SlideShare a Scribd company logo
1 of 14
Top Careers & You
                                                                           ยฎ

_________________________________________________________________________________


                                                      MATRICES
MATRICES
A system of mn numbers arranged in a rectangular array of m rows and n columns is called an m by n matrix,
which is written as m ร— n matrix.


         โŽกa 11    a 12        ...a 1j     ...a 1n โŽค
         โŽข                                        โŽฅ
         โŽขa 21    a 22    ...a 2 j      ...a 2n โŽฅ
         โŽข....   ....         ....          . ... โŽฅ
Thus A = โŽข                                        โŽฅ is a matrix of order m x n. It has m rows and n columns.
         โŽขa i1   a i2     ...a ij       ...a in โŽฅ
         โŽข                                        โŽฅ
         โŽข....    ....         ....         . ... โŽฅ
         โŽขa       a m2        a mj       ...a mn โŽฅ
         โŽฃ m1                                     โŽฆ
Note: The element aij is the element in the ith row and jth column of A

     TYPES OF MATRICES
Row Matrix: A matrix having a single row is called a row matrix e.g., [1 3               5      7].
                                                                              โŽก 2โŽค
                                                                              โŽข โŽฅ
Column Matrix: A matrix having a singe column is called a column matrix, e.g. โŽข3โŽฅ
                                                                              โŽข5โŽฅ
                                                                              โŽฃ โŽฆ
Square matrix: A matrix having n rows and n columns is called a square matrix of order n.

Diagonal matrix: A square matrix all of whose elements except those in the leading diagonal are zero is
called a diagonal matrix.
           โŽก3   0        0โŽค
           โŽข              โŽฅ
       Ex: โŽข0 โˆ’ 2        0โŽฅ
           โŽข0 0
           โŽฃ             6โŽฅ
                          โŽฆ


Scalar matrix: A diagonal matrix whose all the leading diagonal elements are equal is called a scalar matrix.


       โŽก3 0 0โŽค
       โŽข     โŽฅ
Ex:    โŽข0 3 0โŽฅ
       โŽข0 0 3โŽฅ
       โŽฃ     โŽฆ


Unit matrix: A diagonal matrix of order n which has unity for all its diagonal elements, is called a unit matrix or
an identity matrix of order n and is denoted by In.
                                       โŽก1 0 0โŽค
                                       โŽข     โŽฅ
For example, unit matrix of order 3 is โŽข0 1 0โŽฅ .
                                       โŽข0 0 1โŽฅ
                                       โŽฃ     โŽฆ


Triangular matrix: A square matrix all of whose elements below the leading diagonal are zero is called an
upper triangular matrix.




_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 1
Top Careers & You
                                                                         ยฎ

_________________________________________________________________________________

A square matrix all of whose elements above the leading diagonal are zero is called a lower triangular
matrix.


     โŽกa h gโŽค                    โŽก1    0      0โŽค
     โŽข      โŽฅ                   โŽข              โŽฅ
Thus โŽข0 b f โŽฅ         and       โŽข2 3         0 โŽฅ are upper and lower triangular matrices respectively
     โŽข0 0 c โŽฅ
     โŽฃ      โŽฆ                   โŽข1 โˆ’ 5
                                โŽฃ            4โŽฅโŽฆ


Transpose of a matrix: The transpose of a given matrix A is obtained by interchanging the rows and columns
of the matrix A. Transpose of A is denoted by A' or A'.
Thus, if A = [aij]mxn Then A' = [bij]nxm Where bij = aji
                                              โŽ›1      2โŽž
        If A = โŽ›
                 1 3 5โŽž
Ex.            โŽœ
               โŽœ      โŽŸ
                      โŽŸ
                                 Then A' = โŽœ 3 7 โŽŸ
                                           โŽœ     โŽŸ
               โŽ2 7 0โŽ                         โŽœ5
                                              โŽ       0โŽŸ
                                                       โŽ 
Properties of Transpose: Let A and B be two matrices. Then
(i)     (AT)T = A
(ii)    (A + B)T = AT + BT, A and B being of the same order.
(iii)   (kA)T = kAT, k be any scalar (real or complex).
(iv)    (AB)T = BTAT, A and B being conformable for the product AB.

Conjugate of a Matrix: The conjugate of a given matrix A is obtained by replacing the elements of A by their
corresponding complex conjugates. The conjugate of A is denoted by A .
Thus, if A = [aij]mxn then A = [ a ij]mxn
                 1 1 +iโŽž          โŽ›1 1 โˆ’ i โŽž
Ex:     If A = โŽ›
               โŽœ
               โŽœ       โŽŸ then A = โŽœ
                       โŽŸ          โŽœ        โŽŸ
                                           โŽŸ
               โŽ3 1 โˆ’1โŽ                    โŽ3 1 + 1โŽ 


Tranjugate or Transposed Conjugate of a Matrix: The transpose conjugate of a given matrix is obtained by
interchanging the rows and columns of the matrix obtained by replacing the element of A by their
corresponding complex conjugate. The transpose conjugate of A is denoted by A* or by A ฮธ . Thus,
        A* = ( A ' ) = ( A )โ€™
                                           โŽ› 2     3โŽž
                 2 1+ i 0โŽž           โŽœ       โŽŸ
Ex.     If A = โŽ›
               โŽœ
               โŽœ         โŽŸ then A* = โŽœ1โˆ’ i 2 โŽŸ
                         โŽŸ
                โŽ3    2    iโŽ               โŽœ 0
                                           โŽ       โˆ’ iโŽŸ
                                                      โŽ 


Symmetric and skew-symmetric matrices: A square matrix A = [aij] is said to be symmetric when aij = aji for
all i and j.
If aij = โ€“ aji for all i and j so that all the leading diagonal elements are zero, then the matrix is called a skew-
symmetric matrix.

Examples of symmetric and skew-symmetric matrices are respectively.
                                 โŽกa h gโŽค      โŽก 0 h โˆ’ gโŽค
                                 โŽข      โŽฅ     โŽข         โŽฅ
                                 โŽขh b f โŽฅ and โŽขโˆ’ h 0  f โŽฅ
                                 โŽข
                                 โŽฃg f c โŽฅ
                                        โŽฆ     โŽข g โˆ’f 0 โŽฅ
                                              โŽฃ         โŽฆ
Note: Every square matrix can be uniquely expressed as a sum of a symmetric and a skew-symmetric matrix
as:
        A = ยฝ (A + Aโ€™) + ยฝ (A โ€“ Aโ€™).
_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 2
Top Careers & You
                                                                        ยฎ

_________________________________________________________________________________

Hermitian Matrix: ๏€ A square matrix A is said to be a Hermitian matrix if the transpose of the conjugate matrix
is equal to the matrix itself i.e., A* = A โ‡’ a ij = aji, where A = [aij]nxn; aij โˆˆ C.

                                     โŽ› 3    2 + i 5i โŽž
                 โŽ› 2      3 + 2i โŽž   โŽœ               โŽŸ
       Ex :      โŽœ
                 โŽœ 3 โˆ’ 2i        โŽŸ   โŽœ2 โˆ’ i 0     2โŽŸ
                 โŽ          7 โŽŸ  โŽ    โŽœโˆ’ 5i
                                     โŽ       2    7โŽŸ โŽ 


Skew Hermitian Matrix: A square matrix A is said to be skew-Hermitian, if
                A* = โ€“ A โ‡’ a ij = โ€“ aji

                                โŽ› 4i     2โˆ’i 3 โŽž
    โŽ› 2i       5 + 4i โŽž         โŽœ                 โŽŸ
Ex. โŽœ
    โŽœ โˆ’ 5 โˆ’ 4i        โŽŸ         โŽœโˆ’ 2 + i 0    4 โŽŸ are skew โ€“Hermitian matrices.
    โŽ            0 โŽŸ  โŽ          โŽœ โˆ’3
                                โŽ        โˆ’ 4 โˆ’ 3i โŽŸ
                                                  โŽ 


Idempotent Matrix: A square matrix A, such that A2 = A is called idempotent matrix


    โŽ› 2 โˆ’ 2 โˆ’ 4โŽž
    โŽœ          โŽŸ
Ex. โŽœ โˆ’ 1 3  4 โŽŸ is idempotent because
    โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ
    โŽ          โŽ 
           โŽ› 2 โˆ’ 2 โˆ’ 4 โŽž โŽ› 2 โˆ’ 2 โˆ’ 4 โŽž โŽ› 4 + 2 โˆ’ 4 โˆ’ 4 โˆ’ 6 + 4 โˆ’ 8 โˆ’ 8 + 12 โŽž
 2         โŽœ           โŽŸ โŽœ           โŽŸ โŽœ                                    โŽŸ
A = A. A = โŽœ โˆ’ 1 3  4 โŽŸ โŽœโˆ’1 3     4 โŽŸ = โŽœโˆ’ 2 โˆ’ 3 + 4 2 + 9 โˆ’ 8 4 + 12 โˆ’ 12 โŽŸ
           โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœ 2 + 2 โˆ’ 3 โˆ’ 2 โˆ’ 6 + 6 โˆ’ 4 โˆ’ 8 + 9 โŽŸ
           โŽ           โŽ  โŽ           โŽ  โŽ                                    โŽ 

           โŽ› 2 โˆ’ 2 โˆ’ 4โŽž โŽ› 2 โˆ’ 2 โˆ’ 4โŽž       โŽ› 4 + 2 โˆ’ 4 โˆ’ 4 โˆ’ 6 + 4 โˆ’ 8 โˆ’ 8 + 12 โŽž
  2        โŽœ             โŽŸ โŽœ           โŽŸ   โŽœ                                    โŽŸ
A = A. A = โŽœ โˆ’ 1 3     4 โŽŸ โŽœโˆ’ 1 3    4 โŽŸ = โŽœโˆ’ 2 โˆ’ 3 + 4 2 + 9 โˆ’ 8  4 + 12 โˆ’ 12 โŽŸ
           โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ       โŽœ 2+2โˆ’3 โˆ’2โˆ’6+6 โˆ’4โˆ’8+9 โŽŸ
           โŽ             โŽ  โŽ           โŽ    โŽ                                    โŽ 
                   โŽ› 2 โˆ’ 2 โˆ’ 4โŽž
                   โŽœ            โŽŸ
                   โŽœโˆ’ 1 3     4 โŽŸ= A
                   โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ
                   โŽ            โŽ 

Nilpotent Matrix: If A is a square matrix such that Am = 0, where m is a positive integer, than A is called a
nilpotent matrix. If m is the least positive integer for which Am = 0, then A is called to be nilpotent matrix of
index m.


                          โŽ› 1    2  3 โŽž
                          โŽœ           โŽŸ                                            2
Ex.    The matrix A = โŽœ 1        2  3 โŽŸ is a nilpotent matrix of index 2, because A = A . A
                          โŽœโˆ’ 1 โˆ’ 2 โˆ’ 3โŽŸ
                          โŽ           โŽ 
       โŽ› 1   2   3 โŽž   โŽ› 1   2   3 โŽž   โŽ› 1+ 2 โˆ’ 3              2+4โˆ’6       3 + 6 โˆ’ 9 โŽž โŽ›0 0 0โŽž
       โŽœ           โŽŸ   โŽœ           โŽŸ   โŽœ                                             โŽŸ โŽœ       โŽŸ
       โŽœ 1   2   3 โŽŸ ร— โŽœ 1   2   3 โŽŸ = โŽœ 1+ 2 โˆ’ 3              2+4โˆ’6       3 + 6 โˆ’ 9 โŽŸ = โŽœ0 0 0โŽŸ = 0
       โŽœโˆ’ 1 โˆ’ 2 โˆ’ 3โŽŸ   โŽœโˆ’ 1 โˆ’ 2 โˆ’ 3โŽŸ   โŽœโˆ’ 1โˆ’ 2 + 3            โˆ’ 2 โˆ’ 2 + 6 โˆ’ 3 โˆ’ 6 + 9โŽŸ โŽœ0 0 0โŽŸ
       โŽ           โŽ    โŽ           โŽ    โŽ                                             โŽ  โŽ       โŽ 


Involutory Matrix: A square matrix A such that A2 = I is called involutory matrix.

       The matrix A = โŽ›
                        1      0โŽž                          2
Ex.                   โŽœ
                      โŽœ           โŽŸ is involutory because A = A . A
                           โŽ 0 โˆ’ 1โŽŸ
                                  โŽ 
                                โŽ› 1.1 + 0.0     1.0 + 0(โˆ’1) โŽž
        = โŽ›
              0โŽž     โŽ›1 0 โŽž
                                                                     = โŽ›
            1                                                            1 0โŽž
          โŽœ
          โŽœ      โŽŸ ร— โŽœ
                 โŽŸ   โŽœ 0 โˆ’ 1โŽŸ
                            โŽŸ
                              = โŽœ
                                โŽœ 0.1 + (โˆ’1).0 0.0 + (โˆ’1).(โˆ’1) โŽŸ
                                                               โŽŸ       โŽœ
                                                                       โŽœ    โŽŸ
                                                                            โŽŸ
          โŽ 0 โˆ’ 1โŽ    โŽ      โŽ    โŽ                              โŽ        โŽ 0 1โŽ 
_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 3
Top Careers & You
                                                                              ยฎ

_________________________________________________________________________________

Orthogonal Matrix: A square matrix A is said to be orthogonal matrix, if AA' = I = A' A.
                                 โŽ›โˆ’1 2  2โŽž
                          1      โŽœ        โŽŸ
Ex.     The matrix               โŽœ 2 โˆ’1 2 โŽŸ     is orthogonal matrix, because
                          3      โŽœ 2
                                 โŽ   2 โˆ’ 1โŽŸ
                                          โŽ 
                         โŽ›โˆ’ 1   2  2โŽž      โŽ›โˆ’ 1 2  2 โŽž             โŽ›9    0   0โŽž     โŽ›1   0   0โŽž
        A Aโ€™ = 1 โŽœ 2                 โŽŸ   1 โŽœ         โŽŸ  1          โŽœ          โŽŸ     โŽœ          โŽŸ
                                โˆ’1 2 โŽŸ x   โŽœ 2 โˆ’1 2 โŽŸ =            โŽœ0    9   0โŽŸ =   โŽœ0   1   0 โŽŸ = I3.
               3 โŽœ                       3 โŽœ            9
                         โŽœ 2
                         โŽ      2 โˆ’ 1โŽŸ
                                     โŽ      โŽ 2  2 โˆ’ 1โŽŸ
                                                     โŽ 
                                                                   โŽœ0
                                                                   โŽ     0   9โŽŸ
                                                                              โŽ 
                                                                                    โŽœ0
                                                                                    โŽ    0   1โŽŸโŽ 
        Similarly A'A = 1

Unitary Matrix: ๏€ A square matrix A is said to be unitary matrix, if AA* = I = A*A.
                 1 โŽก 1 1+iโŽค                                     1 โŽก 1 1+iโŽค     1 โŽก 1 1+iโŽค
Ex.     A=         โŽข      โŽฅ is an unitary matrix, because AA* =   โŽข1โˆ’i โˆ’1โŽฅ x =   โŽข      โŽฅ
                 3 โŽฃ1โˆ’i โˆ’1โŽฆ                                     3โŽฃ       โŽฆ     3 โŽฃ1โˆ’i โˆ’1โŽฆ
            1   โŽ›1 + 1 โˆ’ i 2      0 โŽž 1 โŽ›3 0โŽž         โŽ› 1 0โŽž
        =       โŽœ                       โŽŸ=  โŽœ     โŽŸ = โŽœ
                                                      โŽœ 0 1โŽŸ
                                                             = I. Similarly, A*A = I.
            3   โŽœ 0
                โŽ            1 โˆ’ i 2 + 1โŽŸ 3 โŽœ 0 3 โŽŸ
                                        โŽ    โŽ     โŽ    โŽ
                                                           โŽŸ
                                                           โŽ 


Singular Matrix: A square matrix A is called singular if A = 0.

Non singular Matrix: A square matrix A is called non-singular if A โ‰  0.


Properties of Matrices:
Addition and subtraction of matrices: If A, B be two matrices of the same order, then their sum A + B is
defined as the matrix each element of which is the sum of the corresponding elements of A and B
                  โŽกa 1     b1 โŽค    โŽกc 1 d1 โŽค    โŽกa 1 + c 1 b 1 + d1 โŽค
                  โŽข            โŽฅ   โŽข        โŽฅ   โŽข                    โŽฅ
Thus              โŽขa 2     b 2 โŽฅ + โŽขc 2 d 2 โŽฅ = โŽขa 2 + c 2 b 2 + d 2 โŽฅ
                  โŽขa 3
                  โŽฃ        b3 โŽฅโŽฆ   โŽขc 3 d 3 โŽฅ
                                   โŽฃ        โŽฆ   โŽขa 3 + c 3 b 3 + d 3 โŽฅ
                                                โŽฃ                    โŽฆ


Similarly A โ€“ B is defined as a matrix whose elements are obtained by subtracting the elements of B from the
corresponding elements of A.
                  โŽกa 1     b1 โŽค   โŽกc 1 d1 โŽค    โŽกa 1 โˆ’ c 1 b 1 โˆ’ d1 โŽค
Thus              โŽข           โŽฅ โ€“ โŽข        โŽฅ = โŽข                    โŽฅ
                  โŽฃa 2     b2 โŽฆ   โŽฃc 2 d 2 โŽฆ   โŽฃa 2 โˆ’ c 2 b 2 โˆ’ d 2 โŽฆ


Equal matrices: Two matrices A and B are said to be equal, written as A = B, if
โ€ข     They are both of the same order i.e. have the same number of rows and columns, and
โ€ข     The elements in the corresponding places of the two matrices are the same

1.      Only matrices of the same order can be added or subtracted.
2.      Addition of matrices is commutative,
        i.e.   A + B = B + A.
3.      Addition and subtraction of matrices is associative.
        i.e. (A + B) โ€“ C = A + (B โ€“ C) = B + (A โ€“ C).
4.      A โ€“ B = A + (โ€“ B)
5.      A+B=A+Cโ‡’B=C
6.      A+0=A=0+A


_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 4
Top Careers & You
                                                                             ยฎ

_________________________________________________________________________________

Multiplication of matrix by a scalar: The product of a matrix A by a scalar k is a matrix whose each element
is k times the corresponding elements of A.
                โŽกa b c โŽค     โŽกka kb 1 kc 1 โŽค
         Thus k โŽข 1 1 1 โŽฅ = โŽข 1              โŽฅ
                โŽฃa2 b2 c 2 โŽฆ โŽฃka 2 kb 2 kc 2 โŽฆ


The distributive law holds for such products, i.e. k (A + B) = kA + kB.
All the laws of ordinary algebra hold for the addition or subtraction of matrices and their multiplication by
scalars. Therefore
        โ€ข      (k + l ) A = kA + l A
        โ€ข      (k l ) A = k ( l A) = l (kA)
        โ€ข      l A = A l , l โˆˆ R (or C)
        โ€ข      k (A + B) = kA + kB


Ex:     Evaluate 3A โ€“ 4B, where
                  โŽก3     โˆ’4    6โŽค                โŽก1 0 1 โŽค
               A= โŽข             โŽฅ and B =        โŽข      โŽฅ
                  โŽฃ5         1 7โŽฆ                โŽฃ2 0 3 โŽฆ
                                   โŽก9 โˆ’ 12           18โŽค              โŽก4      0  4โŽค
               We have        3A = โŽข                    โŽฅ and 4B =    โŽข            โŽฅ
                                   โŽฃ15   3           21 โŽฆ             โŽฃ8      0 12 โŽฆ
                           โŽก9 โˆ’ 4 โˆ’ 12 โˆ’ 0             18 โˆ’ 4 โŽค   โŽก5        โˆ’ 12   14โŽค
               โˆด 3A โ€“ 4B = โŽข                                  โŽฅ = โŽข                  โŽฅ
                           โŽฃ15 โˆ’ 8   3โˆ’0               21 โˆ’ 12โŽฆ   โŽฃ7           3    9โŽฆ


Multiplication of matrices: Two matrices can be multiplied only when the number of columns in the first is
equal to the number of rows in the second. Such matrices are said to be conformable.


                       โŽ› 2     1   3โŽž          โŽ›1           โˆ’ 2โŽž
                       โŽœ             โŽŸ         โŽœ               โŽŸ
For example, If A = โŽœ 3       โˆ’2   1 โŽŸ and B = โŽœ 2           1 โŽŸ , then A and B are conformable for the product AB such
                       โŽœโˆ’ 1    0   1โŽŸ          โŽœ4           โˆ’ 3โŽŸ
                       โŽ             โŽ          โŽ               โŽ 
                                                                     โŽ› 1โŽž
that (AB)11 = (First row of A) (First column of B) = [2 1 3] โŽœ 2 โŽŸ = 2*1 + 1*2 + 3*4 = 16 (AB) 12 = (First row of A)
                                                             โŽœ โŽŸ
                                                                     โŽœ 4โŽŸ
                                                                     โŽ โŽ 
                                       โŽ› โˆ’ 2โŽž                                                  โŽ›16   โˆ’ 12โŽž
(Second column of B) = [2 1 3]         โŽœ โŽŸ      = 2* โ€“ 2 + 1*1 + 3 * โ€“ 3 = โ€“ 12 etc. Thus AB = โŽœ 3
                                                                                               โŽœ
                                                                                                         โŽŸ
                                                                                                     โˆ’ 11โŽŸ   .
                                       โŽœ 1โŽŸ
                                       โŽœ โˆ’ 3โŽŸ                                                  โŽœ3     โˆ’1 โŽŸ
                                       โŽ โŽ                                                      โŽ         โŽ 


Properties of Matrix Multiplication:
โ€ข     Matrix multiplication is associative i.e. if A, B, C are m x n, n x p and q x q matrices respectively, then (AB)
      C = A (BC)
โ€ข     Matrix multiplication is not always commutative            AB โ‰  BA
โ€ข     Matrix multiplication is distributive over matrix addition i.e. A (B + C) = AB + AC where A, B, C are m x n, n
      x p, n x p matrices respectively
โ€ข     The product of two matrices can be the null matrix while neither of them is the null matrix.

        For example, if A = โŽ›
                              0 2โŽž         โŽ› 1 0โŽž           โŽ›0 0โŽž
                            โŽœ
                            โŽœ    โŽŸ and B = โŽœ
                                 โŽŸ         โŽœ    โŽŸ then AB = โŽœ
                                                โŽŸ           โŽœ   โŽŸ while neither A nor B is a null matrix.
                                                                โŽŸ
                               โŽ0 0โŽ                 โŽ0 0โŽ                โŽ0 0โŽ 
โ€ข     Two matrix are said to be commute if AB = BA.
   If AB = โ€“ BA, they are called Anti-commute.
_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 5
Top Careers & You
                                                                              ยฎ

_________________________________________________________________________________

Power of a matrix: If A be a square matrix, then the product AA is defined as A2. Similarly, we define higher
powers of A. i.e. A.A2 = A3, A2. A2 = A4 etc.
                                                     โŽก1                  3     2โŽค
                                                     โŽข                          โŽฅ
Exam. Prove that A3 โ€“ 4A2 โ€“ 3A + 11 I = 0, where A = โŽข2                  0   โˆ’ 1โŽฅ .
                                                     โŽข1
                                                     โŽฃ                   2     3โŽฅ
                                                                                โŽฆ
                   โŽก1      3     2โŽค     โŽก1       3       2โŽค   โŽก1 + 6 + 2 3 + 0 + 4 2 โˆ’ 3 + 6โŽค    โŽก9 7 5 โŽค
                   โŽข              โŽฅ     โŽข                 โŽฅ   โŽข                              โŽฅ   โŽข      โŽฅ
       A = A ร— A = โŽข2
         2
                           0   โˆ’ 1โŽฅ ร—   โŽข2       0     โˆ’ 1โŽฅ = โŽข2 + 0 โˆ’ 1 6 + 0 โˆ’ 2 4 + 0 โˆ’ 3 โŽฅ = โŽข1 4 1 โŽฅ
                   โŽข1
                   โŽฃ       2     3โŽฅ
                                  โŽฆ     โŽข1
                                        โŽฃ        2       3โŽฅ
                                                          โŽฆ   โŽข1 + 4 + 3 3 + 0 + 6 2 โˆ’ 2 + 9 โŽฅ
                                                              โŽฃ                              โŽฆ   โŽข8 9 9โŽฅ
                                                                                                 โŽฃ      โŽฆ
                   โŽก9 7 5 โŽค   โŽก1             3         2โŽค   โŽก9 + 14 + 5 27 + 0 + 10 18 โˆ’ 7 + 15 โŽค  โŽก28      37 26โŽค
                   โŽข      โŽฅ   โŽข                         โŽฅ   โŽข                                   โŽฅ  โŽข              โŽฅ
       A = A ร— A = โŽข1 4 1 โŽฅ ร— โŽข2
         3    2
                                             0       โˆ’ 1โŽฅ = โŽข1 + 8 + 1  3+0+2        2 โˆ’ 4 + 3 โŽฅ = โŽข10       5  1โŽฅ
                   โŽข8 9 9โŽฅ
                   โŽฃ      โŽฆ   โŽข1
                              โŽฃ              2         3โŽฅ
                                                        โŽฆ   โŽข8 + 18 + 9 24 + 0 + 18 16 โˆ’ 9 + 27โŽฅ
                                                            โŽฃ                                   โŽฆ  โŽข35
                                                                                                   โŽฃ        42 34 โŽฅ
                                                                                                                  โŽฆ
       A3 โ€“ 4A2 โ€“ 3A + 11 I
              โŽก28    37 26โŽค        โŽก9 7 5 โŽค               โŽก1    3      2โŽค          โŽก1 0 0โŽค
              โŽข            โŽฅ       โŽข      โŽฅ               โŽข             โŽฅ          โŽข     โŽฅ
              โŽข10     5  1โŽฅ โ€“ 4    โŽข1 4 1 โŽฅ โ€“ 3           โŽข2    0    โˆ’ 1โŽฅ + 11     โŽข0 1 0โŽฅ
              โŽข35
              โŽฃ      42 34 โŽฅ
                           โŽฆ       โŽข8 9 9โŽฅ
                                   โŽฃ      โŽฆ               โŽข1
                                                          โŽฃ     2      3โŽฅ
                                                                        โŽฆ          โŽข0 0 1โŽฅ
                                                                                   โŽฃ     โŽฆ
                โŽก28 โˆ’ 36 โˆ’ 3 + 11, 37 โˆ’ 28 โˆ’ 9 + 0,            26 โˆ’ 20 โˆ’ 6 + 0 โŽค  โŽก0 0 0โŽค
                โŽข                                                               โŽฅ โŽข     โŽฅ
              = โŽข10 โˆ’ 4 โˆ’ 6 โˆ’ 0,   5 โˆ’ 16 + 0 + 11,             1 โˆ’ 4 + 3 + 0 โŽฅ = โŽข0 0 0โŽฅ = 0
                โŽข35 โˆ’ 32 โˆ’ 3 + 0, 42 โˆ’ 36 โˆ’ 6 + 0,
                โŽฃ                                               34 โˆ’ 36 โˆ’ 9 + 11โŽฅ
                                                                                โŽฆ โŽข0 0 0โŽฅ
                                                                                  โŽฃ     โŽฆ


      Adjoint of A Matrix: The determinant of the square matrix
             a1 b1 c 1         a1 b1 c 1
      A = a2 b2      c 2 is โˆ† a 2 b 2    c2
             a3 b3   c3        a3 b3     c3

                                                                                  A 1 B 1 C1
      The matrix formed by the cofactors of the elements in โˆ† is A 2 B 2                   C2 .
                                                                                  A 3 B3   C3

                                                       A1 A 2       A3
      Then, the transpose of this matrix, i.e. B 1 B 2              B3
                                                       C1 C 2       C3

      is called the adjoint of the matrix A and is written as Adj. A.
      Thus the Adjoint of A is the transposed matrix of cofactors of A.

Inverse of a matrix:
Let A be a square matrix of order n. If there exists a matrix B, such that
A. B = B. A = I, then B is called the inverse of the matrix and denoted by Aโ€“1.
    The Inverse of a Square Matrix A exists if and only if A is non-singular (i.e., det A โ‰  0).
    The Inverse a Square Matrix is unique.
                                                 โˆ’1       adj A
    If A is a non-singular matrix then       A        =
                                                          det A

                     โŽกa bโŽค                       โˆ’1    1    โŽกa bโŽค
Example:      If A = โŽข   โŽฅ is non-singular then A =         โŽข   โŽฅ
                     โŽฃc dโŽฆ                          ad โˆ’ bc โŽฃc dโŽฆ


_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 6
Top Careers & You
                                                                   ยฎ

_________________________________________________________________________________

                   โŽก 2 0 โŽค โŽก 1 โˆ’ 2โŽค
Example:    If A = โŽข     โŽฅ+โŽข      โŽฅ , then A + B = _______ and A โ€“ B = _____
                   โŽฃโˆ’ 3 4โŽฆ โŽฃ0 4 โŽฆ
                   โŽก 2 0 โŽค โŽก 1 โˆ’ 2โŽค
Solution:   A +B = โŽข     โŽฅ+โŽข      โŽฅ
                   โŽฃโˆ’ 3 4โŽฆ โŽฃ0 4 โŽฆ
             โŽก 2 + 1 0 + ( โˆ’2)โŽค            โŽก 3 โˆ’ 2โŽค
            =โŽข                โŽฅ=           โŽข      โŽฅ
             โŽฃโˆ’ 3 + 0 4+4 โŽฆ                โŽฃโˆ’ 3 8 โŽฆ
                   โŽก 2 0 โŽค โŽก 1 โˆ’ 2โŽค โŽก 2 โˆ’ 1 0 โˆ’ ( โˆ’2)โŽค             โŽก 3 2โŽค
            A โˆ’B = โŽข     โŽฅ+โŽข      โŽฅ =โŽข               โŽฅ=            โŽข     โŽฅ
                   โŽฃโˆ’ 3 4โŽฆ โŽฃ0 4 โŽฆ โŽฃโˆ’ 3 + 0   4โˆ’4 โŽฆ                 โŽฃโˆ’ 3 0โŽฆ
                         โŽก1         ฯ‰       ฯ‰2 โŽค
                         โŽข                     โŽฅ
Example:    Evaluate โˆ† = โŽข ฯ‰        ฯ‰2      1โŽฅ
                         โŽขฯ‰2         1      ฯ‰โŽฅ
                         โŽฃ                     โŽฆ
            Operating r1 โ†’ r1 + r2 + r3 we get,
              โŽก1 + ฯ‰ + ฯ‰2        ฯ‰ + ฯ‰2 + 1 ฯ‰ 2 + 1 + ฯ‰โŽค
              โŽข                                        โŽฅ
            โˆ†=โŽข     ฯ‰               ฯ‰2           1     โŽฅ
              โŽข    ฯ‰2                1           ฯ‰     โŽฅ
              โŽฃ                                        โŽฆ
              โŽก0     0     0โŽค
              โŽข             โŽฅ
            = โŽขฯ‰     ฯ‰2    1โŽฅ = 0          [Q (1 + ฯ‰ + ฯ‰2 ) = 0]
              โŽข 2
              โŽฃฯ‰     1     ฯ‰โŽฅ
                            โŽฆ
Example:    Find the inverse of the matrix
                     โŽก1 4โŽค    โŽก3 4โŽค     โŽก3 1โŽค
Solution:   det A = 1โŽข   โŽฅ โˆ’ 2โŽข    โŽฅ + 5โŽข    โŽฅ
                     โŽฃ1 2โŽฆ    โŽฃ 1 2โŽฆ    โŽฃ 1 1โŽฆ
            = โ€“ 2 โ€“ 4 + 10 = 14
            โ‡’ det A โ‰  0
            โˆด A is non โ€“ singular
            Let Aij denote the co-factor of aij of the matrix A.
                             โŽก1 4โŽค
            โˆด A11 = ( โˆ’1)1+1 โŽข   โŽฅ = โˆ’2,
                             โŽฃ1 2โŽฆ
                            โŽก3 4โŽค
            A12 = ( โˆ’1)1+ 2 โŽข    โŽฅ = โˆ’2,
                            โŽฃ 1 2โŽฆ
                            โŽก3 1โŽค
            A13 = ( โˆ’1)1+ 3 โŽข   โŽฅ = 2,
                            โŽฃ1 1โŽฆ
                             โŽก2 5โŽค
            A 21 = ( โˆ’1)2 +1 โŽข    โŽฅ =1,
                             โŽฃ 1 2โŽฆ
                              โŽก1 2โŽค
            A 22 = ( โˆ’1)2 + 2 โŽข   โŽฅ = 1,
                              โŽฃ1 1โŽฆ
                             โŽก2 5 โŽค
            A 31 = ( โˆ’1)3 +1 โŽข    โŽฅ = 3,
                             โŽฃ 1 4โŽฆ
                               โŽก1 5โŽค
            A 32 = ( โˆ’1) 3 + 2 โŽข   โŽฅ = 11,
                               โŽฃ3 4โŽฆ



_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 7
Top Careers & You
                                                                        ยฎ

_________________________________________________________________________________

                                 โŽก 1 2โŽค
               A 33 = ( โˆ’1)3 + 3 โŽข    โŽฅ = โˆ’5,
                                 โŽฃ3 1โŽฆ
                                          โŽกโˆ’ 2 โˆ’ 2 2 โŽค
                                          โŽข          โŽฅ
               โˆด Matrix of co โˆ’ factors = โŽข 1 โˆ’ 3 1 โŽฅ
                                          โŽข 3 11 โˆ’ 5โŽฅ
                                          โŽฃ          โŽฆ
                       โŽกโˆ’ 2 1   3 โŽค
                       โŽข           โŽฅ
               Adj A = โŽขโˆ’ 2 โˆ’ 3 11 โŽฅ
                       โŽข2
                       โŽฃ     1 โˆ’ 5โŽฅโŽฆ
                                 โŽกโˆ’ 2 1  3 โŽค
                        Adj A 1 โŽข           โŽฅ
               A โˆ’1 =         = โŽขโˆ’ 2 โˆ’ 3 11 โŽฅ
                        det A  4
                                 โŽข2
                                 โŽฃ    1 โˆ’ 5โŽฅโŽฆ
                        Coshฮฑ Sinhฮฑ
Example:       If A =               , find A โˆ’1
                        Sinhฮฑ Coshฮฑ
                         Coshฮฑ Sinhฮฑ
Solution:      det A =
                         Sinhฮฑ Coshฮฑ
               = cos h2ฮฑ โ€“ sinh2ฮฑ = 1 โ‰  0.                โˆด Aโ€“1 can be computed


RANK OF A MATRIX:
If we select any r rows and r columns from any matrix A, deleting all the other rows and columns, then the
determinant formed by these r ร— r elements is called the minor of A of order r. Clearly there will be a number of
different minors of the same order, got by deleting different rows and columns form the same matrix.
              Def. A matrix is said to be of rank r when
              (i)     it has at least one non-zero minor of order r,
       and (ii)       every minor of order higher than r vanishes.
       Briefly, the rank of a matrix is the largest order of any non-vanishing minor of the matrix.
        If a matrix has a non-zero minor of order r, its rank is โ‰ฅ r.
        If all minors of a matrix of order r + 1 are zero, its rank is โ‰ค r.
Note:
1.      Since the rank of every non-zero matrix is โ‰ฅ 1, we agree to assign the rank, zero to every null matrix.
2.      Every (r + 1) rowed minor of a matrix can be expressed as the sum of its r-rowed minors Therefore if all
        the r-rowed minors of a matrix are equal to zero, then obviously all its (r + 1) rowed minors will also be
        equal to zero.

        Important: The following two simple results will help us very much in finding the rank of a matrix.
(i)     The rank of a matrix is โ‰ค r , if all (r + 1)-rowed minors of the matrix vanish
(ii)    The rank of a matrix is โ‰ฅ r, if there is at least one r-rowed minor of the matrix which is not equal to zero.

Examples:
                     โŽ› 1 0 0โŽž
                     โŽœ       โŽŸ
1.      Let A = I3 = โŽœ 0 1 0 โŽŸ be a unit matrix of order 3.
                     โŽœ 0 0 1โŽŸ
                     โŽ       โŽ 
        We have A = 1 Therefore A is a non-singular matrix Hence rank A = 3.In particular, the rank of a unit
        matrix of order n is n

_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 8
Top Careers & You
                                                                  ยฎ

_________________________________________________________________________________

               โŽ›0 0 0โŽž
               โŽœ       โŽŸ
2.     Let A = โŽœ 0 0 0 โŽŸ Since A is a null matrix, therefore rank A = 0
               โŽœ0 0 0โŽŸ
               โŽ       โŽ 
               โŽ›1 2 3โŽž
               โŽœ       โŽŸ
3.     Let A = โŽœ 2 3 4 โŽŸ We have A = 1 (6 โ€“ 8) โ€“ 2(4 โ€“ 4) + 3(4 โ€“ 3) = 2 + 1 = 3. Thus A is a non-singular
               โŽœ 1 2 2โŽŸ
               โŽ       โŽ 
       Therefore rank A = 3.
               โŽ› 1 2 3โŽž
               โŽœ       โŽŸ
4.     Let A = โŽœ 3 4 5 โŽŸ . We have A = 1 (24 โ€“ 25) โ€“ 2 (18 โ€“ 20) + 3 (15 โ€“ 16) = 0.
               โŽœ 4 5 6โŽŸ
               โŽ       โŽ 
                                                                                                             1 2
       Therefore the rank of A is less than a 3. Now there is at least one minor of A or order 2, namely
                                                                                                             3 4
       which is not equal to zero Hence rank A = 2.
               โŽ›3 1 2โŽž
               โŽœ       โŽŸ
5.     Let A = โŽœ 6 2 4 โŽŸ we have A = 0, since the first two columns are identical Also each 2 โ€“ rowed
               โŽœ3 1 2โŽŸ
               โŽ       โŽ 
       minor of A is equal to zero. But A is not a null matrix. Hence rank A = 1


               โŽ› 2 4 3 2โŽž                                                                            2 4
6.     Let A = โŽœ
               โŽœ3 5 1 4 โŽŸ
                        โŽŸ       Here we see that there is at least one minor of A of order 2 i.e.,       which is
               โŽ        โŽ                                                                             3 5
       not equal to zero Also there is no minor of A of order greater that 2 Hence rank of A = 2

Echelon form of matrix: A matrix A is said to be Echelon from if
(i)   Every row of A which has all its entries 0 occurs below every row, which has a non-zero entry.
(ii)  The first non-zero entry in each non-zero row is equal to 1.
(iii) The number of zeros before the first non-zero element in a row is less than the number of such zeros in
      the next row.

Important result:
       The rank of a matrix in Echelon from is equal to the number of non-zero rows of the matrix.
                                   โŽ›0 1 2 3 โŽž
                                   โŽœ          โŽŸ
Ex     Find the rank of the matrix โŽœ 0 0 1 โˆ’ 1โŽŸ
                                   โŽœ0 0 0 0 โŽŸ
                                   โŽ          โŽ 
Sol.   The matrix A has zero row. We see that it occurs below every non-zero row. Further the number of zero
       before the first non-zero element in the first row is one. The number of zeros before the first non-zero
       element in the second row it two. Thus the number of zeros before the first non-zero element in any row
       is less than the number of such zeros in the next row. Thus the matrix A is in Echelon from     rank A =
       the number of non-zero rows of A = 2.




_________________________________________________________________________________________________
www.TCYonline.com                                                                         Page : 9
Top Careers & You
                                                                                             ยฎ

_________________________________________________________________________________

Examples
1.     Find the rank of each of the following matrices:
              โŽ› 1 2 3โŽž
              โŽœ      โŽŸ
                                (ii) โŽ›
                                       1 2 3 โŽž
       (i) โŽœ 2 1 0 โŽŸ                 โŽœ
                                     โŽœ       โŽŸ
                                             โŽŸ
              โŽœ 0 1 2โŽŸ              โŽ2     4       5โŽ 
              โŽ      โŽ 
                           โŽ› 1 2 3โŽž
Sol.   (i)      Let A = โŽœ 2 1 0 โŽŸ We have A = 1(2 โ€“ 0) + 3(2 โ€“ 0), expanding along the first row
                        โŽœ       โŽŸ
                           โŽœ0   1 2โŽŸ
                           โŽ       โŽ 
                = 2 โ€“ 8 + 6 = 0.
                                                                                                 1 2
                But there is at least one minor of order 2 of the matrix A, namely                     which is not equal to zero.
                                                                                                 2 1
                Hence the rank A = 2.
                        โŽ›1 2 3 โŽž                                                                      1 3
       (ii)             โŽœ 2 4 5 โŽŸ Here there is at least one minor of order 2 of the matrix A, namely 2 5 which
                Let A = โŽœ       โŽŸ
                        โŽ       โŽ 
                is not equal to 0. Also there is not minor of the matrix A of order greater than 2. Hence rank A =
                2.

2.     Show that the rank of a matrix every element of which is unity is 1.
Sol.   Let A denote a matrix every element of which is unity. All the 2-rewed minors of A obviously vanish but
       A is a non-zero matrix. Hence rank A = 1.

3.     A is a non-zero column and B a non-zero row matrix, show that rank (AB) = 1.
            โŽ› a 11 โŽž
            โŽœ        โŽŸ
            โŽœ a 21 โŽŸ
Sol.    A = โŽœ a โŽŸ and B =        (b 11 b 12 b 13 ....... b in )
            โŽœ 31 โŽŸ
            โŽœ ...... โŽŸ
            โŽœ        โŽŸ
            โŽ a ml โŽ 
       be two non-zero column and row matrices respectively.


                    โŽ› a 11b 11         a 11b 12         a 11b 13    ......     a 11b 1n โŽž
                    โŽœ                                                                    โŽŸ
       We have AB = โŽœ a 21b 11         a 21b 12         a 21b 13    ......     a 21b 1n โŽŸ
                    โŽœ ......            ......           ......     ......      ...... โŽŸ
                    โŽœ                                                                    โŽŸ
                    โŽœa b               a ml b 12        a ml b 13   ......     a ml b 1n โŽŸ
                    โŽ ml 11                                                              โŽ 
       Since A and B are non-zero matrices therefore the matrix AB will also be non-zero The matrix AB will
       have at least one non zero element obtained by multiplying corresponding non-zero elements of A and
       B All the two-rowed minors of A obviously vanish. But A is a non-zero matrix. Hence rank AB = 1.


       โŽ›0     1 0 0โŽž
       โŽœ            โŽŸ
4.     โŽœ0     0 1 0 โŽŸ find the ranks of U and U2
       โŽœ0     0 0 1โŽŸ
       โŽœ            โŽŸ
       โŽœ0     0 0 0โŽŸ
       โŽ            โŽ 
Sol.   The matrix U is the Echelon form.                    rank U = the number of non-zero rows of U = 3.
                      โŽ›0   1 0 0โŽž   โŽ›0 1                0 0โŽž        โŽ›0       0 1 0โŽž
                      โŽœ         โŽŸ   โŽœ                      โŽŸ        โŽœ             โŽŸ
       Now U =
                2     โŽœ0   0 1 0โŽŸ x โŽœ0 0                1 0โŽŸ =      โŽœ0       0 1 0โŽŸ
                      โŽœ0   0 0 1โŽŸ   โŽœ0 0                0 1โŽŸ        โŽœ0       0 0 0โŽŸ
                      โŽœ         โŽŸ   โŽœ                      โŽŸ        โŽœ             โŽŸ
                      โŽœ0        โŽŸ
                           0 0 0โŽ    โŽœ0 0                0 0โŽŸ        โŽœ0       0 0 0โŽŸ
                      โŽ             โŽ                      โŽ         โŽ             โŽ 

_________________________________________________________________________________________________
www.TCYonline.com                                                                        Page : 10
Top Careers & You
                                                                                 ยฎ

_________________________________________________________________________________

Elementary Operations: An elementary operation is said to be row (or column) operation if it is applied to
rows (or columns). There are three types of elementary operations:

Type 1:          The interchanging of ith row (or columns) of the matrix, this operation is denoted by
                 Ri <--> Rj or (Ci <--> Cj) or by Rij (Cij)

Type 2:          If ith row (or column) of the matrix is multiplied by scalar K(K โ‰  0), then this row (or column)
                 operation is denoted by Ri <--> kRj (Ci <--> Cj)

Type 3:          If k times of the elements of the ith row (or column) are added to the corresponding elements of jth
                 row (or column), then this row (column) operation is denoted by RJ      RJ or kRi (or Cj Cj + kCj

                                                                   Examples:
              โŽ› 1 0โŽž
1.     If I = โŽœ
              โŽœ    โŽŸ then E12 โ€“ E21 is equal to:
                   โŽŸ
              โŽ0 1โŽ 
                                                     โŽ›01 0โŽž                           โŽ› โˆ’ 1 โˆ’ 1โŽž
       (a) โŽ› 0 โˆ’ 1โŽž
           โŽœ      โŽŸ                              (b) โŽœ
                                                     โŽœ    โŽŸ
                                                          โŽŸ                       (c) โŽœ
                                                                                      โŽœ        โŽŸ
                                                                                               โŽŸ              (d) None of these
           โŽœ      โŽŸ
           โŽโˆ’ 1 0 โŽ                                   โŽ 0 0โŽ                            โŽ โˆ’ 1 โˆ’ 1โŽ 
                           โŽ› 1 0โŽž                 โŽ›0 1โŽž                               โŽ›0 1โŽž
Sol.   Given that = โŽœ
                    โŽœ           โŽŸ                 โŽœ 1 0โŽŸ R1 < โ‡’ R12 E21 =
                                โŽŸ Therefore E12 = โŽœ    โŽŸ                              โŽœ 1 0โŽŸ , R1 <โ‡’ R2
                                                                                      โŽœ    โŽŸ
                           โŽ0 1โŽ                   โŽ    โŽ                               โŽ    โŽ 
                           โŽ›0 1โŽž โŽ› 0 1โŽž โŽ›0 0โŽž
       E12 โ€“ E21 = โŽœ
                   โŽœ            โŽŸ โŽœ
                                โŽŸ โŽœ      โŽŸ= โŽœ
                                         โŽŸ โŽœ    โŽŸ Therefore the correct answer is (b).
                                                โŽŸ
                           โŽ 1 0โŽ  โŽ โˆ’ 1 0โŽ  โŽ 0 0โŽ 


2.     If I = โŽ› 1 0 โŽž , then 2E12 (2) + 3 E21 is equal to:
              โŽœ     โŽŸ
              โŽœ     โŽŸ
             โŽ0       1โŽ 

       (a) โŽ› 2 7 โŽž
           โŽœ     โŽŸ                               (b) โŽ› 7
                                                     โŽœ
                                                              2โŽž
                                                               โŽŸ                  (c) โŽ› 2 7 โŽž
                                                                                      โŽœ     โŽŸ                 (d) โŽ› 4
                                                                                                                  โŽœ
                                                                                                                        4โŽž
                                                                                                                         โŽŸ
           โŽœ     โŽŸ                                   โŽœ2       3โŽŸ                      โŽœ     โŽŸ                     โŽœ3    1โŽŸ
            โŽ2     3โŽ                                 โŽ         โŽ                       โŽ3   2โŽ                      โŽ      โŽ 

Sol.   E12 = โŽ› 1 2 โŽž R1 โ†’ R1 + 2R2 E21 = โŽ› 0
             โŽœ     โŽŸ                     โŽœ
                                                              1โŽž
                                                               โŽŸ    , R1 โ‡” R2
             โŽœ     โŽŸ                     โŽœ                    0โŽŸ
                 โŽ0     1โŽ                                โŽ1    โŽ 

       Therefore 2E12 (3) + 3E21 = 2 โŽ› 1 2 โŽž + 3 โŽ› 0
                                     โŽœ     โŽŸ     โŽœ
                                                                        1โŽž
                                                                         โŽŸ   = โŽ›2 7โŽž .
                                                                               โŽœ   โŽŸ
                                     โŽœ     โŽŸ     โŽœ                      0โŽŸ     โŽœ   โŽŸ
                                            โŽ0     1โŽ               โŽ1    โŽ        โŽ3   2โŽ 

       Therefore the correct answer is (c).

Elementary matrices: An elementary matrix is that, which is obtained from a unit matrix, by subjecting it to
any of the elementary transformations.

Examples of elementary matrices obtained from
            โŽก1 0 0โŽค                   โŽก1 0 0โŽค                           โŽก1 0 0โŽค                    โŽก1 p 0 โŽค
            โŽข      โŽฅ                  โŽข      โŽฅ                          โŽข      โŽฅ                   โŽข      โŽฅ
       I3 = โŽข0 1 0โŽฅ are R23           โŽข0 0 1 โŽฅ = C23; kR2 =             โŽข0 k 0 โŽฅ ; R1 + pR2 =      โŽข0 1 0โŽฅ
            โŽข0 0 1 โŽฅ
            โŽฃ      โŽฆ                  โŽข0 1 0 โŽฅ
                                      โŽฃ      โŽฆ                          โŽข0 0 1 โŽฅ
                                                                        โŽฃ      โŽฆ                   โŽข0 0 1โŽฅ
                                                                                                   โŽฃ      โŽฆ


Equivalent matrix: Two matrices A and b are said to be equivalent if one can be obtained from the other by a
sequence of elementary transformations. Two equivalent matrices have the same order and the same rank.
The symbol ~ is used for equivalence.




_________________________________________________________________________________________________
www.TCYonline.com                                                                        Page : 11
Top Careers & You
                                                                                   ยฎ

_________________________________________________________________________________

IMPORTANT FACTS


1.   The matrix obtained by applying a row operation on a given matrix is same as the matrix obtained by
     pre-multiplication of the given matrix by the corresponding elementary matrix.


     For Example: Let A = โŽ› 3
                          โŽœ
                                                  4โŽž
                                                   โŽŸ     Let us operate R12, then A ~ โŽ› 8
                                                                                      โŽœ
                                                                                            9โŽž
                                                                                             โŽŸ        โ€ฆ.. (1)
                                          โŽœ8      9โŽŸ                                   โŽœ3   4โŽŸ
                                          โŽ        โŽ                                    โŽ     โŽ 

     Now let 1 = โŽ› 1 0 โŽž then by R12 we get elementary matrix E12 = โŽ› 0
                 โŽœ     โŽŸ                                            โŽœ
                                                                                                 1โŽž
                                                                                                  โŽŸ   .
                 โŽœ     โŽŸ                                            โŽœ                            0โŽŸ
                          โŽ0     1โŽ                                                          โŽ1    โŽ 

     Now E12. A = โŽ› 0
                  โŽœ
                                   1โŽž
                                    โŽŸ
                                         โŽ›3
                                         โŽœ
                                                4โŽž=
                                                 โŽŸ
                                                        โŽ›8
                                                        โŽœ
                                                                 9โŽž
                                                                  โŽŸ
                           โŽœ1      0โŽŸ    โŽœ8     9โŽŸ      โŽœ3       4โŽŸ
                           โŽ        โŽ     โŽ       โŽ       โŽ         โŽ 
     Which is same as seen in (1).

2.   The matrix obtained by applying a column operation on a given matrix is same as the matrix obtained
     by post-multiplication of the given matrix by the corresponding elementary matrix.

3.   The effect of a row operation on a product of two matrices is equivalent to the effect of the same row
     operation applied only to pre-factor.

4.   The effect of a column operation on a product of two matrices is equivalent to the effect of the same
     column operation applied only to the post-factor.


                                                 SYSTEM OF LINEAR EQUATIONS
     Consider the following system of m linear equations in n unknown x1, x2,โ€ฆ.xn.
      a11x 1 + a12 x 2 + ..... โˆ’ a1n x n = b1                     โŽซ
                                                                  โŽช
      a 21x 1 + a 22 x 2 + ..... โˆ’ a 2n x n = b 2                 โŽช
                                                                  โŽช
     .......... .......... .......... .......... ............... โŽฌ
     .......... .......... .......... .......... .................โŽช
                                                                  โŽช
     a m1x 1 + a m2 x 2 + ..... โˆ’ a mn x n = b m โŽช                โŽญ
     The above system, of equations can be written as AX = B.
      โŽ› a11    a12    ....... a1n โŽž            โŽ› x1 โŽž        โŽ› b1 โŽž
      โŽœ                              โŽŸ         โŽœ โŽŸ           โŽœ โŽŸ
      โŽœ a 21   a12     ....... a1n โŽŸ           โŽœ x2 โŽŸ        โŽœ b2 โŽŸ
      โŽœ ....   ...... ....... ...... โŽŸ         โŽœ ..... โŽŸ =   โŽœ ..... โŽŸ
      โŽœ                              โŽŸ         โŽœ โŽŸ           โŽœ โŽŸ
      โŽœa        a m2 ....... a mn โŽŸ            โŽœx โŽŸ          โŽœb โŽŸ
      โŽ m1                           โŽ          โŽ nโŽ           โŽ nโŽ 


     If B = 0 i.e., b1 = b2 = b3โ€ฆ.bn = 0, then the system of equations is called homogeneous๏€ 
     If B โ‰  0, then the system of equations is non-homogeneous.




_________________________________________________________________________________________________
www.TCYonline.com                                                                        Page : 12
Top Careers & You
                                                                       ยฎ

_________________________________________________________________________________

            SOLUTION OF A NON-HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS

    There are three methods of solving a system of linear equations:
    (i)    Matrix method
    (ii)   Rank method
    (iii)  Determinant method (Cramer's Rule)

    Matrix method: For the system of m-linear equations in n unknowns (variables) represented by AX = B.
    (i)        If |A| โ‰  0, then the system is consistent and has a unique solution given by X = Aโ€“1B.
    (ii)       If |A| = 0 and (adj A) B = 0, then the system is consistent and has infinitely many solutions.
    (iii)      If |A| = 0 and (adj A) B โ‰  0, then the system is inconsistent (no solution).


    Rank method: For the system of m-linear equations in n unknowns (variables) represented by AX = B.
    If m > n, then
    (i)       If r (A) = r (A : B) = n, then system of linear equations has a unique solution.
    (ii)      If r (A) = r (A : B) = r < n, then system of linear equations is consistent and has infinite number of
              solutions. In fact, in this case (n โ€“ r) variables can be assigned arbitrary values.
    (iii)      If r (A) โ‰  r (A : B), then the system of linear equations is inconsistent i.e. it has no solution.


    If m < n and r (A) = r (A : B) = r, then there are infinite number of solutions.

    Determinant method: For a system of 3 simultaneous linear equations in three unknowns.
    (i)        If D โ‰  0, then the given system of equations is consistent and has a unique solution given by
                   D1       D            D
               x=     , y = 2 and z = 3
                   D'        D            D
    (ii)       If D = 0 and D1 = D2 = D3 = 0, then the given system of equations is consistent with infinitely
               many solutions.
    (iii)      If D = 0 and at least one of the determinants D1, D2, D3 is non-zero, then the given system of
               equations is inconsistent.


              SOLUTION OF A HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS

A homogeneous system of linear equations, AX = O is never inconsistent, as it always have a trivial solution
i.e. X = 0.

Matrix method:
Step I:        If |A| โ‰  0, then โ€œthe system is consistent with unique solution x = y = z = 0.โ€ (trivial solution)
Step II:       If |A| = 0, then system of equations has infinitely many solutions.
               To find these solutions proceed as follows:
               Put z = k (any real number) and solve any two equations for x and y in terms of k. The values of
               x and y so obtained with z = k give a solution of the given system of equations.


Rank method:
If r (A) = n = number of variables, then AX = O has a unique solution X = 0 i.e. x1 = x2 = โ€ฆ = 0. (trivial solution)
If r (A) = r < n (= number of variables), then the system of equations has an infinite number of solutions.

_________________________________________________________________________________________________
www.TCYonline.com                                                                        Page : 13
Top Careers & You
                                                                     ยฎ

_________________________________________________________________________________

                                                    EXAMPLE
                                  โŽ›1 2 3 โŽž
                                  โŽœ         โŽŸ
1.     The rank of the matrix A = โŽœ 2 3 4 โŽŸ is :
                                  โŽœ 4 10 18 โŽŸ
                                  โŽ         โŽ 
       (a) 0                      (b) 1                      (c) 2                       (d) 3
               โŽ›1 2 3 โŽž
               โŽœ         โŽŸ
Sol.   Let A = โŽœ 2 3 4 โŽŸ Therefore
               โŽœ 4 10 18 โŽŸ
               โŽ         โŽ 
               โŽ›1 2 3 โŽž
               โŽœ         โŽŸ
       A =     โŽœ 2 3 4 โŽŸ = 1 (54 โ€“ 40) โ€“ 2(36 โ€“ 16) + 3 (20 โ€“ 12) = โ€“ 2 โ‰  0.
               โŽœ 4 10 18 โŽŸ
               โŽ         โŽ 
       Therefore p (A) โ‰ฅ 3โ€ฆ..(i). The matrix A does not posses any minor of order 4.
       Therefore p(A) โ‰ฅ 3 โ€ฆ..(ii) From (i) and (ii) p (A) = 3. Therefore the correct answer is (d)




_________________________________________________________________________________________________
www.TCYonline.com                                                                        Page : 14

More Related Content

What's hot

Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
holmsted
ย 
Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)
Matthew Leingang
ย 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
Amit Singh
ย 
Sets and relations
Sets and relationsSets and relations
Sets and relations
SURBHI SAROHA
ย 
APPLICATION OF LINEAR ALGEBRA IN ECONOMICS
APPLICATION OF LINEAR ALGEBRA IN ECONOMICSAPPLICATION OF LINEAR ALGEBRA IN ECONOMICS
APPLICATION OF LINEAR ALGEBRA IN ECONOMICS
Amit Garg
ย 
Abstract algebra & its applications (1)
Abstract algebra & its applications (1)Abstract algebra & its applications (1)
Abstract algebra & its applications (1)
drselvarani
ย 
Matrices
MatricesMatrices
Matrices
NORAIMA
ย 

What's hot (20)

Linear models for data science
Linear models for data scienceLinear models for data science
Linear models for data science
ย 
Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
ย 
Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)Lesson 5: Matrix Algebra (slides)
Lesson 5: Matrix Algebra (slides)
ย 
Sets and venn diagrams
Sets and venn diagramsSets and venn diagrams
Sets and venn diagrams
ย 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
ย 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
ย 
Metric space
Metric spaceMetric space
Metric space
ย 
Matrices
MatricesMatrices
Matrices
ย 
Determinants
DeterminantsDeterminants
Determinants
ย 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
ย 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
ย 
CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matrices
ย 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
ย 
Sets and relations
Sets and relationsSets and relations
Sets and relations
ย 
APPLICATION OF LINEAR ALGEBRA IN ECONOMICS
APPLICATION OF LINEAR ALGEBRA IN ECONOMICSAPPLICATION OF LINEAR ALGEBRA IN ECONOMICS
APPLICATION OF LINEAR ALGEBRA IN ECONOMICS
ย 
02 linear algebra
02 linear algebra02 linear algebra
02 linear algebra
ย 
Abstract algebra & its applications (1)
Abstract algebra & its applications (1)Abstract algebra & its applications (1)
Abstract algebra & its applications (1)
ย 
Matrices
MatricesMatrices
Matrices
ย 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
ย 
rank of matrix
rank of matrixrank of matrix
rank of matrix
ย 

Viewers also liked

presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrix
Nikhi Jain
ย 
Matrices
MatricesMatrices
Matrices
guestc8ce7f
ย 
MATRICES
MATRICESMATRICES
MATRICES
faijmsk
ย 
Appilation of matrices in real life
Appilation of matrices in real lifeAppilation of matrices in real life
Appilation of matrices in real life
Student
ย 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And Eigenvectors
Matthew Leingang
ย 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
Cesar Mendoza
ย 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
Jessica Garcia
ย 
Applications of Matrices
Applications of MatricesApplications of Matrices
Applications of Matrices
santhosh kumar
ย 
1 hibbeler statics-ism_ch02
1 hibbeler statics-ism_ch021 hibbeler statics-ism_ch02
1 hibbeler statics-ism_ch02
awbadar
ย 

Viewers also liked (20)

Matrices And Application Of Matrices
Matrices And Application Of MatricesMatrices And Application Of Matrices
Matrices And Application Of Matrices
ย 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrix
ย 
Matrices
MatricesMatrices
Matrices
ย 
Matrices
MatricesMatrices
Matrices
ย 
MATRICES
MATRICESMATRICES
MATRICES
ย 
Presentation on application of matrix
Presentation on application of matrixPresentation on application of matrix
Presentation on application of matrix
ย 
Appilation of matrices in real life
Appilation of matrices in real lifeAppilation of matrices in real life
Appilation of matrices in real life
ย 
MATRICES AND ITS TYPE
MATRICES AND ITS TYPEMATRICES AND ITS TYPE
MATRICES AND ITS TYPE
ย 
Consistency of linear equations in two and three variables
Consistency of linear equations in two and three variablesConsistency of linear equations in two and three variables
Consistency of linear equations in two and three variables
ย 
Matrices
Matrices Matrices
Matrices
ย 
Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear Equations
ย 
Matrices 1
Matrices 1Matrices 1
Matrices 1
ย 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And Eigenvectors
ย 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
ย 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
ย 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
ย 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .ppt
ย 
SPSS statistics - get help using SPSS
SPSS statistics - get help using SPSSSPSS statistics - get help using SPSS
SPSS statistics - get help using SPSS
ย 
Applications of Matrices
Applications of MatricesApplications of Matrices
Applications of Matrices
ย 
1 hibbeler statics-ism_ch02
1 hibbeler statics-ism_ch021 hibbeler statics-ism_ch02
1 hibbeler statics-ism_ch02
ย 

Similar to MATRICES

University of duhok
University of duhokUniversity of duhok
University of duhok
Rwan Kamal
ย 
Definitions matrices y determinantes fula 2010 english subir
Definitions matrices y determinantes   fula 2010  english subirDefinitions matrices y determinantes   fula 2010  english subir
Definitions matrices y determinantes fula 2010 english subir
HernanFula
ย 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
Student
ย 
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeksBeginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
JinTaek Seo
ย 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinants
indu thakur
ย 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
Shakehand with Life
ย 

Similar to MATRICES (20)

University of duhok
University of duhokUniversity of duhok
University of duhok
ย 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
ย 
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
ย 
Matrices
MatricesMatrices
Matrices
ย 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
ย 
Definitions matrices y determinantes fula 2010 english subir
Definitions matrices y determinantes   fula 2010  english subirDefinitions matrices y determinantes   fula 2010  english subir
Definitions matrices y determinantes fula 2010 english subir
ย 
Lemh103
Lemh103Lemh103
Lemh103
ย 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
ย 
Matrix_PPT.pptx
Matrix_PPT.pptxMatrix_PPT.pptx
Matrix_PPT.pptx
ย 
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeksBeginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
Beginning direct3d gameprogrammingmath05_matrices_20160515_jintaeks
ย 
lec16.ppt
lec16.pptlec16.ppt
lec16.ppt
ย 
Maths
MathsMaths
Maths
ย 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -
ย 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdf
ย 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinants
ย 
APM.pdf
APM.pdfAPM.pdf
APM.pdf
ย 
Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
ย 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applications
ย 
1539 graphs linear equations and functions
1539 graphs linear equations and functions1539 graphs linear equations and functions
1539 graphs linear equations and functions
ย 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
ย 

More from TCYonline No.1 testing platform(Top Careers and You)

More from TCYonline No.1 testing platform(Top Careers and You) (6)

Set Theory
Set TheorySet Theory
Set Theory
ย 
Quadratic Equations
Quadratic EquationsQuadratic Equations
Quadratic Equations
ย 
Sequence and Series
Sequence and SeriesSequence and Series
Sequence and Series
ย 
DETERMINANTS
DETERMINANTSDETERMINANTS
DETERMINANTS
ย 
MCA UNIVERSITIES LIST OF INDIA
MCA UNIVERSITIES LIST OF INDIAMCA UNIVERSITIES LIST OF INDIA
MCA UNIVERSITIES LIST OF INDIA
ย 
Inequalities
InequalitiesInequalities
Inequalities
ย 

Recently uploaded

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
ย 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
ย 

Recently uploaded (20)

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
ย 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
ย 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
ย 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
ย 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
ย 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
ย 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
ย 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
ย 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
ย 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
ย 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
ย 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
ย 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
ย 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
ย 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
ย 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
ย 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
ย 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
ย 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
ย 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
ย 

MATRICES

  • 1. Top Careers & You ยฎ _________________________________________________________________________________ MATRICES MATRICES A system of mn numbers arranged in a rectangular array of m rows and n columns is called an m by n matrix, which is written as m ร— n matrix. โŽกa 11 a 12 ...a 1j ...a 1n โŽค โŽข โŽฅ โŽขa 21 a 22 ...a 2 j ...a 2n โŽฅ โŽข.... .... .... . ... โŽฅ Thus A = โŽข โŽฅ is a matrix of order m x n. It has m rows and n columns. โŽขa i1 a i2 ...a ij ...a in โŽฅ โŽข โŽฅ โŽข.... .... .... . ... โŽฅ โŽขa a m2 a mj ...a mn โŽฅ โŽฃ m1 โŽฆ Note: The element aij is the element in the ith row and jth column of A TYPES OF MATRICES Row Matrix: A matrix having a single row is called a row matrix e.g., [1 3 5 7]. โŽก 2โŽค โŽข โŽฅ Column Matrix: A matrix having a singe column is called a column matrix, e.g. โŽข3โŽฅ โŽข5โŽฅ โŽฃ โŽฆ Square matrix: A matrix having n rows and n columns is called a square matrix of order n. Diagonal matrix: A square matrix all of whose elements except those in the leading diagonal are zero is called a diagonal matrix. โŽก3 0 0โŽค โŽข โŽฅ Ex: โŽข0 โˆ’ 2 0โŽฅ โŽข0 0 โŽฃ 6โŽฅ โŽฆ Scalar matrix: A diagonal matrix whose all the leading diagonal elements are equal is called a scalar matrix. โŽก3 0 0โŽค โŽข โŽฅ Ex: โŽข0 3 0โŽฅ โŽข0 0 3โŽฅ โŽฃ โŽฆ Unit matrix: A diagonal matrix of order n which has unity for all its diagonal elements, is called a unit matrix or an identity matrix of order n and is denoted by In. โŽก1 0 0โŽค โŽข โŽฅ For example, unit matrix of order 3 is โŽข0 1 0โŽฅ . โŽข0 0 1โŽฅ โŽฃ โŽฆ Triangular matrix: A square matrix all of whose elements below the leading diagonal are zero is called an upper triangular matrix. _________________________________________________________________________________________________ www.TCYonline.com Page : 1
  • 2. Top Careers & You ยฎ _________________________________________________________________________________ A square matrix all of whose elements above the leading diagonal are zero is called a lower triangular matrix. โŽกa h gโŽค โŽก1 0 0โŽค โŽข โŽฅ โŽข โŽฅ Thus โŽข0 b f โŽฅ and โŽข2 3 0 โŽฅ are upper and lower triangular matrices respectively โŽข0 0 c โŽฅ โŽฃ โŽฆ โŽข1 โˆ’ 5 โŽฃ 4โŽฅโŽฆ Transpose of a matrix: The transpose of a given matrix A is obtained by interchanging the rows and columns of the matrix A. Transpose of A is denoted by A' or A'. Thus, if A = [aij]mxn Then A' = [bij]nxm Where bij = aji โŽ›1 2โŽž If A = โŽ› 1 3 5โŽž Ex. โŽœ โŽœ โŽŸ โŽŸ Then A' = โŽœ 3 7 โŽŸ โŽœ โŽŸ โŽ2 7 0โŽ  โŽœ5 โŽ 0โŽŸ โŽ  Properties of Transpose: Let A and B be two matrices. Then (i) (AT)T = A (ii) (A + B)T = AT + BT, A and B being of the same order. (iii) (kA)T = kAT, k be any scalar (real or complex). (iv) (AB)T = BTAT, A and B being conformable for the product AB. Conjugate of a Matrix: The conjugate of a given matrix A is obtained by replacing the elements of A by their corresponding complex conjugates. The conjugate of A is denoted by A . Thus, if A = [aij]mxn then A = [ a ij]mxn 1 1 +iโŽž โŽ›1 1 โˆ’ i โŽž Ex: If A = โŽ› โŽœ โŽœ โŽŸ then A = โŽœ โŽŸ โŽœ โŽŸ โŽŸ โŽ3 1 โˆ’1โŽ  โŽ3 1 + 1โŽ  Tranjugate or Transposed Conjugate of a Matrix: The transpose conjugate of a given matrix is obtained by interchanging the rows and columns of the matrix obtained by replacing the element of A by their corresponding complex conjugate. The transpose conjugate of A is denoted by A* or by A ฮธ . Thus, A* = ( A ' ) = ( A )โ€™ โŽ› 2 3โŽž 2 1+ i 0โŽž โŽœ โŽŸ Ex. If A = โŽ› โŽœ โŽœ โŽŸ then A* = โŽœ1โˆ’ i 2 โŽŸ โŽŸ โŽ3 2 iโŽ  โŽœ 0 โŽ โˆ’ iโŽŸ โŽ  Symmetric and skew-symmetric matrices: A square matrix A = [aij] is said to be symmetric when aij = aji for all i and j. If aij = โ€“ aji for all i and j so that all the leading diagonal elements are zero, then the matrix is called a skew- symmetric matrix. Examples of symmetric and skew-symmetric matrices are respectively. โŽกa h gโŽค โŽก 0 h โˆ’ gโŽค โŽข โŽฅ โŽข โŽฅ โŽขh b f โŽฅ and โŽขโˆ’ h 0 f โŽฅ โŽข โŽฃg f c โŽฅ โŽฆ โŽข g โˆ’f 0 โŽฅ โŽฃ โŽฆ Note: Every square matrix can be uniquely expressed as a sum of a symmetric and a skew-symmetric matrix as: A = ยฝ (A + Aโ€™) + ยฝ (A โ€“ Aโ€™). _________________________________________________________________________________________________ www.TCYonline.com Page : 2
  • 3. Top Careers & You ยฎ _________________________________________________________________________________ Hermitian Matrix: ๏€ A square matrix A is said to be a Hermitian matrix if the transpose of the conjugate matrix is equal to the matrix itself i.e., A* = A โ‡’ a ij = aji, where A = [aij]nxn; aij โˆˆ C. โŽ› 3 2 + i 5i โŽž โŽ› 2 3 + 2i โŽž โŽœ โŽŸ Ex : โŽœ โŽœ 3 โˆ’ 2i โŽŸ โŽœ2 โˆ’ i 0 2โŽŸ โŽ 7 โŽŸ โŽ  โŽœโˆ’ 5i โŽ 2 7โŽŸ โŽ  Skew Hermitian Matrix: A square matrix A is said to be skew-Hermitian, if A* = โ€“ A โ‡’ a ij = โ€“ aji โŽ› 4i 2โˆ’i 3 โŽž โŽ› 2i 5 + 4i โŽž โŽœ โŽŸ Ex. โŽœ โŽœ โˆ’ 5 โˆ’ 4i โŽŸ โŽœโˆ’ 2 + i 0 4 โŽŸ are skew โ€“Hermitian matrices. โŽ 0 โŽŸ โŽ  โŽœ โˆ’3 โŽ โˆ’ 4 โˆ’ 3i โŽŸ โŽ  Idempotent Matrix: A square matrix A, such that A2 = A is called idempotent matrix โŽ› 2 โˆ’ 2 โˆ’ 4โŽž โŽœ โŽŸ Ex. โŽœ โˆ’ 1 3 4 โŽŸ is idempotent because โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽ โŽ  โŽ› 2 โˆ’ 2 โˆ’ 4 โŽž โŽ› 2 โˆ’ 2 โˆ’ 4 โŽž โŽ› 4 + 2 โˆ’ 4 โˆ’ 4 โˆ’ 6 + 4 โˆ’ 8 โˆ’ 8 + 12 โŽž 2 โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ A = A. A = โŽœ โˆ’ 1 3 4 โŽŸ โŽœโˆ’1 3 4 โŽŸ = โŽœโˆ’ 2 โˆ’ 3 + 4 2 + 9 โˆ’ 8 4 + 12 โˆ’ 12 โŽŸ โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœ 2 + 2 โˆ’ 3 โˆ’ 2 โˆ’ 6 + 6 โˆ’ 4 โˆ’ 8 + 9 โŽŸ โŽ โŽ  โŽ โŽ  โŽ โŽ  โŽ› 2 โˆ’ 2 โˆ’ 4โŽž โŽ› 2 โˆ’ 2 โˆ’ 4โŽž โŽ› 4 + 2 โˆ’ 4 โˆ’ 4 โˆ’ 6 + 4 โˆ’ 8 โˆ’ 8 + 12 โŽž 2 โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ A = A. A = โŽœ โˆ’ 1 3 4 โŽŸ โŽœโˆ’ 1 3 4 โŽŸ = โŽœโˆ’ 2 โˆ’ 3 + 4 2 + 9 โˆ’ 8 4 + 12 โˆ’ 12 โŽŸ โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœ 2+2โˆ’3 โˆ’2โˆ’6+6 โˆ’4โˆ’8+9 โŽŸ โŽ โŽ  โŽ โŽ  โŽ โŽ  โŽ› 2 โˆ’ 2 โˆ’ 4โŽž โŽœ โŽŸ โŽœโˆ’ 1 3 4 โŽŸ= A โŽœ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽ โŽ  Nilpotent Matrix: If A is a square matrix such that Am = 0, where m is a positive integer, than A is called a nilpotent matrix. If m is the least positive integer for which Am = 0, then A is called to be nilpotent matrix of index m. โŽ› 1 2 3 โŽž โŽœ โŽŸ 2 Ex. The matrix A = โŽœ 1 2 3 โŽŸ is a nilpotent matrix of index 2, because A = A . A โŽœโˆ’ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽ โŽ  โŽ› 1 2 3 โŽž โŽ› 1 2 3 โŽž โŽ› 1+ 2 โˆ’ 3 2+4โˆ’6 3 + 6 โˆ’ 9 โŽž โŽ›0 0 0โŽž โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœ 1 2 3 โŽŸ ร— โŽœ 1 2 3 โŽŸ = โŽœ 1+ 2 โˆ’ 3 2+4โˆ’6 3 + 6 โˆ’ 9 โŽŸ = โŽœ0 0 0โŽŸ = 0 โŽœโˆ’ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœโˆ’ 1 โˆ’ 2 โˆ’ 3โŽŸ โŽœโˆ’ 1โˆ’ 2 + 3 โˆ’ 2 โˆ’ 2 + 6 โˆ’ 3 โˆ’ 6 + 9โŽŸ โŽœ0 0 0โŽŸ โŽ โŽ  โŽ โŽ  โŽ โŽ  โŽ โŽ  Involutory Matrix: A square matrix A such that A2 = I is called involutory matrix. The matrix A = โŽ› 1 0โŽž 2 Ex. โŽœ โŽœ โŽŸ is involutory because A = A . A โŽ 0 โˆ’ 1โŽŸ โŽ  โŽ› 1.1 + 0.0 1.0 + 0(โˆ’1) โŽž = โŽ› 0โŽž โŽ›1 0 โŽž = โŽ› 1 1 0โŽž โŽœ โŽœ โŽŸ ร— โŽœ โŽŸ โŽœ 0 โˆ’ 1โŽŸ โŽŸ = โŽœ โŽœ 0.1 + (โˆ’1).0 0.0 + (โˆ’1).(โˆ’1) โŽŸ โŽŸ โŽœ โŽœ โŽŸ โŽŸ โŽ 0 โˆ’ 1โŽ  โŽ โŽ  โŽ โŽ  โŽ 0 1โŽ  _________________________________________________________________________________________________ www.TCYonline.com Page : 3
  • 4. Top Careers & You ยฎ _________________________________________________________________________________ Orthogonal Matrix: A square matrix A is said to be orthogonal matrix, if AA' = I = A' A. โŽ›โˆ’1 2 2โŽž 1 โŽœ โŽŸ Ex. The matrix โŽœ 2 โˆ’1 2 โŽŸ is orthogonal matrix, because 3 โŽœ 2 โŽ 2 โˆ’ 1โŽŸ โŽ  โŽ›โˆ’ 1 2 2โŽž โŽ›โˆ’ 1 2 2 โŽž โŽ›9 0 0โŽž โŽ›1 0 0โŽž A Aโ€™ = 1 โŽœ 2 โŽŸ 1 โŽœ โŽŸ 1 โŽœ โŽŸ โŽœ โŽŸ โˆ’1 2 โŽŸ x โŽœ 2 โˆ’1 2 โŽŸ = โŽœ0 9 0โŽŸ = โŽœ0 1 0 โŽŸ = I3. 3 โŽœ 3 โŽœ 9 โŽœ 2 โŽ 2 โˆ’ 1โŽŸ โŽ  โŽ 2 2 โˆ’ 1โŽŸ โŽ  โŽœ0 โŽ 0 9โŽŸ โŽ  โŽœ0 โŽ 0 1โŽŸโŽ  Similarly A'A = 1 Unitary Matrix: ๏€ A square matrix A is said to be unitary matrix, if AA* = I = A*A. 1 โŽก 1 1+iโŽค 1 โŽก 1 1+iโŽค 1 โŽก 1 1+iโŽค Ex. A= โŽข โŽฅ is an unitary matrix, because AA* = โŽข1โˆ’i โˆ’1โŽฅ x = โŽข โŽฅ 3 โŽฃ1โˆ’i โˆ’1โŽฆ 3โŽฃ โŽฆ 3 โŽฃ1โˆ’i โˆ’1โŽฆ 1 โŽ›1 + 1 โˆ’ i 2 0 โŽž 1 โŽ›3 0โŽž โŽ› 1 0โŽž = โŽœ โŽŸ= โŽœ โŽŸ = โŽœ โŽœ 0 1โŽŸ = I. Similarly, A*A = I. 3 โŽœ 0 โŽ 1 โˆ’ i 2 + 1โŽŸ 3 โŽœ 0 3 โŽŸ โŽ  โŽ โŽ  โŽ โŽŸ โŽ  Singular Matrix: A square matrix A is called singular if A = 0. Non singular Matrix: A square matrix A is called non-singular if A โ‰  0. Properties of Matrices: Addition and subtraction of matrices: If A, B be two matrices of the same order, then their sum A + B is defined as the matrix each element of which is the sum of the corresponding elements of A and B โŽกa 1 b1 โŽค โŽกc 1 d1 โŽค โŽกa 1 + c 1 b 1 + d1 โŽค โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ Thus โŽขa 2 b 2 โŽฅ + โŽขc 2 d 2 โŽฅ = โŽขa 2 + c 2 b 2 + d 2 โŽฅ โŽขa 3 โŽฃ b3 โŽฅโŽฆ โŽขc 3 d 3 โŽฅ โŽฃ โŽฆ โŽขa 3 + c 3 b 3 + d 3 โŽฅ โŽฃ โŽฆ Similarly A โ€“ B is defined as a matrix whose elements are obtained by subtracting the elements of B from the corresponding elements of A. โŽกa 1 b1 โŽค โŽกc 1 d1 โŽค โŽกa 1 โˆ’ c 1 b 1 โˆ’ d1 โŽค Thus โŽข โŽฅ โ€“ โŽข โŽฅ = โŽข โŽฅ โŽฃa 2 b2 โŽฆ โŽฃc 2 d 2 โŽฆ โŽฃa 2 โˆ’ c 2 b 2 โˆ’ d 2 โŽฆ Equal matrices: Two matrices A and B are said to be equal, written as A = B, if โ€ข They are both of the same order i.e. have the same number of rows and columns, and โ€ข The elements in the corresponding places of the two matrices are the same 1. Only matrices of the same order can be added or subtracted. 2. Addition of matrices is commutative, i.e. A + B = B + A. 3. Addition and subtraction of matrices is associative. i.e. (A + B) โ€“ C = A + (B โ€“ C) = B + (A โ€“ C). 4. A โ€“ B = A + (โ€“ B) 5. A+B=A+Cโ‡’B=C 6. A+0=A=0+A _________________________________________________________________________________________________ www.TCYonline.com Page : 4
  • 5. Top Careers & You ยฎ _________________________________________________________________________________ Multiplication of matrix by a scalar: The product of a matrix A by a scalar k is a matrix whose each element is k times the corresponding elements of A. โŽกa b c โŽค โŽกka kb 1 kc 1 โŽค Thus k โŽข 1 1 1 โŽฅ = โŽข 1 โŽฅ โŽฃa2 b2 c 2 โŽฆ โŽฃka 2 kb 2 kc 2 โŽฆ The distributive law holds for such products, i.e. k (A + B) = kA + kB. All the laws of ordinary algebra hold for the addition or subtraction of matrices and their multiplication by scalars. Therefore โ€ข (k + l ) A = kA + l A โ€ข (k l ) A = k ( l A) = l (kA) โ€ข l A = A l , l โˆˆ R (or C) โ€ข k (A + B) = kA + kB Ex: Evaluate 3A โ€“ 4B, where โŽก3 โˆ’4 6โŽค โŽก1 0 1 โŽค A= โŽข โŽฅ and B = โŽข โŽฅ โŽฃ5 1 7โŽฆ โŽฃ2 0 3 โŽฆ โŽก9 โˆ’ 12 18โŽค โŽก4 0 4โŽค We have 3A = โŽข โŽฅ and 4B = โŽข โŽฅ โŽฃ15 3 21 โŽฆ โŽฃ8 0 12 โŽฆ โŽก9 โˆ’ 4 โˆ’ 12 โˆ’ 0 18 โˆ’ 4 โŽค โŽก5 โˆ’ 12 14โŽค โˆด 3A โ€“ 4B = โŽข โŽฅ = โŽข โŽฅ โŽฃ15 โˆ’ 8 3โˆ’0 21 โˆ’ 12โŽฆ โŽฃ7 3 9โŽฆ Multiplication of matrices: Two matrices can be multiplied only when the number of columns in the first is equal to the number of rows in the second. Such matrices are said to be conformable. โŽ› 2 1 3โŽž โŽ›1 โˆ’ 2โŽž โŽœ โŽŸ โŽœ โŽŸ For example, If A = โŽœ 3 โˆ’2 1 โŽŸ and B = โŽœ 2 1 โŽŸ , then A and B are conformable for the product AB such โŽœโˆ’ 1 0 1โŽŸ โŽœ4 โˆ’ 3โŽŸ โŽ โŽ  โŽ โŽ  โŽ› 1โŽž that (AB)11 = (First row of A) (First column of B) = [2 1 3] โŽœ 2 โŽŸ = 2*1 + 1*2 + 3*4 = 16 (AB) 12 = (First row of A) โŽœ โŽŸ โŽœ 4โŽŸ โŽ โŽ  โŽ› โˆ’ 2โŽž โŽ›16 โˆ’ 12โŽž (Second column of B) = [2 1 3] โŽœ โŽŸ = 2* โ€“ 2 + 1*1 + 3 * โ€“ 3 = โ€“ 12 etc. Thus AB = โŽœ 3 โŽœ โŽŸ โˆ’ 11โŽŸ . โŽœ 1โŽŸ โŽœ โˆ’ 3โŽŸ โŽœ3 โˆ’1 โŽŸ โŽ โŽ  โŽ โŽ  Properties of Matrix Multiplication: โ€ข Matrix multiplication is associative i.e. if A, B, C are m x n, n x p and q x q matrices respectively, then (AB) C = A (BC) โ€ข Matrix multiplication is not always commutative AB โ‰  BA โ€ข Matrix multiplication is distributive over matrix addition i.e. A (B + C) = AB + AC where A, B, C are m x n, n x p, n x p matrices respectively โ€ข The product of two matrices can be the null matrix while neither of them is the null matrix. For example, if A = โŽ› 0 2โŽž โŽ› 1 0โŽž โŽ›0 0โŽž โŽœ โŽœ โŽŸ and B = โŽœ โŽŸ โŽœ โŽŸ then AB = โŽœ โŽŸ โŽœ โŽŸ while neither A nor B is a null matrix. โŽŸ โŽ0 0โŽ  โŽ0 0โŽ  โŽ0 0โŽ  โ€ข Two matrix are said to be commute if AB = BA. If AB = โ€“ BA, they are called Anti-commute. _________________________________________________________________________________________________ www.TCYonline.com Page : 5
  • 6. Top Careers & You ยฎ _________________________________________________________________________________ Power of a matrix: If A be a square matrix, then the product AA is defined as A2. Similarly, we define higher powers of A. i.e. A.A2 = A3, A2. A2 = A4 etc. โŽก1 3 2โŽค โŽข โŽฅ Exam. Prove that A3 โ€“ 4A2 โ€“ 3A + 11 I = 0, where A = โŽข2 0 โˆ’ 1โŽฅ . โŽข1 โŽฃ 2 3โŽฅ โŽฆ โŽก1 3 2โŽค โŽก1 3 2โŽค โŽก1 + 6 + 2 3 + 0 + 4 2 โˆ’ 3 + 6โŽค โŽก9 7 5 โŽค โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ A = A ร— A = โŽข2 2 0 โˆ’ 1โŽฅ ร— โŽข2 0 โˆ’ 1โŽฅ = โŽข2 + 0 โˆ’ 1 6 + 0 โˆ’ 2 4 + 0 โˆ’ 3 โŽฅ = โŽข1 4 1 โŽฅ โŽข1 โŽฃ 2 3โŽฅ โŽฆ โŽข1 โŽฃ 2 3โŽฅ โŽฆ โŽข1 + 4 + 3 3 + 0 + 6 2 โˆ’ 2 + 9 โŽฅ โŽฃ โŽฆ โŽข8 9 9โŽฅ โŽฃ โŽฆ โŽก9 7 5 โŽค โŽก1 3 2โŽค โŽก9 + 14 + 5 27 + 0 + 10 18 โˆ’ 7 + 15 โŽค โŽก28 37 26โŽค โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ A = A ร— A = โŽข1 4 1 โŽฅ ร— โŽข2 3 2 0 โˆ’ 1โŽฅ = โŽข1 + 8 + 1 3+0+2 2 โˆ’ 4 + 3 โŽฅ = โŽข10 5 1โŽฅ โŽข8 9 9โŽฅ โŽฃ โŽฆ โŽข1 โŽฃ 2 3โŽฅ โŽฆ โŽข8 + 18 + 9 24 + 0 + 18 16 โˆ’ 9 + 27โŽฅ โŽฃ โŽฆ โŽข35 โŽฃ 42 34 โŽฅ โŽฆ A3 โ€“ 4A2 โ€“ 3A + 11 I โŽก28 37 26โŽค โŽก9 7 5 โŽค โŽก1 3 2โŽค โŽก1 0 0โŽค โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ โŽข10 5 1โŽฅ โ€“ 4 โŽข1 4 1 โŽฅ โ€“ 3 โŽข2 0 โˆ’ 1โŽฅ + 11 โŽข0 1 0โŽฅ โŽข35 โŽฃ 42 34 โŽฅ โŽฆ โŽข8 9 9โŽฅ โŽฃ โŽฆ โŽข1 โŽฃ 2 3โŽฅ โŽฆ โŽข0 0 1โŽฅ โŽฃ โŽฆ โŽก28 โˆ’ 36 โˆ’ 3 + 11, 37 โˆ’ 28 โˆ’ 9 + 0, 26 โˆ’ 20 โˆ’ 6 + 0 โŽค โŽก0 0 0โŽค โŽข โŽฅ โŽข โŽฅ = โŽข10 โˆ’ 4 โˆ’ 6 โˆ’ 0, 5 โˆ’ 16 + 0 + 11, 1 โˆ’ 4 + 3 + 0 โŽฅ = โŽข0 0 0โŽฅ = 0 โŽข35 โˆ’ 32 โˆ’ 3 + 0, 42 โˆ’ 36 โˆ’ 6 + 0, โŽฃ 34 โˆ’ 36 โˆ’ 9 + 11โŽฅ โŽฆ โŽข0 0 0โŽฅ โŽฃ โŽฆ Adjoint of A Matrix: The determinant of the square matrix a1 b1 c 1 a1 b1 c 1 A = a2 b2 c 2 is โˆ† a 2 b 2 c2 a3 b3 c3 a3 b3 c3 A 1 B 1 C1 The matrix formed by the cofactors of the elements in โˆ† is A 2 B 2 C2 . A 3 B3 C3 A1 A 2 A3 Then, the transpose of this matrix, i.e. B 1 B 2 B3 C1 C 2 C3 is called the adjoint of the matrix A and is written as Adj. A. Thus the Adjoint of A is the transposed matrix of cofactors of A. Inverse of a matrix: Let A be a square matrix of order n. If there exists a matrix B, such that A. B = B. A = I, then B is called the inverse of the matrix and denoted by Aโ€“1. The Inverse of a Square Matrix A exists if and only if A is non-singular (i.e., det A โ‰  0). The Inverse a Square Matrix is unique. โˆ’1 adj A If A is a non-singular matrix then A = det A โŽกa bโŽค โˆ’1 1 โŽกa bโŽค Example: If A = โŽข โŽฅ is non-singular then A = โŽข โŽฅ โŽฃc dโŽฆ ad โˆ’ bc โŽฃc dโŽฆ _________________________________________________________________________________________________ www.TCYonline.com Page : 6
  • 7. Top Careers & You ยฎ _________________________________________________________________________________ โŽก 2 0 โŽค โŽก 1 โˆ’ 2โŽค Example: If A = โŽข โŽฅ+โŽข โŽฅ , then A + B = _______ and A โ€“ B = _____ โŽฃโˆ’ 3 4โŽฆ โŽฃ0 4 โŽฆ โŽก 2 0 โŽค โŽก 1 โˆ’ 2โŽค Solution: A +B = โŽข โŽฅ+โŽข โŽฅ โŽฃโˆ’ 3 4โŽฆ โŽฃ0 4 โŽฆ โŽก 2 + 1 0 + ( โˆ’2)โŽค โŽก 3 โˆ’ 2โŽค =โŽข โŽฅ= โŽข โŽฅ โŽฃโˆ’ 3 + 0 4+4 โŽฆ โŽฃโˆ’ 3 8 โŽฆ โŽก 2 0 โŽค โŽก 1 โˆ’ 2โŽค โŽก 2 โˆ’ 1 0 โˆ’ ( โˆ’2)โŽค โŽก 3 2โŽค A โˆ’B = โŽข โŽฅ+โŽข โŽฅ =โŽข โŽฅ= โŽข โŽฅ โŽฃโˆ’ 3 4โŽฆ โŽฃ0 4 โŽฆ โŽฃโˆ’ 3 + 0 4โˆ’4 โŽฆ โŽฃโˆ’ 3 0โŽฆ โŽก1 ฯ‰ ฯ‰2 โŽค โŽข โŽฅ Example: Evaluate โˆ† = โŽข ฯ‰ ฯ‰2 1โŽฅ โŽขฯ‰2 1 ฯ‰โŽฅ โŽฃ โŽฆ Operating r1 โ†’ r1 + r2 + r3 we get, โŽก1 + ฯ‰ + ฯ‰2 ฯ‰ + ฯ‰2 + 1 ฯ‰ 2 + 1 + ฯ‰โŽค โŽข โŽฅ โˆ†=โŽข ฯ‰ ฯ‰2 1 โŽฅ โŽข ฯ‰2 1 ฯ‰ โŽฅ โŽฃ โŽฆ โŽก0 0 0โŽค โŽข โŽฅ = โŽขฯ‰ ฯ‰2 1โŽฅ = 0 [Q (1 + ฯ‰ + ฯ‰2 ) = 0] โŽข 2 โŽฃฯ‰ 1 ฯ‰โŽฅ โŽฆ Example: Find the inverse of the matrix โŽก1 4โŽค โŽก3 4โŽค โŽก3 1โŽค Solution: det A = 1โŽข โŽฅ โˆ’ 2โŽข โŽฅ + 5โŽข โŽฅ โŽฃ1 2โŽฆ โŽฃ 1 2โŽฆ โŽฃ 1 1โŽฆ = โ€“ 2 โ€“ 4 + 10 = 14 โ‡’ det A โ‰  0 โˆด A is non โ€“ singular Let Aij denote the co-factor of aij of the matrix A. โŽก1 4โŽค โˆด A11 = ( โˆ’1)1+1 โŽข โŽฅ = โˆ’2, โŽฃ1 2โŽฆ โŽก3 4โŽค A12 = ( โˆ’1)1+ 2 โŽข โŽฅ = โˆ’2, โŽฃ 1 2โŽฆ โŽก3 1โŽค A13 = ( โˆ’1)1+ 3 โŽข โŽฅ = 2, โŽฃ1 1โŽฆ โŽก2 5โŽค A 21 = ( โˆ’1)2 +1 โŽข โŽฅ =1, โŽฃ 1 2โŽฆ โŽก1 2โŽค A 22 = ( โˆ’1)2 + 2 โŽข โŽฅ = 1, โŽฃ1 1โŽฆ โŽก2 5 โŽค A 31 = ( โˆ’1)3 +1 โŽข โŽฅ = 3, โŽฃ 1 4โŽฆ โŽก1 5โŽค A 32 = ( โˆ’1) 3 + 2 โŽข โŽฅ = 11, โŽฃ3 4โŽฆ _________________________________________________________________________________________________ www.TCYonline.com Page : 7
  • 8. Top Careers & You ยฎ _________________________________________________________________________________ โŽก 1 2โŽค A 33 = ( โˆ’1)3 + 3 โŽข โŽฅ = โˆ’5, โŽฃ3 1โŽฆ โŽกโˆ’ 2 โˆ’ 2 2 โŽค โŽข โŽฅ โˆด Matrix of co โˆ’ factors = โŽข 1 โˆ’ 3 1 โŽฅ โŽข 3 11 โˆ’ 5โŽฅ โŽฃ โŽฆ โŽกโˆ’ 2 1 3 โŽค โŽข โŽฅ Adj A = โŽขโˆ’ 2 โˆ’ 3 11 โŽฅ โŽข2 โŽฃ 1 โˆ’ 5โŽฅโŽฆ โŽกโˆ’ 2 1 3 โŽค Adj A 1 โŽข โŽฅ A โˆ’1 = = โŽขโˆ’ 2 โˆ’ 3 11 โŽฅ det A 4 โŽข2 โŽฃ 1 โˆ’ 5โŽฅโŽฆ Coshฮฑ Sinhฮฑ Example: If A = , find A โˆ’1 Sinhฮฑ Coshฮฑ Coshฮฑ Sinhฮฑ Solution: det A = Sinhฮฑ Coshฮฑ = cos h2ฮฑ โ€“ sinh2ฮฑ = 1 โ‰  0. โˆด Aโ€“1 can be computed RANK OF A MATRIX: If we select any r rows and r columns from any matrix A, deleting all the other rows and columns, then the determinant formed by these r ร— r elements is called the minor of A of order r. Clearly there will be a number of different minors of the same order, got by deleting different rows and columns form the same matrix. Def. A matrix is said to be of rank r when (i) it has at least one non-zero minor of order r, and (ii) every minor of order higher than r vanishes. Briefly, the rank of a matrix is the largest order of any non-vanishing minor of the matrix. If a matrix has a non-zero minor of order r, its rank is โ‰ฅ r. If all minors of a matrix of order r + 1 are zero, its rank is โ‰ค r. Note: 1. Since the rank of every non-zero matrix is โ‰ฅ 1, we agree to assign the rank, zero to every null matrix. 2. Every (r + 1) rowed minor of a matrix can be expressed as the sum of its r-rowed minors Therefore if all the r-rowed minors of a matrix are equal to zero, then obviously all its (r + 1) rowed minors will also be equal to zero. Important: The following two simple results will help us very much in finding the rank of a matrix. (i) The rank of a matrix is โ‰ค r , if all (r + 1)-rowed minors of the matrix vanish (ii) The rank of a matrix is โ‰ฅ r, if there is at least one r-rowed minor of the matrix which is not equal to zero. Examples: โŽ› 1 0 0โŽž โŽœ โŽŸ 1. Let A = I3 = โŽœ 0 1 0 โŽŸ be a unit matrix of order 3. โŽœ 0 0 1โŽŸ โŽ โŽ  We have A = 1 Therefore A is a non-singular matrix Hence rank A = 3.In particular, the rank of a unit matrix of order n is n _________________________________________________________________________________________________ www.TCYonline.com Page : 8
  • 9. Top Careers & You ยฎ _________________________________________________________________________________ โŽ›0 0 0โŽž โŽœ โŽŸ 2. Let A = โŽœ 0 0 0 โŽŸ Since A is a null matrix, therefore rank A = 0 โŽœ0 0 0โŽŸ โŽ โŽ  โŽ›1 2 3โŽž โŽœ โŽŸ 3. Let A = โŽœ 2 3 4 โŽŸ We have A = 1 (6 โ€“ 8) โ€“ 2(4 โ€“ 4) + 3(4 โ€“ 3) = 2 + 1 = 3. Thus A is a non-singular โŽœ 1 2 2โŽŸ โŽ โŽ  Therefore rank A = 3. โŽ› 1 2 3โŽž โŽœ โŽŸ 4. Let A = โŽœ 3 4 5 โŽŸ . We have A = 1 (24 โ€“ 25) โ€“ 2 (18 โ€“ 20) + 3 (15 โ€“ 16) = 0. โŽœ 4 5 6โŽŸ โŽ โŽ  1 2 Therefore the rank of A is less than a 3. Now there is at least one minor of A or order 2, namely 3 4 which is not equal to zero Hence rank A = 2. โŽ›3 1 2โŽž โŽœ โŽŸ 5. Let A = โŽœ 6 2 4 โŽŸ we have A = 0, since the first two columns are identical Also each 2 โ€“ rowed โŽœ3 1 2โŽŸ โŽ โŽ  minor of A is equal to zero. But A is not a null matrix. Hence rank A = 1 โŽ› 2 4 3 2โŽž 2 4 6. Let A = โŽœ โŽœ3 5 1 4 โŽŸ โŽŸ Here we see that there is at least one minor of A of order 2 i.e., which is โŽ โŽ  3 5 not equal to zero Also there is no minor of A of order greater that 2 Hence rank of A = 2 Echelon form of matrix: A matrix A is said to be Echelon from if (i) Every row of A which has all its entries 0 occurs below every row, which has a non-zero entry. (ii) The first non-zero entry in each non-zero row is equal to 1. (iii) The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row. Important result: The rank of a matrix in Echelon from is equal to the number of non-zero rows of the matrix. โŽ›0 1 2 3 โŽž โŽœ โŽŸ Ex Find the rank of the matrix โŽœ 0 0 1 โˆ’ 1โŽŸ โŽœ0 0 0 0 โŽŸ โŽ โŽ  Sol. The matrix A has zero row. We see that it occurs below every non-zero row. Further the number of zero before the first non-zero element in the first row is one. The number of zeros before the first non-zero element in the second row it two. Thus the number of zeros before the first non-zero element in any row is less than the number of such zeros in the next row. Thus the matrix A is in Echelon from rank A = the number of non-zero rows of A = 2. _________________________________________________________________________________________________ www.TCYonline.com Page : 9
  • 10. Top Careers & You ยฎ _________________________________________________________________________________ Examples 1. Find the rank of each of the following matrices: โŽ› 1 2 3โŽž โŽœ โŽŸ (ii) โŽ› 1 2 3 โŽž (i) โŽœ 2 1 0 โŽŸ โŽœ โŽœ โŽŸ โŽŸ โŽœ 0 1 2โŽŸ โŽ2 4 5โŽ  โŽ โŽ  โŽ› 1 2 3โŽž Sol. (i) Let A = โŽœ 2 1 0 โŽŸ We have A = 1(2 โ€“ 0) + 3(2 โ€“ 0), expanding along the first row โŽœ โŽŸ โŽœ0 1 2โŽŸ โŽ โŽ  = 2 โ€“ 8 + 6 = 0. 1 2 But there is at least one minor of order 2 of the matrix A, namely which is not equal to zero. 2 1 Hence the rank A = 2. โŽ›1 2 3 โŽž 1 3 (ii) โŽœ 2 4 5 โŽŸ Here there is at least one minor of order 2 of the matrix A, namely 2 5 which Let A = โŽœ โŽŸ โŽ โŽ  is not equal to 0. Also there is not minor of the matrix A of order greater than 2. Hence rank A = 2. 2. Show that the rank of a matrix every element of which is unity is 1. Sol. Let A denote a matrix every element of which is unity. All the 2-rewed minors of A obviously vanish but A is a non-zero matrix. Hence rank A = 1. 3. A is a non-zero column and B a non-zero row matrix, show that rank (AB) = 1. โŽ› a 11 โŽž โŽœ โŽŸ โŽœ a 21 โŽŸ Sol. A = โŽœ a โŽŸ and B = (b 11 b 12 b 13 ....... b in ) โŽœ 31 โŽŸ โŽœ ...... โŽŸ โŽœ โŽŸ โŽ a ml โŽ  be two non-zero column and row matrices respectively. โŽ› a 11b 11 a 11b 12 a 11b 13 ...... a 11b 1n โŽž โŽœ โŽŸ We have AB = โŽœ a 21b 11 a 21b 12 a 21b 13 ...... a 21b 1n โŽŸ โŽœ ...... ...... ...... ...... ...... โŽŸ โŽœ โŽŸ โŽœa b a ml b 12 a ml b 13 ...... a ml b 1n โŽŸ โŽ ml 11 โŽ  Since A and B are non-zero matrices therefore the matrix AB will also be non-zero The matrix AB will have at least one non zero element obtained by multiplying corresponding non-zero elements of A and B All the two-rowed minors of A obviously vanish. But A is a non-zero matrix. Hence rank AB = 1. โŽ›0 1 0 0โŽž โŽœ โŽŸ 4. โŽœ0 0 1 0 โŽŸ find the ranks of U and U2 โŽœ0 0 0 1โŽŸ โŽœ โŽŸ โŽœ0 0 0 0โŽŸ โŽ โŽ  Sol. The matrix U is the Echelon form. rank U = the number of non-zero rows of U = 3. โŽ›0 1 0 0โŽž โŽ›0 1 0 0โŽž โŽ›0 0 1 0โŽž โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ Now U = 2 โŽœ0 0 1 0โŽŸ x โŽœ0 0 1 0โŽŸ = โŽœ0 0 1 0โŽŸ โŽœ0 0 0 1โŽŸ โŽœ0 0 0 1โŽŸ โŽœ0 0 0 0โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœ0 โŽŸ 0 0 0โŽ  โŽœ0 0 0 0โŽŸ โŽœ0 0 0 0โŽŸ โŽ โŽ โŽ  โŽ โŽ  _________________________________________________________________________________________________ www.TCYonline.com Page : 10
  • 11. Top Careers & You ยฎ _________________________________________________________________________________ Elementary Operations: An elementary operation is said to be row (or column) operation if it is applied to rows (or columns). There are three types of elementary operations: Type 1: The interchanging of ith row (or columns) of the matrix, this operation is denoted by Ri <--> Rj or (Ci <--> Cj) or by Rij (Cij) Type 2: If ith row (or column) of the matrix is multiplied by scalar K(K โ‰  0), then this row (or column) operation is denoted by Ri <--> kRj (Ci <--> Cj) Type 3: If k times of the elements of the ith row (or column) are added to the corresponding elements of jth row (or column), then this row (column) operation is denoted by RJ RJ or kRi (or Cj Cj + kCj Examples: โŽ› 1 0โŽž 1. If I = โŽœ โŽœ โŽŸ then E12 โ€“ E21 is equal to: โŽŸ โŽ0 1โŽ  โŽ›01 0โŽž โŽ› โˆ’ 1 โˆ’ 1โŽž (a) โŽ› 0 โˆ’ 1โŽž โŽœ โŽŸ (b) โŽœ โŽœ โŽŸ โŽŸ (c) โŽœ โŽœ โŽŸ โŽŸ (d) None of these โŽœ โŽŸ โŽโˆ’ 1 0 โŽ  โŽ 0 0โŽ  โŽ โˆ’ 1 โˆ’ 1โŽ  โŽ› 1 0โŽž โŽ›0 1โŽž โŽ›0 1โŽž Sol. Given that = โŽœ โŽœ โŽŸ โŽœ 1 0โŽŸ R1 < โ‡’ R12 E21 = โŽŸ Therefore E12 = โŽœ โŽŸ โŽœ 1 0โŽŸ , R1 <โ‡’ R2 โŽœ โŽŸ โŽ0 1โŽ  โŽ โŽ  โŽ โŽ  โŽ›0 1โŽž โŽ› 0 1โŽž โŽ›0 0โŽž E12 โ€“ E21 = โŽœ โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ= โŽœ โŽŸ โŽœ โŽŸ Therefore the correct answer is (b). โŽŸ โŽ 1 0โŽ  โŽ โˆ’ 1 0โŽ  โŽ 0 0โŽ  2. If I = โŽ› 1 0 โŽž , then 2E12 (2) + 3 E21 is equal to: โŽœ โŽŸ โŽœ โŽŸ โŽ0 1โŽ  (a) โŽ› 2 7 โŽž โŽœ โŽŸ (b) โŽ› 7 โŽœ 2โŽž โŽŸ (c) โŽ› 2 7 โŽž โŽœ โŽŸ (d) โŽ› 4 โŽœ 4โŽž โŽŸ โŽœ โŽŸ โŽœ2 3โŽŸ โŽœ โŽŸ โŽœ3 1โŽŸ โŽ2 3โŽ  โŽ โŽ  โŽ3 2โŽ  โŽ โŽ  Sol. E12 = โŽ› 1 2 โŽž R1 โ†’ R1 + 2R2 E21 = โŽ› 0 โŽœ โŽŸ โŽœ 1โŽž โŽŸ , R1 โ‡” R2 โŽœ โŽŸ โŽœ 0โŽŸ โŽ0 1โŽ  โŽ1 โŽ  Therefore 2E12 (3) + 3E21 = 2 โŽ› 1 2 โŽž + 3 โŽ› 0 โŽœ โŽŸ โŽœ 1โŽž โŽŸ = โŽ›2 7โŽž . โŽœ โŽŸ โŽœ โŽŸ โŽœ 0โŽŸ โŽœ โŽŸ โŽ0 1โŽ  โŽ1 โŽ  โŽ3 2โŽ  Therefore the correct answer is (c). Elementary matrices: An elementary matrix is that, which is obtained from a unit matrix, by subjecting it to any of the elementary transformations. Examples of elementary matrices obtained from โŽก1 0 0โŽค โŽก1 0 0โŽค โŽก1 0 0โŽค โŽก1 p 0 โŽค โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ โŽข โŽฅ I3 = โŽข0 1 0โŽฅ are R23 โŽข0 0 1 โŽฅ = C23; kR2 = โŽข0 k 0 โŽฅ ; R1 + pR2 = โŽข0 1 0โŽฅ โŽข0 0 1 โŽฅ โŽฃ โŽฆ โŽข0 1 0 โŽฅ โŽฃ โŽฆ โŽข0 0 1 โŽฅ โŽฃ โŽฆ โŽข0 0 1โŽฅ โŽฃ โŽฆ Equivalent matrix: Two matrices A and b are said to be equivalent if one can be obtained from the other by a sequence of elementary transformations. Two equivalent matrices have the same order and the same rank. The symbol ~ is used for equivalence. _________________________________________________________________________________________________ www.TCYonline.com Page : 11
  • 12. Top Careers & You ยฎ _________________________________________________________________________________ IMPORTANT FACTS 1. The matrix obtained by applying a row operation on a given matrix is same as the matrix obtained by pre-multiplication of the given matrix by the corresponding elementary matrix. For Example: Let A = โŽ› 3 โŽœ 4โŽž โŽŸ Let us operate R12, then A ~ โŽ› 8 โŽœ 9โŽž โŽŸ โ€ฆ.. (1) โŽœ8 9โŽŸ โŽœ3 4โŽŸ โŽ โŽ  โŽ โŽ  Now let 1 = โŽ› 1 0 โŽž then by R12 we get elementary matrix E12 = โŽ› 0 โŽœ โŽŸ โŽœ 1โŽž โŽŸ . โŽœ โŽŸ โŽœ 0โŽŸ โŽ0 1โŽ  โŽ1 โŽ  Now E12. A = โŽ› 0 โŽœ 1โŽž โŽŸ โŽ›3 โŽœ 4โŽž= โŽŸ โŽ›8 โŽœ 9โŽž โŽŸ โŽœ1 0โŽŸ โŽœ8 9โŽŸ โŽœ3 4โŽŸ โŽ โŽ  โŽ โŽ  โŽ โŽ  Which is same as seen in (1). 2. The matrix obtained by applying a column operation on a given matrix is same as the matrix obtained by post-multiplication of the given matrix by the corresponding elementary matrix. 3. The effect of a row operation on a product of two matrices is equivalent to the effect of the same row operation applied only to pre-factor. 4. The effect of a column operation on a product of two matrices is equivalent to the effect of the same column operation applied only to the post-factor. SYSTEM OF LINEAR EQUATIONS Consider the following system of m linear equations in n unknown x1, x2,โ€ฆ.xn. a11x 1 + a12 x 2 + ..... โˆ’ a1n x n = b1 โŽซ โŽช a 21x 1 + a 22 x 2 + ..... โˆ’ a 2n x n = b 2 โŽช โŽช .......... .......... .......... .......... ............... โŽฌ .......... .......... .......... .......... .................โŽช โŽช a m1x 1 + a m2 x 2 + ..... โˆ’ a mn x n = b m โŽช โŽญ The above system, of equations can be written as AX = B. โŽ› a11 a12 ....... a1n โŽž โŽ› x1 โŽž โŽ› b1 โŽž โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœ a 21 a12 ....... a1n โŽŸ โŽœ x2 โŽŸ โŽœ b2 โŽŸ โŽœ .... ...... ....... ...... โŽŸ โŽœ ..... โŽŸ = โŽœ ..... โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœ โŽŸ โŽœa a m2 ....... a mn โŽŸ โŽœx โŽŸ โŽœb โŽŸ โŽ m1 โŽ  โŽ nโŽ  โŽ nโŽ  If B = 0 i.e., b1 = b2 = b3โ€ฆ.bn = 0, then the system of equations is called homogeneous๏€  If B โ‰  0, then the system of equations is non-homogeneous. _________________________________________________________________________________________________ www.TCYonline.com Page : 12
  • 13. Top Careers & You ยฎ _________________________________________________________________________________ SOLUTION OF A NON-HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS There are three methods of solving a system of linear equations: (i) Matrix method (ii) Rank method (iii) Determinant method (Cramer's Rule) Matrix method: For the system of m-linear equations in n unknowns (variables) represented by AX = B. (i) If |A| โ‰  0, then the system is consistent and has a unique solution given by X = Aโ€“1B. (ii) If |A| = 0 and (adj A) B = 0, then the system is consistent and has infinitely many solutions. (iii) If |A| = 0 and (adj A) B โ‰  0, then the system is inconsistent (no solution). Rank method: For the system of m-linear equations in n unknowns (variables) represented by AX = B. If m > n, then (i) If r (A) = r (A : B) = n, then system of linear equations has a unique solution. (ii) If r (A) = r (A : B) = r < n, then system of linear equations is consistent and has infinite number of solutions. In fact, in this case (n โ€“ r) variables can be assigned arbitrary values. (iii) If r (A) โ‰  r (A : B), then the system of linear equations is inconsistent i.e. it has no solution. If m < n and r (A) = r (A : B) = r, then there are infinite number of solutions. Determinant method: For a system of 3 simultaneous linear equations in three unknowns. (i) If D โ‰  0, then the given system of equations is consistent and has a unique solution given by D1 D D x= , y = 2 and z = 3 D' D D (ii) If D = 0 and D1 = D2 = D3 = 0, then the given system of equations is consistent with infinitely many solutions. (iii) If D = 0 and at least one of the determinants D1, D2, D3 is non-zero, then the given system of equations is inconsistent. SOLUTION OF A HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS A homogeneous system of linear equations, AX = O is never inconsistent, as it always have a trivial solution i.e. X = 0. Matrix method: Step I: If |A| โ‰  0, then โ€œthe system is consistent with unique solution x = y = z = 0.โ€ (trivial solution) Step II: If |A| = 0, then system of equations has infinitely many solutions. To find these solutions proceed as follows: Put z = k (any real number) and solve any two equations for x and y in terms of k. The values of x and y so obtained with z = k give a solution of the given system of equations. Rank method: If r (A) = n = number of variables, then AX = O has a unique solution X = 0 i.e. x1 = x2 = โ€ฆ = 0. (trivial solution) If r (A) = r < n (= number of variables), then the system of equations has an infinite number of solutions. _________________________________________________________________________________________________ www.TCYonline.com Page : 13
  • 14. Top Careers & You ยฎ _________________________________________________________________________________ EXAMPLE โŽ›1 2 3 โŽž โŽœ โŽŸ 1. The rank of the matrix A = โŽœ 2 3 4 โŽŸ is : โŽœ 4 10 18 โŽŸ โŽ โŽ  (a) 0 (b) 1 (c) 2 (d) 3 โŽ›1 2 3 โŽž โŽœ โŽŸ Sol. Let A = โŽœ 2 3 4 โŽŸ Therefore โŽœ 4 10 18 โŽŸ โŽ โŽ  โŽ›1 2 3 โŽž โŽœ โŽŸ A = โŽœ 2 3 4 โŽŸ = 1 (54 โ€“ 40) โ€“ 2(36 โ€“ 16) + 3 (20 โ€“ 12) = โ€“ 2 โ‰  0. โŽœ 4 10 18 โŽŸ โŽ โŽ  Therefore p (A) โ‰ฅ 3โ€ฆ..(i). The matrix A does not posses any minor of order 4. Therefore p(A) โ‰ฅ 3 โ€ฆ..(ii) From (i) and (ii) p (A) = 3. Therefore the correct answer is (d) _________________________________________________________________________________________________ www.TCYonline.com Page : 14