan alkoholisis) adalah tahap konversi dari trigliserida (minyak hewani)
menjadi alkil ester menggunakan alkohol, dan menghasilkan produk samping yaitu
gliserol. Alkohol (monohidrik) yang menjadi kandidat sumber/pemasok gugus alkil
yang umum digunakan adalah methanol, karena reaktifitasnya paling tinggi
(sehingga reaksi disebut metanolisis) serta harganya relative murah. Reaksi
transesterifikasi trigliserida menjadi metil ester dapat dilihat pada Gambar 6.

Gambar 6. Reaksi Transesterifikasi dari Trigliserida menjadi ester metil asam-asam
lemak (Destianna ,2007)
Transesterifikasi juga menggunakan katalis dalam reaksinya untuk
mempercepat reaksi dengan konversi hasil yang maksimum (Mittlebatch, 2004).
12
Katalis yang biasa digunakan pada reaksi transesterifikasi adalah katalis basa,
dengan reaksi yang berlangsung dalam 3 tahap (Gambar 7).

Gambar 7. Tahapan reaksi transesterifikasi (Destianna ,2007)
Produk yang diinginkan dari reaksi transesterifikasi adalah ester metil asamasam lemak. Cara-cara yang ditempuh untuk memperbesar reaksi kesetimbangan
lebih ke arah produk yaitu:
(a). Menambahkan metanol berlebih ke dalam reaksi.
(b). Memisahkan gliserol.
(c). Menurunkan temperatur reaksi (transesterifikasi merupakan reaksi eksoterm).
b. Faktor penentu proses transesterifikasi
Reaksi transesterifikasi pembuatan biodiesel selalu mengharapkan
didapatkan produk biodiesel dengan jumlah maksimum. Menurut Freedman (1984),
kondisi reaksi yang mempengaruhi konversi serta perolehan biodiesel melalui
transesterifikasi adalah sebagai berikut.
1). Pengaruh air dan asam lemak bebas
Minyak hewani yang akan ditransesterifikasi harus memiliki angka asam yang
lebih kecil dari 1. Banyak peneliti yang menyarankan agar kandungan asam lemak
bebas lebih kecil dari 0,5%. Selain itu, semua bahan yang akan digunakan harus
bebas dari air. Karena air akan bereaksi dengan katalis, sehingga jumlah katalis
menjadi berkurang. Katalis harus terhindar dari kontak dengan udara agar tidak
mengalami reaksi dengan uap air dan karbon dioksida.
2). Pengaruh perbandingan molar alkohol dengan bahan mentah
Secara stoikiometri, jumlah alkohol yang dibutuhkan untuk reaksi adalah 3 mol
untuk setiap 1 mol trigliserida untuk memperoleh 3 mol alkil ester dan 1 mol
gliserol. Perbandingan alkohol dengan minyak hewani 4,8:1 dapat menghasilkan
konversi 98% (Bradshaw and Meuly, 1944). Secara umum ditunjukkan bahwa

13
semakin banyak jumlah alkohol yang digunakan, maka konversi yang diperoleh
juga akan semakin bertambah. Pada rasio molar 6:1, setelah 1 jam konversi yang
dihasilkan adalah 98-99%, sedangkan pada rasio molar 3:1 adalah 74-89%. Nilai
perbandingan yang terbaik adalah 6:1 karena dapat memberikan konversi yang
maksimum Pada rasio 6:1, metanol akan memberikan perolehan ester yang
tertinggi dibandingkan dengan menggunakan etanol atau butanol.
3). Pengaruh jenis katalis
Katalis basa mempercepat reaksi transesterifikasi lebih tinggi dibandingkan
dengan katalis asam. Katalis basa yang paling populer untuk reaksi transesterifikasi
adalah natrium hidroksida (NaOH), kalium hidroksida (KOH), natrium metoksida
(NaOCH ), dan kalium metoksida (KOCH ).
3

3

4). Metanolisis minyak
Perolehan metil ester akan lebih tinggi jika menggunakan minyak refined.
Namun apabila produk metil ester akan digunakan sebagai bahan bakar mesin
diesel, cukup digunakan bahan baku berupa minyak yang telah dimurnikan.
5). Pengaruh temperatur
Reaksi transesterifikasi berlangsung pada temperatur 30 - 65° C (titik didih
metanol sekitar 65° C). Semakin tinggi temperatur, konversi yang diperoleh akan
semakin tinggi untuk waktu yang lebih singkat. Untuk waktu 6 menit, pada
o

o

temperatur 60 C konversi telah mencapai 94% sedangkan pada 45 C yaitu 87%
o

dan pada 32 C yaitu 64%. Temperatur yang rendah akan menghasilkan konversi
yang lebih tinggi namun dengan waktu reaksi yang lebih lama.
G. Syarat Mutu Biodiesel
Standar spesifikasi biodiesel merupakan salah satu prasyarat utama yang
menentukan keberhasilan pemanfaatan biodiesel secara komersial di masyarakat. Ada dua
standar biodiesel yaitu ASTM-D 6751 yang diterapkan Amerika dan EN14214 di Eropa.
Standar di negara lainnya biasa mengacu pada standar ASTM-D 6751 dan EN14214
dengan beberapa penyesuaian termasuk Indonesia sudah ada Standar Nasional Indonesia
Biodiesel yaitu, SNI 04-7182-2006 (Tabel 2.)

14
Tabel 2. Persyaratan kualitas biodiesel menurut SNI-04-7182-2006.
No
1

Parameter dan satuannya

Batas nilai
850 – 890

Metode uji
ASTM D 1298

2,3 – 6,0

ASTM D 445

min. 51
min. 100

ASTM D 613
ASTM D 93

maks. 18

ASTM D 2500

Korosi bilah tembaga ( 3 jam, 50 C)
Residu karbon, %-berat,
- dalam contoh asli
- dalam 10 % ampas distilasi

maks. no. 3

ASTM D 130

Air dan sedimen, %-vol.

maks. 0,05
maks. 360

ASTM D 2709
ASTM D 1160

maks. 0,02
maks. 100
maks. 10
maks. 0,8
maks. 0,02
maks. 0,24
min. 96,5

ASTM D 874
ASTM D 5453
AOCS Ca 12-55
AOCS Cd 3-63
AOCS Ca 14-56
AOCS Ca 14-56

o

3

Massa jenis pada 40 C, kg/m

o

2

2

Viskositas kinematik pada 40 C, mm /s (cSt)
Angka setana

3
4

o

Titik nyala (mangkok tertutup), C
o

5

Titik kabut, C
o

6
7

8
9

ASTM D 4530
maks. 0,05
(maks 0,03)

o

10
11
12
13
14
15
16

Temperatur distilasi 90 %, C
Abu tersulfatkan, %-berat
Belerang, ppm-b (mg/kg)
Fosfor, ppm-b (mg/kg)
Angka asam, mg-KOH/g
Gliserol bebas, %-berat
Gliserol total, %-berat
Kadar ester alkil, %-berat

17

Angka iodium, g-I /(100 g)

maks. 115

dihitung
AOCS Cd 1-25

18

Uji Halphen

negatif

AOCS Cb 1-25

2

*)

Sumber:Wirawan, 2008.
Catatan :
Kadar ester (%-massa) = 100 (As – Aa - 4,57 Gttl)
As
Dengan pengertian:
As = angka penyabunan yang ditentukan dengan metode AOCS Cd 3-25, mg KOH/g biodiesel
Aa = angka asam yang ditentukan dengan metode AOCS Cd 3-63 atau ASTM D-664, mg KOH/g
biodiesel
Gttl = Kadar Gliserol total dalam biodiesel yang ditentukan dengan metode Ca 14-56, %-massa

Menurut Knothe, (2000), metode

1

H NMR (Proton Nuclear Magnetic

Resonance) dapat juga digunakan untuk menentukan keberhasilan dalam pembuatan
biodiesel, metode ini menghitung konversi metil ester yang terkandung dalam biodiesel
dengan melihat kromatogram yang terbentuk pada daerah 3,6-3,8 ppm dan puncak
trigliserida terdapat pada daerah 5,0-5,5 ppm.
Dengan menggunakan rumus :

CME = 100 ×

5 × IME
,
(5 × IME ) + (9 × ITAG )

15
dimana CME = konversi metal ester, %,
IME = nilai integrasi puncak metal ester, %,
ITAG = nilai integrasi puncak triasilgliserol, %.
Konversi meteil ester menandakan kandungan dari metil ester dalam biodisel
yang diproduksi sehingga jika konversi yang dihasilkan tinggi maka kandungan metil ester
dalam produk biodiesel juga tinggi.

16
III. BAHAN DAN METODE PENELITIAN
A. Bahan dan Alat
Bahan baku utama yang dipakai adalah limbah ikan hasil pengolahan tepung ikan
PT. Maya Food Industries Pekalongan Jawa Tengah. Bahan kimia yang dipakai yaitu:
Metanol (CH OH) 96% (CV.Chem-Mix Pratama), Aquades (CV.Chem-Mix Pratama),
3

Abu ampas tebu (Madukismo,Yogyakarta).
Peralatan yang digunakan yaitu: Hot Plate Magnetic Stirer (Barenstead
Thermolyne, Lab.TI UGM), labu reaksi, gelas ukur, corong pemisah, corong kaca, oven
pengabuan (Barenstead Thermolyne,Lab.Nutrisi UGM), wadah plastik, sendok
pengaduk, saringan kawat, dan wadah kaca.
B. Rancangan Penelitian
Penelitian ini menggunakan analisa kualitas terhadap proses pembuatan biodiesel
dengan esterifikasi dan tanpa esterifikasi serta transesterifikasi satu tahap dan dua
tahap, seperti yang terlihat pada table 3.
Tabel 3. Rancangan perlakuan
Proses Reaksi

Konsentrasi
No

Abu Ampas
Tebu

Tanpa Esterifikasi

Esterifikasi

Transesterifikasi

Transesterifikasi

Transesterifikasi

Transesterifikasi

Tahap I (K1)

Tahap II (K2)

Tahap I (T1)

Tahap II(T2)

1.

2% (A)

AK1

AK2

AT1

AT2

2.

4% (B)

BK1

BK2

BT1

BT2

3.

6% (C)

CK1

CK2

CT1

CT2

Keberhasilan proses ditentukan oleh kandungan metil ester hasil proses pembuatan
biodiesel yang dianalisis dengan menggunakan 1HNMR. Sedangkan untuk mengetahui
kompoisi biodiesel di analisis dengan GC-MS yang diperoleh dari hasil yang terbaik
dari analisa 1HNMR. Kualitas biodiesel kemudian di uji dengan metode ASTM D 6751.
C. Prosedur Penelitian
1. Preparasi dan Analisis Abu Ampas Tebu
a). Abu ampas tebu dikeringkan dibawah sinar matahari kemudian disaring dengan
ayakan mesh 100.
17
b). Selanjutnya abu diabukan kembali (reashing) sampai temperatur 800 0C selama
12 jam untuk menghilangkan sisa-sisa karbon.
c). Untuk mengetahui kadar kalium abu ampas tebu, 0.5 g abu dilarutkan dalam
sejumlah volume air raja (aquad ragia) selanjutnya dipanaskan hingga volume
menjadi sepertiganya. Larutan dicukupkan volumenya sampai 50 ml dalam labu
takar dengan akuades. Larutan yang terbentuk ditambah 5 ml larutan cesium
10.000 ppm, dicukupkan sampai 100 ml dalam labu takar dengan akuades. Dibuat
seri larutan standar kalium 0.0; 0.2; 0.4; 0.8; dan 1.0 ppm. Pada masing-masing
larutan standar ditambahkan larutan cesium 10.000 ppm, demikian pula untuk
larutan blangko, Selanjutnya larutan yang telah dipersiapkan dan blangko
dimasukan kedalam AAS. Dari hasil analisis dengan AAS dapat ditentukan kadar
kalium dalam abu tersebut dengan membaca angka pada alat.
2. Preparasi dan Analisis Minyak Limbah Tepung Ikan Sardin
a). Minyak limbah ikan sardine dipanaskan pada suhu 100 0C untuk menghilangkan
sisa air yang masih terkandung didalamnya selama setengah jam.
b). Untuk mengetahui kadar asam lemak bebas (FFA) minyak limbah ikan sardin, 1020 g minyak ditimbang dalam Erlenmeyer 200 ml. ditambahkan 50 ml alcohol
netral 95 %, kemudian dipanaskan selama 10 menit dalam penangas air sambil
diaduk. Larutan ini kemudian dititar dengan KOH 0.1 N dengan indikator larutan
phenolphthalein 1% didalam alkohol, sampai tepat terlihat warna merah jambu.
Setelah itu dihitung jumlah miligram KOH yang digunakan untuk menetralkan
asam lemak bebas dalam 1 gram minyak. Dengan menggunakan rumus:
KadarAsamLemakBebas = % ×

BobotMolekulAsmLemak (282) × mlKOHxNKOH
10 xBobotContoh( g )

3. Proses Pembuatan Biodiesel dengan Katalis Abu Ampas Tebu
a. Pretreatment, dilakukan dengan cara memanaskan minyak ikan pada suhu 100oC
sambil diaduk. Setelah uap air sudah hamper hilang tingkatkan suhunya menjadi 130
o

C selama 20 menit. Kemudian disaring untuk memisahkan dengan kotoran setelah

itu dinginkan.
b. Pembuatan larutan metoksida, menyiapkan kalium metoksida (K+ CH3O-), dengan
cara sebagai berikut: (1) Siapkan methanol sebanyak 22% (b/b) dari minyak ikan, (2)
Menimbang abu ampas tebu sebanayak 2%, 4%, 6% dari berat minyak, (3) Membuat
18
larutan kalium metoksida dengan cara mencampur abu ampas tebu dengan methanol
sampai tercampur sempurna dengan cara digojok menggunakan gelas reaksi atau
yang lain sehingga larutan dapat tercampur dengan rata dan membentuk kalium
metoksida (K+CH3O-), selama setengah jam, (4) Kemudian disaring, tambahkan
methanol yang telah menguap sebanyak volume untuk mencapai 22% volume
methanol terhadap minyak ikan.
c. Esterifikasi, proses esterifikasi dilakukan dengan melakukan penambahan minyak
ikan dengan asam sulfat dan methanol (asam sulfat=1% dari berat minyak;
methanol=22%) pada suhu 60o C selama 30 menit.
d. Transesterifikasi, proses transesterifikasi dilakukan dengan melakukan reaksi antara
minyak ikan dengan larutan kalium methoksida sesuai dengan perlakauan diatas yang
direaksikan dengan menggunakan suhu 60o C selama 1 jam. Baik reaksi esterifikasi
maupun trasesterifikasi dilakukan setelah suhu minyak mencapai 60o C, dengan
menggunakan pengaduk untuk skala laboratorium digunakan magnetic stirrer.
e. Settling, proses settling (pemisahan) dilakukan untuk memisahkan antara biodiesel
dan gliserol yang dihasilkan, lama settling sangat relatif tergantung pada terlihatnya
pemisahan yang jelas antara kedua larutan yang polar dan non polar (biodiesel diatas
dan gliserol kasar dibawah serta sabun diantara keduanya) biasanya kurang lebih 1
jam atau seharian dengan menggunakan corong pemisah.
f. Pencucian, proses pencucian dengan akuades dilakukan dengan memasukan air
kedalam biodiesel yang ada dicorong pemisah secukupnya (10% dari berat biodiesel)
dengan maksud untuk menghilangkan sisa dari gliserol dan sabun yang masih terikut
setelah proses pemisahan. Pencucuian ini dilakukan kurang lebih tiga kali.
g. Pengeringan, proses pengeringan dengan memanaskan biodiesel hasil pencucian
untuk menghilangkan air sisa pencucian dengan suhu 130o C selama 10 menit
sehingga kandungan air dalam biodiesel menjadi 0%.
4. Parameter
a. Kadar Kalium Abu Ampas Tebu
Dianalisis dengan metode AAS-Flame.
b. Kadar Asam Lemak Bebas dalam Minyak Limbah Tepung Ikan Sardin
Dianalisis dengan metode Titrasi.
19
c. Persentase Konversi Biodiesel
Dianalisis dengan metode 1H NMR.
d. Komposisi Biodiesel
Dianalisis dengan metode GC-MS.
e. Specific Gravity
Dianalisis dengan metode ASTM D 1296.
f. Viscosity kinematic
Dianalisis dengan metode ASTM D 445.
g. Flash Point
Dianalisis dengan metode ASTM D 93.
h. Pour Point
Dianalisis dengan metode ASTM D 97.
i. Water Content
Dianalisis dengan metode ASTM D 95.
j. Conradson Carbon Residue
Dianalisis dengan metode ASTM D 189.
5. Bagan Alir Penelitian
Preparasi abu ampas tebu

Preparasi limbah minyak tepung ikan sardin

Pretretment
Pembuatan larutan metoksida
Esterifikasi
Transesterifikasi
Settling
Pencucian
Pengeringan

Analisa
- Konversi metode 1HNMR
- Komposisi metode GC-MS
- Kualitas metode ASTMD6571

Gambar 8. Bagan Alir Penelitian Pembuatan Biodiesel Minyak Limbah Tepung sardin
20
IV. HASIL DAN PEMBAHASAN
A. Analisis Kadar Kalium Abu Ampas Tebu
Abu ampas tebu yang digunakan dalam penelitian berasal dari hasil
pembakaran pemasakan sari tebu di Pabrik Madukismo Yogyakarta. Menurut Soepardi
(1976) cit Al-Rozi (2007), abu ampas tebu memiliki kandungan kalium ± 30%, pada
penelitian ini dilakukan analisis abu ampas tebu menggunakan metode AAS-Flame
guna mengetahui kandungan kalium.
Berdasarkan hasil analisis, ternyata kandungan kalium abu ampas tebu adalah
sebesar 0,71% (b/b). Kandungan kalium abu ampas tebu lebih besar dibandingkan
kandungan kalium abu tandan kosong (29,82%) (Yoeswono, 2007). Laporan hasil uji
kadar kalium dalam abu ampas tebu dapat dilihat pada Lampiran 2.
B. Analisis Asam Lemak Bebas Minyak Limbah Tepung Ikan Sardin
Minyak limbah tepung ikan sardin memiliki warna hitam pekat dan bau yang
khas (amis). Menurut Ketaren (1986), warna hitam pada minyak disebabkan proses
oksidasi terhadap tokoferol yang terjadi selama proses pengolahan dan penyimpanan.
Berdasarkan hasil analisis, terlihat bahwa kandungan asam lemak bebas limbah
minyak tepung ikan sardin sebesar 5,17%. Hasilnya lebih besar dibandingkan dengan
kandungan asam lemak bebas minyak jelantah yaitu sebesar 0,25% (Wijaya, 2007).
Angka 5,17% menunjukan bahwa kualitas minyak limbah tepung ikan sardin sangat
berbahaya dijadikan konsumsi langsung rumah tangga. Menurut Ketaren (1986), kadar
asam lemak bebas lebih besar dari 0,2% dalam bahan pangan dapat meracuni tubuh.
Karakteristik penting dari minyak yang perlu diketahui untuk pembuatan biodiesel
adalah FFA (Free Fatty Acid) atau ALB (Asam Lemak Bebas). Asam lemak bebas ini
merupakan asam lemak yang terpisahkan dari trigliserida, digliserida, monogliserida,
dan gliserin bebas karena proses hidrolisis. Kandungan asam lemak bebas dalam
biodiesel akan mengakibatkan korosi pada alat pembakaran, juga dalam proses
transesterifikasi asam lemak bebas akan mengkonsumsi katalis sehingga perlu
dilakukan proses esterifikasi terlebihdahulu untuk merubah asam lemak bebas menjadi
alkil ester. Laporan hasil uji kandungan asam lemak bebas minyak limbah tepung ikan
sardin dapat dilihat pada Lampiran 3.

21
C.

Pengaruh Katalis dalam Reaksi Esterifikasi dan Transesterifikasi terhadap
Konversi Biodiesel
1. Reaksi Esterifikasi
Keberhasilan pembuatan biodiesel didasarkan pada hasil konversi metil
ester yang dianalisis dengan spektra 1H-NMR menggunakan alat spektrometer
resonansi magnetik inti proton (Proton Nuclear Magnetic Resonance = 1H NMR).
Esterifikasi penting dalam pembuatan biodiesel. Pada penelitian ini, digunakan
proses reaksi tanpa esterifikasi dan esterifikasi pada dua tahap transesterifikasi.
Data konversi biodiesel limbah minyak tepung ikan sardin seperti yang
terlihat pada Tabel 3, menunjukan bahwa pengolahan yang tidak melewati proses
esterifikasi menghasilkan 0% konversi, artinya belum terbentuk metil ester, pada
reaksi transesterifikasi tahap 1 dan 2. Meskipun tanpa proses esterifikasi
dimungkinkan reaksi tetap terjadi namun dengan kecepatan sangat lambat akibat
energi aktivasi yang terlalu tinggi, serta produk yang dihasilkan sangat sedikit
sehingga tidak dapat terdeteksi oleh alat. Hal ini menunjukan bahwa pembuatan
biodiesel dari limbah minyak tepung ikan sardin yang memiliki kandungan FFA
5,17% perlu melewati proses esterifikasi terlebih dahulu sebelum proses
transesterifikasi. Kromatogram hasil spektra 1H-NMR untuk Tabel 3 dapat dilihat
pada Lampiran 1
Tabel 3. Persentase konversi metil ester (biodiesel) dari minyak tepung ikan sardin
dengan metode 1H NMR.
Konsentrasi
No

Abu Ampas
Tebu

Proses Reaksi
Tanpa Esterifikasi

Esterifikasi

Transesterifikasi

Transesterifikasi

Transesterifikasi

Transesterifikasi

Tahap I

Tahap II

Tahap I

Tahap II

1.

2%

0%

0%

21,9%

65,6%

2.

4%

0%

0%

21,8%

36,3%

3.

6%

0%

0%

19,2%

17,9%

Contoh hasil spektra

1

H-NMR biodiesel hasil transesterifikasi tanpa

esterifikasi (Gambar 9), dan hasil esterifikasi dilanjutkan transesterifikasi (Gambar
10). Pada Gambar .9 dan Gambar. 10 dapat dilihat adanya perbedaan spektra yang
dihasilkan. Spektra yang dihasilkan terdiri atas tiga elemen penting, yakni puncak

22
metoksi dari metil ester akan tampak pada 3,7 ppm, puncak gugus α-karbonil
metilen pada 2,3 ppm yang terdapat dalam semua senyawa asam lemak, puncak
pada 4,2 ppm merupakan tipe proton pada ikatan gliserida. Perhitungan konversi
(%) metil ester ditentukan berdasarkan besarnya persentase spektra dari proton
metoksi dan puncak tipe proton pada ikatan gliserida.

Gambar 9. Spektra 1H-NMR Minyak limbah tepung ikan sardin hasil
transesterifikasi tanpa esterifikasi,

Gambar 10. Spektra 1H-NMR Biodiesel hasil esterifikasi dilanjutkan
transesterifikasi
Perbedaan yang signifikan pada kedua spektra di atas adalah terlihat pada
puncak yang muncul pada 3,7 ppm. Spektra minyak limbah tepung ikan sardin hasil
transesterifikasi tanpa esterifikasi tidak muncul puncak pada 3,7 ppm, seperti
terlihat pada Gambar 9, sehingga terlihat bahwa pada proses pembuatan biodiesel
tanpa esterifikasi belum terbentuk metil ester. Spektra hasil esterifikasi dilanjutkan
transesterifikasi menunjukan adanya puncak yang tinggi pada 3,7 ppm yang
23
mengindikasikan bahwa reaksi menghasilkan metil ester seperti terlihat pada
Gambar 10.
Berdasarkan hasil tersebut proses esterifikasi dalam pembuatan biodiesel
dari minyak limbah tepung ikan sardin memegang peranan penting. Hal ini
disebabkan karena katalis asam sulfat cukup efektif mengurangi kandungan asam
lemak bebas yang kandungannya ± 5,17% sehingga mengakibatkan berkurangnya
reaksi saponifikasi dan mengoptimalkan reaksi transesterifikasi dengan katalis abu
ampas tebu. Jika dibandingakan dengan penelitian Wijaya (2007), bahwa reaksi
esterifikasi pada minyak jelantah kelapa sawit dapat menurunkan persentase
kandungan asam lemak bebas yang mula-mula 0,2523 % menurun terus kandungan
asam lemak bebasnya dengan bertambahnya jumlah persen katalis H-Zeolit 5,00%,
persentase kandungan asam lemak bebas minyak jelantah kelapa sawit menjadi
0,1439%.
2. Reaksi Transesterifikasi
Peningkatan tahapan reaksi transesterifikasi dapat memperbesar konversi
biodiesel. Konversi biodiesel tertinggi dengan proses transesterifikasi 2 (dua) tahap
(Gambar 11) terdapat pada perlakukan katalis abu ampas tebu konsentrasi 2% (b/v),
yakni 65,6%, dan konsentrasi 4% sebesar 36,3%, sedangkan konsentrasi 6% (b/v)
menghasilkan konversi paling kecil (17,9%). Berbeda dengan penelitian yang
dilakukan Yitnowati (2008), pada pembuatan biodiesel dari minyak jarak dengan
katalis abu tanda kosong, ternyata konversi biodiesel semakin bertambah dengan
peningkatan persentase berat abu terhadap minyak. Hal ini disebabkan adanya air
sebagai produk samping hasil reaksi esterifikasi asam lemak bebas dengan metanol
yang dapat mengganggu aktifitas katalis. Berikut ini merupakan ilustrasi reaksi
terbentuknya air hasil reaksi esterifikasi yang dapat menghambat aktifitas kalatis.

( FFA)

(Methanol)

(Metil ester)

(Air)

Disamping itu, adanya kandungan asam lemak bebas yang masih tinggi karena tidak
seluruhnya teresterkan, sehingga pada saat reaksi transesterifikasi dengan katalis abu
ampas tebu masih terbentuk sabun yang dapat menghambat jalannya reaksi.
24
Gambar 11. Pengaruh transesterifikasi terhadap konversi total biodiesel
Penggunaan katalis abu ampas tebu dengan konsentrasi 6% menghasilkan
konversi biodiesel yang lebih rendah dari konsentrasi abu ampas tebu 4%. Hal ini
disebabkan terjadinya kompetisi antarmolekul dalam reaksi transesterifikasi, baik
sebagai reaktan maupun sebagai solven. Selain berperan sebagai reaktan, metanol
juga berperan sebagai pelarut protik yang dapat menyeimbangkan anion yang
terbentuk dari katalis setelah melepaskan proton. Penggunaan katalis sebanyak 6%
mengakibatkan semakin banyaknya anion dari katalis yang terbentuk, sehingga
semakin banyak pula metanol yang dibutuhkan untuk menyeimbangkan anion dari
katalis tersebut. Hal ini mengakibatkan metanol yang terlibat dalam reaksi akan
berkurang dari seharusnya. Asam lemak bebas yang ada dalam minyak limbah
tepung ikan sardin tidak seluruhnya terbukti menjadi ester. Adanya asam lemak
bebas akan mengganggu reaksi transesterifikasi sehingga konversi bidiesel menjadi
berkurang.
3. Pengaruh Katalis terhadap Konversi Biodiesel
Perubahan konversi biodiesel yang dihasilkan dengan adanya variasi
konsentrasi abu ampas tebu sebagai katalis dapat dilihat pada Gambar 12. Biodiesel
yang dihasilkan dari serangkaian proses esterifikasi yang dilanjutkan dengan
transesterifikasi memberikan hasil yang berbeda secara kuantitatif dengan adanya
kenaikan konsentrasi abu ampas tebu sebagai katalis basa padat dalam reaksi
transesterifikasi.

25
Gambar 12. Pengaruh konsentrasi katalis abu ampas tebu pada transesterifikasi
1 dan transesterifikasi 2 terhadap konversi total biodiesel
Berdasarkan Gambar 12 terlihat bahwa meningkatnya konsentrasi katalis
abu ampas tebu berbanding terbalik dengan konversi biodiesel yang dihasilakan.
Penurunan konversi terjadi baik dari proses transesterifikasi pertama maupun
transesterifikasi kedua. Sedangkan jika dibandingakan dengan penelitian Yoeswono
(2007), dengan menggunakan abu tandan kosong pada pembutan biodiesel dari
minyak kelapa sawit diperoleh bahwa penambahan berat abu berbanding lurus
dengan konversi yang dihasilkan dan mencapai optimum pada persentase 6%.
Perbedaan tersebut terjadi karena bahan dan alat yang digunakan dalam penelitian
berbeda sehingga hasil yang diperolehpun berbeda.
D. Komposisi Biodiesel
Analisis dengan GC-MS dilakukan terhadap biodisel dari hasil reaksi
esterifikasi dengan katalis asam sulfat dan transesterifikasi dengan katalis abu ampas
tebu dengan konversi paling besar. Melalui GC-MS dapat diketahui jenis metil ester
yang terkandung dalam biodiesel minyak limbah tepung ikan sarden. Jumlah puncak
pada Gambar 13 menunjukkan jumlah metil ester hasil esterifikasi yang masing-masing
terpisah sempurna menghasilkan puncak-puncak dengan waktu retensi yang berbedabeda. Puncak yang terlebih dahulu terbentuk adalah ester dengan rantai karbon yang
pendek (puncak pertama pada Gambar 13). Setelah itu diikuti dengan rantai karbon
yang lebih panjang (puncak kedua pada Gambar 13). Kolom (fasa diam) yang
digunakan bersifat non-polar, sedangkan secara umum ester bersifat polar. Ester rantai
pendek bersifat polar dari pada ester rantai panjang. Sesuai hukum like dissolve like
26
ester dengan rantai yang lebih panjang akan tertahan dalam kolom sedangkan ester
rantai pendek akan lolos bersama fasa gerak keluar dari kolom.
Metil ester yang terbaik dipilih untuk dianalisis dengan GC-MS. Kromatogram
hasil analisis GC-MS pada Gambar 13 menunjukkan adanya 40 puncak yang terdeteksi
sebagai metil ester asam lemak. Sedangkan puncak terdeteksi dengan area lebih dari
10% hanya empat puncak yaitu puncak pertama metil miristat, puncak kedelapan metil
palmitoleat, puncak kesepuluh metil palmitat, dan puncak keduapuluh enam metil
pentanoat.
Empat puncak dengan persen area terbesar pada Gambar 13 dihasilkan oleh
puncak kesepuluh yang merupakan metil palmitat (19,75%), puncak kedelapan yang
merupakan metil palmitoleat (11,83%), puncak pertama yang merupakan metil miristat
(11,10%) dan puncak keduapuluh enam yang merupakan metil pentanoat (10,78%).
Metil palmitat merupakan metil ester dengan rumus molekul C17H34O2, metil
palmitoleat mempunyai rumus molekul C17H32O2, metil miristat mempunyai rumus
molekul C15H30O2 dan rumus molekul metil pentanoat adalah C6H12O2. Fragmentasi
antar puncak untuk lebih jelasnya dapat dilihat pada Lampiran 5.

Gambar 13. Kromatogram campuran metil ester (melalui transesterifikasi dengan abu
ampas tebu 2 %)
E. Kualitas Biodiesel
Tabel 5 menampilkan hasil analisis biodiesel limbah minyak ikan sardin dengan
metode ASTM yang dibandingkan dengan spesifikasi minyak solar dan minyak diesel.

27
Biodiesel hasil reaksi esterifikasi terkatalisis asam sulfat yang dilanjutkan reaksi
transesterifikasi terkatalisis abu ampas tebu disajikan dalam tabel berikut.
Tabel 5. Perbandingan sifat fisik biodiesel limbah minyak tepung ikan sardin dengan sifat
fisik minyak diesel dan minyak solar
No
1
2
3
4
5
6

Sifat fisik

Berat Jenis pada 60o F
Viskositas Kinematis

Biodiesel Limbah
Minyak Tepung Ikan
sardin
0,8442

Standar *)
Minyak Diesel

0,820-0,870

0,840-0,920

0.856

2,0-5,0

4,5-7,0

-27, 4
54, 5
0,0

<65
>150
< 0,05

<65
>150
< 0,05

2,107

pada 40o C mm2/s cst
Titik Tuang, o F
Titik Nyala, o F
Kadar Air, %
Nilai Sisa Karbon, %

Standar *)
Minyak Solar

Maks. 0,1

Maks. 1

Keterangan:
*)
Nilai maksimum spesifikasi bahan bakar diesel menurut Keputusan Dirjen minyak dan
Gas Bumi No. 002/P/DM/MIGAS/1979 (Hardjono, 2001)

Menurut Hardjono (2001), berat jenis (specific grafity) atau rapat relatif
(relative density) minyak adalah perbandingan antara rapat minyak pada suhu tertentu
dengan rapat air pada suhu tertentu. Nilai kerapatan spesifik dari biodiesel yang dibuat
dari minyak ikan sardin sebesar 0,8442, ternyata telah memenuhi spesifikasi standar
minyak diesel dan minyak solar.
Menurut

Andini

(2008),

viskositas

kinematis

(viscosity

kinematic)

didefinisikan sebagai kekentalan dari suatu minyak. Viskositas yang tinggi dapat
mempengaruhi kecepatan kerja alat injeksi bahan bakar dan mempersulit pengabutan
bahan bakar tersebut, sehingga nilai viskositas harus rendah karena mesin diesel
memerlukan viskositas yang rendah. Bahan bakar mesin yang mempunyai viskositas
rendah dapat dengan mudah disemprotkan ke dalam ruang pembakaran. Nilai
viskositas kinematis dari biodiesel limbah minyak tepung ikan sardin yaitu 0,856,
.sangat rendah dibandingkan minyak solar maupun minyak diesel.
Titik tuang (pour point) biodiesel minyak limbah tepung ikan sardin memenuhi
standar bahan bakar minyak solar maupun minyak diesel yakni -27,4o F. Hal ini berarti
bahwa biodiesel tidak mudah membeku dan masih dapat mengalir pada temperatur
diatas -27,4o F.
Titik nyala (flash point) biodiesel limbah minyak tepung ikan sardin lebih
rendah dari standar minyak solar maupun minyak diesel yakni 54,5o F. Nilai titik nyala

28
yang rendah menunjukkan bahwa perlu penanganan khusus dalam penyimpanan dan
pengangkutan biodiesel limbah minyak tepung ikan sardin, karena mudah menyala
pada suhu 54,5o F. Nilai titik nyala yang lebih rendah dari standar yaitu diatas 150o F
perlu ditingkatkan.
Kadar air (water content) biodiesel dari limbah minyak tepung ikan sardin yaitu
0,00%. Nilai tersebut telah memenuhi standar bahan bakar minyak solar maupun
minyak diesel yakni dibawah 0,05%.
Nilai sisa karbon Conradson (Conradson carbon residue) biodiesel limbah
minyak tepung ikan sardin lebih tinggi dari standar minyak solar maupun minyak
diesel yakni 2,107%. Nilai sisa karbon yang tinggi tersebut berpengaruh buruk tetapi
dapat dikurangi dengan melakukan pencucian berulang pada saat proses pembuatan
biodiesel. Menurut Andini (2008), nilai sisa karbon Conradson dari bahan bakar seperti
biodiesel harus rendah karena parameter ini digunakan sebagai petunjuk mengenai
kecenderungan untuk memberikan deposit karbon pada piston dan silinder, sehingga
dapat menurunkan polusi udara terhadap lingkungan.

29
V. KESIMPULAN DAN SARAN
A. Kesimpulan
1. Pembuatan biodiesel dari limbah minyak tepung ikan sardin yang memiliki Asam
Lemak Bebas 5,17% dengan katalis abu ampas tebu yang memiliki kandungan
kalium 0,71% harus melewati proses esterifikasi terlebih dahulu sebelum proses
transesterifikasi.
2. Komposisi metil ester biodiesel dari limbah minyak ikan tepung sardin yang
dominan adalah metil palmitat (19,75%), metil palmitoleat (11,83%), metil miristat
(11,10%), dan metil pentanoat (10,78%)
3. Dari analisis

1

HNMR menunjukan bahwa hampir seluruh trigliserida telah

dikonversi menjadi metil ester pada proses yang melalui esterifikasi dan
transesterifikasi dua tahap dengan konsentrasi abu ampas tebu 2% menghasilkan
rendemen biodiesel sebesar 93%
4. Karakteristik limbah minyak tepung ikan sardin umumnya memenuhi SNI kecuali
flash point dan Conradson carbon residue.
B. Saran
Perlu dilakukan penelitan lanjutan untuk membuat biodiesel dari limbah
minyak tepung ikan sardin dengan menggunakan katalis abu ampas tebu konsentrasi ≤
2,0% sehingga didapatkan konversi, flash point, dan conradson carbon residue yang
sesuai dengan SNI-04-7182-2006.

30
DAFTAR RUJUKAN
Al-Rozi, F. 2007. Pemanfaatan Ekstrak Abu Ampas Tebu (Bagase) sebagai Sumber
Kalium Pengganti KOH (Kalium Hidroksida) pada Proses Penjendalan dalam
Pembuatan Agar-Agar Kertas dari Rumput Laut Gracilaria sp. Universitas Gadjah
Mada Yogyakarta. Laporan PKM.
Andini, R. 2008. Pengaruh Penambahan H-Zeolit pada Proses Pembuatan Biodiesel dari
Minyak Jelantah Kelapa Sawit Menggunakan Reaktor Biodiesel Berkapasitas 10 L.
Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
Gadjah Mada. Yogyakarta. Skripsi.
Anonim.
2001.
Minyak
Ikan
Berkhasiat
Turunkan
Serangan
http://www.sinarharapan.co.id. Diakses tanggal 16 Januari 2009.

Jantung.

Anonim. 2006a. Artikel Fitur Aktual: Nabati, Energi Alternatif Pengganti BBM.
http://www.otogenik.com. Diakses tanggal 1 Juni 2009.
Anonim. 2006b. Warta Pertamina Edition No. 5/THN XLI, Mei 2006: Transportasi Tanpa
Polusi. http://www.pertamina.com. Diakses tanggal 1 Juni 2009.
Anonim. 2006c. Menyibak Gizi Minyak Ikan. http://www.ayahbunda-online.com. Diakses
tanggal 16 Januari 2009.
Anonim. 2006d. Biodiesel. http://www.journeytoforever.com. Diakses tanggal 1 Juni 2009.
Anonim. 2006e. Minyak Kelapa Sebagai Bahan Bakar Alternatif: Biofuel dan Biodiesel
dari Kelapa. http://dekindo.com. Diakses tanggal 1 Juni 2009.
Anonim. 2007. All About Biofuels: Biodiesel. http://dwienergi.blogspot.com. Diakses
tanggal 1 Juni 2009.
Anonim. 2008a. Biodieselautsindo. http://bahasa.biodieselindonesia.com. Diakses tanggal
1 Juni 2009.
Anonim.
2008b.
Minyak
Limbah
Ikan
Pengganti
http://www.antarajatim.com. Diakses tanggal 1 Juni 2009.

Minyak

Tanah.

Bradshaw, G. B., W. Meuly. 1944. Preparation of Detergent. US Patent Office 2,360,844.
Burhanuddin, M. H. 1984. Sumber Daya Ikan Lemuru. Lembaga Oseanologi Nasional.
LIPI. Jakarta.
Destianna, M., Z. Agustinus, Nazef, P. Soraya. 2007. Intensifikasi Proses Produksi
Biodiesel. http://pub.bhaktiganesha.or.id. Diakses tanggal 1 Juni 2009.
Dwiponggo, A. 1982. Beberapa Aspek Biologi Ikan Lemuru, Sardinella spp. dalam
Prosiding Seminar Perikanan Lemuru Buku II : Kumpulan Makalah Penunjang.
Pusat Penelitian dan Pengembangan Perikanan Deptan. Jakarta.

31
Freedman, B., E. Pryde, T. Mounts. 1984. Variables Affecting the Yields of Fatty Esters
from Transesterfied Vegetable Oils. JAOCS, Vol. 61, no. 10.
Hadiwiyoto, S. 1993. Tekologi Pengolahan Hasil Perikanan. Liberty. Yogyakarta.
Hamed, M. E., Z. Ruihong, J. Roberto. 2008. A two-step process for biodiesel production
from salmon oil. Biosystems Engineering 99: 220 – 227.
Hardjono, A. 2001. Teknologi Minyak Bumi. Gadjah Mada University Press. Yogjakarta.
Iskandar, S. 2009. Minyak Tumbuhan, Sumber Energi Alami. http://www.chem-is-try.org.
Diakses tanggal 16 Januari 2009.
Ketaren, S. 1986 . Pengantar Teknologi Minyak dan Lemak Pangan. UI Press. Jakarta.
Knothe, G. 2000. Monitoring a Progressing Transesterification Reaction by Fiber-Optic
Near Infrared Spectroscopy with Corelation to 1H Nuclear Magnetic Resonance
Spectroscopy. JAOCS, 77, J9483, 489-493.
Lele, S. 2005. Oil fish. http://www.svlele.com. Diakses tanggal 4 Februari.
Mittlebach, M., R. Claudia. 2004 . Biodiesel The Comprehensive Handbook. Boersedruck
Ges.m.bH.Vienna.
Moeljanto. 1992. Pengawetan dan Pengolahan Hasil Perikanan. Penebar Swadaya.
Jakarta.
Mursanti, E. 2007. Proses Produksi dan Subsidi Biodiesel dalam Mensbstitusi Solar untuk
Mengurangi Ketergantungan Terhadap Solar. Fakultas Ekonomi Universitas
Indonesia. Skripsi.
Rahmadi, A. 2009. Proses Pembuatan Biodiesel. http://www.migas-indonesia.com.
Diakses tanggal 1 januari.2009.
Santoso, A. U. 2008. Minyak Limbah ikan Pengganti
http://www.antarajatim.com. Diakses tanggal 1 Juni 2009.

Minyak

Tanah.

Shathivel, S. 2005. Oil from Fish Processing By Products and Underutilized Fish as a
Viable Renewable Resource for Biodiesel Production. Industrial Technology
Center University of Alaska Fiarbanks. http://www.sfos.uaf.edu. Diakses tanggal 5
Februari 2009.
Soerawidjaja, T. H. 2005. Minyak-lemak dan produk-produk kimia lain dari kelapa,
Handout kuliah Proses Industri Kimia. Program Studi Teknik Kimia Institut
Teknologi Bandung.
Tjioe, L. 2007. Khasiat Minyak Ikan. http://vibizlife.com. Diakses tanggal 16 Januari
2009.

32
Turboman. 2006. The Power of ikan Patin: BioDiesel dari Pangasius djambal.
http://forum.o-fish.com. Diakses tanggal 1 Juni 2009.
Wijaya, K.2007. Konversi Minyak Jelantah Sawit Menjadi Biodiesel Dengan Bantuan
Katalis Asam Padat Zeolit dan Montmorillonit. Laporan Proyek Hibah Bersaing.
DIKTI.
Wirawan, S. S. 2008. Membangun Pabrik Biodiesel Skala Kecil.Penebar Swadaya. Jakarta.
Yoeswono. 2007. Pemanfaatan Limbah Abu Tandan Kosong Sawit sebagai Katalis Basa
pada Pembutan Biodiesel dari Minyak Sawit. J Manusia dan Lingkungan, Vol 14,
No. 2. 55-62.
Yitnowati. 2008. Pemanfaatan Abu Tandan Kosong Sawit sebagai Sumber Katalis Basa
(K2CO3) pada Pembuatan Biodiesel Minyak Jarak Ricinus communis. Jurusan Kimia
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada.
Yogyakarta. Skripsi.

33

Más contenido relacionado

Destacado

Lemak dan-minyak
Lemak dan-minyakLemak dan-minyak
Lemak dan-minyakridhar
 
Ppt lemak & minyak sa'adatul hasanah
Ppt lemak & minyak sa'adatul hasanahPpt lemak & minyak sa'adatul hasanah
Ppt lemak & minyak sa'adatul hasanahSaadatul Hasanah
 
Skill with people (komunikasi) by mastori
Skill with people (komunikasi) by mastoriSkill with people (komunikasi) by mastori
Skill with people (komunikasi) by mastoriMastori Rodin
 
Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...
Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...
Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...Oswar Mungkasa
 
Bab iii metode penelitian
Bab iii metode penelitianBab iii metode penelitian
Bab iii metode penelitianEros Mahesa
 
Tugas Akhir "Pembuatan Sabun Transparan dari VCO"
Tugas Akhir "Pembuatan Sabun Transparan dari VCO"Tugas Akhir "Pembuatan Sabun Transparan dari VCO"
Tugas Akhir "Pembuatan Sabun Transparan dari VCO"Arum Setyorini
 
Contoh Makalah ( Makalah anggrek)
Contoh Makalah ( Makalah anggrek)Contoh Makalah ( Makalah anggrek)
Contoh Makalah ( Makalah anggrek)Youone Lumbanraja
 
Analisis HACCP pada produk fish nugget
Analisis HACCP pada produk fish nuggetAnalisis HACCP pada produk fish nugget
Analisis HACCP pada produk fish nuggetDwi Astuti
 
Rehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) Sampah
Rehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) SampahRehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) Sampah
Rehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) Sampahinfosanitasi
 
IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...
IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...
IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...Hendra UzuMakhi
 
Sni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensori
Sni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensoriSni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensori
Sni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensoriBasyrowi Arby
 
Bahan ajar haccp dlm industri pangan
Bahan ajar haccp dlm industri panganBahan ajar haccp dlm industri pangan
Bahan ajar haccp dlm industri panganandiani17
 
Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...
Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...
Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...Uswatun Khasanah
 
siapakah pi??
siapakah pi??siapakah pi??
siapakah pi??Lam RoNna
 
American history
American historyAmerican history
American historyrahellasni
 

Destacado (20)

Lemak dan-minyak
Lemak dan-minyakLemak dan-minyak
Lemak dan-minyak
 
Lemak & minyak
Lemak & minyakLemak & minyak
Lemak & minyak
 
Ppt lemak & minyak sa'adatul hasanah
Ppt lemak & minyak sa'adatul hasanahPpt lemak & minyak sa'adatul hasanah
Ppt lemak & minyak sa'adatul hasanah
 
Skill with people (komunikasi) by mastori
Skill with people (komunikasi) by mastoriSkill with people (komunikasi) by mastori
Skill with people (komunikasi) by mastori
 
Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...
Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...
Pedoman pengoperasian & pemeliharaan tpa sistem controlled landfill & sanitar...
 
Bab iii metode penelitian
Bab iii metode penelitianBab iii metode penelitian
Bab iii metode penelitian
 
Tugas Akhir "Pembuatan Sabun Transparan dari VCO"
Tugas Akhir "Pembuatan Sabun Transparan dari VCO"Tugas Akhir "Pembuatan Sabun Transparan dari VCO"
Tugas Akhir "Pembuatan Sabun Transparan dari VCO"
 
Contoh Makalah ( Makalah anggrek)
Contoh Makalah ( Makalah anggrek)Contoh Makalah ( Makalah anggrek)
Contoh Makalah ( Makalah anggrek)
 
Lemak
LemakLemak
Lemak
 
Analisis HACCP pada produk fish nugget
Analisis HACCP pada produk fish nuggetAnalisis HACCP pada produk fish nugget
Analisis HACCP pada produk fish nugget
 
Rehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) Sampah
Rehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) SampahRehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) Sampah
Rehabilitasi dan Penutupan TPA (Tempat Pemrosesan Akhir) Sampah
 
Ppt lemak
Ppt lemakPpt lemak
Ppt lemak
 
Artikel jurnal ilmiah
Artikel jurnal ilmiahArtikel jurnal ilmiah
Artikel jurnal ilmiah
 
IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...
IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...
IDENTIFIKASI HAZZARD ANALYSIS CRITICAL CONTROL POINT (HACCP) PADA PROSES PEMB...
 
Sni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensori
Sni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensoriSni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensori
Sni 01 2346-2006 petunjuk pengujian organoleptik dan atau sensori
 
Bahan ajar haccp dlm industri pangan
Bahan ajar haccp dlm industri panganBahan ajar haccp dlm industri pangan
Bahan ajar haccp dlm industri pangan
 
Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...
Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...
Penerapan HACCP pada pengalengan rajungan di PT. PAN PUTRA SAMUDARA Rembang, ...
 
Pmm teori haccp
Pmm teori haccpPmm teori haccp
Pmm teori haccp
 
siapakah pi??
siapakah pi??siapakah pi??
siapakah pi??
 
American history
American historyAmerican history
American history
 

Similar a KATALIS ABU

Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...
Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...
Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...Amila240498
 
MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...
MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...
MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...Warnet Raha
 
Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...
Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...
Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...Warnet Raha
 
Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)khusnul92
 
Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)khusnul92
 
Manajemen dan pendokumentasian asuhan kebidanan
Manajemen dan pendokumentasian  asuhan kebidananManajemen dan pendokumentasian  asuhan kebidanan
Manajemen dan pendokumentasian asuhan kebidananOperator Warnet Vast Raha
 
Pedoman penulisan skripsi pgmi STKIP Nurul Huda
Pedoman penulisan skripsi pgmi STKIP Nurul HudaPedoman penulisan skripsi pgmi STKIP Nurul Huda
Pedoman penulisan skripsi pgmi STKIP Nurul HudaNesi Anti Andini
 
Kti titi lestari akbid paramata
Kti titi lestari akbid paramataKti titi lestari akbid paramata
Kti titi lestari akbid paramataWarnet Raha
 
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdfLAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdfChrodtianTian
 
H3314037 pendahuluan
H3314037 pendahuluanH3314037 pendahuluan
H3314037 pendahuluanastiawidia
 
Teknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosin
Teknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosinTeknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosin
Teknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosinariindrawati2
 
Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...
Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...
Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...Mustaghfirin Mustaghfirin
 
FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...
FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...
FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...Warnet Raha
 
LAPORAN Lengkap Fisika Dasar.pdf
LAPORAN Lengkap Fisika Dasar.pdfLAPORAN Lengkap Fisika Dasar.pdf
LAPORAN Lengkap Fisika Dasar.pdfMuhAkbar52
 

Similar a KATALIS ABU (20)

Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...
Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...
Bioteknologi konvensional dalam bidang pangan di universitas muhammadiyah yog...
 
MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...
MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...
MANAJEMEN DAN PENDOKUMENTASIAN ASUHAN KEBIDANAN PADA NY “S” PIIA0 HARI KE III...
 
Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...
Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...
Manajemen dan Pendokumentasian Asuhan Kebidanan Komunitas pada Keluarga Tn”T”...
 
Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)
 
Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)Ipa kls 5 sd (munawar)
Ipa kls 5 sd (munawar)
 
Kls 5 ipa
Kls 5 ipaKls 5 ipa
Kls 5 ipa
 
Manajemen dan pendokumentasian asuhan kebidanan
Manajemen dan pendokumentasian  asuhan kebidananManajemen dan pendokumentasian  asuhan kebidanan
Manajemen dan pendokumentasian asuhan kebidanan
 
Pedoman penulisan skripsi pgmi STKIP Nurul Huda
Pedoman penulisan skripsi pgmi STKIP Nurul HudaPedoman penulisan skripsi pgmi STKIP Nurul Huda
Pedoman penulisan skripsi pgmi STKIP Nurul Huda
 
Kti titi lestari akbid paramata
Kti titi lestari akbid paramataKti titi lestari akbid paramata
Kti titi lestari akbid paramata
 
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdfLAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
LAPORAN PKP KESELURUHAN BAB 1-5 NURUL HUSNA.pdf
 
H3314037 pendahuluan
H3314037 pendahuluanH3314037 pendahuluan
H3314037 pendahuluan
 
ASUHAN KOMPREHENSIF KEBIDANAN STUDY KASUS
ASUHAN KOMPREHENSIF KEBIDANAN STUDY KASUSASUHAN KOMPREHENSIF KEBIDANAN STUDY KASUS
ASUHAN KOMPREHENSIF KEBIDANAN STUDY KASUS
 
Teknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosin
Teknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosinTeknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosin
Teknik pembuatan preparat histologi dengan pewarnaan hematoksilin eosin
 
Kti akbid paramata ariati
Kti akbid paramata  ariatiKti akbid paramata  ariati
Kti akbid paramata ariati
 
syarif
syarifsyarif
syarif
 
Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...
Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...
Analisis rasio keuangan guna menilai kinerja perusahaan food and beverages ya...
 
FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...
FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...
FAKTOR RISIKO TERJADINYA PLASENTA PREVIA PADA IBU HAMIL DI RUANG DELIMA RSUD ...
 
Kti yunianti akbid paramata raha
Kti yunianti akbid paramata rahaKti yunianti akbid paramata raha
Kti yunianti akbid paramata raha
 
LAPORAN Lengkap Fisika Dasar.pdf
LAPORAN Lengkap Fisika Dasar.pdfLAPORAN Lengkap Fisika Dasar.pdf
LAPORAN Lengkap Fisika Dasar.pdf
 
Smp7ipa ipa teguh
Smp7ipa ipa teguhSmp7ipa ipa teguh
Smp7ipa ipa teguh
 

Más de Mastori Rodin

PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...
PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...
PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...Mastori Rodin
 
Pengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastori
Pengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastoriPengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastori
Pengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastoriMastori Rodin
 
Pentingnya Komunikasi
Pentingnya Komunikasi Pentingnya Komunikasi
Pentingnya Komunikasi Mastori Rodin
 
Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...
Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...
Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...Mastori Rodin
 
Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...
Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...
Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...Mastori Rodin
 

Más de Mastori Rodin (6)

PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...
PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...
PRESENTASI HASIL PENELITIAN PENGOLAHAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IK...
 
Pengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastori
Pengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastoriPengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastori
Pengolahan ikan tuna menjadi abon,ajifurai,otak otak,nugget by mastori
 
Surimi
SurimiSurimi
Surimi
 
Pentingnya Komunikasi
Pentingnya Komunikasi Pentingnya Komunikasi
Pentingnya Komunikasi
 
Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...
Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...
Mekanisme penghambatan hipertensi berdasarkan pengujian invitro dan in vivo d...
 
Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...
Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...
Isolasi inhibitor angiotensin 1 converting enzim (ace) dari hidrolisat jeroan...
 

KATALIS ABU

  • 1. PEMBUTAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IKAN SARDIN DENGAN KATALIS ABU AMPAS TEBU SKRIPSI OLEH MASTORI 04/177615/PN/09995 JURUSAN PERIKANAN FAKULTAS PERTANIAN UNIVERSITAS GADJAH MADA YOGYAKARTA 2010 i
  • 2. PEMBUATAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IKAN SARDIN DENGAN KATALIS ABU AMPAS TEBU SKRIPSI Diajukan Kepada Fakultas Pertanian Universitas Gadjah Mada Guna Memenuhi Sebagian Persyaratan yang Diperlukan untuk Memperoleh Gelar Sarjana Perikanan Oleh MASTORI 04/177615/PN/09995 PROGRAM STUDI TEKNOLOGI HASIL PERIKANAN JURUSAN PERIKANAN FAKULTAS PERTANIAN UNIVERSITAS GADJAH MADA YOGYAKARTA 2010 ii
  • 3. iii
  • 4. KATA PENGANTAR Assalamu`alaikum Wr. Wb. Segala Puji bagi ALLAH SWT., yang telah menganugerahkan Rahmat-NYA, sehingga Penulis dapat menyelesaikan penelitian dan menyusun skripsi ini. Skripsi ini disusun untuk memenuhi salah satu syarat dalam memperoleh gelar Sarjana Perikanan di Fakultas Pertanian Universitas Gadjah Mada, Yogyakarta. Penulis menyadari sepenuhnya bahwa dalam menyelesaikan penelitian dan menyusun skripsi ini tidak terlepas dari bimbingan, arahan, dan bantuan dari berbagai pihak. Oleh karena itu, Penulis mengucapkan terima kasih kepada : 1. Bapak Dr. Ir. Ustadi, M.P. selaku Ketua Jurusan Perikanan sekaligus dosen pembimbing utama, atas masukan dalam penyusunan skripsi ini. 2. Bapak Dr. Ir. Latif Sahubawa, M.Si. selaku dosen pendamping, yang telah menuntun dan mengarahkan dalam perumusan proposal penelitian di laboratorium dan perubahan laporan akhir, sekaligus menyediakan dana penelitian (diikutkan dalam penelitian payung). 3. Bapak Prof. Dr.rer.nat. Drs. Karna Wijaya, M.Eng. selaku dosen penguji, atas masukan dan saran untuk perbaikan skripsi ini. 4. Ayahanda Rodin dan Ibunda Warkini tercinta Adeku eko, dewi dan edi tersayang serta keluarga besar atas curahan cinta, kasih sayang, dan kesabaran. 5. THP-ers 04 yang telah mendahului, Aldino, Anis, Irvan, Minan, Ririn,Vivin, Diah, Rusli, TJ, Wawe, Satub, Muji, dan Arum. Yang membarengi Yosafat, dan Timbul. Yang segera menyusul, Abe, Adisty, Ali, Bagus, Condro, Dito, Dika,Ria, dan Shinta 6. Rekan Kos Juon Ayub Ginting, Asa,Cino,Abi,Taung, dan Hepi. Rekan sejawat Dimas,Frizka, dian dan miftah yang ikut membantu penulis selama mengerjakan penelitian, dan semua teman-teman yang tidak bisa disebut satu persatu Disadari sepenuhnya bahwa skripsi ini masih jauh dari kesempurnaan, oleh karena itu penulis mengharapkan saran serta kritik membangun demi perbaikan format dan substansinya. Penulis juga berharap semoga skripsi ini dapat bermanfaat bagi umat manusia. Wassalamu`alaikum Wr. Wb. Yogyakarta, Februari 2010 Mastori iv
  • 5. DAFTAR ISI JUDUL.................................................................................................................... PENGESAHAN...................................................................................................... KATA PENGANTAR ............................................................................................ DAFTAR ISI .......................................................................................................... DAFTAR TABEL .................................................................................................. DAFTAR GAMBAR .............................................................................................. DAFTAR LAMPIRAN .......................................................................................... INTISARI ............................................................................................................... ABSTRACT ............................................................................................................. ii iii iv v vii viii ix x xi BAB I. PENDAHULUAN ..................................................................................... A. Latar Belakang ....................................................................................... B. Tujuan .................................................................................................... C. Manfaat .................................................................................................. 1 1 3 4 BAB II.TINJAUAN RUJUKAN ............................................................................ A. Ikan Sardin ............................................................................................. B. Tepung Ikan ........................................................................................... C. Minyak Ikan ........................................................................................... D. Abu Ampas Tebu ................................................................................... E. Biodiesel ................................................................................................. 1. Pengertian biodiesel ............................................................................ 2. Biodiesel Minyak Ikan........................................................................ a.Trigliserida ....................................................................................... b.Asam Lemak Bebas ......................................................................... F. Proses Pengolahan Biodiesel .................................................................. 1. Esterifikasi ......................................................................................... 2. Transesterifikasi................................................................................. a. Reaksi Transesterifikasi ................................................................. b. Faktor Penentu Proses Transesterifikasi ........................................ 1). Pengaruh Air dan Asam Lemak Bebas .................................... 2). Pengaruh Perbandingan Molar Alkohol dengan Bahan Mentah 3). Pengaruh Jenis Katalis ............................................................. 4). Metanolisis Minyak .................................................................. 5). Pengaruh Temperatur ............................................................... G. Syarat Mutu Biodiesel ........................................................................... 5 5 6 7 7 8 8 9 10 11 11 11 12 12 13 13 13 14 14 14 14 BAB III. BAHAN DAN METODE PENELITIAN ............................................... A. Bahan dan Alat ................................................................................. B. Rancangan Penelitian ......................................................................... C. Prosedur Penelitian ............................................................................ 1. Preparasi dan Analisis Abu Ampas Tebu ....................................... 17 17 17 17 17 v
  • 6. 2. Preparasi dan Analisis Minyak Limbah Tepung Ikan Sardin ......... 3. Proses Pembuatan Biodiesel dengan Katalis Abu Ampas Tebu..... 4. Parameter ........................................................................................ 5. Bagan alir penelitian ....................................................................... 18 18 19 20 BAB IV. HASIL DAN PEMBAHASAN ............................................................... A. Analisis Kadar kalium Abu Ampas Tebu ........................................... B. Analisis Asam Lemak Bebas Minyak Limbah Tepung Ikan Sardin... C. Pengaruh Katalis dalam Reaksi Esterifikasi dan Transesterifikasi terhadap Konversi Biodiesel ............................................................... 1. Reaksi Esterisfikasi.......................................................................... 2. Reaksi Transesterifikasi ................................................................... 3. Pengaruh Katalis terhadap Konversi Biodiesel ............................... D. Komposisi Biodiesel ........................................................................... E. Kualitas Biodiesel ............................................................................... 21 21 21 22 22 24 25 26 27 BAB V. KESIMPULAN DAN SARAN ................................................................ A. Kesimpulan .......................................................................................... B. Saran .................................................................................................... 30 30 30 DAFTAR RUJUKAN ............................................................................................ LAMPIRAN ........................................................................................................... 31 34 vi
  • 7. DAFTAR TABEL Tabel 1. Tabel 2. Tabel 3. Tabel 4. Komposisi kimia ampas tebu................................................................. Persyaratan kualitas biodiesel menurut SNI-04-7182-2006 .................. Rancangan perlakuan............................................................................. Persentase konversi metil ester biodiesel dari minyak tepung ikan sardin dengan metode 1H NMR ..................................................... Tabel 5. Perbandingan sifat fisik biodiesel dengan sifat fisik minyak diesel dan minyak solar ......................................................................................... vii 8 15 17 22 28
  • 8. DAFTAR GAMBAR Gambar 1. Gambar 2. Gambar 3. Gambar 4. Gambar 5. Gambar 6. Gambar 7. Gambar 8. Gambar 9. Gambar10. Gambar 11. Gambar 12. Gambar 13. Ikan Sardin ........................................................................................ Ampas Tebu (a) dan Abu Ampas Tebu (b) ....................................... Struktur molekul monogliserida, digliserida, dan trigliserida ........... Struktur molekul asam lemak bebas. ................................................. Reaksi esterifikasi dari asam lemak menjadi metal ester .................. Reaksi Transesterifikasi dari Trigliserida menjadi ester metal asam-asam lemak ............................................................................... Tahapan reaksi transesterifikasi ......................................................... Bagan alir penelitian .......................................................................... Spektra 1H-NMR Minyak limbah tepung ikan sardin hasil transesterifikasi tanpa esterifikasi,. .................................................... Spektra 1H-NMR Biodiesel hasil esterifikasi dilanjutkan transesterifikasi .................................................................................. Pengaruh transesterifikasi terhadap konversi total biodiesel ............. Pengaruh konsentrasi katalis abu ampas tebu terhadap konversi total biodiesel pada transesterifikasi I dan transesterifikasi II ................... Kromatogram campuran metal ester (melalui transesterifikasi dengan abu ampas tebu 2%) . .......................................................... viii 5 8 10 11 12 12 13 20 23 23 25 26 27
  • 9. DAFTAR LAMPIRAN Lampiran 1. Perhitungan konversi metil ester dengan metode 1H NMR ............ Lampiran 2. Data Perhitungan Kadar Kalium dalam Abu Ampas Tebu Metode AAS-Flame ......................................................................... Lampiran 3. Data Hasil FFA dalam Minyak Limbah Tepung Ikan Sardin Metode Titrasi .................................................................................. Lampiran 4. Data Hasil Uji Kualitas Biodiesel dari Minyak Limbah Tepung Ikan Sardin Metode ASTM . .......................................................... Lampiran 5. Data Hasil Uji Komposisi Biodiesel dari Minyak Limbah Tepung Ikan Sardin Metode GC-MS ........................................................... Lampiran 6. Foto Proses Penelitian ....................................................................... ix 35 47 48 49 45 57
  • 10. INTISARI PEMBUTAN BIODIESEL DARI LIMBAH MINYAK TEPUNG IKAN SARDIN DENGAN KATALIS ABU AMPAS TEBU MASTORI 04/177615/PN/09995 Penelitian pembuatan biodiesel dari limbah minyak tepung ikan sardin dengan menggunakan katalis abu ampas tebu sebagai katalis basa pada proses transesterifikasi telah dilakukan. Penelitian ini bertujuan untuk mengetahui kandungan asam lemak bebas minyak tepung ikan sardin, kandungan kalium abu ampas tebu, cara pembuatan, besarnya konversi, komposisi, dan karakteristik biodiesel yang dihasilkan. Tahapan proses yang dipelajari adalah pengaruh reaksi esterifikasi dan tanpa esterifikasi, transesterifikasi (satu tahap dan dua tahap) dengan perlakuan berat abu ampas tebu (2%, 4%, dan 6% (b/v)). Proses esterifikasi dilakukan selama 30 menit dengan katalis asam sulfat (H2SO4) sebanyak 1% (v/v) dan proses transesterifikasi selama 2 jam dengan pereaksi methanol 22% (v/v) pada suhu 60o C. Biodiesel hasil transesterifikasi dianalisis dengan 1HNMR, GCMS, dan metode ASTM. Hasil analisis ASTM selanjutnya dibandingkan dengan standar yang ditetapkan ASTMD 6751 dan SNI. Hasil penelitian menunjukan kandungan asam lemak bebas minyak limbah tepung ikan sardin sebesar 5,17 bilangan asam. Abu ampas tebu 2% memberikan hasil transesterifikasi biodiesel paling optimum. Hasil transesterifikasi biodiesel dengan katalis abu ampas tebu menunjukan mencapai optimum pada persentase 2%. Hasil analisis 1HNMR menunjukan bahwa hampir seluruh trigliserida telah diubah menjadi metil ester pada proses yang melalui esterifikasi dan transesterifikasi dua tahap. Analisis dengan GCMS menunjukan telah terbentuk senyawa metil ester dalam biodiesel yang menyerupai fragmentasi metil ester palmitat, metil ester palmitoleat, metil ester miristat, dan metil ester pentanoat. Hasil uji secara fisik terhadap biodiesel yang telah melalui esterifikasi dan transesterifikasi dua tahap dengan katalis abu ampas tebu meliputi pengukuran kerapatan relatif 0,8442, kekentalan kinematik 0,856 cSt, kandungan air 0,00%, dan titik tuang -33o C, telah sesuai dengan standar ASTM D 6751 dan SNI, sedangkan titik nyala 12,5o C, dan residu karbon 2,107% belum sesuai dengan standar ASTM D 6751 dan SNI dari Dirjen Migas. . Kata kunci : biodiesel, limbah minyak tepung ikan, abu ampas tebu, esterifikasi, transesterifikasi x
  • 11. ABSTRACT MAKING BIODIESEL FROM WASTE OIL OF FLOUR SARDINES USING SUGARCANE WASTE ASH CATALYST MASTORI 04/177615/PN/09995 Research on making biodiesel from waste oil sardine flour using sugarcane waste ash as the base catalyst in the transesterification process has been done. This study aims to determine the free fatty acid content of oil sardine fish meal, potassium content of the ash remains of sugar cane, processing, degree of conversion, composition, and characteristics of biodiesel produced. The specific goal of the research are to know the influence of esterification reactions and without esterification, transesterification (one stage and two stage) with a heavy treatment of sugarcane residue ash (2%, 4%, and 6% (w / v)). Esterification process carried out for 30 minutes with the catalyst sulfuric acid (H2SO4) of 1% (v / v) and the transesterification process for 2 hours with methanol reactant of 22% (v / v) at a temperature of 60o C. Biodiesel transesterification results analyzed by 1HNMR, GCMS, and ASTM methods. Further analysis of the results compared with ASTMD 6751 and SNI standards. The results showed that the levels of free fatty acid waste oils from sardine fish meal amounted to 5.17 acid number. The ashes of sugarcane catalyst 2% showed the results of biodiesel transesterification with achieving the optimum percentage . 1HNMR analysis results showed that almost all of triglycerides have been converted into methyl esters in the process of esterification and transesterification through two stages. Analysis using GCMS showed the methyl ester compounds formed is similar with fragmentation Palmitic methyl ester biodiesel, methyl ester palmitoleat, Myristic methyl ester, and methyl esters pentanoat. Results of physical testing of biodiesel that has undergone esterification and transesterification catalyst in two stages with the remnants of sugarcane ashes including the relative density measurement 0.8442, kinematic viscosity 0.856 cSt, water content 0.00%, and pour point - 33o C, in accordance with the standards ASTM D 6751 and SNI, while the flash point 12.5o C, and 2.107% carbon residue do not fulfill ASTM D 6751 and SNI from the Director General of Oil and Gas. Keywords:biodiesel,waste oil fish flour,sugarcane waste ash,esterification, transesterification. xi
  • 12. I. PENDAHULUAN A. Latar Belakang Konsumsi Bahan Bakar Minyak dari tahun ketahun terus meningkat untuk semua negara di dunia, seiring dengan meningkatnya aktivitas industri dan manusia. Konsumsi energi terbesar berasal dari transportasi darat, diperkirakan saat ini lebih dari 500 juta mobil yang beroperasi di dunia. Hal itu juga terjadi di Indonesia, dibuktikan dengan konsumsi energi dari BBM pada tahun 2006 sebesar 58%, gas bumi 17%, batubara 19%, listrik 11%, dan LPG 2% (Wirawan, 2008). Menurut data US Embassy, kebanyakan pertumbuhan kendaraan yang pesat justru terjadi dinegaranegara berkembang. Diperkirakan permintaan untuk kendaraan roda empat meningkat 200% di akhir abad ini. Adanya subsidi BBM di Indonesia akan mempengaruhi pertumbuhan angka kendaraan bermotor dan pola konsumsi yang boros. Dari 58% konsumsi BBM yang berasal dari transporatasi darat sebesar 88% dihabiskan oleh sektor transportasi angkutan jalan dimana 66% diantaranya dikonsumsi oleh mobil pribadi. Ketersediaan BBM akan semakin menipis (minyak bumi Indonesia diperkirakan habis dalam waktu 15-20 tahun) dan penggunaan yang terus meningkat menyebabkan meningkatnya kontribusi terhadap pemanasan global. Oleh karena itu, Indonesia harus berupaya melakukan dan melakasanakan langkah serius dan antisipatif terhadap persoalan tersebut. Dalam upaya mengantisipasi keadaan ini, kebijakan diversifikasi energi adalah suatu hal yang sangat tepat (Anonim, 2006a; Anonim, 2006b). Biodiesel yang merupakan bahan bakar alternatif pengganti bensin, solar, dan minyak tanah merupakan bahan bakar mesin diesel yang berupa ester alkil/alkil asamasam lemak (umumnya metil ester) yang dibuat dari minyak nabati maupun hewani (termasuk ikan) melalui proses esterifikasi dan atau transesterifikasi (Anonim, 2006a; Anonim, 2007). Penelitian pembuatan biodiesel kebanyakan berasal dari bahan baku nabati. Bahan baku yang popular yang sering dijadikan bahan baku biodiesel antara lain seperti minyak biji kelapa sawit, minyak kelapa, dan minyak biji jarak. Akan tetapi akhir-akhir ini sudah ada beberapa penelitian yang memanfaatkan limbah ikan sebagai sumber bahan baku biodiesel seperti minyak ikan salmon (Harned, 2008), minyak ikan Pollak Alaska (Sathivel, 2005), dan minyak ikan patin (Turboman, 2006). Bahan baku biodiesel yang bersumber dari bahan pangan akan mendorong 1
  • 13. terjadinya kompetisi penggunaan. Pemanfaatan minyak limbah ikan untuk dijadikan bahan bakar alternatif biodiesel sebagai pilihan yang tepat, karena tidak akan terjadi kompetisi penggunaan. Hal ini dikarenakan limbah ikan merupakan produk nonpangan yang terus menerus dihasilkan. Industri pengolahan ikan menghasilkan berbagai bagian ikan yang tidak dapat dimanfaatkan untuk konsumsi masyarakat. Bagian ikan, antara lain kepala, jeroan, dan kulit, yang tidak termanfaatkan memiliki potensi lemak. Limbah ikan bisa dimanfaatkan sebagai bahan baku pembutan tepung ikan yang biasanya hasilnya dijual ke perusahaan pembuatan makanan ternak, dan limbah minyak yang dihasilkan dari proses pembuatan tepung ikan di jual ke perusahaan farmasi sebagai bahan baku minyak ber-Omega 3. Pemanfaatan limbah ikan untuk dijadikan tepung ikan dan minyak ikan ber-Omega 3 merupakan langkah yang dipandang sangat menguntungkan, tetapi disisi lain dekomposisi minyak ikan menjadi asam lemak bebas atau FFA (Free Fatty Acid) tidak dapat dihindari. Hal ini akan membuat minyak ikan tidak dapat dikonsumsi oleh tubuh manusia serta buruk bagi kesehatan karena FFA termasuk non edible (tidak dapat dicerna oleh tubuh) (Lele, 2005). Minyak ikan dapat dikonversi menjadi FFA yang non edible sebagai bahan baku potensial untuk biodiesel, maka pemanfaatannya menjadi biodiesel merupakan langkah alternatif penting yang perlu dilakukan. Maraknya isu krisis energi dan pemanasan global semakin mendukung pemanfaatan minyak ikan sebagai bahan bakar biodiesel lebih urgent dari pada dijadikan sebagai produk lainnya. Hal ini semakin diperkuat dengan diundangkannya Peraturan Presiden No. 5 tahun 2006 tentang Kebijakan Energi Nasional serta Instruksi Presiden No. 1 tahun 2006 tentang penyediaan dan pemanfaatan (termasuk pencarian) Energi Alternatif yang terbarukan dan aman bagi lingkungan. Untuk mempercepat proses produksi biodiesel perlu ditambahkan bahan-bahan katalis untuk mempercepat reaksi transesterifikasi. Jenis katalis yang biasa digunakan adalah katalis kimia (NaOH dan KOH), namun perlu dipertimbangkan dampaknya terkait dengan keamanan dan kelestarian lingkungan. Munurut Rahmadi (2008), dari aspek biaya, penggunaan NaOH relatif lebih murah dan reaktif dibandingkan KOH, tetapi NaOH sangat higroskopis serta produk akhirnya berupa limbah yang berdampak pada lingkungan, sedangkan KOH relatif mahal dan kurang reaktif tetapi produk akhirnya dapat dipakai sebagai pupuk. Berdasarkan pertimbangan biaya dan dampak 2
  • 14. terhadap lingkungan, maka diperlukan katalis alternatif pengganti KOH yang lebih murah, ramah lingkungan, dan tersedia di alam. Peranan KOH ini dapat digantikan oleh unsur kalium yang terdapat pada abu ampas tebu (abu bagase). Menurut Soepardi (1983) cit Al-Rozi (2007), abu ampas tebu mengandung kurang lebih 30% kalium. Abu tersebut belum dimanfaatkan samasekali karena merupakan hasil samping pembakaran ampas tebu yang digunakan sebagai bahan bakar pemasakan sari tebu. Abu ampas tebu di Yogyakarta sampai saat ini tersedia melimpah karena merupakan hasil samping pengolahan gula pasir dari pabrik gula Maduksimo. Kebijakan nasional tentang pembentukan desa energi yang dipusatkan di perkampungan nelayan agaknya tidak efektif jika sumber bahan baku diambil dari hasil pertanian seperti jarak, sawit, kelapa serta hasil bumi lainnya. Hal ini dikarenakan terbatasnya lahan, keahlian, dan aktifitas keseharian nelayan yang lebih terfokus pada pemanfaatan sumber daya laut (bukan pemanfaatan sumberdaya lahan pertanian). Oleh karena itu, diperlukan penelitian alternatif untuk mendorong terciptanya kawasan energi nelayan yang berbasis pada bahan baku sumberdaya laut. Penelitian pembuatan biodiesel berbahan baku limbah minyak ikan hasil pengolahan tepung ikan serta jenis limbah hasil perikanan lainnya, diharapkan memberikan manfaat (nilai positif) untuk dapat mendorong terciptanya kawasan energi nelayan yang berbasis pada bahan baku sumberdaya laut lokal. Penelitian ini memanfaatkan sumberdaya laut berupa limbah minyak hasil pengolahan tepung ikan sardin dari PT Maya Food Industri Pekalongan dan limbah hasil samping pengolahan gula pasir dari pabrik gula Maduksimo berupa abu ampas tebu untuk dijadikan biodiesel. Diharapkan di masa yang akan datang, pemanfaatannya selain dapat meningkatkan nilai ekonomis limbah (value added), juga dapat memenuhi kebutuhan energi dalam negeri yang ramah lingkungan. B. Tujuan 1. Mengetahui cara pembuatan biodiesel berbahan baku minyak ikan limbah hasil pengolahan ikan sardin menggunakan katalis abu ampas tebu. 2. Mengetahui kadar asam lemak bebas limbah minyak tepung ikan sardin, kadar kalium abu ampas tebu, serta komposisi kimia biodiesel. 3. Mengkaji rasio konversi biodiesel (rendemen) kandidat biodiesel dari limbah minyak tepung aikan sardin. 3
  • 15. 4. Mengetahui karakteristik biodiesel minyak tepung ikan sardin yang dihasilkan dengan merujuk pada SNI biodiesel No. 04-7182-2006. C. Manfaat Hasil penelitian diharapkan dapat digunakan untuk menambah informasi teknologi alternatif pembuatan biodiesel dari limbah hasil perikanan guna meningkatkan nilai ekonomi limbah industri perikanan sumber energi alternatif untuk usaha masyarakat, serta sumber penghidupan masyarakat pedesaan. 4
  • 16. II. TINJAUAN RUJUKAN A. Ikan Sardin (Sardinella sp.) Menurut FAO (1994) cit Dwiponggo (1982), sesuai dengan “Species Identification Sheet for Fishery Purpose”, klasifikasi sardin adalah sebagai berikut Phylum : Chordata Subphylum: Vertebrata Class : Pisces Subclass : Malacopterygii Family : Clupeidae Genus : Sardinella Spesies : Sardinella sp. Genus Sardinella dikelompokkan menjadi dua sub genus yaitu: Amblygaster BLEEKER dan sub genus Sardinella CV (Dwiponggo, 1982). Dari sub genus Amblygaster diantaranya yang umum terdapat adalah Sardinella sirm (WALBAUM), Clupea sirm (WALBAUM), Sardinella lelogaster (BLEEKER) dengan tanda-tanda umum yaitu bentuk badan bulat memanjang, bagian perut agak membulat dengan sisik duri yang agak tumpul dan tidak menonjol. Mulai dari bagian atas penutup insang sampai di batang ekor terdapat sebaris 10-20 bulatan-bulatan kecil dengan warna gelap, warna sirip ekor kehitam-hitaman, ujung moncong 17-18 cm. Sedangkan dari sub genus Sardinella longiceps CV, yang sinonimnya sesuai W.L.Y. Chan (1965) cit Dwiponggo (1982) adalah Sardinella neohowii CV dan Clupea longiceps mempunyai tanda-tanda umum yaitu : bentuk badan bulat memanjang, perut agak menipis dengan sisik-sisik duri yang menonjol dan tajam, sirip ekor bercabang, warna badan bagian atas biru kehijauan, sedangkan bagian bawah putih keperakan. Terdapat noda samarsamar di bawah pangkal sirip punggung bagian depan, moncong agak hitam dan panjang ikan dapat mencapai 23 cm. Diantara sub genus Sardinella terdapat pula S. aurita yang hampir menyerupai S. longiceps. Perbedaan yang mencolok adalah jumlah gillraker yang banyak (Dwiponggo, 1982). Menurut Hadiwiyoto (1993), sardin merupakan ikan pelagis yang berukuran kecil. Jenis-jenis ikan sardin yang ada di Indonesia antara lain sardin (Sardinella sirm), lemuru (Sardinella longiceps) dan tembang (Sardinella fimbriata). Secara umum 5
  • 17. sardine memiliki ukuran tubuh yang relative kecil, warna punggung biru kehijauan dan bagian bawah tubuhnya berwarna putih perak. Panjang ikan sardine bisa mencapai 1530 cm dengan sirip punggung terletak di tengah-tengah. Rahang bawah lebih panjang daripada rahang atas. Bantuk badannya silindris dan mempunyai sisik yang relatif besar. Ikan sardine termasuk ikan berlemak (fatty fish). Lemak ini merupakan salah satu komponen penyebab rasa enak. Kadar lemak tertinggi jenis ini adalah 10 – 15 % yang cocok untuk diolah menjadi ikan kaleng (Moeljanto, 1992). Komposisi kimia ikan sardine menunjukkan susunan sebagai berikut: kandungan air 77,92%, protein 19,44%, dan lemak 0,72% (Burhanuddin, 1984). Sedangkan menurut Notevarp (1951) cit Burhanuddin. (1984), kandungan protein sardine tidak banyak bervariasi yaitu antara 15-18%. B. Tepung Ikan Ikan sebagai sumber protein hewani harus dimanfaatkan secara optimal untuk bahan makanan bergizi tinggi. Selama ikan dan produk perikanann lainnya masih bisa dimakan, maka tidaklah layak bila ikan dijadikan tepung ikan. Sisa olahan (berupa kepala atau isi perut ikan yang merupakan sisa pengalengan ikan atau pengolahan fillet ikan), atau bila hasil penangkapan pada musim ikan sangat banyak sehingga orang tidak mampu mengolahnya lagi, diolah menjadi tepung ikan (Moeljanto, 1992). Proses pengolahan tepung ikan sangat sederhana (PT Maya Food Industri Pekalongan) yaitu dengan merebus ikan dengan air mendidih, kemudian pengepresan yang hasilnya dipanaskan dengan uap, dan penggilingan untuk mengecilkan ukuran sebagai tepung ikan. Proses produksi tepung ikan menghasilkan limbah berupa air yang mengandung lemak atau minyak, pengolahan limbah tepung ikan dapat dilakukan dengan memisahkan air dengan minyak ikan. Minyak ikan kemudian dapat dimanfaatkan kembali. Pemanfaatan minyak ikan selama ini untuk dijadikan suplemen makanan karena mengandung senyawa omega 3. Namun demikian, minyak ikan dapat mengalami dekomposisi menjadi asam lemak bebas (Free Fatty Acid, FFA), yang tidak dapat dikonsumsi manusia (tidak dapat dicerna oleh tubuh) (Lele, 2005). Oleh karena itu, minyak ikan harus disimpan secara baik dan memerlukan pelakukan khusus agar 6
  • 18. dapat digunakan secara aman. Pemanfaatan minyak ikan dapat juga dijadikan sebagai bahan baku biodiesel. C. Minyak Ikan Lemak dari laut bersifat polyunsaturated, yaitu jenis lemak penghasil asam lemak omega 3. Asam lemak ini biasa terdapat dalam daging ikan seperti sarden, salmon, makerel dan swordfish (Anonim, 2001). Menurut Tjioe (2007), bila dibandingkan dengan minyak nabati dan minyak hewani lainnya, minyak ikan mengandung asam lemak esensial atau asam lemak tidak jenuh dalam jumlah besar. Kadar omega 3 minyak ikan sardin bervariasi antara 4,48% - 11,80%. Kandungan omega 3, tergantung jenis, umur tersedianya makanan dan daerah penangkapan. Minyak ikan mempunyai 18 rantai asam lemak, serta memiliki lima atau enam ikatan rangkap. Disamping itu, kandungan asam lemak esensialnya tinggi, yang meliputi asam linoleat, linolenat dan arakhidonat. Hal ini berarti asam lemak esensial itu disebut asam lemak tak jenuh, banyak mengandung ikatan rangkap (85%), sedangkan 15% sisanya terdiri atas asam lemak yang jenuh. Menurut Iskandar (2009), struktur minyak ikan yang begitu kaya akan ikatan ganda membuatnya mudah teroksidasi dan rusak (berbau tengik) sehingga kurang cocok untuk disimpan di rak dapur dalam waktu lama. Minyak ikan yang tidak mengalami proses pemurnian juga banyak mengandung zat-zat beracun seperti dioksin dan merkuri. D. Abu Ampas Tebu Limbah pabrik gula terdiri dari dua macam, yaitu limbah padat dan limbah cair. Limbah padat terdiri dari blotong dan bagase atau ampas tebu (35%). Limbah cair berasal dari tetes dan air bekas cucian (Mubyarto dan Daryanti, 1991 cit Al-Rozi, 2007). Bagase terdiri dari sisa batang tebu yang telah diperas niranya, sedangkan abu bagase adalah sisa pembakaran ampas tebu yang digunakan sebagai bahan pemasakan sari tebu (Gambar 2). Ketersediaan ampas tebu apabila dikaitkan dengan produksi gula adalah sekitar empat kali jumlah yang dihasilkan (BBIP, 1988 cit Silvianty, 1994 cit Al-Rozi, 2007). Apabila produksi gula pertahun sekitar 2 juta ton, maka produksi ampas tebu pertahun sekitar 8 juta ton. Suprijadi (1987) cit Al-Rozi (2007), mengatakan bahwa pabrik gula di Indonesia mengolah lebih dari 20 juta ton tebu 7
  • 19. pertahun, sehingga jumlah ampas tebu pertahun mencapai 30% dari 20 juta ton tebu atau lebih dari 6 juta ton. a. Ampas Tebu b. Abu Ampas Tebu Gambar 2. Ampas tebu (a) dan abu ampas tebu (b) Komponen utama bagase antara lain serat kasar, air, dan sejumlah kecil padatan terlarut. Kompisisi kimia tebu sangat bervariasi terutama dipengaruhi oleh varietas, tingkat kematangan, dan cara pemanenan. Komposisi kimia bagase (ampas tebu) disajikan pada Tabel 1. Menurut Soepardi (1976) cit Al-Rozi (2007), abu ampas tebu mengandung kurang lebih 30% kalium. Abu tersebut belum dimanfaatkan sama sekali karena merupakan hasil samping pembakaran ampas tebu. Tabel 1. Komposisi kimia ampas tebu No. Komponen Berat Kering (%) 1. Protein 3,1 2. Lemak 1,5 3. Serat kasar 34,9 4. Ekstrak Bebas Nitrogen 51,7 5. Abu 8,8 Sumber : Harjo (1989) cit Al-Rozi (2007). E. Biodiesel 1. Pengertian Biodiesel Biodiesel mengacu pada non-petroleum yang berdasarkan pada bahan bakar diesel, mengandung rantai alkil pendek (metil atau etil) ester, yang terbentuk melalui proses transesterifikasi minyak nabati atau lemak hewan yang dapat dipergunakan sebagai pengganti minyak murni untuk kendaraan (Anonim, 2008a). Biodiesel memiliki kelebihan dari biosolar (BBM), yaitu: (1) merupakan bahan bakar yang dapat terurai oleh lingkungan (Bio-degradable) karena biodiesel merupakan hasil pembakaran yang sempurna sehingga dapat mengurangi emisi karbon dioksida, 8
  • 20. bebas sulfur, mengurangi partikulat berbahaya, mengurangi asap hitam, meminimalisair emisi gas rumah kaca; (2) dari segi sumber perolehannya, biodiesel merupakan energi yang dapat terbaharukan, sehingga mengurangi ketergantungan terhadap bahan bakar fosil; (3) dari segi rekayasa mesin, biodiesel tidak memerlukan modifikasi mesin dalam penggunaannya karena memiliki viskositas yang lebih tinggi dari solar. Hal ini menjadikan biodiesel berfungsi sebagai pelumas dan mampu membersihkan injector, serta membuat mesin lebih awet dan mempertinggi efisiensi mesin. Angka setan (cetane number) dan flash point yang tinggi mengakibatkan energi yang dihasilkan biodiesel tidak jauh berbeda dengan solar (biodiesel :128.000 BTU, bisolar biasa: 130.000 BTU), sehingga tenaga yang dihasilkan dari pembakarannya relatif sama; (4) dari segi harga, untuk saat ini biodiesel lebih murah dari solar (Anonim, 2006a; Anonim, 2007). 2. Biodiesel Minyak ikan Bahan baku pembuatan biodiesel dapat diperoleh dari minyak / lemak nabati maupun hewani. Meskipun sekarang yang paling umum digunakan adalah minyak nabati, tetapi akhir-akhir ini sudah ada penelitian pemanfaatan minyak hewani sebagai bahan baku biodiesel, seperti dari minyak limbah ikan. Menurut Destianna (2007), minyak hewani dan biodiesel tergolong ke dalam golongan besar senyawa-senyawa organik yang sama, yaitu kelas ester asam-asam lemak. Akan tetapi, minyak hewani adalah triester asam-asam lemak dengan gliserol, atau trigliserida. Biodiesel adalah monoester asam-asam lemak dengan metanol. Perbedaan wujud molekuler ini memiliki beberapa konsekuensi penting dalam penilaian keduanya sebagai kandidat bahan bakar mesin diesel, yaitu: (1). Minyak hewani (trigliserida) memiliki berat molekul besar dibandingkan biodiesel (metil ester), akibatnya trigliserida relatif mudah mengalami perengkahan (cracking) menjadi aneka molekul kecil serta dapat terpanaskan tanpa kontak dengan udara (oksigen). (2). Minyak hewani memiliki kekentalan (viskositas) lebih tinggi dari minyak diesel/solar maupun biodiesel, sehingga pompa penginjeksi bahan bakar di dalam mesin diesel tak mampu menghasilkan pengkabutan (atomization) yang baik ketika minyak hewani disemprotkan ke dalam kamar pembakaran. 9
  • 21. (3). Struktur molekul minyak hewani lebih bercabang dibanding asam-asam lemak metil ester, akibatnya angka setana minyak hewani lebih rendah daripada angka setana metil ester. Angka setana adalah tolok ukur kemudahan menyala/terbakar suatu bahan bakar di dalam mesin diesel. Menurut Tjioe (2007), bagian tubuh ikan mengandung minyak dengan komposisi omega 3 berbeda-beda. Bagian kepala ±12%, tubuh bagian dada ±28%, daging permukaan ±31,2% dan isi rongga perut ±42,1%. Minyak ikan mengandung ±25% asam lemak jenuh dan 75% asam lemak tidak jenuh. Pada umumnya, lemak ikan terdiri dari berbagai jenis trigliserida, suatu molekul yang tersusun dari gliserol dan asam lemak. Kandungan minyak dalam ikan ditentukan oleh beberapa faktor, yaitu jenis ikan, jenis kelamin, umur (tingkat kematangan), musim, siklus bertelur, dan letak geografis perairan habitat hidup. Menurut Anonim (2006c), terdapat 3 jenis asam lemak pada ikan yaitu: (1) asam lemak tidak jenuh tidak ada ikatan rangkap pada rantai karbonnya seperti palmitat; (2) asam lemak tidak jenuh tunggal ada satu ikatan rangkap pada rantai karbonny seperti Oleat; (3) asam lemak tidak jenuh ganda mempunyai lebih dari satu ikatan rangkap pada rantai karbonnya seperti asam linoleat, linolenat, eikosapentanoat (EPA), dan dekosaheksanoat (DHA). Minyak ikan dapat dijadikan biodiesel, bahan-bahan mentah pembuatan biodiesel adalah: (1) trigliserida, yaitu komponen utama aneka lemak dan minyaklemak, dan (2) asam-asam lemak, yaitu produk samping industri pemulusan (refining) lemak dan minyak-lemak (Mittelbach, 2004). a. Trigliserida Trigliserida adalah triester dari gliserol dengan asam-asam lemak, yaitu asam-asam karboksilat beratom karbon 6 - 30. Trigliserida banyak dikandung dalam minyak dan lemak, merupakan komponen terbesar penyusun minyak hewani. Selain trigliserida, juga terdapat monogliserida dan digliserida. Struktur molekul ketiga jenis gliserida tersebut seperti terlihat pada Gambar 3. Gambar 3. Struktur molekul mon-di-dan tri-gliserida (Destianna ,2007) 10
  • 22. b. Asam lemak bebas Asam lemak bebas adalah asam lemak yang terpisahkan dari trigliserida, digliserida, monogliserida, dan gliserin bebas (Cambar 4). Hal ini dapat disebabkan oleh pemanasan dan terdapatnya air sehingga terjadi proses hidrolisis. Oksidasi juga dapat meningkatkan kadar asam lemak bebas dalam minyak hewani. Gambar 4. Struktur molekul asam lemak bebas (Destianna ,2007) Dalam proses konversi trigliserida menjadi alkil esternya melalui reaksi transesterifikasi dengan katalis basa, asam lemak bebas harus dipisahkan atau dikonversi menjadi alkil ester terlebih dahulu karena asam lemak bebas akan mengkonsumsi katalis. Kandungan asam lemak bebas dalam biodiesel akan mengakibatkan terbentuknya suasana asam yang dapat menimbulkan korosi pada peralatan injeksi bahan bakar, membuat filter tersumbat dan terjadi sedimentasi pada injektor (Anonim, 2006d). Pemisahan atau konversi asam lemak bebas ini dinamakan tahap esterifikasi. F. Proses Pengolahan Biodiesel 1. Esterifikasi Esterifikasi adalah tahap konversi asam lemak bebas menjadi este menggunakan alkohol yang sering ditambahkan katalis. Katalis yang cocok adalah zat berkarakter asam kuat seperti asam sulfat, asam sulfonat organik atau resin (Soerawidjaja, 2006). Menurut Destianna (2007), untuk mendorong agar reaksi dapat berlangsung sempurna pada temperatur rendah (misalnya paling tinggi 120° C), reaktan metanol harus ditambahkan dalam jumlah besar (biasanya lebih besar dari 10 kali nisbah stoikhiometrik), serta air produk ikutan reaksi harus dipisahkan dari fasa reaksi, yaitu fasa minyak. Melalui kombinasi yang tepat dari kondisi 11
  • 23. reaksi dan metode pemisahan/pembuangan air, konversi sempurna asam lemak ke ester metil dapat terbentuk dalam waktu 1 sampai beberapa jam. Reaksi esterifikasi dapat dilihat pada Gambar 5. Gambar 5. Reaksi esterifikasi dari asam lemak menjadi metil ester (Destianna ,2007) Esterifikasi biasa dilakukan untuk menghasilkan biodiesel dari minyak berkadar asam lemak bebas tinggi (berangka-asam ≥ 5 mg-KOH/g). Pada tahap ini, asam lemak bebas akan dikonversikan menjadi metil ester. Tahap esterifikasi biasa diikuti dengan tahap transesterfikasi. Namun sebelum produk esterifikasi diumpankan ke tahap transesterifikasi, air dan bagian terbesar katalis asam yang dikandungnya harus dipisahkan terlebih dahulu. 2. Transesterifikasi a. Reaksi transesterifikasi Reaksi Transesterifikasi menurut Destianna (2007), transesterifikasi (biasa disebut dengan alkoholisis) adalah tahap konversi dari trigliserida (minyak hewani) menjadi alkil ester menggunakan alkohol, dan menghasilkan produk samping yaitu gliserol. Alkohol (monohidrik) yang menjadi kandidat sumber/pemasok gugus alkil yang umum digunakan adalah methanol, karena reaktifitasnya paling tinggi (sehingga reaksi disebut metanolisis) serta harganya relative murah. Reaksi transesterifikasi trigliserida menjadi metil ester dapat dilihat pada Gambar 6. Gambar 6. Reaksi Transesterifikasi dari Trigliserida menjadi ester metil asam-asam lemak (Destianna ,2007) Transesterifikasi juga menggunakan katalis dalam reaksinya untuk mempercepat reaksi dengan konversi hasil yang maksimum (Mittlebatch, 2004). 12
  • 24. Katalis yang biasa digunakan pada reaksi transesterifikasi adalah katalis basa, dengan reaksi yang berlangsung dalam 3 tahap (Gambar 7). Gambar 7. Tahapan reaksi transesterifikasi (Destianna ,2007) Produk yang diinginkan dari reaksi transesterifikasi adalah ester metil asamasam lemak. Cara-cara yang ditempuh untuk memperbesar reaksi kesetimbangan lebih ke arah produk yaitu: (a). Menambahkan metanol berlebih ke dalam reaksi. (b). Memisahkan gliserol. (c). Menurunkan temperatur reaksi (transesterifikasi merupakan reaksi eksoterm). b. Faktor penentu proses transesterifikasi Reaksi transesterifikasi pembuatan biodiesel selalu mengharapkan didapatkan produk biodiesel dengan jumlah maksimum. Menurut Freedman (1984), kondisi reaksi yang mempengaruhi konversi serta perolehan biodiesel melalui transesterifikasi adalah sebagai berikut. 1). Pengaruh air dan asam lemak bebas Minyak hewani yang akan ditransesterifikasi harus memiliki angka asam yang lebih kecil dari 1. Banyak peneliti yang menyarankan agar kandungan asam lemak bebas lebih kecil dari 0,5%. Selain itu, semua bahan yang akan digunakan harus bebas dari air. Karena air akan bereaksi dengan katalis, sehingga jumlah katalis menjadi berkurang. Katalis harus terhindar dari kontak dengan udara agar tidak mengalami reaksi dengan uap air dan karbon dioksida. 2). Pengaruh perbandingan molar alkohol dengan bahan mentah Secara stoikiometri, jumlah alkohol yang dibutuhkan untuk reaksi adalah 3 mol untuk setiap 1 mol trigliserida untuk memperoleh 3 mol alkil ester dan 1 mol gliserol. Perbandingan alkohol dengan minyak hewani 4,8:1 dapat menghasilkan konversi 98% (Bradshaw and Meuly, 1944). Secara umum ditunjukkan bahwa 13
  • 25. semakin banyak jumlah alkohol yang digunakan, maka konversi yang diperoleh juga akan semakin bertambah. Pada rasio molar 6:1, setelah 1 jam konversi yang dihasilkan adalah 98-99%, sedangkan pada rasio molar 3:1 adalah 74-89%. Nilai perbandingan yang terbaik adalah 6:1 karena dapat memberikan konversi yang maksimum Pada rasio 6:1, metanol akan memberikan perolehan ester yang tertinggi dibandingkan dengan menggunakan etanol atau butanol. 3). Pengaruh jenis katalis Katalis basa mempercepat reaksi transesterifikasi lebih tinggi dibandingkan dengan katalis asam. Katalis basa yang paling populer untuk reaksi transesterifikasi adalah natrium hidroksida (NaOH), kalium hidroksida (KOH), natrium metoksida (NaOCH ), dan kalium metoksida (KOCH ). 3 3 4). Metanolisis minyak Perolehan metil ester akan lebih tinggi jika menggunakan minyak refined. Namun apabila produk metil ester akan digunakan sebagai bahan bakar mesin diesel, cukup digunakan bahan baku berupa minyak yang telah dimurnikan. 5). Pengaruh temperatur Reaksi transesterifikasi berlangsung pada temperatur 30 - 65° C (titik didih metanol sekitar 65° C). Semakin tinggi temperatur, konversi yang diperoleh akan semakin tinggi untuk waktu yang lebih singkat. Untuk waktu 6 menit, pada o o temperatur 60 C konversi telah mencapai 94% sedangkan pada 45 C yaitu 87% o dan pada 32 C yaitu 64%. Temperatur yang rendah akan menghasilkan konversi yang lebih tinggi namun dengan waktu reaksi yang lebih lama. G. Syarat Mutu Biodiesel Standar spesifikasi biodiesel merupakan salah satu prasyarat utama yang menentukan keberhasilan pemanfaatan biodiesel secara komersial di masyarakat. Ada dua standar biodiesel yaitu ASTM-D 6751 yang diterapkan Amerika dan EN14214 di Eropa. Standar di negara lainnya biasa mengacu pada standar ASTM-D 6751 dan EN14214 dengan beberapa penyesuaian termasuk Indonesia sudah ada Standar Nasional Indonesia Biodiesel yaitu, SNI 04-7182-2006 (Tabel 2.) 14
  • 26. Tabel 2. Persyaratan kualitas biodiesel menurut SNI-04-7182-2006. No 1 Parameter dan satuannya Batas nilai 850 – 890 Metode uji ASTM D 1298 2,3 – 6,0 ASTM D 445 min. 51 min. 100 ASTM D 613 ASTM D 93 maks. 18 ASTM D 2500 Korosi bilah tembaga ( 3 jam, 50 C) Residu karbon, %-berat, - dalam contoh asli - dalam 10 % ampas distilasi maks. no. 3 ASTM D 130 Air dan sedimen, %-vol. maks. 0,05 maks. 360 ASTM D 2709 ASTM D 1160 maks. 0,02 maks. 100 maks. 10 maks. 0,8 maks. 0,02 maks. 0,24 min. 96,5 ASTM D 874 ASTM D 5453 AOCS Ca 12-55 AOCS Cd 3-63 AOCS Ca 14-56 AOCS Ca 14-56 o 3 Massa jenis pada 40 C, kg/m o 2 2 Viskositas kinematik pada 40 C, mm /s (cSt) Angka setana 3 4 o Titik nyala (mangkok tertutup), C o 5 Titik kabut, C o 6 7 8 9 ASTM D 4530 maks. 0,05 (maks 0,03) o 10 11 12 13 14 15 16 Temperatur distilasi 90 %, C Abu tersulfatkan, %-berat Belerang, ppm-b (mg/kg) Fosfor, ppm-b (mg/kg) Angka asam, mg-KOH/g Gliserol bebas, %-berat Gliserol total, %-berat Kadar ester alkil, %-berat 17 Angka iodium, g-I /(100 g) maks. 115 dihitung AOCS Cd 1-25 18 Uji Halphen negatif AOCS Cb 1-25 2 *) Sumber:Wirawan, 2008. Catatan : Kadar ester (%-massa) = 100 (As – Aa - 4,57 Gttl) As Dengan pengertian: As = angka penyabunan yang ditentukan dengan metode AOCS Cd 3-25, mg KOH/g biodiesel Aa = angka asam yang ditentukan dengan metode AOCS Cd 3-63 atau ASTM D-664, mg KOH/g biodiesel Gttl = Kadar Gliserol total dalam biodiesel yang ditentukan dengan metode Ca 14-56, %-massa Menurut Knothe, (2000), metode 1 H NMR (Proton Nuclear Magnetic Resonance) dapat juga digunakan untuk menentukan keberhasilan dalam pembuatan biodiesel, metode ini menghitung konversi metil ester yang terkandung dalam biodiesel dengan melihat kromatogram yang terbentuk pada daerah 3,6-3,8 ppm dan puncak trigliserida terdapat pada daerah 5,0-5,5 ppm. Dengan menggunakan rumus : CME = 100 × 5 × IME , (5 × IME ) + (9 × ITAG ) 15
  • 27. dimana CME = konversi metal ester, %, IME = nilai integrasi puncak metal ester, %, ITAG = nilai integrasi puncak triasilgliserol, %. Konversi meteil ester menandakan kandungan dari metil ester dalam biodisel yang diproduksi sehingga jika konversi yang dihasilkan tinggi maka kandungan metil ester dalam produk biodiesel juga tinggi. 16
  • 28. III. BAHAN DAN METODE PENELITIAN A. Bahan dan Alat Bahan baku utama yang dipakai adalah limbah ikan hasil pengolahan tepung ikan PT. Maya Food Industries Pekalongan Jawa Tengah. Bahan kimia yang dipakai yaitu: Metanol (CH OH) 96% (CV.Chem-Mix Pratama), Aquades (CV.Chem-Mix Pratama), 3 Abu ampas tebu (Madukismo,Yogyakarta). Peralatan yang digunakan yaitu: Hot Plate Magnetic Stirer (Barenstead Thermolyne, Lab.TI UGM), labu reaksi, gelas ukur, corong pemisah, corong kaca, oven pengabuan (Barenstead Thermolyne,Lab.Nutrisi UGM), wadah plastik, sendok pengaduk, saringan kawat, dan wadah kaca. B. Rancangan Penelitian Penelitian ini menggunakan analisa kualitas terhadap proses pembuatan biodiesel dengan esterifikasi dan tanpa esterifikasi serta transesterifikasi satu tahap dan dua tahap, seperti yang terlihat pada table 3. Tabel 3. Rancangan perlakuan Proses Reaksi Konsentrasi No Abu Ampas Tebu Tanpa Esterifikasi Esterifikasi Transesterifikasi Transesterifikasi Transesterifikasi Transesterifikasi Tahap I (K1) Tahap II (K2) Tahap I (T1) Tahap II(T2) 1. 2% (A) AK1 AK2 AT1 AT2 2. 4% (B) BK1 BK2 BT1 BT2 3. 6% (C) CK1 CK2 CT1 CT2 Keberhasilan proses ditentukan oleh kandungan metil ester hasil proses pembuatan biodiesel yang dianalisis dengan menggunakan 1HNMR. Sedangkan untuk mengetahui kompoisi biodiesel di analisis dengan GC-MS yang diperoleh dari hasil yang terbaik dari analisa 1HNMR. Kualitas biodiesel kemudian di uji dengan metode ASTM D 6751. C. Prosedur Penelitian 1. Preparasi dan Analisis Abu Ampas Tebu a). Abu ampas tebu dikeringkan dibawah sinar matahari kemudian disaring dengan ayakan mesh 100. 17
  • 29. b). Selanjutnya abu diabukan kembali (reashing) sampai temperatur 800 0C selama 12 jam untuk menghilangkan sisa-sisa karbon. c). Untuk mengetahui kadar kalium abu ampas tebu, 0.5 g abu dilarutkan dalam sejumlah volume air raja (aquad ragia) selanjutnya dipanaskan hingga volume menjadi sepertiganya. Larutan dicukupkan volumenya sampai 50 ml dalam labu takar dengan akuades. Larutan yang terbentuk ditambah 5 ml larutan cesium 10.000 ppm, dicukupkan sampai 100 ml dalam labu takar dengan akuades. Dibuat seri larutan standar kalium 0.0; 0.2; 0.4; 0.8; dan 1.0 ppm. Pada masing-masing larutan standar ditambahkan larutan cesium 10.000 ppm, demikian pula untuk larutan blangko, Selanjutnya larutan yang telah dipersiapkan dan blangko dimasukan kedalam AAS. Dari hasil analisis dengan AAS dapat ditentukan kadar kalium dalam abu tersebut dengan membaca angka pada alat. 2. Preparasi dan Analisis Minyak Limbah Tepung Ikan Sardin a). Minyak limbah ikan sardine dipanaskan pada suhu 100 0C untuk menghilangkan sisa air yang masih terkandung didalamnya selama setengah jam. b). Untuk mengetahui kadar asam lemak bebas (FFA) minyak limbah ikan sardin, 1020 g minyak ditimbang dalam Erlenmeyer 200 ml. ditambahkan 50 ml alcohol netral 95 %, kemudian dipanaskan selama 10 menit dalam penangas air sambil diaduk. Larutan ini kemudian dititar dengan KOH 0.1 N dengan indikator larutan phenolphthalein 1% didalam alkohol, sampai tepat terlihat warna merah jambu. Setelah itu dihitung jumlah miligram KOH yang digunakan untuk menetralkan asam lemak bebas dalam 1 gram minyak. Dengan menggunakan rumus: KadarAsamLemakBebas = % × BobotMolekulAsmLemak (282) × mlKOHxNKOH 10 xBobotContoh( g ) 3. Proses Pembuatan Biodiesel dengan Katalis Abu Ampas Tebu a. Pretreatment, dilakukan dengan cara memanaskan minyak ikan pada suhu 100oC sambil diaduk. Setelah uap air sudah hamper hilang tingkatkan suhunya menjadi 130 o C selama 20 menit. Kemudian disaring untuk memisahkan dengan kotoran setelah itu dinginkan. b. Pembuatan larutan metoksida, menyiapkan kalium metoksida (K+ CH3O-), dengan cara sebagai berikut: (1) Siapkan methanol sebanyak 22% (b/b) dari minyak ikan, (2) Menimbang abu ampas tebu sebanayak 2%, 4%, 6% dari berat minyak, (3) Membuat 18
  • 30. larutan kalium metoksida dengan cara mencampur abu ampas tebu dengan methanol sampai tercampur sempurna dengan cara digojok menggunakan gelas reaksi atau yang lain sehingga larutan dapat tercampur dengan rata dan membentuk kalium metoksida (K+CH3O-), selama setengah jam, (4) Kemudian disaring, tambahkan methanol yang telah menguap sebanyak volume untuk mencapai 22% volume methanol terhadap minyak ikan. c. Esterifikasi, proses esterifikasi dilakukan dengan melakukan penambahan minyak ikan dengan asam sulfat dan methanol (asam sulfat=1% dari berat minyak; methanol=22%) pada suhu 60o C selama 30 menit. d. Transesterifikasi, proses transesterifikasi dilakukan dengan melakukan reaksi antara minyak ikan dengan larutan kalium methoksida sesuai dengan perlakauan diatas yang direaksikan dengan menggunakan suhu 60o C selama 1 jam. Baik reaksi esterifikasi maupun trasesterifikasi dilakukan setelah suhu minyak mencapai 60o C, dengan menggunakan pengaduk untuk skala laboratorium digunakan magnetic stirrer. e. Settling, proses settling (pemisahan) dilakukan untuk memisahkan antara biodiesel dan gliserol yang dihasilkan, lama settling sangat relatif tergantung pada terlihatnya pemisahan yang jelas antara kedua larutan yang polar dan non polar (biodiesel diatas dan gliserol kasar dibawah serta sabun diantara keduanya) biasanya kurang lebih 1 jam atau seharian dengan menggunakan corong pemisah. f. Pencucian, proses pencucian dengan akuades dilakukan dengan memasukan air kedalam biodiesel yang ada dicorong pemisah secukupnya (10% dari berat biodiesel) dengan maksud untuk menghilangkan sisa dari gliserol dan sabun yang masih terikut setelah proses pemisahan. Pencucuian ini dilakukan kurang lebih tiga kali. g. Pengeringan, proses pengeringan dengan memanaskan biodiesel hasil pencucian untuk menghilangkan air sisa pencucian dengan suhu 130o C selama 10 menit sehingga kandungan air dalam biodiesel menjadi 0%. 4. Parameter a. Kadar Kalium Abu Ampas Tebu Dianalisis dengan metode AAS-Flame. b. Kadar Asam Lemak Bebas dalam Minyak Limbah Tepung Ikan Sardin Dianalisis dengan metode Titrasi. 19
  • 31. c. Persentase Konversi Biodiesel Dianalisis dengan metode 1H NMR. d. Komposisi Biodiesel Dianalisis dengan metode GC-MS. e. Specific Gravity Dianalisis dengan metode ASTM D 1296. f. Viscosity kinematic Dianalisis dengan metode ASTM D 445. g. Flash Point Dianalisis dengan metode ASTM D 93. h. Pour Point Dianalisis dengan metode ASTM D 97. i. Water Content Dianalisis dengan metode ASTM D 95. j. Conradson Carbon Residue Dianalisis dengan metode ASTM D 189. 5. Bagan Alir Penelitian Preparasi abu ampas tebu Preparasi limbah minyak tepung ikan sardin Pretretment Pembuatan larutan metoksida Esterifikasi Transesterifikasi Settling Pencucian Pengeringan Analisa - Konversi metode 1HNMR - Komposisi metode GC-MS - Kualitas metode ASTMD6571 Gambar 8. Bagan Alir Penelitian Pembuatan Biodiesel Minyak Limbah Tepung sardin 20
  • 32. IV. HASIL DAN PEMBAHASAN A. Analisis Kadar Kalium Abu Ampas Tebu Abu ampas tebu yang digunakan dalam penelitian berasal dari hasil pembakaran pemasakan sari tebu di Pabrik Madukismo Yogyakarta. Menurut Soepardi (1976) cit Al-Rozi (2007), abu ampas tebu memiliki kandungan kalium ± 30%, pada penelitian ini dilakukan analisis abu ampas tebu menggunakan metode AAS-Flame guna mengetahui kandungan kalium. Berdasarkan hasil analisis, ternyata kandungan kalium abu ampas tebu adalah sebesar 0,71% (b/b). Kandungan kalium abu ampas tebu lebih besar dibandingkan kandungan kalium abu tandan kosong (29,82%) (Yoeswono, 2007). Laporan hasil uji kadar kalium dalam abu ampas tebu dapat dilihat pada Lampiran 2. B. Analisis Asam Lemak Bebas Minyak Limbah Tepung Ikan Sardin Minyak limbah tepung ikan sardin memiliki warna hitam pekat dan bau yang khas (amis). Menurut Ketaren (1986), warna hitam pada minyak disebabkan proses oksidasi terhadap tokoferol yang terjadi selama proses pengolahan dan penyimpanan. Berdasarkan hasil analisis, terlihat bahwa kandungan asam lemak bebas limbah minyak tepung ikan sardin sebesar 5,17%. Hasilnya lebih besar dibandingkan dengan kandungan asam lemak bebas minyak jelantah yaitu sebesar 0,25% (Wijaya, 2007). Angka 5,17% menunjukan bahwa kualitas minyak limbah tepung ikan sardin sangat berbahaya dijadikan konsumsi langsung rumah tangga. Menurut Ketaren (1986), kadar asam lemak bebas lebih besar dari 0,2% dalam bahan pangan dapat meracuni tubuh. Karakteristik penting dari minyak yang perlu diketahui untuk pembuatan biodiesel adalah FFA (Free Fatty Acid) atau ALB (Asam Lemak Bebas). Asam lemak bebas ini merupakan asam lemak yang terpisahkan dari trigliserida, digliserida, monogliserida, dan gliserin bebas karena proses hidrolisis. Kandungan asam lemak bebas dalam biodiesel akan mengakibatkan korosi pada alat pembakaran, juga dalam proses transesterifikasi asam lemak bebas akan mengkonsumsi katalis sehingga perlu dilakukan proses esterifikasi terlebihdahulu untuk merubah asam lemak bebas menjadi alkil ester. Laporan hasil uji kandungan asam lemak bebas minyak limbah tepung ikan sardin dapat dilihat pada Lampiran 3. 21
  • 33. C. Pengaruh Katalis dalam Reaksi Esterifikasi dan Transesterifikasi terhadap Konversi Biodiesel 1. Reaksi Esterifikasi Keberhasilan pembuatan biodiesel didasarkan pada hasil konversi metil ester yang dianalisis dengan spektra 1H-NMR menggunakan alat spektrometer resonansi magnetik inti proton (Proton Nuclear Magnetic Resonance = 1H NMR). Esterifikasi penting dalam pembuatan biodiesel. Pada penelitian ini, digunakan proses reaksi tanpa esterifikasi dan esterifikasi pada dua tahap transesterifikasi. Data konversi biodiesel limbah minyak tepung ikan sardin seperti yang terlihat pada Tabel 3, menunjukan bahwa pengolahan yang tidak melewati proses esterifikasi menghasilkan 0% konversi, artinya belum terbentuk metil ester, pada reaksi transesterifikasi tahap 1 dan 2. Meskipun tanpa proses esterifikasi dimungkinkan reaksi tetap terjadi namun dengan kecepatan sangat lambat akibat energi aktivasi yang terlalu tinggi, serta produk yang dihasilkan sangat sedikit sehingga tidak dapat terdeteksi oleh alat. Hal ini menunjukan bahwa pembuatan biodiesel dari limbah minyak tepung ikan sardin yang memiliki kandungan FFA 5,17% perlu melewati proses esterifikasi terlebih dahulu sebelum proses transesterifikasi. Kromatogram hasil spektra 1H-NMR untuk Tabel 3 dapat dilihat pada Lampiran 1 Tabel 3. Persentase konversi metil ester (biodiesel) dari minyak tepung ikan sardin dengan metode 1H NMR. Konsentrasi No Abu Ampas Tebu Proses Reaksi Tanpa Esterifikasi Esterifikasi Transesterifikasi Transesterifikasi Transesterifikasi Transesterifikasi Tahap I Tahap II Tahap I Tahap II 1. 2% 0% 0% 21,9% 65,6% 2. 4% 0% 0% 21,8% 36,3% 3. 6% 0% 0% 19,2% 17,9% Contoh hasil spektra 1 H-NMR biodiesel hasil transesterifikasi tanpa esterifikasi (Gambar 9), dan hasil esterifikasi dilanjutkan transesterifikasi (Gambar 10). Pada Gambar .9 dan Gambar. 10 dapat dilihat adanya perbedaan spektra yang dihasilkan. Spektra yang dihasilkan terdiri atas tiga elemen penting, yakni puncak 22
  • 34. metoksi dari metil ester akan tampak pada 3,7 ppm, puncak gugus α-karbonil metilen pada 2,3 ppm yang terdapat dalam semua senyawa asam lemak, puncak pada 4,2 ppm merupakan tipe proton pada ikatan gliserida. Perhitungan konversi (%) metil ester ditentukan berdasarkan besarnya persentase spektra dari proton metoksi dan puncak tipe proton pada ikatan gliserida. Gambar 9. Spektra 1H-NMR Minyak limbah tepung ikan sardin hasil transesterifikasi tanpa esterifikasi, Gambar 10. Spektra 1H-NMR Biodiesel hasil esterifikasi dilanjutkan transesterifikasi Perbedaan yang signifikan pada kedua spektra di atas adalah terlihat pada puncak yang muncul pada 3,7 ppm. Spektra minyak limbah tepung ikan sardin hasil transesterifikasi tanpa esterifikasi tidak muncul puncak pada 3,7 ppm, seperti terlihat pada Gambar 9, sehingga terlihat bahwa pada proses pembuatan biodiesel tanpa esterifikasi belum terbentuk metil ester. Spektra hasil esterifikasi dilanjutkan transesterifikasi menunjukan adanya puncak yang tinggi pada 3,7 ppm yang 23
  • 35. mengindikasikan bahwa reaksi menghasilkan metil ester seperti terlihat pada Gambar 10. Berdasarkan hasil tersebut proses esterifikasi dalam pembuatan biodiesel dari minyak limbah tepung ikan sardin memegang peranan penting. Hal ini disebabkan karena katalis asam sulfat cukup efektif mengurangi kandungan asam lemak bebas yang kandungannya ± 5,17% sehingga mengakibatkan berkurangnya reaksi saponifikasi dan mengoptimalkan reaksi transesterifikasi dengan katalis abu ampas tebu. Jika dibandingakan dengan penelitian Wijaya (2007), bahwa reaksi esterifikasi pada minyak jelantah kelapa sawit dapat menurunkan persentase kandungan asam lemak bebas yang mula-mula 0,2523 % menurun terus kandungan asam lemak bebasnya dengan bertambahnya jumlah persen katalis H-Zeolit 5,00%, persentase kandungan asam lemak bebas minyak jelantah kelapa sawit menjadi 0,1439%. 2. Reaksi Transesterifikasi Peningkatan tahapan reaksi transesterifikasi dapat memperbesar konversi biodiesel. Konversi biodiesel tertinggi dengan proses transesterifikasi 2 (dua) tahap (Gambar 11) terdapat pada perlakukan katalis abu ampas tebu konsentrasi 2% (b/v), yakni 65,6%, dan konsentrasi 4% sebesar 36,3%, sedangkan konsentrasi 6% (b/v) menghasilkan konversi paling kecil (17,9%). Berbeda dengan penelitian yang dilakukan Yitnowati (2008), pada pembuatan biodiesel dari minyak jarak dengan katalis abu tanda kosong, ternyata konversi biodiesel semakin bertambah dengan peningkatan persentase berat abu terhadap minyak. Hal ini disebabkan adanya air sebagai produk samping hasil reaksi esterifikasi asam lemak bebas dengan metanol yang dapat mengganggu aktifitas katalis. Berikut ini merupakan ilustrasi reaksi terbentuknya air hasil reaksi esterifikasi yang dapat menghambat aktifitas kalatis. ( FFA) (Methanol) (Metil ester) (Air) Disamping itu, adanya kandungan asam lemak bebas yang masih tinggi karena tidak seluruhnya teresterkan, sehingga pada saat reaksi transesterifikasi dengan katalis abu ampas tebu masih terbentuk sabun yang dapat menghambat jalannya reaksi. 24
  • 36. Gambar 11. Pengaruh transesterifikasi terhadap konversi total biodiesel Penggunaan katalis abu ampas tebu dengan konsentrasi 6% menghasilkan konversi biodiesel yang lebih rendah dari konsentrasi abu ampas tebu 4%. Hal ini disebabkan terjadinya kompetisi antarmolekul dalam reaksi transesterifikasi, baik sebagai reaktan maupun sebagai solven. Selain berperan sebagai reaktan, metanol juga berperan sebagai pelarut protik yang dapat menyeimbangkan anion yang terbentuk dari katalis setelah melepaskan proton. Penggunaan katalis sebanyak 6% mengakibatkan semakin banyaknya anion dari katalis yang terbentuk, sehingga semakin banyak pula metanol yang dibutuhkan untuk menyeimbangkan anion dari katalis tersebut. Hal ini mengakibatkan metanol yang terlibat dalam reaksi akan berkurang dari seharusnya. Asam lemak bebas yang ada dalam minyak limbah tepung ikan sardin tidak seluruhnya terbukti menjadi ester. Adanya asam lemak bebas akan mengganggu reaksi transesterifikasi sehingga konversi bidiesel menjadi berkurang. 3. Pengaruh Katalis terhadap Konversi Biodiesel Perubahan konversi biodiesel yang dihasilkan dengan adanya variasi konsentrasi abu ampas tebu sebagai katalis dapat dilihat pada Gambar 12. Biodiesel yang dihasilkan dari serangkaian proses esterifikasi yang dilanjutkan dengan transesterifikasi memberikan hasil yang berbeda secara kuantitatif dengan adanya kenaikan konsentrasi abu ampas tebu sebagai katalis basa padat dalam reaksi transesterifikasi. 25
  • 37. Gambar 12. Pengaruh konsentrasi katalis abu ampas tebu pada transesterifikasi 1 dan transesterifikasi 2 terhadap konversi total biodiesel Berdasarkan Gambar 12 terlihat bahwa meningkatnya konsentrasi katalis abu ampas tebu berbanding terbalik dengan konversi biodiesel yang dihasilakan. Penurunan konversi terjadi baik dari proses transesterifikasi pertama maupun transesterifikasi kedua. Sedangkan jika dibandingakan dengan penelitian Yoeswono (2007), dengan menggunakan abu tandan kosong pada pembutan biodiesel dari minyak kelapa sawit diperoleh bahwa penambahan berat abu berbanding lurus dengan konversi yang dihasilkan dan mencapai optimum pada persentase 6%. Perbedaan tersebut terjadi karena bahan dan alat yang digunakan dalam penelitian berbeda sehingga hasil yang diperolehpun berbeda. D. Komposisi Biodiesel Analisis dengan GC-MS dilakukan terhadap biodisel dari hasil reaksi esterifikasi dengan katalis asam sulfat dan transesterifikasi dengan katalis abu ampas tebu dengan konversi paling besar. Melalui GC-MS dapat diketahui jenis metil ester yang terkandung dalam biodiesel minyak limbah tepung ikan sarden. Jumlah puncak pada Gambar 13 menunjukkan jumlah metil ester hasil esterifikasi yang masing-masing terpisah sempurna menghasilkan puncak-puncak dengan waktu retensi yang berbedabeda. Puncak yang terlebih dahulu terbentuk adalah ester dengan rantai karbon yang pendek (puncak pertama pada Gambar 13). Setelah itu diikuti dengan rantai karbon yang lebih panjang (puncak kedua pada Gambar 13). Kolom (fasa diam) yang digunakan bersifat non-polar, sedangkan secara umum ester bersifat polar. Ester rantai pendek bersifat polar dari pada ester rantai panjang. Sesuai hukum like dissolve like 26
  • 38. ester dengan rantai yang lebih panjang akan tertahan dalam kolom sedangkan ester rantai pendek akan lolos bersama fasa gerak keluar dari kolom. Metil ester yang terbaik dipilih untuk dianalisis dengan GC-MS. Kromatogram hasil analisis GC-MS pada Gambar 13 menunjukkan adanya 40 puncak yang terdeteksi sebagai metil ester asam lemak. Sedangkan puncak terdeteksi dengan area lebih dari 10% hanya empat puncak yaitu puncak pertama metil miristat, puncak kedelapan metil palmitoleat, puncak kesepuluh metil palmitat, dan puncak keduapuluh enam metil pentanoat. Empat puncak dengan persen area terbesar pada Gambar 13 dihasilkan oleh puncak kesepuluh yang merupakan metil palmitat (19,75%), puncak kedelapan yang merupakan metil palmitoleat (11,83%), puncak pertama yang merupakan metil miristat (11,10%) dan puncak keduapuluh enam yang merupakan metil pentanoat (10,78%). Metil palmitat merupakan metil ester dengan rumus molekul C17H34O2, metil palmitoleat mempunyai rumus molekul C17H32O2, metil miristat mempunyai rumus molekul C15H30O2 dan rumus molekul metil pentanoat adalah C6H12O2. Fragmentasi antar puncak untuk lebih jelasnya dapat dilihat pada Lampiran 5. Gambar 13. Kromatogram campuran metil ester (melalui transesterifikasi dengan abu ampas tebu 2 %) E. Kualitas Biodiesel Tabel 5 menampilkan hasil analisis biodiesel limbah minyak ikan sardin dengan metode ASTM yang dibandingkan dengan spesifikasi minyak solar dan minyak diesel. 27
  • 39. Biodiesel hasil reaksi esterifikasi terkatalisis asam sulfat yang dilanjutkan reaksi transesterifikasi terkatalisis abu ampas tebu disajikan dalam tabel berikut. Tabel 5. Perbandingan sifat fisik biodiesel limbah minyak tepung ikan sardin dengan sifat fisik minyak diesel dan minyak solar No 1 2 3 4 5 6 Sifat fisik Berat Jenis pada 60o F Viskositas Kinematis Biodiesel Limbah Minyak Tepung Ikan sardin 0,8442 Standar *) Minyak Diesel 0,820-0,870 0,840-0,920 0.856 2,0-5,0 4,5-7,0 -27, 4 54, 5 0,0 <65 >150 < 0,05 <65 >150 < 0,05 2,107 pada 40o C mm2/s cst Titik Tuang, o F Titik Nyala, o F Kadar Air, % Nilai Sisa Karbon, % Standar *) Minyak Solar Maks. 0,1 Maks. 1 Keterangan: *) Nilai maksimum spesifikasi bahan bakar diesel menurut Keputusan Dirjen minyak dan Gas Bumi No. 002/P/DM/MIGAS/1979 (Hardjono, 2001) Menurut Hardjono (2001), berat jenis (specific grafity) atau rapat relatif (relative density) minyak adalah perbandingan antara rapat minyak pada suhu tertentu dengan rapat air pada suhu tertentu. Nilai kerapatan spesifik dari biodiesel yang dibuat dari minyak ikan sardin sebesar 0,8442, ternyata telah memenuhi spesifikasi standar minyak diesel dan minyak solar. Menurut Andini (2008), viskositas kinematis (viscosity kinematic) didefinisikan sebagai kekentalan dari suatu minyak. Viskositas yang tinggi dapat mempengaruhi kecepatan kerja alat injeksi bahan bakar dan mempersulit pengabutan bahan bakar tersebut, sehingga nilai viskositas harus rendah karena mesin diesel memerlukan viskositas yang rendah. Bahan bakar mesin yang mempunyai viskositas rendah dapat dengan mudah disemprotkan ke dalam ruang pembakaran. Nilai viskositas kinematis dari biodiesel limbah minyak tepung ikan sardin yaitu 0,856, .sangat rendah dibandingkan minyak solar maupun minyak diesel. Titik tuang (pour point) biodiesel minyak limbah tepung ikan sardin memenuhi standar bahan bakar minyak solar maupun minyak diesel yakni -27,4o F. Hal ini berarti bahwa biodiesel tidak mudah membeku dan masih dapat mengalir pada temperatur diatas -27,4o F. Titik nyala (flash point) biodiesel limbah minyak tepung ikan sardin lebih rendah dari standar minyak solar maupun minyak diesel yakni 54,5o F. Nilai titik nyala 28
  • 40. yang rendah menunjukkan bahwa perlu penanganan khusus dalam penyimpanan dan pengangkutan biodiesel limbah minyak tepung ikan sardin, karena mudah menyala pada suhu 54,5o F. Nilai titik nyala yang lebih rendah dari standar yaitu diatas 150o F perlu ditingkatkan. Kadar air (water content) biodiesel dari limbah minyak tepung ikan sardin yaitu 0,00%. Nilai tersebut telah memenuhi standar bahan bakar minyak solar maupun minyak diesel yakni dibawah 0,05%. Nilai sisa karbon Conradson (Conradson carbon residue) biodiesel limbah minyak tepung ikan sardin lebih tinggi dari standar minyak solar maupun minyak diesel yakni 2,107%. Nilai sisa karbon yang tinggi tersebut berpengaruh buruk tetapi dapat dikurangi dengan melakukan pencucian berulang pada saat proses pembuatan biodiesel. Menurut Andini (2008), nilai sisa karbon Conradson dari bahan bakar seperti biodiesel harus rendah karena parameter ini digunakan sebagai petunjuk mengenai kecenderungan untuk memberikan deposit karbon pada piston dan silinder, sehingga dapat menurunkan polusi udara terhadap lingkungan. 29
  • 41. V. KESIMPULAN DAN SARAN A. Kesimpulan 1. Pembuatan biodiesel dari limbah minyak tepung ikan sardin yang memiliki Asam Lemak Bebas 5,17% dengan katalis abu ampas tebu yang memiliki kandungan kalium 0,71% harus melewati proses esterifikasi terlebih dahulu sebelum proses transesterifikasi. 2. Komposisi metil ester biodiesel dari limbah minyak ikan tepung sardin yang dominan adalah metil palmitat (19,75%), metil palmitoleat (11,83%), metil miristat (11,10%), dan metil pentanoat (10,78%) 3. Dari analisis 1 HNMR menunjukan bahwa hampir seluruh trigliserida telah dikonversi menjadi metil ester pada proses yang melalui esterifikasi dan transesterifikasi dua tahap dengan konsentrasi abu ampas tebu 2% menghasilkan rendemen biodiesel sebesar 93% 4. Karakteristik limbah minyak tepung ikan sardin umumnya memenuhi SNI kecuali flash point dan Conradson carbon residue. B. Saran Perlu dilakukan penelitan lanjutan untuk membuat biodiesel dari limbah minyak tepung ikan sardin dengan menggunakan katalis abu ampas tebu konsentrasi ≤ 2,0% sehingga didapatkan konversi, flash point, dan conradson carbon residue yang sesuai dengan SNI-04-7182-2006. 30
  • 42. DAFTAR RUJUKAN Al-Rozi, F. 2007. Pemanfaatan Ekstrak Abu Ampas Tebu (Bagase) sebagai Sumber Kalium Pengganti KOH (Kalium Hidroksida) pada Proses Penjendalan dalam Pembuatan Agar-Agar Kertas dari Rumput Laut Gracilaria sp. Universitas Gadjah Mada Yogyakarta. Laporan PKM. Andini, R. 2008. Pengaruh Penambahan H-Zeolit pada Proses Pembuatan Biodiesel dari Minyak Jelantah Kelapa Sawit Menggunakan Reaktor Biodiesel Berkapasitas 10 L. Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada. Yogyakarta. Skripsi. Anonim. 2001. Minyak Ikan Berkhasiat Turunkan Serangan http://www.sinarharapan.co.id. Diakses tanggal 16 Januari 2009. Jantung. Anonim. 2006a. Artikel Fitur Aktual: Nabati, Energi Alternatif Pengganti BBM. http://www.otogenik.com. Diakses tanggal 1 Juni 2009. Anonim. 2006b. Warta Pertamina Edition No. 5/THN XLI, Mei 2006: Transportasi Tanpa Polusi. http://www.pertamina.com. Diakses tanggal 1 Juni 2009. Anonim. 2006c. Menyibak Gizi Minyak Ikan. http://www.ayahbunda-online.com. Diakses tanggal 16 Januari 2009. Anonim. 2006d. Biodiesel. http://www.journeytoforever.com. Diakses tanggal 1 Juni 2009. Anonim. 2006e. Minyak Kelapa Sebagai Bahan Bakar Alternatif: Biofuel dan Biodiesel dari Kelapa. http://dekindo.com. Diakses tanggal 1 Juni 2009. Anonim. 2007. All About Biofuels: Biodiesel. http://dwienergi.blogspot.com. Diakses tanggal 1 Juni 2009. Anonim. 2008a. Biodieselautsindo. http://bahasa.biodieselindonesia.com. Diakses tanggal 1 Juni 2009. Anonim. 2008b. Minyak Limbah Ikan Pengganti http://www.antarajatim.com. Diakses tanggal 1 Juni 2009. Minyak Tanah. Bradshaw, G. B., W. Meuly. 1944. Preparation of Detergent. US Patent Office 2,360,844. Burhanuddin, M. H. 1984. Sumber Daya Ikan Lemuru. Lembaga Oseanologi Nasional. LIPI. Jakarta. Destianna, M., Z. Agustinus, Nazef, P. Soraya. 2007. Intensifikasi Proses Produksi Biodiesel. http://pub.bhaktiganesha.or.id. Diakses tanggal 1 Juni 2009. Dwiponggo, A. 1982. Beberapa Aspek Biologi Ikan Lemuru, Sardinella spp. dalam Prosiding Seminar Perikanan Lemuru Buku II : Kumpulan Makalah Penunjang. Pusat Penelitian dan Pengembangan Perikanan Deptan. Jakarta. 31
  • 43. Freedman, B., E. Pryde, T. Mounts. 1984. Variables Affecting the Yields of Fatty Esters from Transesterfied Vegetable Oils. JAOCS, Vol. 61, no. 10. Hadiwiyoto, S. 1993. Tekologi Pengolahan Hasil Perikanan. Liberty. Yogyakarta. Hamed, M. E., Z. Ruihong, J. Roberto. 2008. A two-step process for biodiesel production from salmon oil. Biosystems Engineering 99: 220 – 227. Hardjono, A. 2001. Teknologi Minyak Bumi. Gadjah Mada University Press. Yogjakarta. Iskandar, S. 2009. Minyak Tumbuhan, Sumber Energi Alami. http://www.chem-is-try.org. Diakses tanggal 16 Januari 2009. Ketaren, S. 1986 . Pengantar Teknologi Minyak dan Lemak Pangan. UI Press. Jakarta. Knothe, G. 2000. Monitoring a Progressing Transesterification Reaction by Fiber-Optic Near Infrared Spectroscopy with Corelation to 1H Nuclear Magnetic Resonance Spectroscopy. JAOCS, 77, J9483, 489-493. Lele, S. 2005. Oil fish. http://www.svlele.com. Diakses tanggal 4 Februari. Mittlebach, M., R. Claudia. 2004 . Biodiesel The Comprehensive Handbook. Boersedruck Ges.m.bH.Vienna. Moeljanto. 1992. Pengawetan dan Pengolahan Hasil Perikanan. Penebar Swadaya. Jakarta. Mursanti, E. 2007. Proses Produksi dan Subsidi Biodiesel dalam Mensbstitusi Solar untuk Mengurangi Ketergantungan Terhadap Solar. Fakultas Ekonomi Universitas Indonesia. Skripsi. Rahmadi, A. 2009. Proses Pembuatan Biodiesel. http://www.migas-indonesia.com. Diakses tanggal 1 januari.2009. Santoso, A. U. 2008. Minyak Limbah ikan Pengganti http://www.antarajatim.com. Diakses tanggal 1 Juni 2009. Minyak Tanah. Shathivel, S. 2005. Oil from Fish Processing By Products and Underutilized Fish as a Viable Renewable Resource for Biodiesel Production. Industrial Technology Center University of Alaska Fiarbanks. http://www.sfos.uaf.edu. Diakses tanggal 5 Februari 2009. Soerawidjaja, T. H. 2005. Minyak-lemak dan produk-produk kimia lain dari kelapa, Handout kuliah Proses Industri Kimia. Program Studi Teknik Kimia Institut Teknologi Bandung. Tjioe, L. 2007. Khasiat Minyak Ikan. http://vibizlife.com. Diakses tanggal 16 Januari 2009. 32
  • 44. Turboman. 2006. The Power of ikan Patin: BioDiesel dari Pangasius djambal. http://forum.o-fish.com. Diakses tanggal 1 Juni 2009. Wijaya, K.2007. Konversi Minyak Jelantah Sawit Menjadi Biodiesel Dengan Bantuan Katalis Asam Padat Zeolit dan Montmorillonit. Laporan Proyek Hibah Bersaing. DIKTI. Wirawan, S. S. 2008. Membangun Pabrik Biodiesel Skala Kecil.Penebar Swadaya. Jakarta. Yoeswono. 2007. Pemanfaatan Limbah Abu Tandan Kosong Sawit sebagai Katalis Basa pada Pembutan Biodiesel dari Minyak Sawit. J Manusia dan Lingkungan, Vol 14, No. 2. 55-62. Yitnowati. 2008. Pemanfaatan Abu Tandan Kosong Sawit sebagai Sumber Katalis Basa (K2CO3) pada Pembuatan Biodiesel Minyak Jarak Ricinus communis. Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Gadjah Mada. Yogyakarta. Skripsi. 33