SlideShare una empresa de Scribd logo
1 de 56
Variables and Evaluation

http://www.lahc.edu/math/frankma.htm
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers.
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples,
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
we obtain 2(6) = 12 for the total cost.
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
we obtain 2(6) = 12 for the total cost.
The value “6” for x is called input (value).
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
we obtain 2(6) = 12 for the total cost.
The value “6” for x is called input (value). The answer 12 is
called the output.
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
we obtain 2(6) = 12 for the total cost.
The value “6” for x is called input (value). The answer 12 is
called the output. This process of replacing the variables with
input value(s) and find the output is called evaluation.
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
we obtain 2(6) = 12 for the total cost.
The value “6” for x is called input (value). The answer 12 is
called the output. This process of replacing the variables with
input value(s) and find the output is called evaluation.
Each variable can represent one specific measurement only.
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
we obtain 2(6) = 12 for the total cost.
The value “6” for x is called input (value). The answer 12 is
called the output. This process of replacing the variables with
input value(s) and find the output is called evaluation.
Each variable can represent one specific measurement only.
Suppose we need an expression for the total cost of apples
and pears and x represents the number of apples,
Variables and Evaluation
In mathematics we use symbols such as x, y and z to
represent numbers. These symbols are called variables
because their values change depending on the situation .
We use variables and mathematics operations to make
expressions which are calculation procedures.
For example, if an apple cost $2 and x represents the number
of apples, then “2x” is the expression for the cost for x apples.
Suppose we have 6 apples, set x = 6 in the expression 2x,
we obtain 2(6) = 12 for the total cost.
The value “6” for x is called input (value). The answer 12 is
called the output. This process of replacing the variables with
input value(s) and find the output is called evaluation.
Each variable can represent one specific measurement only.
Suppose we need an expression for the total cost of apples
and pears and x represents the number of apples, we must
use a different letter, say y, to represent the number of pears
since they are two distinct measurements.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6)

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6)

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18
c. Evaluate –2x2 if x = 6.

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18
c. Evaluate –2x2 if x = 6.
–2x2  –2(6)2

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18
c. Evaluate –2x2 if x = 6.
–2x2  –2(6)2 = –2(36)

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18
c. Evaluate –2x2 if x = 6.
–2x2  –2(6)2 = –2(36) = –72

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18
c. Evaluate –2x2 if x = 6.
–2x2  –2(6)2 = –2(36) = –72
d. Evaluate –4xyz if x = –3, y = –2, z = –1.

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18
c. Evaluate –2x2 if x = 6.
–2x2  –2(6)2 = –2(36) = –72
d. Evaluate –4xyz if x = –3, y = –2, z = –1.
–4xyz
–4(–3)(–2)(–1)

)”.
Variables and Evaluation
When evaluating an expression, replace the variables with the
input-values enclosed with ( )’s.
Example A.
a. Evaluate –x if x = –6.
When evaluating, insert the input enclosed in a “(
Therefore, set x = (–6) we’ve
–x  – (–6) = 6
b. Evaluate –3x if x = –6.

–3x  –3(–6) = 18
c. Evaluate –2x2 if x = 6.
–2x2  –2(6)2 = –2(36) = –72
d. Evaluate –4xyz if x = –3, y = –2, z = –1.
–4xyz
–4(–3)(–2)(–1) = 24

)”.
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5)
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Replace x by (2) and y by (–3) in the expression, we have
3*(2)2 – (–3)2
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Replace x by (2) and y by (–3) in the expression, we have
3*(2)2 – (–3)2
= 3*4 – 9
= 12 – 9
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Replace x by (2) and y by (–3) in the expression, we have
3*(2)2 – (–3)2
= 3*4 – 9
= 12 – 9
=3
g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2.
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Replace x by (2) and y by (–3) in the expression, we have
3*(2)2 – (–3)2
= 3*4 – 9
= 12 – 9
=3
g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2.
Replace x by (3), y by (–2) in the expression,
– (3)2 + (–8 – (– 2))2
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Replace x by (2) and y by (–3) in the expression, we have
3*(2)2 – (–3)2
= 3*4 – 9
= 12 – 9
=3
g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2.
Replace x by (3), y by (–2) in the expression,
– (3)2 + (–8 – (– 2))2
= – 9 + (–8 + 2)2
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Replace x by (2) and y by (–3) in the expression, we have
3*(2)2 – (–3)2
= 3*4 – 9
= 12 – 9
=3
g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2.
Replace x by (3), y by (–2) in the expression,
– (3)2 + (–8 – (– 2))2
= – 9 + (–8 + 2)2
= – 9 + (–6)2
Variables and Evaluation
e. Evaluate x – y if x = –3, y = –5.
x – y  (–3) – (–5) = –3 + 5 = 2
f. Evaluate 3x2 – y2 if x = 2 and y = –3.
Replace x by (2) and y by (–3) in the expression, we have
3*(2)2 – (–3)2
= 3*4 – 9
= 12 – 9
=3
g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2.
Replace x by (3), y by (–2) in the expression,
– (3)2 + (–8 – (– 2))2
= – 9 + (–8 + 2)2
= – 9 + (–6)2
= – 9 + 36
= 27
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
i. Evaluate (2b – 3a)2 if a = –4, b = – 3.
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
i. Evaluate (2b – 3a)2 if a = –4, b = – 3.

(2(–3) –3(–4))2
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
i. Evaluate (2b – 3a)2 if a = –4, b = – 3.

(2(–3) –3(–4))2
= (–6 + 12)2
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
i. Evaluate (2b – 3a)2 if a = –4, b = – 3.

(2(–3) –3(–4))2
= (–6 + 12)2
= (6)2 = 36
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
i. Evaluate (2b – 3a)2 if a = –4, b = – 3.

(2(–3) –3(–4))2
= (–6 + 12)2
= (6)2 = 36
j. Evaluate b2 – 4ac if a = –2, b = –3, and c = 5.
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
i. Evaluate (2b – 3a)2 if a = –4, b = – 3.

(2(–3) –3(–4))2
= (–6 + 12)2
= (6)2 = 36
j. Evaluate b2 – 4ac if a = –2, b = –3, and c = 5.
(–3)2 – 4(–2)(5)
Variables and Evaluation
h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
(a – b)(b – c)
((3) – (–2))((–2) – (–4))
= (3 + 2)(–2 + 4)
= (5)(2)
= 10
i. Evaluate (2b – 3a)2 if a = –4, b = – 3.

(2(–3) –3(–4))2
= (–6 + 12)2
= (6)2 = 36
j. Evaluate b2 – 4ac if a = –2, b = –3, and c = 5.
(–3)2 – 4(–2)(5)
= 9 + 40 = 49
Variables and Evaluation
Exercise. Evaluate.
A. –2x with the input
3. x = –5
1. x = 3 2. x = –3
4. x = –1/2
B. –y – 2x with the input
6. x = –2, y = 3
5. x = 3, y = 2
8. x = ½, y = –6
7. x = –1, y = –4
C. (–x)2 with the input
9. x = 3
10. x = –3 11. x = –5 12. x = –1/2
D. –x2 with the input
13. x = –2 14. x = –2 15. x = –9 16. x = –1/3
E. –2x3 with the input
18. x = –2
17. x = 3

19. x = –1

F. 3x2 – 2x – 1 with the input
23. x = –1
21. x = – 4 22. x = –2

20. x = –½
24. x = ½
Variables and Evaluation

G. –2y2 + 3x2 with the input
26. x = –2, y = – 3
25. x = 3, y = 2
28. x = –1, y = –1/2
27. x = –1, y = –4

H. x3 – 2x2 + 2x – 1 with the input
32. x = ½
30. x = –1
31. x = 2
29. x = 1
I. –b with the input
2a
33. a = –1, b = – 2
34. a = 2, b = –4
35. a = –2, b = – 8
36. a = 2, b = – 12
J. b2 – 4ac with the input
37. a = –2, b = 3, c = –5
39. a = –1, b = – 2, c = –3

38. a = 4, b = –2, c = – 2
40. a = 5, b = –4, c = 4
Variables and Evaluation

K. a – b with the input
c–d
41. a = 1, b = –2, c = 2, d = – 2
42. a = –4, b = –2, c = –1, d = –4
43. a = –2, b = 3, c = –5, d = 0
44. a = –1, b = –2, c = –2, d = 14

L. (a – b)(b – c) with the input
(c – d)(d – a)
45. a = 1, b = –2, c = 2, d = 2
46. a = –4, b = –2, c = –1, d = –4
47. a = –2, b = 3, c = –5, d = 0
48. a = –1, b = –2, c = –2, d = 14

M. b2 – a2 – c2 if
49. a = –2, b = 3, c = –5 .
50. a = 4, b = –2, c = – 2

N. b2 – 4ac if
51. a = –2, b = 3, c = –5 .
52. a = 4, b = –2, c = – 2

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
 
2 6 inequalities
2 6 inequalities2 6 inequalities
2 6 inequalities
 
4.4 system of linear equations 2
4.4 system of linear equations 24.4 system of linear equations 2
4.4 system of linear equations 2
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
11 arith operations
11 arith operations11 arith operations
11 arith operations
 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statements
 
1 f1 prime numbers and factors
1 f1 prime numbers and factors1 f1 prime numbers and factors
1 f1 prime numbers and factors
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 
1 expressions x
1 expressions x1 expressions x
1 expressions x
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 
2linear equations i x
2linear equations i x2linear equations i x
2linear equations i x
 
41 expressions
41 expressions41 expressions
41 expressions
 
44 exponents
44 exponents44 exponents
44 exponents
 
4 1exponents
4 1exponents4 1exponents
4 1exponents
 
1exponents
1exponents1exponents
1exponents
 
2 expressions and linear expressions
2 expressions and linear expressions2 expressions and linear expressions
2 expressions and linear expressions
 

Destacado

1 s4 order of operations
1 s4 order of operations1 s4 order of operations
1 s4 order of operations
math123a
 
1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbers1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbers
math123a
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations ii
math123a
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplication
math123a
 
2 5literal equations
2 5literal equations2 5literal equations
2 5literal equations
math123a
 
3 1 rectangular coordinate system
3 1 rectangular coordinate system3 1 rectangular coordinate system
3 1 rectangular coordinate system
math123a
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problems
math123a
 
1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers
math123a
 

Destacado (8)

1 s4 order of operations
1 s4 order of operations1 s4 order of operations
1 s4 order of operations
 
1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbers1 s2 addition and subtraction of signed numbers
1 s2 addition and subtraction of signed numbers
 
2 3linear equations ii
2 3linear equations ii2 3linear equations ii
2 3linear equations ii
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplication
 
2 5literal equations
2 5literal equations2 5literal equations
2 5literal equations
 
3 1 rectangular coordinate system
3 1 rectangular coordinate system3 1 rectangular coordinate system
3 1 rectangular coordinate system
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problems
 
1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers
 

Similar a 1 s5 variables and evaluation

2.2 variables, evaluation and expressions w
2.2 variables, evaluation and expressions w2.2 variables, evaluation and expressions w
2.2 variables, evaluation and expressions w
Tzenma
 
presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptx
JennilynBalusdan3
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
misey_margarette
 
Section 1.4 identity and equality properties (algebra)
Section 1.4 identity and equality properties (algebra)Section 1.4 identity and equality properties (algebra)
Section 1.4 identity and equality properties (algebra)
Algebra / Mathematics
 
3 2 linear equations and lines
3 2 linear equations and lines3 2 linear equations and lines
3 2 linear equations and lines
math123a
 

Similar a 1 s5 variables and evaluation (20)

1 variables, evaluation
1 variables, evaluation1 variables, evaluation
1 variables, evaluation
 
25 variables and evaluation
25 variables and evaluation25 variables and evaluation
25 variables and evaluation
 
5 variables and evaluation 125s
5 variables and evaluation 125s5 variables and evaluation 125s
5 variables and evaluation 125s
 
2.2 variables, evaluation and expressions w
2.2 variables, evaluation and expressions w2.2 variables, evaluation and expressions w
2.2 variables, evaluation and expressions w
 
Fst ch3 notes
Fst ch3 notesFst ch3 notes
Fst ch3 notes
 
presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptx
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
 
Section 1.4 identity and equality properties (algebra)
Section 1.4 identity and equality properties (algebra)Section 1.4 identity and equality properties (algebra)
Section 1.4 identity and equality properties (algebra)
 
Function notation by sadiq
Function notation by sadiqFunction notation by sadiq
Function notation by sadiq
 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Balia
 
Project in math
Project in mathProject in math
Project in math
 
IVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdf
IVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdfIVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdf
IVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdf
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
 
1.3 rational expressions
1.3 rational expressions1.3 rational expressions
1.3 rational expressions
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
 
Lecture 1.5 graphs of quadratic equations
Lecture 1.5 graphs of quadratic equationsLecture 1.5 graphs of quadratic equations
Lecture 1.5 graphs of quadratic equations
 
3 2 linear equations and lines
3 2 linear equations and lines3 2 linear equations and lines
3 2 linear equations and lines
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
 
Solving Equations (Algebra 2)
Solving Equations (Algebra 2)Solving Equations (Algebra 2)
Solving Equations (Algebra 2)
 

Más de math123a (20)

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eq
 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-x
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-x
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-x
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii exp
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-ii
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problems
 
Soluiton i
Soluiton iSoluiton i
Soluiton i
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-sample
 
Sample fin
Sample finSample fin
Sample fin
 
12 4- sample
12 4- sample12 4- sample
12 4- sample
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ans
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpg
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-form
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optional
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcd
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplication
 

Último

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Último (20)

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 

1 s5 variables and evaluation

  • 2. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers.
  • 3. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation .
  • 4. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures.
  • 5. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples,
  • 6. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples.
  • 7. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x,
  • 8. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x, we obtain 2(6) = 12 for the total cost.
  • 9. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x, we obtain 2(6) = 12 for the total cost. The value “6” for x is called input (value).
  • 10. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x, we obtain 2(6) = 12 for the total cost. The value “6” for x is called input (value). The answer 12 is called the output.
  • 11. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x, we obtain 2(6) = 12 for the total cost. The value “6” for x is called input (value). The answer 12 is called the output. This process of replacing the variables with input value(s) and find the output is called evaluation.
  • 12. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x, we obtain 2(6) = 12 for the total cost. The value “6” for x is called input (value). The answer 12 is called the output. This process of replacing the variables with input value(s) and find the output is called evaluation. Each variable can represent one specific measurement only.
  • 13. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x, we obtain 2(6) = 12 for the total cost. The value “6” for x is called input (value). The answer 12 is called the output. This process of replacing the variables with input value(s) and find the output is called evaluation. Each variable can represent one specific measurement only. Suppose we need an expression for the total cost of apples and pears and x represents the number of apples,
  • 14. Variables and Evaluation In mathematics we use symbols such as x, y and z to represent numbers. These symbols are called variables because their values change depending on the situation . We use variables and mathematics operations to make expressions which are calculation procedures. For example, if an apple cost $2 and x represents the number of apples, then “2x” is the expression for the cost for x apples. Suppose we have 6 apples, set x = 6 in the expression 2x, we obtain 2(6) = 12 for the total cost. The value “6” for x is called input (value). The answer 12 is called the output. This process of replacing the variables with input value(s) and find the output is called evaluation. Each variable can represent one specific measurement only. Suppose we need an expression for the total cost of apples and pears and x represents the number of apples, we must use a different letter, say y, to represent the number of pears since they are two distinct measurements.
  • 15. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s.
  • 16. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6.
  • 17. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( )”.
  • 18. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) )”.
  • 19. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 )”.
  • 20. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. )”.
  • 21. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) )”.
  • 22. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 )”.
  • 23. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 c. Evaluate –2x2 if x = 6. )”.
  • 24. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 c. Evaluate –2x2 if x = 6. –2x2  –2(6)2 )”.
  • 25. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 c. Evaluate –2x2 if x = 6. –2x2  –2(6)2 = –2(36) )”.
  • 26. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 c. Evaluate –2x2 if x = 6. –2x2  –2(6)2 = –2(36) = –72 )”.
  • 27. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 c. Evaluate –2x2 if x = 6. –2x2  –2(6)2 = –2(36) = –72 d. Evaluate –4xyz if x = –3, y = –2, z = –1. )”.
  • 28. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 c. Evaluate –2x2 if x = 6. –2x2  –2(6)2 = –2(36) = –72 d. Evaluate –4xyz if x = –3, y = –2, z = –1. –4xyz –4(–3)(–2)(–1) )”.
  • 29. Variables and Evaluation When evaluating an expression, replace the variables with the input-values enclosed with ( )’s. Example A. a. Evaluate –x if x = –6. When evaluating, insert the input enclosed in a “( Therefore, set x = (–6) we’ve –x  – (–6) = 6 b. Evaluate –3x if x = –6. –3x  –3(–6) = 18 c. Evaluate –2x2 if x = 6. –2x2  –2(6)2 = –2(36) = –72 d. Evaluate –4xyz if x = –3, y = –2, z = –1. –4xyz –4(–3)(–2)(–1) = 24 )”.
  • 30. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5.
  • 31. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5)
  • 32. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5
  • 33. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2
  • 34. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3.
  • 35. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3. Replace x by (2) and y by (–3) in the expression, we have 3*(2)2 – (–3)2
  • 36. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3. Replace x by (2) and y by (–3) in the expression, we have 3*(2)2 – (–3)2 = 3*4 – 9 = 12 – 9
  • 37. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3. Replace x by (2) and y by (–3) in the expression, we have 3*(2)2 – (–3)2 = 3*4 – 9 = 12 – 9 =3 g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2.
  • 38. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3. Replace x by (2) and y by (–3) in the expression, we have 3*(2)2 – (–3)2 = 3*4 – 9 = 12 – 9 =3 g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2. Replace x by (3), y by (–2) in the expression, – (3)2 + (–8 – (– 2))2
  • 39. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3. Replace x by (2) and y by (–3) in the expression, we have 3*(2)2 – (–3)2 = 3*4 – 9 = 12 – 9 =3 g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2. Replace x by (3), y by (–2) in the expression, – (3)2 + (–8 – (– 2))2 = – 9 + (–8 + 2)2
  • 40. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3. Replace x by (2) and y by (–3) in the expression, we have 3*(2)2 – (–3)2 = 3*4 – 9 = 12 – 9 =3 g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2. Replace x by (3), y by (–2) in the expression, – (3)2 + (–8 – (– 2))2 = – 9 + (–8 + 2)2 = – 9 + (–6)2
  • 41. Variables and Evaluation e. Evaluate x – y if x = –3, y = –5. x – y  (–3) – (–5) = –3 + 5 = 2 f. Evaluate 3x2 – y2 if x = 2 and y = –3. Replace x by (2) and y by (–3) in the expression, we have 3*(2)2 – (–3)2 = 3*4 – 9 = 12 – 9 =3 g. Evaluate –x2 + (–8 – y)2 if x = 3 and y = –2. Replace x by (3), y by (–2) in the expression, – (3)2 + (–8 – (– 2))2 = – 9 + (–8 + 2)2 = – 9 + (–6)2 = – 9 + 36 = 27
  • 42. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4.
  • 43. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4))
  • 44. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4)
  • 45. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2)
  • 46. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10
  • 47. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10 i. Evaluate (2b – 3a)2 if a = –4, b = – 3.
  • 48. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10 i. Evaluate (2b – 3a)2 if a = –4, b = – 3. (2(–3) –3(–4))2
  • 49. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10 i. Evaluate (2b – 3a)2 if a = –4, b = – 3. (2(–3) –3(–4))2 = (–6 + 12)2
  • 50. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10 i. Evaluate (2b – 3a)2 if a = –4, b = – 3. (2(–3) –3(–4))2 = (–6 + 12)2 = (6)2 = 36
  • 51. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10 i. Evaluate (2b – 3a)2 if a = –4, b = – 3. (2(–3) –3(–4))2 = (–6 + 12)2 = (6)2 = 36 j. Evaluate b2 – 4ac if a = –2, b = –3, and c = 5.
  • 52. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10 i. Evaluate (2b – 3a)2 if a = –4, b = – 3. (2(–3) –3(–4))2 = (–6 + 12)2 = (6)2 = 36 j. Evaluate b2 – 4ac if a = –2, b = –3, and c = 5. (–3)2 – 4(–2)(5)
  • 53. Variables and Evaluation h. Evaluate (a – b)(b – c) if a = 3, b = –2, c = –4. (a – b)(b – c) ((3) – (–2))((–2) – (–4)) = (3 + 2)(–2 + 4) = (5)(2) = 10 i. Evaluate (2b – 3a)2 if a = –4, b = – 3. (2(–3) –3(–4))2 = (–6 + 12)2 = (6)2 = 36 j. Evaluate b2 – 4ac if a = –2, b = –3, and c = 5. (–3)2 – 4(–2)(5) = 9 + 40 = 49
  • 54. Variables and Evaluation Exercise. Evaluate. A. –2x with the input 3. x = –5 1. x = 3 2. x = –3 4. x = –1/2 B. –y – 2x with the input 6. x = –2, y = 3 5. x = 3, y = 2 8. x = ½, y = –6 7. x = –1, y = –4 C. (–x)2 with the input 9. x = 3 10. x = –3 11. x = –5 12. x = –1/2 D. –x2 with the input 13. x = –2 14. x = –2 15. x = –9 16. x = –1/3 E. –2x3 with the input 18. x = –2 17. x = 3 19. x = –1 F. 3x2 – 2x – 1 with the input 23. x = –1 21. x = – 4 22. x = –2 20. x = –½ 24. x = ½
  • 55. Variables and Evaluation G. –2y2 + 3x2 with the input 26. x = –2, y = – 3 25. x = 3, y = 2 28. x = –1, y = –1/2 27. x = –1, y = –4 H. x3 – 2x2 + 2x – 1 with the input 32. x = ½ 30. x = –1 31. x = 2 29. x = 1 I. –b with the input 2a 33. a = –1, b = – 2 34. a = 2, b = –4 35. a = –2, b = – 8 36. a = 2, b = – 12 J. b2 – 4ac with the input 37. a = –2, b = 3, c = –5 39. a = –1, b = – 2, c = –3 38. a = 4, b = –2, c = – 2 40. a = 5, b = –4, c = 4
  • 56. Variables and Evaluation K. a – b with the input c–d 41. a = 1, b = –2, c = 2, d = – 2 42. a = –4, b = –2, c = –1, d = –4 43. a = –2, b = 3, c = –5, d = 0 44. a = –1, b = –2, c = –2, d = 14 L. (a – b)(b – c) with the input (c – d)(d – a) 45. a = 1, b = –2, c = 2, d = 2 46. a = –4, b = –2, c = –1, d = –4 47. a = –2, b = 3, c = –5, d = 0 48. a = –1, b = –2, c = –2, d = 14 M. b2 – a2 – c2 if 49. a = –2, b = 3, c = –5 . 50. a = 4, b = –2, c = – 2 N. b2 – 4ac if 51. a = –2, b = 3, c = –5 . 52. a = 4, b = –2, c = – 2