UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
MALLAS A TIERRA 
1.- OB...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
La resistividad de las ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
1.2.2.- La humedad: La ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
1.2.3.- La temperatura:...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
GRAFICO 2 
450 
400 
35...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
través del líquido cont...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
2.- DETERMINACION DE LA...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
La diferencia de potenc...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
rl = r4 = A 
r2 = r3 = ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
0,6 - 0,8 – 1 - 1,6 – 2...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
La medición de terreno ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
(2) 2 ( ) 
0 q = ⋅ r r ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
⎞ 
⎟ ⎟⎠ 
⎛ 
V 
2 1 
1 1...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
2.8. Comparación entre ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
ideal 
real 
ρap ρ1>ρ2 ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
La medición de humedad ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
2.10.- Procedimiento Pr...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
RESISTIVIDAD DEL TERREN...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
En terrenos muy secos e...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
a) Si se tienen dudas s...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
e) Si el instrumento in...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
3. INTERPRETACION DE LA...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Tanto las curvas patrón...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
2) Sistema de tres capa...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Tipo A: ρ1 < ρ2 < ρ3 
E...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
3.2.- Interpretación de...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
3.3. Interpretación de ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
- Para las curvas A y K...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
4. REQUISITOS DE UN S.P...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
RK 
RF RF 
RF RK 
RF IK...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
RK 
RF/2 
IK 
Ra Rb 
1 ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Donde: 
I 
F 
= 
c 
orr...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
a) Resistencia de conta...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
4.2.- Valores de Corrie...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
t = duración del contac...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
En relación con esto mi...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Tiempo de operación de ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Medardo Navarro C. 38
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
5. DISEÑO PRELIMINAR DE...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
continuidad ante daños ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
c) Deberán tener la suf...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Por razones de segurida...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
condiciones sufre corro...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
⎤ 
⎥⎦ 
1 2 
π π 
K L D ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
En el valor de "L" está...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
K i = 0.65 + 0.17 · n 
...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
5.8.- Valores de resist...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
4.- Dos conductores en ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
7.- Estrella de cuatro ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
10.- Malla Rectangular ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
6. CALCULO DE LA RESIST...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
A 
A 
⎛ 
⎞ 
K = ⎟ ⎟⎠ 
5...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
7.- CALCULO DEL AUMENTO...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
⎤ 
1 ⎡ 2 1 + 1 
+ 1 
+ ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
8.- CALCULOS DE LOS VOL...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
8.3. Potenciales Transf...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
DATOS DEL TERRENO 
Terr...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
= = 2.7712(Ω) 1 2 X X 
...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
S = 54 m2 
Sección cond...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
1.1862 1 K = 
4.9493 2 ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Cuadriculado de la mall...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
I 3 
V 
FN 
( ) ( )2 
=...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
IF’ = 836.2610 x 1.32 x...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
16) Cálculo de los volt...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
⎤ 
⎥⎦ 
1 2 
π π 
K L D ...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
mano pie c V ∠V − 515.6...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
2.- Cálculo de la Imped...
UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - 
Versión Preliminar 
Del sistema: 
X1 = 2.77...
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
72870839 apuntes-mallas-a-tierra-comp(1)
Próxima SlideShare
Cargando en…5
×

72870839 apuntes-mallas-a-tierra-comp(1)

1.810 visualizaciones

Publicado el

malla a tierra

Publicado en: Ingeniería
0 comentarios
1 recomendación
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
1.810
En SlideShare
0
De insertados
0
Número de insertados
7
Acciones
Compartido
0
Descargas
99
Comentarios
0
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.

72870839 apuntes-mallas-a-tierra-comp(1)

  1. 1. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar MALLAS A TIERRA 1.- OBJETIVOS DE UNA PUESTA A TIERRA. Los objetivos fundamentales de un S.P.T. son: - Evitar voltajes peligrosos entre estructuras, equipos (en general elementos expuestos) y el terreno, durante fallas o condiciones normales de operación. - Proporcionar una vía de baja impedancia de falla, lo más económica posible, a un sistema para lograr, la operación rápida de los elementos de protección. - Conducir a tierra las corrientes provenientes de descargas atmosféricas, limitando los voltajes producidos en instalaciones eléctricas (líneas de transmisión de potencia, de, comunicaciones, etc.) y evitando la producción de efectos secundarios tales como arcos que conduzcan a la desconexión de los circuitos. En este sentido, el problema de puesta a tierra es un problema de protección contra las sobretensiones. - Servir como conductor de retorno a ciertas instalaciones, equipos o consumos, tales como: - Instalaciones de tracción eléctrica - Puesta a tierra del neutro de instalaciones de distribución. - Enrollados de transformadores de potencial. - Circuitos de telefonía por onda portadora. - Protección catódica. - Transmisión de potencia en corriente continua. 1.1.- Resistividad Especifica del Suelo. Consideraciones Generales: La resistividad de la tierra o de las rocas depende sobre todo del tamaño de las partículas que las componen, de la proporción de materias solubles y de su grado de humedad. El suelo se compone principalmente de óxido de silicio y de óxido de aluminio, que son buenos aislantes. la presencia de sales en estos dos óxidos mejora la conductividad del suelo. El mecanismo de la conductividad es en gran medida un proceso electrolítico debido al contenido de sal y agua en el suelo, pero si el suelo es seco el factor predominante será el tamaño de las partículas y el volumen de aire aprisionado en ellas. Existe una correlación entre la naturaleza del suelo y su resistividad, aunque la primera varíe considerablemente en una misma región la resistividad del suelo tiende a corresponder a la de las rocas madres. Medardo Navarro C. 1
  2. 2. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar La resistividad de las rocas es tanto más elevada cuanto mayor sea su edad geológica.. la resistividad del granito dolomítico v de la piedra arenisca cuarzosa es generalmente superior a los 1.000 Ohm-m. Los suelos arenosos absorben más agua que los arcillosos, pero retienen menos; así, en general más húmedos y deberán por tanto, preferirse a los suelos arenosos. 1.2.- Factores que Determinan la Resistividad del Suelo. Entre los numerosos factores que determinan la resistividad del suelo cabe citar: - El tipo de suelo - La humedad - La temperatura - La concentración de sales disueltas - La compactación de suelo. 1.2.1.- Tipo de suelo: No existe una clasificación definida para los tipos de suelo, por lo tanto hay que limitarse a definirlos en forma y general. En la tabla 1 se indican valores típicos para diferentes tipos de suelos y de aguas. TABLA 1 TIPOS DE SUELO 0 AGUA RESISTIVIDADTIPICA OHM-M LIMITES NORMALES Agua de mar. 2 0.10 – 10 Arcilla. 40 8 – 70 Agua subterránea, agua de pozo, 50 10 – 150 agua de manantial Aguas en suelos de rocas ígneas. 90 30 – 150 Mezclas de arcilla y arena. 100 4 – 300 Pizarra, esquisto y gres. 120 10 – 1.000 Turba, limo y lodo 50 5 – 250 Agua de lago y torrente. 250 100 – 400 Arena 2.000 200 – 3.000 Grava de morena 3.000 40 – 10.000 Grava marítima 15.000 3.000 – 30.000 Granito. 25.000 10.000 – 50.000 Hielo 100.000 10.000 – 100.000 De esta tabla se desprende que un sistema de tierra que sería completamente adecuado en un terreno de arcilla, puede ser casi inservible en un terreno arenoso. Medardo Navarro C. 2
  3. 3. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 1.2.2.- La humedad: La tierra fundamentalmente puede encontrarse en composiciones invariables, en tres condiciones características: SECA, HUMEDA Y CONGELADA. Los casos más desfavorables, son: totalmente seca o totalmente congelada, ya que acusa una resistividad específica más alta en muchos órdenes de magnitud que en estado húmedo. La tierra seca es un aislador excelente; al aire y al sol las capas de arena seca de la superficie se aproxima mucho a esta condición. En general, el grosor de tales capas secas no es muy grande, alcanza sólo entre 10 y 20 centímetros. La escarcha tiene una penetración más profunda, entre 50 y 100 cms o más, según el estrato, por lo cual las tomas a tierra deben ser a mayor profundidad dado que el grado de humedad es un factor esencial en la conductividad del suelo. Parece conveniente que, en casos dados, la puesta a tierra se coloque en agua (líquidos). Sin embargo, a menudo la conductividad, especialmente de las aguas corriente, no es tan buena como uno está inclinado a suponer. Los ríos de montañas que llevan agua de deshielo tienen, por lo general una alta resistividad específica a raíz de la elijación (lixiviación) de su lecho. Por otro lado, hay ríos con aguas muy buenas conductoras pero en este caso, especialmente en zonas industriales, se debe contar con el peligro de corrosiones acentuadas. La resistividad de una muestra dada de suelo depende no solamente de la composición química de éste sino también del contenido de humedad. El siguiente gráfico muestra la variación de la resistividad de un suelo de arcilla roja con el contenido de humedad. En él se puede observar que a partir de un 10% de humedad la resistividad del suelo decrece rápidamente. GRAFICO 1 3500 3000 2500 2000 1500 1000 500 0 10 20 30 40 50 60 70 80 90 % HUMEDAD RESISTIVIDAD DEL SUELO EN OHMS- Medardo Navarro C. 3
  4. 4. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 1.2.3.- La temperatura: La resistividad del suelo también depende de la temperatura. La tabla 2 muestra la variación de la resistividad de un suelo compuesto de una mezcla de arcilla y arena con contenido de agua de un 15%. TABLA 2 TEMPERATURA ºC RESISTIVIDAD EN OHM-M 20 72 10 99 0 agua 138 0 hielo 300 -5 790 -15 3.300 Del gráfico 2 se desprende que la resistividad aumenta a 0 ºC al transformarse el agua en hielo; se observa también un aumento muy fuerte de la resistividad con el descenso de la temperatura. La temperatura y especialmente la humedad del suelo tienen una influencia sumamente importante en la resistividad de él; de lo mencionado anteriormente se deduce que la influencia de la humedad dependerá del tipo de material que se compone el terreno. Una determinada cantidad o porcentaje de humedad afectará en forma diferente, por ejemplo, a una arcilla o a una arena. Existe sin embargo, una expresión analítica debida a Albrecht, que indica la influencia de la humedad y temperatura en la resistividad. 4 − x − Ohm m 1.3 10 W t (0.73 ⋅ + 1) ⋅ (1 + 0.03 ⋅ ) ρ = 2 W = humedad del suelo en % t = temperatura en ºC La expresión anterior pretende ser general o independiente del tipo de suelo, sin embargo, se recomienda su utilización sólo para el cálculo comparativo de la influencia de la humedad y temperatura en la resistividad de suelo. W t − ⋅ + ⋅ + ⋅ Ohm m (0.73 ⋅ + 1) ⋅ (1 + 0.03 ⋅ ) ρ 1 1 = (0.73 W 1) (1 0.03 t ) 2 2 0 sea, conocida la resistividad de determinado terreno, con una humedad W1 y una temperatura t1 es posible calcular con cierta aproximación la resistividad de éste para una humedad W2 y temperatura t2. Medardo Navarro C. 4
  5. 5. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar GRAFICO 2 450 400 350 300 250 200 150 100 50 0 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 TEMPERATURA ºC RESISTIVIDAD DEL SUELO OHMS-M 1.2.4. La concentración de sales disueltas: Al haber mayor concentración de sal en el suelo, éste mejora la conductividad. El gráfico 3 muestra la influencia de las sales disueltas en el agua contenida en el suelo. G R A F IC O 3 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 5 0 0 2 4 6 8 10 12 14 16 18 20 % D E S A L EN R E L A C IO N A L A H U M ED A D RESISTIVIDAD DEL SUELO EN OHMS- 1.2.5. La compactación del suelo: El gráfico 4 muestra solo en forma cualitativa la influencia de la compactación del suelo en la resistividad de ésta, una mayor compactación disminuye la distancia entre partículas y se logra una mejor conducción a Medardo Navarro C. 5
  6. 6. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar través del líquido contenido. A medida que aumenta el contenido de humedad se alcanza una especie de saturación ya que el agua envuelve la mayoría de las partículas y un mayor acercamiento entre, éstas no influye en la conducción. GRAFICO 4 10,00 9,00 8,00 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00 A B C D E F G H I J % COMPACTACION RESISTIVIDAD EN OHMS-M 1.3.- MEDICIÓN DE LA RESISTIVIDAD DEL SUELO. Introducción. La resistividad del suelo debe medirse para determinar en una zona dada el lugar más apropiado para la toma de tierra y determinar el sistema de electrodos de tierra más favorable para el emplazamiento elegido. Para medir la resistividad especifica es preciso establecer conexiones entre el aparato de medida y el suelo. Las resistencias introducidas a sí en el circuito de medida son a menudo considerables, por lo cual uno de los problemas que plantea la medición de la resistividad del suelo es análogo a la medición de resistencias metálicas muy bajas en puntos en que la resistencia de contacto es comparable a la resistencia que ha de medirse. La solución es la misma en ambos casos y se aplica un método de 4 terminales. Medardo Navarro C. 6
  7. 7. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 2.- DETERMINACION DE LA RESISTIVIDAD DEL TERRENO. 2.1. Método de los 4 Electrodos. El método normalmente empleado para medir la resistividad del terreno es el de 4 electrodos en sus versiones de configuración de electrodos de Wenner o de Schlumberqer. En general, este método consiste en inyectar una corriente al terreno, mediante un par de electrodos y medir la diferencia de potencial que se produce en los otros 2; ver figura 1a. Entre los electrodos A y B se inyecta una corriente I y entre los electrodos C y D se mide la diferencia de potencial V que se produce. A partir de los electrodos de corriente se definen las distancias rl, r2, r3 y r4 a los electrodos de potencial. Si la profundidad de enterramiento de los electrodos es pequeña comparada con la distancia entre electrodos, puede suponerse una distribución radial de la corriente. Para este caso, el potencial producido a una distancia X, en un medio homogéneo vale: V I X π ρ 2 ⋅ = (1) X Aplicando esta expresión al esquema de medición, se tiene que la corriente que entra en A al terreno, produce en C el potencial: ρ ⋅ V I = C A ⋅ ( ) 2 r 1 π (2) V − ρ ⋅ = I C B ⋅ ( ) 2 r 2 π (3) El potencial total en C vale: ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ 1 1 − ρ ⋅ V V V I = + = C C A C B π 2 r r 1 2 ( ) ( ) De forma similar el potencial en D vale ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ 1 1 − ρ ⋅ V = V + V = I D D A D B π 2 r r 3 4 ( ) ( ) Medardo Navarro C. 7
  8. 8. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar La diferencia de potencial medido por el voltímetro o considerada por el instrumento que mide la resistencia vale: ⎤ ⎥⎦ ⎡ ⎛ ⎜ ⎜⎝ ⎢⎣ ⎞ ⎟ ⎟⎠ ⎛ 1 1 1 1 ⎜ ⎜⎝ ⎞ − − ⎟ ⎟⎠ − V V V ρ ⋅ = + = I C D π 2 r r r r 1 2 3 4 ρ (5) ⎞ ⎟ ⎟⎠ ⎛ π V 2 1 1 1 1 1 ⎜ ⎜⎝ ⎞ − − ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ − ⋅ ⋅ = r r r r 2 2 3 4 I Esta es la ecuación fundamental para la medición de la resistividad mediante el método de los 4 electrodos. 2.2. Resistividad Aparente. En la deducción de la ecuación (5) se consideró un terreno de resistividad homogénea. Si esta medida se efectúa en un terreno con esta propiedad, entonces, el valor de resistividad medido corresponderá al valor único de resistividad presente en el terreno. Si, el medio no es homogéneo, el valor de ρ obtenido de aplicar la ecuación fundamental tendrá un valor ficticio que no corresponderá, en general, a ninguna de las resistividades presentes en el terreno, sino a una cierta combinación de ellas. A este valor ficticio de resistividad se le llama resistividad aparente; (ρA). La forma en que cambia esta resistividad aparente, al variar la separación entre electrodos, da la pauta para interpretar y determinar la constitución del terreno investigado. Los terrenos, en general, se componen de varios estratos horizontales o con cierta inclinación (buzamiento) compuestos de materiales de distinta constitución, por lo que su resistividad varía notoriamente con la profundidad. 2.3. Configuración de Wenner. De acuerdo a la distancia relativa en que se ubican los electrodos en el terreno, existen diferentes configuraciones clásicas, cada una de ellas con leves ventajas e inconvenientes con respecto a las otras. Hasta hace algún tiempo se usaba casi exclusivamente la configuración de Wenner. En esta configuración, los cuatro electrodos, ubicados sobre una línea recta, están separados a una misma distancia "A" entre ellos (figura 1b). En este caso: Medardo Navarro C. 8
  9. 9. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar rl = r4 = A r2 = r3 = 2A reemplazando estos valores en la ecuación (5) se obtiene: V A I ρ AW = 2π ⋅ ⋅ Si el valorV I , calculado o medido directamente con un instrumento se designa como R (tiene la dimensión de una resistencia pero carece de sentido físico real), se tiene que: R A AW ρ = 2π ⋅ ⋅ 2.4.- Configuración de Schlumberger. Ultimamente se ha utilizado con mayor frecuencia la configuración de Schlumberger, por las ventajas que ofrece en cuanto a menor trabajo en terreno, lo que es importante para grandes separaciones de electrodos. En este caso, los 4 electrodos se ubican en una línea recta. Los 2 electrodos de potencial se disponen simétricamente con respecto al centro de medición elegido y a una distancia entre si pequeña (1 ó 3 m). Los electro dos de corriente se ubican también simétricamente con respecto al centro de medición y a una distancia de él variable (figura 1c). Durante la serie de medidas, los electrodos de potencial permanecen fijos, trasladándose sólo los de corriente. De acuerdo a la figura 1c, tenemos: r1 = r4 = n · a r2 = r3 = (n + 1)·a reemplazando estos valores en la ecuación 5 tenemos: R n n a A SCH ρ =π ⋅ ⋅ ⋅ ( +1) ⋅ (6b) 2.5. Separación entre los Electrodos. Para la separación "A" de electrodos en la configuración de Wenner o la distancia "L" entre el centro de medición y los electrodos de corriente en la configuración de Schlumberger, se utiliza normalmente la siguiente secuencia en metros: Medardo Navarro C. 9
  10. 10. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 0,6 - 0,8 – 1 - 1,6 – 2 - 2,5 – 3 – 4 -5 – 6 – 8 – 10 –16 – 20 – 25 – 30 etc. Esta secuencia de medición esta basada en la plantilla Log Log para comparar de mejor forma con las curvas patrones de Money-Orellana En la configuración de Schlumberger, la separación entre los electrodos de potencial es de 0,5 m. Si los valores leídos se reducen demasiado, se aumenta la distancia "a" a 4 m. El valor máximo de separación entre electrodos es función del área a cubrir con la malla de puesta a tierra. Lo normal es considerar un valor máximo igual a la diagonal de la malla de tierra con un mínimo de 16 m. 2.6. Determinación de la Resistividad de los Diferentes Estratos. A partir de las medidas de resistividad aparente del terreno es preciso determinar las resistividades reales de los diferentes estratos y sus espesores y profundidades. 2.6.1 Naturaleza del Terreno Los terrenos son buenos, regulares o malos conductores en función de su naturaleza, el conocimiento de esta, es el primer paso para la implantación de una adecuada puesta a tierra No existe una clasificación perfectamente definida de terrenos, por lo que hay que limitarse a señalarlos en forma general. En todo caso, un sistema de puesta a tierra que es completamente adecuado para un tipo de suelo, puede no ser adecuado para otro tipo de terreno. La resistividad del terreno es de importancia decisiva en el diseño de una puesta a tierra y la única forma de conocerla con exactitud es mediante medidas directas de campo. Se considera al terreno formado por capas o estratos homogéneos, de resistividad uniforme y espesor fijo. Rho 1 Rho 2 Superficie del Terreno p1 p2 Rho 3 p3 h 3 h 2 h 1 Donde : p1, p2, p3, pn son las resistividades propias de cada capa y h1, h2 ,h3, hn son los espesores acumulativos de los estratos. Medardo Navarro C. 10
  11. 11. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar La medición de terreno estrega como datos las resistividades de cada estrato y los espesores de cada capa, es decir, e1,e2,e3,… en., por lo tanto se da la siguiente relación h1=e1 h2=e1+e2 h3=e1+e2+e3 hn=e1+e2+e3+…en En la actualidad, se utiliza como método de interpretación de las mediciones de resistividad, a una comparación del gráfico obtenido en terreno de resistividad aparente versus separación de electrodos con gráficos patrón o standard construidos exprofeso para diversas combinaciones de diferentes estratos. Se han utilizado principalmente las curvas patrón de Mooney y Orellana para la configuración de electrodos de Schlumberger. 2.7. Resistividad Equivalente. En los cálculos, relacionados con el dimensionado de una malla de puesta a tierra, necesitamos conocer un valor de resistividad del terreno equivalente a la acción conjunta de las distintas resistividades de los diferentes estratos presentes en el área a ocupar por dicha malla. En la actualidad se determina esta resistividad equivalente de un terreno mediante el criterio de Burgsdorf-Yakobs, en una versión simplificada. Este método simplificado reduce un sistema de "n" capas a una sola capa equivalente de acuerdo a la siguiente ecuación: = n F ρ n ; 1 ρ Σ= ( F − F ) ( − ) i i i i e 1 1 F ρ = e F F F F F F F F − − − − 1 0 + 2 1 + 3 2 + .... + n n − ρ ρ ρ ρ n n 1 3 2 1 donde los Fi son parámetros que dependen de las dimensiones de la malla de puesta a tierra, profundidad de sus elementos y profundidad de los diferentes estratos de acuerdo a las siguientes fórmulas: ( 2 ) (2) 0 F = 1 − Vi i r (2) (2) 0 r i i F = −V ( ) 1 [ ( ) ( ) ( ) ( ( ) ( ) ( )) 4 ( ) ( 2 ) ] V 2 q h r q h r q r i i i = ⋅ + + − + + − ⋅ ⋅ 2 0 2 0 2 2 0 2 2 0 2 0 2 2 0 Medardo Navarro C. 11
  12. 12. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar (2) 2 ( ) 0 q = ⋅ r r + b ; (2) (2) (2) 0 r = r − b ; r = Sup.malla π 1 b = ρ profundidad de los elementos de la malla de puesta a tierra. h = profundidad del estrato considerado. Un sistema que permite obtener en forma gráfica la solución a las expresiones de Burgsdorf -Yakobs, consiste en usar las curvas que se muestran en la figura 1. las cuales permiten reducir dos valores de resistividad distintos a uno equivalente. Este método se puede aplicar a terrenos multiestratificados con distintas resistividades tomándolos de dos en dos capas y obteniendo su equivalente hasta llegar a un único equivalente. El dato de entrada a estos gráficos es la superficie de la malla de puesta a tierra, valor que se conoce en forma aproximada. Con este valor y la profundidad "h" del estrato más profundo se determina el punto "P". Luego se determina el punto "Q" en la intersección de la horizontal que pasa por "P" y la curva correspondiente a la relación conocida ρ ρ . 1 2 Finalmente, en la proyección vertical del punto "Q" sobre la abscisa superior del gráfico encontramos la relación ρ e La resistividad aparente " ρe “por se obtiene multiplicando la relación anterior por ρ1 I G V A C D B I r1 r2 r3 r4 Fig 1.a.- ESQUEMA GENERAL DE MEDICIÓN DE LA RESISTIVIDAD MEDIANTE CUATRO ELECTRODOS Medardo Navarro C. 12
  13. 13. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar ⎞ ⎟ ⎟⎠ ⎛ V 2 1 1 1 1 1 ⎜ ⎜⎝ ⎞ − − ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ − ⋅ ⋅ ⋅ = r r r r 1 2 3 4 π I ρ Ap A A A A C D B R A AW ρ = 2 ⋅π ⋅ ⋅ Fig 1.b.- CONFIGURACIÓN WENNER n·a a n·a A C D B L Fig 1.c.- CONFIGURACIÓN SCHLUMBERGER R n n a ASch ρ =π ⋅ ⋅ ⋅ ( +1) ⋅ Medardo Navarro C. 13
  14. 14. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 2.8. Comparación entre las Configuraciones de Wenner y Schlumberger. La configuración de Wenner presenta las siguientes ventajas: - La interpretación de los valores de R medidos en terreno, es más directa en términos de resistividad aparente. Esto permite visualizar con facilidad la tendencia del gráfico de campo. - Los instrumentos pueden ser de menor sensibilidad que los empleados con la configuración de Schlumberger, ya que a medida que se separan los electrodos de corriente, también lo hacen los de potencial. La configuración de Schlumberger presenta las siguientes ventajas: - Esta configuración es menos sensible a las variaciones laterales del terreno o buzamiento de los estratos, debido a que los electrodos de potencial permanecen inmóviles. - La realización práctica de la medición es más expedita, ya que sólo se desplazan los electrodos de corriente. 2.9. Recomendaciones Generales. a) En lo posible, realizar las mediciones directamente en el sitio donde se construirá la puesta a tierra; preferentemente una vez que el terreno haya sido despejado y llevado a su condición definitiva después de las faenas de movimiento de tierras. Cuando no es posible realizar las mediciones en la zona donde se construirá la puesta a tierra, debe dejarse una zona plana o aproximadamente plana, representativa del terreno de interés asegurándose que la zona que se mide es similar. En este sentido es útil observar cortes del terreno o pozos de sondeo hechos para otros propósitos. Si por razones de coordinación entre proyecto y faenas, no es posible realizar las mediciones después de dejar el terreno en su condición definitiva; es conveniente obtener datos de la posición de terreno a eliminar o rellenar, para tenerlos presente en la configuración definitiva de la estratigrafía del terreno. b) Teniendo presente las recomendaciones anteriores, conviene que el lugar de medición esté alejado de zonas con pendientes pronunciadas. Si esto no fuese posible, deberá tenerse en cuenta esta situación en el análisis de las mediciones. En la figura 2 se muestra cualitativamente el efecto de pendientes cercanas a la zona de medición en los valores medidos de resistividad aparente, en un medio biestratificado. Medardo Navarro C. 14
  15. 15. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar ideal real ρap ρ1>ρ2 real ideal real ρ1<ρ2 ideal A,L real ideal ρap ρ1>ρ2 ideal real ideal real ρ1<ρ2 A,L Fig. 2 Variación en la resistividad según pendiente En la figura 2, se ha supuesto que el estrato superior siga en forma paralela la superficie del terreno y que los electrodos no llegan a las zonas con pendiente. De no existir otra alternativa de medición, es recomendable realizar la medición en una línea perpendicular a la dirección de la pendiente, alejándose lo más posible de ésta. c) En el lugar de medición no deben existir objetos metálicos enterrados que abarquen una zona grande, por ejemplo: tuberías, mallas de tierra, etc. Si existen tuberías metálicas enterradas cuyo recorrido se conoce, la medición debe hacerse en una línea perpendicular a la de la tubería y eligiendo el centro de medición sobre la tubería. Sin embargo, no debe excluirse la posibilidad de errores importantes en los resultados de las mediciones. d) En ciertas zonas y circunstancias particulares, es conveniente realizar mediciones de temperatura, humedad y pH del terreno. Medardo Navarro C. 15
  16. 16. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar La medición de humedad puede ser particularmente importante en el caso de puestas a tierra de dimensiones relativamente pequeñas, cuya resistencia está fuertemente afectada por la resistividad de las "capas estaciónales". Si la medición de resistividad se realiza en una época del año con alta humedad en el terreno, los valores de resistividad medidos o determinados para las capas superiores, no son válidos para otras estaciones del año. Otra forma de enfrentar esta situación es realizar mediciones de resistividad en diferentes épocas del año, especialmente en verano. La medición de pH del terreno es conveniente efectuarla al utilizar materiales férreos en la puesta a tierra (fierro de construcción, fleje de acero galvanizado, etc.). Algunos criterios semiempíricos para determinar la corrosividad de un terreno utilizan como parámetros la resistividad de éste y su pH. e) Para el caso de puestas a tierra de dimensiones relativamente grandes, es conveniente realizar secuencias de mediciones de resistividad en diferentes partes de la zona a cubrir con la puesta a tierra. De la correlación entre los resultados de las diferentes secuencias se pueden concluir eventuales variaciones laterales de importancia o el buzamiento de los estratos. La cantidad y ubicación de las secuencias a realizar depende de cada caso particular y de la experiencia del ejecutante. A modo ilustrativo y sin pretender que sea una recomendación general, en la figura 3 se grafica una posible combinación de 8 secuencias de medición para una malla de tierra rectangular de dimensiones A x B. A B Fig. 3 Posible secuencia de medición de resistividad del terreno para una malla de grandes dimensiones. Medardo Navarro C. 16
  17. 17. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 2.10.- Procedimiento Práctico de Medición. Teniendo presente las recomendaciones generales: a) Elegir la línea o eje de medición en una dirección tal que no existan obstáculos importantes (rocas, árboles, edificios, matorrales, etc.) b) Establecer un centro de medición mediante un electrodo de potencial auxiliar si se usa el método de partición de Lee, o mediante una estaca. c) Iniciar la medición con separaciones pequeñas entre electrodos; por ejemplo: 0.5 m para la configuración de Wenner y 4 a 2 m para la configuración de Schlumberger. d) Para la confección de los gráficos de campo de resistividad y su interpretación mediante los gráficos patrón, se recomienda las siguientes secuencias de A o L: 0,6; 0,8; 1.0; 1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10; 16; 20; 25; 30; 40; 50; 60; 80; 100; 160; etc. Y llevar una tabla donde solo se registrará la medición de resistencia, similar a siguiente: Medardo Navarro C. 17
  18. 18. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar RESISTIVIDAD DEL TERRENO Proyecto : Ubicación : Fecha : ------------------------------------- METODO : SCHLUMBERGER C P P C |------NA------|----A----|------NA------| |--------L----------|---------L----------| NA= L-A/2 , @ap= PI*R*(N+1)*NA L A NA N N+1 R ESC. @ap 0,6 0,5 0,35 0,7 1,7 0 0,8 0,5 0,55 1,1 2,1 0 1,0 0,5 0,75 1,5 2,5 0 1,6 0,5 1,35 2,7 3,7 0 2,0 0,5 1,75 3,5 4,5 0 2,5 0,5 2,25 4,5 5,5 0 3,0 0,5 2,75 5,5 6,5 0 4,0 0,5 3,75 7,5 8,5 0 5,0 0,5 4,75 9,5 10,5 0 6,0 0,5 5,75 11,5 12,5 0 8,0 0,5 7,75 15,5 16,5 0 10,0 0,5 9,75 19,5 20,5 0 20,0 0,5 19,8 39,5 40,5 0 25,0 0,5 24,8 49,5 50,5 0 30,0 0,5 29,8 59,5 60,5 0 40,0 0,5 39,8 79,5 80,5 0 50,0 0,5 49,8 99,5 100,5 0 OBSERVACIONES e) Las mediciones de resistividad aparente deben efectuarse hasta valores de A o L; de 3 a 5 veces de profundidad que se desea investigar. No obstante, la tendencia del ρap al aumentar A o L, puede indicar la necesidad o no de continuar la medición para valores mayores. Si el valor de ρap muestra una tendencia asintótica definida a un determinado valor, no es necesario continuar con separaciones mayores de los electrodos. f) Los electrodos deben enterrarse poco profundos en las primeras mediciones para valores pequeños de A o L. Se recomienda h < 0.1 m. Para separaciones mayores se entierran aproximadamente 0,30 m. Medardo Navarro C. 18
  19. 19. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar En terrenos muy secos es recomendable verter un poco de agua en el contorno mismo de los electrodos; especialmente en los de corriente. Debe evitarse hacer charcos grandes, pues esto modifica la resistividad natural del terreno y falsea las mediciones. Además de verter agua, es conveniente apisonar un poco la tierra alrededor de los electrodos con un martillo. h) Para la medición de las distancias entre electrodos, se recomienda no utilizar huinchas metálicas. En caso de utilizarlas deben levantarse del suelo durante la medición; lo que resulta incómodo. i) En ciertos instrumentos o sistemas de medición es posible que la resistencia de los cables de medición del voltaje, afecte las lecturas. Debe tenerse presente esta posibilidad. j) El método de partición de Lee con la configuración de Wenner proporciona una forma de comprobación de la medición y verificación de posibles variaciones laterales del terreno. Si el instrumento utilizado no dispone de conexiones para el electrodo central, puede instalarse un conmutador externo como el indicado en la figura 4. k) El método de Lee permite aumentar aproximadamente al doble el rango máximo de medición del instrumento. Si al usar la disposición normal se excede la capacidad del instrumento, se puede medir en Lee y sumar los valores obtenidos. C1 C2 P1 P2 C1 P1 P0 P2 C2 Fig. 4 Sistema de conmutación para la lectura con el método de Lee 2.11.- Comprobación durante las mediciones. Es conveniente efectuar algunas comprobaciones durante las mediciones para asegurarse que los valores obtenidos no son erróneos. Además, pueden presentarse algunos inconvenientes durante la medición que son verificables y eventualmente subsanables directamente en terreno. Medardo Navarro C. 19
  20. 20. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar a) Si se tienen dudas sobre el estado del instrumento puede probarse éste midiendo resistencias de prueba de valores tales como 10, 100, 1000 ohmios, que conviene formen parte de los accesorios de medición. Para medir la resistencia basta unir los bornes C1 con P1 y C2 con P2 y conectar a éstos la resistencia a medir. Si se desea, es posible obtener los posibles errores del instrumento midiendo resistencias de precisión adecuada (por ejemplo 1%) b) Durante las mediciones es conveniente comprobar, cada cierto número de lecturas, los valores de resistividad a lo menos en dos escalas diferentes de medición; cuando esto es posible. Si los valores resultan muy diferentes, es posible un mal contacto de uno o varios de los electrodos con el terreno. Es posible que esta situación se produzca también, si las baterías del instrumento se encuentran agotadas. Otra forma de comprobación cuando el valor leído merece dudas, es medir en Lee y comprobar si las mediciones son aproximadamente iguales y si la suma corresponde al valor leído en forma normal. Si una de las mediciones en Lee resulta varias veces menor que la otra, es probable un mal contacto o falla en el circuito de potencial correspondiente. c) Si al pretender hacer una medición, la aguja del instrumento de indicación directa o de balance, permanece en una posición cualquiera y no es posible cambiar su posición al operar solo los controles, la posible causa es una interrupción en el circuito de corriente debida a: - Electrodos de corriente en mal contacto con el terreno. - Cables cortados en el circuito de corriente. - Baterías del instrumento descargado. - Falla en el instrumento. Verificación del circuito de Corriente - Retirar la conexión de C1 a B1; y unir C1 con P1. - Si la falla se encontraba en B1, el instrumento indica ahora un valor grande y es sensible a las manipulaciones de los controles. - Si esto no sucede unir directamente C1 y P1 y repetir lo anterior para verificar posible falla en el cable C1 – C1. - Si no se ubica la falla en el lado 1, repetir en el lado 2. - Si no se ubica la falla en las barras, ni en los cables, comprobar las bater5as del instrumento, reemplazándolas. - Si continúa el problema, verificar el instrumento mediante resistencias de prueba. d) Una falla en el circuito de corriente puede dar origen, también a valores cambiantes o hacer que el instrumento sea poco sensible a las manipulaciones de los controles (en el caso de instrumentos de balance). Medardo Navarro C. 20
  21. 21. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar e) Si el instrumento indica cero, la posible causa es una interrupción del circuito de potencial. La verificación es similar a lo indicado en c) C1 C2 P1 P2 C1 C2 Fig. 5 Verificación del circuito de corriente B1 B2 Medardo Navarro C. 21
  22. 22. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 3. INTERPRETACION DE LAS MEDIDAS DE RESISTIVIDAD DEL TERRENO. Los métodos de interpretación de las mediciones de un terreno se han basado y se basan actualmente en las técnicas desarrolladas por los geofísicos para el conocimiento de los suelos a través de la variación de su resistividad. El proyectista de puestas a tierra utiliza estas técnicas de interpretación para concluir los parámetros del terreno que requiere en el proyecto de la puesta a tierra a calcular. En los inicios de la prospección geoeléctrica existía una gama variada de métodos empíricos de interpretación de las mediciones de resistividad aparente para deducir las características del terreno. Esta escuela perduró un largo tiempo en países como EE.UU., Canadá e Inglaterra. La mayor parte de estos métodos se basan en la experiencia acumulada en muchos años de mediciones y no estaban sustentados científicamente. Sus posibilidades de interpretación tenían un carácter restringido ya que eran aplicables con mayor éxito sólo en situaciones particulares. Permitían fundamentalmente la ubicación de estratos o variaciones laterales de importancia (depósitos aislados de un determinado material) y no era posible deducir la resistividad de los estratos del terreno. Gracias a los aportes de S. Stefanesco, R. Maillet y C. Schlumberger (1932) se desarrollan los métodos científicos, los cuales desplazan rápidamente a los métodos empíricos en Europa. Recién a partir de la década del 60, se comienzan a utilizar en EE.UU. Ciertos gráficos de terreno presentan como promedio una forma similar a un sistema de 2 capas, aunque correspondan a un sistema de 3 o más capas. Desde el punto de vista de la resistividad equivalente es una buena aproximación interpretarlo como de 2 capas. Estos métodos científicos son los recomendables para ser utilizados en la interpretación de las mediciones de resistividad aparente, para los propósitos del provecto de una puesta a tierra. 3.1. Interpretación de los Terrenos Mediante Curvas Patrón. Este método de interpretación de las medidas de resistividad de un terreno es el más exacto y el recomendado. Consiste en comparar los gráficos de terreno con curvas patrón construidas con ese propósito para diferentes casos de combinaciones de diferentes capas de terreno. Este método supone que las diferentes capas o estratos de terreno son paralelas a la superficie. Si se obtiene un calce perfecto, entre la curva de terreno y una curva patrón, se supone que la estructura del terreno es idéntica a la teórica en cuanto a resistividad de los estratos y su espesor. Medardo Navarro C. 22
  23. 23. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Tanto las curvas patrón como las de terreno se construyen en papel logarítmico en ambos ejes. La razón de esto es tener independencia de las unidades y magnitudes de la medición, de manera que una determina da familia de curvas patrón sirva para interpretar diferentes estructuras proporcionales. 3.1.1. Clasificación de los diferentes Sistemas Estructurales de Terrenos. La clasificación de las diferentes combinaciones de estratos es arbitraria. Atendiendo a que se dispone de curvas patrón clasificadas de acuerdo al criterio europeo, se adopta esta solución: 1) Sistemas de 2 capas. En un sistema de 2 capas existen dos posibles combinaciones de valores relativos, que se indican en la figura 6. ρ2 ρ1 ρ1 ρ2 ρ1< ρ2 ρ1< ρ2 E1=h1 A,L E1=h1 A,L FIG. 6: Posibles combinaciones relativas de un sistema de 2 capas. Medardo Navarro C. 23
  24. 24. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 2) Sistema de tres capas En un sistema de 3 capas existen 6 posibles combinaciones relativas de resistividades que se acostumbra agrupar en 4 tipos que muestra la Fig. 7 ρ1 ρ3 ρ2 Tipo H: ρ1 > ρ2 < ρ3 ρ3 ρ1 ρ1> ρ3 ρ1< ρ3 ρ2 E1 E2 E1 E2 h2 h1 h2 h1 A,L A,L ρ2 ρ3 ρ1 Tipo K: ρ1 < ρ2 > ρ3 ρ2 ρ1 ρ3 ρ1<ρ3 ρ1> ρ3 E1 E2 E1 E2 h2 h1 h2 h1 A,L A,L Medardo Navarro C. 24
  25. 25. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Tipo A: ρ1 < ρ2 < ρ3 E1 E2 h1 h2 A,L ρ1 ρ2 ρ3 Tipo Q: ρ1 > ρ2 > ρ3 E1 E2 h1 h2 A,L Fig 7 : Posibles combinaciones relativas de un sistema de 3 capas. ρ3 ρ2 ρ1 3) Sistemas de 4 Capas. Para un sistema de 4 capas existen 24 posibles combinaciones relativas de resistividad que se acostumbra agrupar en los 8 tipos siguientes: Tipo QQ : p1 > p2 > p3 > p4 (2 subtipos) 1 pQH : p1 > p2 > p3 < p4 (4 subtipos) HK : > p2 < p3 > p4 (4 subtipos) KO : p1 < p2 > p3 > p4 (4 subtipos) HA : p1 > p2 < p3 < p4 (3 subtipos) AK : p1 < p2 < p3 > p4 (3 subtipos) KH : p1 < p2 > p3 < p4 (8 subtipos) AA : p1 < p2 < p3 < 94 (2 subtipos) Medardo Navarro C. 25
  26. 26. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 3.2.- Interpretación de un Sistema de 2 Capas. El procedimiento de interpretación de las medidas del terreno mediante curvas patrón de 2 capas es el siguiente: a) Trazar las curvas de resistividad aparente con los datos obtenidos en terreno, en función de la separación entre electrodos A para Wenner o en función de L para Schlumberger; L = (n + 0,5)·a. Dibujar la curva en papel log-log de igual dimensión de década que el de la curva patrón a utilizar. En lo posible el papel debe ser transparente. b) Superponer el gráfico con la curva de terreno sobre el gráfico patrón. Conviene utilizar una ventana o una mesa luminosa. c) Deslizar el gráfico de terreno sobre el gráfico patrón para obtener un calce lo más perfecto posible entre la curva de terreno una de las curvas patrón. Durante este proceso deben mantenerse paralelos los ejes de ambos gráficos. Sí es posible un calce en solo una parte de la curva, significa que la curva de terreno corresponde a un sistema de más de 2 capas. d) Marcar en el gráfico de terreno una cruz correspondiente al origen (1;1) del gráfico patrón. e) Leer en el eje vertical del gráfico de terreno la ordenada de la cruz marcada. Este valor corresponde a la resistividad de la capa superior p1. f) Leer en el eje horizontal del gráfico de terreno la abscisa de la cruz marcada. Este valor corresponde al espesor de la capa superior E1 g) Leer el valor de k o ρ2 de la curva patrón que calza con la de terreno. Si el parámetro de las curvas es k, el valor de ρ2 se calcula como: k + ρ = 1 ⋅ρ 2 1 − k 1 NOTA: Es posible interpolar entre diferentes curvas patrón de un mismo número de capas. Medardo Navarro C. 26
  27. 27. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 3.3. Interpretación de un Sistema de 3 Capas. Si se dispone de curvas patrón para diferentes combinaciones de un sistema de 3 capas, el procedimiento de interpretación es muy parecido al empleado en un sistema de 2 capas. a) Determinar por inspección del gráfico de terreno el tipo de curva: H, A, Q ó K. b) Usando el gráfico patrón adecuado proceder de acuerdo a los puntos b) y c) descritos anteriormente para 2 capas. c) Marcar en el gráfico de terreno la cruz correspondiente al origen (1;1) del gráfico patrón y las dos marcas de resistividad. Se toma nota de la relación de espesores E2/E1 que corresponde a la curva patrón que calza con la del terreno. d) Leer en el eje vertical del gráfico de terreno la ordenada de la cruz marcada. Este valor corresponde a la resistividad de la capa superior ρ1. e) Leer en el eje horizontal 1 del gráfico de terreno la abscisa de la cruz marcada. Este valor corresponde al espesor de la capa superior E1. f) Las marcas de resistividad ρ2 y ρ3 sobre el gráfico de terreno indican las resistividades de la capa intermedia e inferior. g) El espesor de la capa intermedia es igual al espesor de la primera capa multiplicada por la relación (E2/E1) determinada en c) 3.4. Interpretación de un Sistema de 3 Capas mediante Curvas Patrón de 2 Capas. Si no se dispone de curvas patrón para sistemas de 3 capas puede recurrirse a una interpretación por parte de la curva de terreno utilizan do curvas patrón de 2 capas y gráficos auxiliares (método de Ebert). El procedimiento de interpretación es el siguiente: a) Identificar el tipo de curva de terreno obtenida tipo H, K, Q o A, según su forma. Se usará el gráfico auxiliar correspondiente al tipo determinado. b ) Hacer coincidir la parte izquierda de la curva de terreno con la curva del gráfico patrón de 2 capas que más se aproxime. Marcar en el gráfico de terreno una primera cruz correspondiente al origen (1;1) del gráfico patrón y la marca de resistividad. Estas determinan ρ1 y E1 y una estimación de ρ2. Anótese el valor de ρ2/ρ1. c) Superponer el gráfico de terreno sobre el gráfico auxiliar, conservar paralelos los ejes durante el proceso. - Para las curvas H y Q colocar la primera cruz sobre el origen de coordenadas del diagrama auxiliar. Medardo Navarro C. 27
  28. 28. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar - Para las curvas A y K colocar la primera cruz sobre el eje, vertical de la izquierda del diagrama auxiliar, en la posición correspondiente al valor ρ2/ρ1. d) Se calca sobre el gráfico de terreno la curva del gráfico auxiliar que corresponde al valor de ρ2/ρ1 anotado y que parte de la posición de la primera cruz. e) Superponer el gráfico de terreno sobre el gráfico patrón de 2 capas. f) Conservando los ejes paralelos se desplaza el gráfico de terreno hasta que la parte derecha de la curva calca con una de las curvas del gráfico patrón. Durante este proceso deben mantenerse el origen de coordenadas del gráfico patrón continuamente en coincidencia con la curva auxiliar trazada anteriormente. g) Marcar sobre el gráfico de terreno una segunda cruz correspondiente al origen (1;1) del gráfico patrón y la marca de resistividad. La posición de la marca de resistividad indica la resistividad de la tercera capa. h) Superponer nuevamente el gráfico de terreno sobre el gráfico auxiliar. Colocar la primera cruz igual que en el punto c). Buscar la línea segmentada del gráfico auxiliar que pasa sobre o cerca de la segunda cruz. A esta línea segmentada corresponde un determinado valor de E2/E1. i) El espesor E2 de la capa intermedia es igual al espesor de la primera capa multiplicado por E2/E1 determinado en h). 3.5. Consideraciones Generales sobre la Interpretación. En la interpretación de las mediciones de terreno conviene tener presente lo siguiente:, a) En ciertos gráficos de terreno aparecen pequeñas desviaciones de la curva con respecto a una tendencia general clara. Esto puede deberse a una lectura deficiente de uno o varios puntos de la curva (por ejemplo mal contacto de los electrodos de potencial con el terreno), o a la presencia de estratos de pequeño espesor y resistividad mucho más alta o más baja que el resto. En general, estos estratos delgados tienen poca influencia en la determinación de la resistividad equivalente total; por lo tanto, es recomendable "suavizar" las curvas eliminando los puntos alejados de la tendencia general. En esto debe obrarse no obstante, con cierto criterio para no descartar capas de terreno que puedan tener una importancia apreciable. Medardo Navarro C. 28
  29. 29. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 4. REQUISITOS DE UN S.P.T. Los requisitos fundamentales que debe cumplir una puesta a tierra son: - Debe conducir a tierra la corriente de falla y/o atmosféricas sin provocar gradientes de potencial peligrosas sobre la superficie del terreno o entre un punto del terreno y objetos conductores vecinos. - Debe conducir a tierra las corrientes de falla y/o atmosféricas durante el mayor tiempo eventualmente posible, sin sobrecalentamiento de sus elementos constituyentes. - Debe tener una impedancia de onda de un valor bajo tal que, al ocurrir descargas atmosféricas no se produzcan arcos inversos entre las partes metálicas y los conductores energizados. - Debe ser resistente al ataque corrosivo del terreno y atmósfera. - Debe tener una resistencia tal que en cualquier época del año la corriente de falla a tierra sea capaz de producir la operación de los elementos de protección. - Los diferentes electrodos y elementos que conforma el S.P.T. deben ser capaces de conducir las corrientes de falla sin calentamiento tal, que en zonas específicas, este hecho pudiese dar lugar a incendios o explosiones. - En zonas con emanaciones gaseosas inflamables deberá recurriese a métodos convenientes para evitar posibles arcos eléctricos entre partes metálicas o entre una parte metálica y el terreno. - En el caso de neutros de sistemas de distribución de baja tensión, los electrodos del S.P.T. deberán estar distribuidos a través de la red para evitar elevaciones peligrosas del voltaje del neutro en el caso de apertura del conductor del neutro. - El costo del sistema debe ser lo más bajo posible. Luego, las puestas a tierra naturales, como estructuras metálicas enterradas deben ser consideradas, teniendo presente posibles problemas de transferencias de potencial o problemas de corrosión. 4.1.- Tensiones de Paso y de Contacto. 4.1.1. Tensión de Paso VP Es la diferencia de potencial entre 2 puntos del terreno, separados por la distancia de un paso, el que se supone igual a 1 m, en el sentido de la máxima gradiente de potencial, ver figura 8. Medardo Navarro C. 29
  30. 30. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar RK RF RF RF RK RF IK IF Ra Rb Rc Vp ELEVACIÓN DE POTENCIAL SOBRE LA TIERRA DE REFERENCIA DURANTE UNA FALLA A TIERRA IK Ra Rb Rc 1 m IF Fig. 8 Voltaje de paso cerca de una estructura puesta a tierra 4.1.2. Tensión de Contacto VC VP Vp=(RK+2RF)·IK Es la diferencia de potencial entre una estructura metálica puesta a tierra y un punto de la superficie del terreno a una distancia horizontal respecto a la estructura igual al alcance de una persona, el que se supone igual a 1 m, ver figura 9. Medardo Navarro C. 30
  31. 31. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar RK RF/2 IK Ra Rb 1 m IF Fig. 9 Voltaje de contacto cerca de una estructura puesta a tierra 4.1.3. Tensión Transferida. VC RK RF/2 IK IF Ra Rb VC ELEVACIÓN DE POTENCIAL SOBRE LA TIERRA DE REFERENCIA DURANTE UNA FALLA A TIERRA Vc=(RK+RF/2)·IK Puede considerarse como un caso especial de la tensión de contacto y se presenta cuando una persona de pie dentro del área de una S/E toca un conductor puesto a tierra en un punto remoto; o cuando una persona parada en un punto remoto toca un conductor conectado a la malla de tierra. Aquí, el shock, de voltaje puede ser esencialmente igual a la elevación total de voltaje que sufre la malla de tierra durante una falla, ver la figura 10. Medardo Navarro C. 31
  32. 32. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Donde: I F = c orri ent e de f all a VT ALAMBRE DE COMUNICACIONES, NEUTRO, ETC., PUESTO A TIERRA SOLO EN UN PUNTO REMOTO ELEVACIÓN DE POTENCIAL SOBRE LA TIERRA DE REFERENCIA DURANTE UNA FALLA A TIERRA Ra RF/2 RK RK IK VT Ra VT=(RK+RF/2)·IK RF/2 IK IF Fig. 10 EJEMPLO DE VOLTAJE TRANSFERIDO IK = corriente del cuerpo humano RK = resistencia del cuerpo humano RF = resistencia del terreno inmediatamente bajo cada pie La resistencia de contacto entre pie y mano y terreno se supone igual a cero. IF 4.1.4. Tensiones de Paso , de Contacto y de Mano Máximos de Seguridad. Conociendo la corriente máxima que tolera el cuerpo humano y los parámetros del circuito podemos determinar las tensiones máximas de seguridad. Considerando las situaciones más desfavorables podemos asignar los siguientes valores a las constantes del circuito. Medardo Navarro C. 32
  33. 33. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar a) Resistencia de contacto entre pie y suelo y entre mano y estructura. Se supone igual a "cero". b) RF, resistencia de la tierra, inmediatamente bajo los pies. Depende de la resistividad del terreno superficial ρS, para fines prácticos puede estimarse en RF = 3 ρS c) RK, resistencia del cuerpo humano. Es difícil de determinar dado que varia mucho con las condiciones físicas del individuo. Experimentos realizados en las peores condiciones han dado los siguientes resultados. Resistencia mano a mano : 2.330 ohms Resistencia mano a pie : 1.130 ohms Para los cálculos usaremos el valor conservador de 1.000 ohms. De la figura 8 obtenemos: = (1000 + 2 ⋅3ρ ) ⋅ 0.116 (volts) V P S P K F K V = (R + 2⋅R ) ⋅ I t =116 0.696 + ⋅ρ V S P t (volts) De la figura 9 obtenemos: = (1000+1.5ρ ) ⋅ 0.116 V C S ( K t V = R R + F ) ⋅ I C K 2 =116 0.174 + ⋅ρ V S C t (volts) Para el Voltaje entre Manos, tenemos Vm = 116 t (Volts) Medardo Navarro C. 33
  34. 34. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 4.2.- Valores de Corriente Tolerables por el Cuerpo Humano El riesgo depende de la frecuencia, la magnitud y el tiempo que dura un flujo de corriente a través de las áreas vitales del cuerpo humano. 4.2.1. Frecuencia En este artículo, todas las indicaciones, salvo que se indique lo contrario, se refieren a la frecuencia industrial de 50 a 60 c/s. Se estima que el cuerpo humano soporta corrientes ligeramente mayores de 25 mA y quizás 5 veces este valor, a lo más, con corriente continua. 4.2.2. Magnitud. Se considera que el umbral de percepción del paso de la corriente por el cuerpo humano está en 1 miliampere. Corrientes mayores, del orden de 9 a 25 mA suelen ser bastantes dolorosas y pueden provocar una pérdida del control muscular tal que dificulte o imposibilite desasirse de un conductor tomado con la mano. Esto nos lleva a considerar como límite de las corrientes inofensivas un valor de 9 mA. Corrientes aún mayores pueden provocar paros respiratorios recuperables cuando se interrumpe la corriente, en los casos más graves mediante respiración artificial. Desgraciadamente, a estos niveles de corriente puede ocurrir la muerte debido a la especial condición del corazón conocida como fibrilación. En este caso no hay respuesta a la resucitación tradicional y el equipo necesario para aplicar el único remedio conocido (un electroshock controlado), en el corto lapso de tiempo durante el cual puede ser efectivo, normalmente no se encuentra en el terreno. Los valores dados para fijar el umbral de la fibrilación (cuando no se especifica el tiempo) varían de 50 a 100 mA. Mayores valores de corriente, aunque no produzcan fibrilación producen graves efectos tales como: detención del corazón, inhibición permanente de la respiración o serias quemaduras. 4.2.3. Duración del Contacto. Durante periodos de tiempo muy corto, el cuerpo humano es capaz de tolerar corrientes superiores a las indicadas anteriormente. Dalziel estableció que el 99,5% de las personas puede soportar, sin sufrir fibrilación ventricular, la corriente determinada por la ecuación: 0.0135 I 2 ⋅t = ef siendo: Ief = corriente efectiva a través del cuerpo. Medardo Navarro C. 34
  35. 35. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar t = duración del contacto, en seg. 0,0135 = constante empírica llamada "constante de energía". Según las normas internacionales estas definen la resistencia del cuerpo humano: Norma VDE de Alemania : 3000 Ohms Norma UTE de Francia : 2500 Ohms Norma AIEE de EEUU : 1000 Ohms Para el caso Chileno establece que: Alta Tensión : 1000 Ohms Baja Tensión : 3000 Ohms El cuadro siguiente describe los efectos de la corriente eléctrica en el cuerpo humano. Medardo Navarro C. 35
  36. 36. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar En relación con esto mismo, es útil analizar la curva de peligrosidad que representa la corriente eléctrica para el cuerpo humano. 1. Zona estadísticamente no peligrosa para la integridad física de las personas. 2. Zona peligrosa: siguiendo la variación de la curva desde arriba hacia abajo se pasa del peligro de tetanización al de asfixia y luego a la fibrilación cardiaca. Por Ultimo, tenemos la variable de la tensión, que siendo causal de que por el cuerpo humano circule una determinada corriente, nuestras normas han definido como voltajes máximos que no se deben exceder a los siguientes valores: Para ambientes secos : 65 Volts Para ambientes Húmedos : 24 Volts Estos valores son aplicables en sistemas de una tensión máxima de 400 Volts Medardo Navarro C. 36
  37. 37. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Tiempo de operación de las protecciones Las fallas en lineas de transmisión o distribución son normalmente las que con mayores frecuencia y en mayor magnitud dan lugar a corrientes residuales que circulan por tierra, por lo tanto en el dimensionamiento de una PT se acostumbra a considerar los tiempos de despeje de fallas en líneas. Para los fusibles y reles de sobrecorrientes la característica tiempo corriente es inversa, para los reles de distancia esta es definida, esto es, tiempos de operación constante para cada zona del rele El tiempo total de despeje de la falla incluye el tiempo de operación de la protección Retar-do de tiempo del circuito de control del interruptor y el tiempo total de apertura del interrup-tor. Valores típicos de operación de interruptores de alta tensión son 1 a 5 ciclos ( 20 a 100 ms), para interruptores de tensión superiores o iguales a 44 Kv y de 8 Ciclos ( 160 ms) para interruptores de distribución 12-13,2-23 Kv. Las protecciones mas comunes usadas son los hilos fusibles en MT y se utilizan las curvas tiempo total de despeje. Medardo Navarro C. 37
  38. 38. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Medardo Navarro C. 38
  39. 39. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 5. DISEÑO PRELIMINAR DEL SISTEMA DE TIERRA. 5.1. Tipo de Sistema. En toda la discusión siguiente se considerará un sistema de tierra basado fundamentalmente en una malla formada por conductores enterrados horizontalmente. El uso de una malla tiene las siguientes ventajas. a) En sistemas en que las corrientes de falla a tierra pueden alcanzar valores muy altos, es casi imposible obtener una resistencia a tierra lo suficientemente baja como para impedir que la elevación de potencia total alcance valores peligrosos al contacto humano. En tal caso, que es el habitual en un sistema de transmisión primario, el riesgo sólo puede evitarse mediante el control de los potenciales locales, dejando que el conjunto flote sobre la montaña de potencial. Una malla es el medio más práctico de conseguir esto. b) En una S/E de cierto tamaño ningún electrodo sencillo es capaz de proporcionar la capacidad de conducción de corriente requerida. Esto sólo se consigue conectando entre sí y a todos los elementos que deben conectarse a tierra, un cierto número de electrodos simples, resultando necesariamente una malla. Si los cables de interconexión se entierran en un suelo de razonablemente buena conductividad, constituirán por si solos, un buen sistema de tierra que generalmente resulta tan efectivo que permite prescindir de los electrodos originales. Sin embargo, es necesario considerar que los electrodos de barras verticales, además de ser relativamente baratos y de fácil instalación, son imprescindibles en lugares donde los estratos superiores del terreno son de alta resistividad, sea por su naturaleza o por estar expuestos a resecamientos o congelamientos. En este caso, los electrodos permiten alcanzar los estratos más profundos permanentemente húmedos. 5.2. Diseño Preliminar de la Malla. El diseño práctico de la malla se comienza observando una planta de la disposición de los equipos y estructuras que deben ser puestos a tierra. Un cable continuo debe seguir todo el perímetro de la malla para evitar concentraciones de corriente, y por lo tanto gradientes peligrosas en los extremos de los cables internos. Dentro de la malla los cables se disponen siguiendo líneas paralelas y a intervalos razonablemente uniformes. Obviamente, deben ubicarse a lo largo de las filas de estructuras y equipos para facilitar su conexión. Sin querer enfatizar el punto, debemos tener presente que cruces muy frecuentes disminuyen la eficiencia total del conductor, debido evidentemente a que un conductor es menos eficiente, como emisor de corriente, cuando atraviesa una zona ya ocupada por otro conductor. Por otra parte, estos cruces son deseables para suministrar caminos múltiples a la corriente de falla en puntos de alta concentración o para asegurar la Medardo Navarro C. 39
  40. 40. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar continuidad ante daños mecánicos de algunos conductores. Lo anterior lleva a diseñar mallas con módulos rectangulares relativa mente alargados y no cuadrados. Una malla de tierra típica para S/E está formada por cables de cobre desnudo Nº 4/0 AWG enterrados de 30 a 50 cm de profundidad y espaciados formando módulos de 3 x 6 m. Cada cruce se asegura mediante conectores soldados por el método de autofusión y en algunos cruces pueden también conectarse electrodos verticales formados por barras de copperweld de 16 a 19 mm de diámetro y de 2,5 a 3 m de longitud. En suelos de muy alta resistividad suele ser conveniente enterrar barras de mayor longitud. La malla cubrirá toda el área de los patios de alta tensión de cada S/E, extendiéndose hasta el cierro si éste es de materiales aislantes (ejemplo concreto) y de 1 a 1,5 m. más afuera, si es metálico, En este último caso, el conductor periférico suele enterrarse a unos 80 cm de profundidad. Las zonas de la malla próximas a puntos en que sé prevean altas concentraciones de corrientes a tierra, tales como conexiones a pararrayos o neutros de circuitos estrella deben, reforzarse agregando más conductores o empleando cables de mayor sección. 5.3. Conexiones a la Malla. Mediante cables continuos de cobre de secciones adecuadas y uniones tipo autofusión deberán conectarse a la malla de tierra los siguientes elementos: a) Todas las partes metálicas que normalmente no conducen corriente, pero que accidentalmente, por fallas de aislación pueden quedar energizados, tales como: estructuras metálicas, acero de edificios, estanques de transformadores e interruptores, casetas y celdas metálicas, carcazas de máquinas rotatorias, etc. b) Varillas, tuberías y toda clase de estructuras metálicas enterradas dentro del perímetro de la malla de tierra. c) Pararrayos y condensadores de acoplamiento y cuando corresponda los neutros de los transformadores, máquinas rotatorias, circuitos secundarios de poder, alumbrado y control y los secundarios de los transformadores de tensión y de corriente. 5.4. Sección de los Conductores de Tierra. Cada elemento de un sistema de tierra (incluyendo la malla, electrodos y chicotes de conexión) deben ser dimensionado de modo que: a) Sus conexiones no se deben fundir ni deteriorar bajo las más adversas combinaciones de corrientes de falla que puedan acaecer. b) Deben ser mecánicamente muy resistentes. Medardo Navarro C. 40
  41. 41. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar c) Deberán tener la suficiente conductividad de modo que no contribuyan significativamente a aumentar las gradientes de potencial locales. Onderdonk desarrolló la siguiente ecuación que da la capacidad los conductores y sus uniones, de acuerdo a su límite térmico. T − T m a ⎛ ⎜ ⎜⎝ + ⋅ 234 log 10 I A a t T ⋅ ⎞ ⎟ ⎟⎠ + 1974 = ⋅ ⋅ 33 1 donde: I = corriente en Amperes. A = sección del conductor de cobre, en mm2 t = tiempo, en seg., durante el cual la corriente I es aplicada. Tm = temperatura máxima admisible, en ºC. Ta = temperatura ambiente, en ºC. Al aplicar esta ecuación se hacen, normalmente las siguientes suposiciones: Temperatura ambiente de 25 ºC. Temperatura límite con uniones apernadas 250 ºC. Temperatura con uniones soldadas al bronce 450 ºC. Temperatura con uniones autofusión 1.083 ºC. Temperatura cable sólo sin uniones 1.083 ºC. De esta ecuación puede desarrollarse la siguiente tabla de valores límites. TABLA 3 SECCION MINIMA DEL CONDUCTOR PARA PREVENiR SU FUSION mm2 por cada mil Amperes Cable de cobre Tiempo duración de la falla Cable Copperweld al 40% solo solo Con uniones soldadas al bronce Con uniones apernadas 30 seg. 24.0 21.0 26.0 33.0 4 seg. 8.7 7.1 10.2 13.0 2 seg. 6.1 5.1 6.6 8.2 1 seg. 4.4 3.6 5.1 6.1 0.5 seg. 3.1 2.6 3.3 4.4 Medardo Navarro C. 41
  42. 42. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Por razones de seguridad, las conexiones permanentes a tierra, como son las correspondientes a la malla de tierra del lugar en estudio, deben tener una sección mayor que la sección límite establecido en la tabla anterior. Se recomienda multiplicar el valor de la tabla por el coeficiente 1,74 y considerar un tiempo de duración de la falla de 4 segundos. Sin perjuicio de lo anterior, los conductores de una malla de tierra tendrán las siguientes secciones mínimas: - Nº 4/0 AWG para la malla propiamente tal, conexiones a pararrayos, a cables aéreos de guardia y a las cuchillas de puesta a tierra de los desconectadores. - 50% de la sección de los conductores de fase con un mínimo del Nº 4/0 AWG, en la conexión de los neutros de los transformadores de poder, máquinas rotatorias y reactores. - No 2/0 AWG para estructuras y carcazas metálicas y neutros de transformadores de instrumentos.' Todas estas conexiones deberán ser lo más cortas posibles y directas al equipo indicado. No se acepta usar como parte del circuito de tierra las estructuras o carcazas metálicas de los equipos. 5.5. Material de los Conductores de Tierra. El cobre es el material más empleado de la construcción de una malla de tierra. Además de su alta conductividad, el cobre tiene la ventaja de ser inmune a la corrosión galvánica desde el terreno circundante debido a que él es catódico con respecto a otros metales que pueden estar enterrados en las vecindades. Por otra parte, este hecho acelera la corrosión de estos últimos metales, tales como tuberías de acero, cubiertas de plomo de los cables, etc. El estañado del cobre reduce este efecto en un 50% con respecto al acero y al zinc y lo elimina con respecto al plomo. Esta corrosión puede además disminuirse aislando ambos metales, en sus cruces, mediante huincha plástica, compound, etc. Barras de acero revestidas de cobre (copperweld) se usan normalmente como electrodos verticales y en casos muy especiales en la construcción de la malla propiamente tal. En algunos casos sé a usado acero galvanizado como material de a malla y electrodos de tierra. Con ello se elimina el efecto adverso de malla sobre otros conductores enterrados. Sin embargo, en este caso es necesario proveer alguna protección a la malla propiamente tal; usualmente se usa alguna forma de protección catódica. Menos frecuentemente se ha usado aluminio en las mallas de tierra. Sin embargo, debido a que este metal se corroe con facilidad en ciertos suelos y que además, en ciertas Medardo Navarro C. 42
  43. 43. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar condiciones sufre corrosión por el paso de corriente alterna, su uso puede aceptarse sólo si exhaustivas investigaciones no recomiendan lo contrario. 5.6. Longitud de Conductor necesario para Controlar las Gradientes de Potencial Locales. Para el cálculo aproximado de la longitud del conductor de una malla de tierra se ha desarrollado una ecuación que asegura que el "voltaje de contacto" en el interior de la malla se mantendrá siempre dentro de los valores de seguridad. Para estos cálculos se ha considerado el "voltaje de contacto" en vez del "voltaje de paso" o del "voltaje transferido" por las siguientes razones: a) El "voltaje de paso" encontrado en instalaciones prácticas es siempre menor que el "voltaje de contacto"; además en los contactos con "voltajes de paso", las resistencias del terreno bajo ambos pies se disponen en serie, limitando la corriente por el cuerpo humano (ante un choque de "contacto" se disponen en paralelo) y finalmente, el organismo tolera mayor corriente entre pie y pie que entre mano y pie. b) Los "voltajes transferidos" son generalmente imposibles de mantener dentro de valores tolerables y por lo tanto requieren de aislaciones u otros tratamientos especiales. Para tomar en cuenta las condiciones más adversas, en los cálculos trabajaremos con un "voltaje de contacto" especial, llamado "voltaje de módulo" (Vm), el que consiste, en el voltaje establecido entre una estructura puesta a tierra y el centro de uno de los módulos (rectángulos) adyacentes de la malla de tierra. Laurent establece que para valores usuales de sección, profundidad de enterramiento y espaciamiento de los conductores, los potenciales locales pueden alcanzar los siguientes valores aproximados: Vpaso = 0,1 a 0,15·ρ·i volts (2) Vcontacto = 0,6 a 0,8·ρ·i volts (3) Vmódulo = ρ·i volts (4) siendo: ρ = resistividad del terreno en ohms-m. I = corriente en amperes por m. de conductor enterrado, que fluye hacia la tierra. Sin embargo, normalmente en los cálculos es necesario usar-ecuaciones más precisas, lo que se consigue mediante la inclusión de dos factores de corrección "Km" y "Ki". Así, en lugar de la ecuación (4) podemos escribir la siguiente: V K K I m m i = ⋅ ⋅ρ ⋅ volts (5) L donde: Km = coeficiente que toma en cuenta el efecto del número "n", el espaciamiento "D", el diámetro "d" y la profundidad de enterramiento "h" del conductor. Mediante un desarrollo matemático puede obtenerse que su valor es: Medardo Navarro C. 43
  44. 44. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar ⎤ ⎥⎦ 1 2 π π K L D 1 ⎡ 3 5 7 m n n 8 = + L ⎛ etc ⎜⎝ ⎢⎣ ⎞ ⋅ ⋅ ⋅ ⋅ ⎟⎠ ⋅ ⎛ ⎟⎠ ⎜⎝ ⎞ ⋅ ⎛ ⎟⎠ ⎜⎝ ⎞ hd 6 4 2 16 Donde la cantidad de factores entre paréntesis es 2 menos que el número de conductores de la malla a lo largo de su lado más largo. Ki = factor de corrección por irregularidades que considera la no-uniformidad en el flujo de corriente desde los diferentes puntos de la malla. Su valor puede variar desde 1,2 a 2 ó más, dependiendo de la geometría de la malla; mayores antecedentes se dan en el punto 5.7 siguiente. ρ = resistividad promedia de la tierra. I = máxima corriente efectiva de falla que puede fluir entre la malla y el terreno, reajustada para considerar un crecimiento futuro del sistema. L = longitud total del conductor en m. Si el valor de Vm dado en (5) se iguala al máximo valor de contacto tolerable, como se indica a continuación, se obtiene: K ⋅ K ⋅ ρ ⋅ I 116 + 0.17 ⋅ρ M i s = L t K ⋅ K ⋅ ⋅ I ⋅ L t m i ρ s ρ 116 0.17 + ⋅ = donde: L = longitud aproximada del conductor enterrado, necesario para que los valores de Vm se mantengan, ante cualquier falla, dentro de los limites tolerables por el cuerpo humano. ρs = resistividad superficial del terreno en Ohm-m. t = duración máxima del choque eléctrico en segundos; supuesto igual al tiempo de operación de las protecciones de respaldo del lugar. Cuando este valor no se conozca, se tomará el valor de 2 seg. (ver tablas del anexo 1 de la publicación MEE.B.13.2 "puesta a tierra provisionales"). Para iniciar los cálculos debemos determinar Km dándonos un valor usual para la separación "D" entre conductores (ejemplo 4 m), luego de determinado "L" con este valor y distribuido el conductor por el área de la S/E se determinará un valor más exacto de "D" y mediante éste, sé recalculará Km y consecuentemente "L". Medardo Navarro C. 44
  45. 45. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar En el valor de "L" está incluía la longitud de todas las conexiones enterradas y de los electrodos verticales, sin embargo, debe verificarse que estas últimas estén enterradas a una distancia tal que no haya interacción significativa entre ellas y que la resistividad del terreno que alcanzan no sea mayor que el promedio considerado para la malla propiamente tal. 5.7. El Factor de Irregularidad "k¡". Se ha demostrado que aún en condiciones ideales tales como: resistividad del terreno uniforme y una malla de tierra de forma geométrica regular, la corriente de falla a tierra, por unidad de longitud del conductor enterrado es variable, siendo mayor en los costados que en el centro y mayor aún en las esquinas. Evidentemente, las gradientes de potencial varían de la misma forma. Para aumentar el problema, rara vez en una instalación práctica se dan estas condiciones ideales. Esto significa que para obtener un buen diseño debemos estimar estas irregularidades y como ellas influyen, lo que se traduce en la aplicación a ρ, L e I de un factor Ki llamado “ factor de irregularidad“. La determinación del valor de Ki es compleja por lo que generalmente se recurre a datos obtenidos empíricamente. La figura 11 nos da los valores de Ki necesarios para cubrir determinados módulos de diferentes mallas regulares. Una forma de abordar los cálculos es diseñar una malla con todos sus módulos iguales, para lo cual deberá considerarse un factor de irregularidad igual al mayor indicado en la figura 11; ejemplo 2,2 para la malla "D". Otra alternativa, más económica, consiste de adoptar un valor de Ki que no alcance a cubrir las esquinas (1.9 en el ejemplo anterior) y posteriormente reforzar estas esquinas mediante la inclusión de conductores adicionales. En mallas de forma irregular deberá aumentarse el valor de Ki, por ejemplo a 2.5, aumento que podrá ser mayor en presencia de salientes agudos. También, cuando se conocen o esperan fuertes variaciones puntuales de la resistividad del terreno sobre el promedio del área total deberá considerarse un aumento adicional de Ki Por otra parte, si consideramos la calda de potencial en la propia malla, debido a la resistencia que presentan sus conductores, podemos observar que los puntos en los cuales la corriente de falla ataca a la malla estarán sometidos a un potencial más alto, desde los cuales tenderá a fluir una corriente mayor hacia el terreno circundante. Si estos puntos, que corresponden a la conexión a estructuras o carcazas de equipos donde se puede producir una falla de aislación, o neutros de circuitos estrella, los ubicamos fundamentalmente en la zona central de la malla, podemos compensar, en parte la tendencia de la corriente de falla a aumentar su densidad en la periferia. Otro criterio para calcular el valor de Ki es aplicar la siguiente fórmula válida para mallas de geometría y resistividad regular: Medardo Navarro C. 45
  46. 46. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar K i = 0.65 + 0.17 · n donde: n = número de conductores en paralelo en la misma dirección del lado mayor. A) Según observaciones experimentales: 1.00 Malla “A” 1.00 1.00 1.00 1.00 Malla “B” 1.2 1.2 1.0 1.0 1.2 1.5 1.0 1.0 1.2 1.5 1.2 1.2 Malla “C” 1.5 1.2 1.2 1.5 1.6 1.6 2.2 1.9 1.4 1.4 1.9 2.2 1.9 1.9 1.6 1.6 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.4 1.3 1.4 1.4 1.3 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.3 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.6 1.6 1.9 1.3 1.3 1.3 1.3 1.4 1.4 1.9 1.9 2.2 2.2 1.4 1.4 1.6 1.6 Malla “D” 1.9 B) Según la fórmula Ki = 0.65 + 0.17 · n Malla “A” ⇒ K i = 0.99 Malla “B” ⇒ K i = 1.16 Malla “C” ⇒ K i = 1.50 Malla “D” ⇒ K i = 2.18 FIG. 11 VALOR APROXIMADO DE K I PARA MALLAS SIMÉTRICAS Medardo Navarro C. 46
  47. 47. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 5.8.- Valores de resistencia de electrodos típicos de puesta a tierra. 1.- Barra Cooperweld I 2a Donde: I = largo de la barra en metros ρ R eq 2 a = radio de la barra en metros ρeq = resistividad equivalente en Ω·m 2.- Conductor horizontal h / (m) 3.- Dos barras paralelas ⎞ ⎟⎠ ⋅ Ln ⎛ l l ⎜⎝ ⋅ 2 π ⋅ ⋅ = a ⎞ ⎟ ⎟⎠ ⎛ Ln l l ⎜ ⎜⎝ 2 d h ρ R eq 2 π ⋅ ⋅ ⋅ = ⎤ ⎥ ⎥⎦ ⎡ 2 ( 2 2 Ln l l l D l ⎢ ⎢⎣ ⋅ + + a ⋅ D ⋅ ⋅ ρ R eq 4 π ⋅ ⋅ = d / D 2a Medardo Navarro C. 47
  48. 48. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 4.- Dos conductores en paralelo D h h h d 5.- Dos conductores en ángulo recto d l h 6.- Estrella de tres barras en 120º ⎤ ⎥⎦ ⎡ ⋅ ⋅ ⋅ + Ln l l D l ⎢⎣ 2 2 2 ( ) ⋅ + ⋅ ⋅ ρ R eq 4 ⋅ π ⋅ d h D h D = 2 2 4 h ρ R eq 2 π ⋅ ⋅ = L l 2 1.46 ⋅ L d h Ln L 2 = ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ⋅ ⋅ h h l l l ρ R = eq 2 = π ⋅ ⋅ L l 2.4 ⋅ L2 d h Ln L 3 ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ ⋅ ⋅ Medardo Navarro C. 48
  49. 49. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 7.- Estrella de cuatro barras h l l l 8.- Estrella de seis ramas l 9..- Malla cuadrada l ρ R eq 2 ⋅ ⋅ = L l Ln L 4 2 8.45 ⋅ L d h = ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ⋅ ⋅ π ρ R eq 2 π ⋅ ⋅ = L l 2 5.33 ⋅ L h d Ln L 6 = ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ⋅ ρ R eq 2 π ⋅ ⋅ = L l 2 4.25 ⋅ L h d Ln L 4 = ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ ⋅ h h h h h l l Medardo Navarro C. 49
  50. 50. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 10.- Malla Rectangular con reticulado h A B ρ R eq Donde: L = Largo total del conductor enterrado en metros h = Profundidad de enterramiento en metros S = Superficie de la malla en metros cuadrados d = Diámetro del conductor en metros A = Lado mayor de la malla en metros B = Lado menor de la malla en metros A Ln 2 ⋅ L K L = K h ⋅ d ⎞ ⋅ π ⎛ + ⎡ ⎢⎣ + − ⎟⎠ ⎟ K 5.5 - 8 ⋅ h 0.15 - h ⋅ A 2 =1.432 − 2.3 0.044 1 B B ⋅ K h − ⋅ S ⎜ ⎜⎝ = S S K1 y K2 = coeficientes que dependen de la geometría de la malla. ⎤ 1 ⎥⎦ 2 S Medardo Navarro C. 50
  51. 51. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 6. CALCULO DE LA RESISTENCIA DE UN SISTEMA DE TIERRA. 6.1. Método de Laurent y Nieman. En base al diseño preliminar de la malla de tierra puede calcularse un valor aproximado de su resistencia a tierra (usualmente no puede esperarse una alta precisión, especialmente donde los datos son incompletos o falla la homogeneidad del terreno). Laurent y Níeman usan un método muy simple, que está determinado por la siguiente ecuación: R eq eq ρ ρ = + 4 r L (9) donde: r = radio en m de un circulo que tiene la misma superficie que la ocupada por la malla. L = longitud total del conductor enterrado en m resistividad del terreno en ohms-m. El segundo término reconoce el hecho que la resistencia de una malla es mayor que la de una placa sólida y que esta diferencia disminuye a medida que aumenta la longitud "L" del conductor. 6.2. Método de Schwarz. Un método más aproximado de calcular la resistencia de una malla de tierra, generalmente usado en cálculos computarizados es el método de Schwarz. Mediante este método sé, determina separadamente la resistencia a tierra del reticulado y la del conjunto de barras y la resistencia mutua reticulado-barras. Las fórmulas básicas son: ⎞ Ln L L ⎜ ⎜⎝ ⎛ K ⋅ L 2 ⋅ K ρ R eq ⎟⎠ = ⎟ + 1 − Reticulado: 1 π ⋅ h ⋅ d S 2 ⎟ ρ ⎟⎠ ⎛ ⎞ Conjunto de barras: = Ln 4 L 2 K L 1 1 1 [ ] 2 ⎜ ⎜⎝ N R eq ⋅ − 1 2 ⋅ 1 − + ⋅ L N ⋅ ⋅ 1 2 S a π Donde K1 y K2 son coeficientes que dependen de la configuración de la malla y se han obtenido en forma experimental en modelos. Cuando las expresiones de Schwarz se usan en pequeños programas de computación, una aceptable aproximación para el cálculo de K1 y K2 en mallas rectangulares se obtiene de las fórmulas: Medardo Navarro C. 51
  52. 52. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar A A ⎛ ⎞ K = ⎟ ⎟⎠ 5.50 − 8 h + 0.15 − h ⋅ 2 ⎜ ⎜⎝ ⋅ = − B B ⋅ K 1.43 2.3 h − 0.044 1 S S S siendo: S = superficie cubierta por la malla, en m2 h = profundidad de enterramiento del reticulado, en m A = lado mayor de la malla, en m B = lado menor de la malla, en m ρeq = resistividad promedia del terreno en ohms-m. L = longitud total del conductor de la malla en m d = diámetro de conductor de la malla en m N = número de electrodos verticales. L1 = longitud de cada electrodo en m a = radio de cada electrodo en m Si la malla no es de forma rectangular exacta puede aproximarse a esta condición sin errores de importancia. La resistencia mutua entre el reticulado y el conjunto de barras es: ⎞ ⎟ ⎟⎠ ⎛ ⎜ ⎜⎝ L ρ R R eq Ln L = − 1 − 1 12 1 π ⋅ h ⋅ d La resistencia combinada del reticulado y los electrodos o barras de tierra es: 2 R ⋅ R − R Rpt + − 1 2 12 R R 2R 1 2 12 = Medardo Navarro C. 52
  53. 53. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 7.- CALCULO DEL AUMENTO DE POTENCIAL TOTAL DE LA MALLA. Habiendo sido calculada la resistencia total de la malla de tierra, puede calcularse la elevación de potencial respecto de la tierra remota mediante la fórmula: E = R·I donde: I = máxima corriente de cortocircuito que puede incidir en la malla. R = resistencia de la malla de tierra. Para muy pequeños valores de resistencia y de corriente de cortocircuito, este voltaje, de por sí puede ser menor que el voltaje tolerable por el cuerpo humano, Si este es el caso, la investigación concluye aquí, sujeta sólo a la verificación del valor de la resistencia de la malla después de la construcción. Mas frecuentemente, el potencial R·I excede el valor tolerable y deben, por lo tanto, investigarse los potenciales locales. 7.1. Cálculo del Voltaje de Paso Exterior a la Malla. Si construimos el cierro metálico de una S/E al menos a 1 metro al interior del contorno de la malla de tierra, o bien si este cierro es de material aislante, se elimina físicamente la posibilidad de establecer un choque eléctrico por "voltajes de contacto exterior" siempre que ningún elemento metálico exterior a los cierros se conecte a la malla de tierra. Sin embargo, debemos verificar que el "voltaje de paso" exterior no exceda los límites de seguridad. Hablamos visto que Laurent estableció un valor aproximado de Vp igual a 0,1 a 0,15 ρ·i (fórmula 2). Sin embargo para esta verificación debemos usar la fórmula más precisa que se indica a continuación, la cual toma en cuenta factores tales como la profundidad de la malla, tamaño del conductor y su espaciamiento. V K K I P S i = ⋅ ⋅ρ ⋅ volts (10) L donde: Vp = "voltaje de paso" máximo, en un punto del suelo exterior a la malla de tierra y a una distancia horizontal al conductor periférico enterrado, igual a su profundidad, condición que puede demostrarse matemáticamente como la más desfavorable. Ks = coeficiente que toma en cuenta el efecto del número n el espaciamiento "D", y la profundidad de enterramiento "h" del conductor de la malla. Medardo Navarro C. 53
  54. 54. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar ⎤ 1 ⎡ 2 1 + 1 + 1 + + etc K= + ........ . S π (11) Su valor es: ⎥⎦ ⎢⎣ h D + h 2 D 3 D 2 Donde el número de términos dentro del paréntesis es igual al número de conductores en paralelo de la malla en el mismo sentido del paso. “K1”, “ρ”, "I" y "L" tienen los mismos significados definidos para la ecuación (5). Normalmente sucede que si los voltajes internos se mantienen dentro de los límites de seguridad y la resistividad superficial del terreno es semejante dentro y fuera del perímetro de la malla de tierra, los voltajes de paso exteriores raramente alcanzarán valores peligrosos. Sin embargo, si la seguridad dentro de la malla de tierra se obtiene sólo con la ayuda de una capa superficial de alta resistencia, tal como gravilla y ésta no se extiende más allá de los límites de la malla, entonces los "voltajes de paso" exteriores pueden sobrepasar los valores peligrosos. Los posibles remedios, si esto sucede, pueden consistir en prolongar la capa de gravilla más allá (1 metro) del con torno de la malla de tierra o usar "rampas de seguridad". Una práctica usual en ENDESA es enterrar el conductor periférico más que el resto de la malla de tierra (ejemplo 0,8 m). Medardo Navarro C. 54
  55. 55. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 8.- CALCULOS DE LOS VOLTAJES INTERNOS Y POTENCIALES TRANSFERIDOS. 8.1.- En General. Si la longitud "L" del conductor enterrado se ha calculado según el subcapitulo 5.6. y con ella se ha diseñado una malla de reticulado uniformemente distribuido, se tiene la seguridad que los voltajes "de paso" y "de contacto" se mantendrán dentro de los valores tolerables ante cualquier condición de fallas a tierra. Sin embargo, donde el tamaño, el espaciamiento y la profundidad del conductor se salen de los rangos habituales, o donde existan grandes irregularidades en la forma de la malla o en la resistividad del terreno, entonces será necesario efectuar investigaciones más detalladas. En parte esto puede obtenerse aplicando en esos puntos específicos la ecuación del factor de irregularidad. 8.2. Efectos de las Corrientes a Tierra Permanentes. Cada malla de tierra se diseña en forma segura para la máxima corriente de falla, despejada en un determinado tiempo por los relés de protección. Sin embargo, por otra parte, puede fluir por largos períodos de tiempo una corriente menor que la que hace operar los relés y debe verificarse que ésta no pueda hacer circular por el cuerpo humano una corriente peligrosa, El umbral de las corrientes peligrosas está fijado en 9 mA por lo tanto "Vm" ocasionado por esta corriente permanente no debe sobrepasar el siguiente valor 9 1000 V R R ∠ ⎛ + F m K 2 ⎞ ⋅ ⎟⎠ ⎜⎝ 9 1000 1000 3 ⋅ ⎟⎠ K K I ρ ⋅ ⋅ ⋅ ∠ + S m i L 2 ⎞ ⎛ ⋅ ⎜⎝ ρ I L (9 + 0.0135 ⋅ ρ ) ⋅ ∠ S Amp. K ⋅ K ⋅ ρ m i eq donde: I = máxima corriente de falla permanente que puede causar un choque eléctrico de no más de 9 mA. Medardo Navarro C. 55
  56. 56. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 8.3. Potenciales Transferidos. Durante una falla, puede aparecer un serio riesgo debido al potencial transferido desde la malla de tierra a puntos exteriores a causa de conductores que salen de ella, tales como circuitos de comunicación, neutros de bajo voltaje, cañerías, rieles, cierros metálicos, etc. Este potencial transferido durante una falla frecuentemente puede alcanzar valores próximos a la elevación total de potencial de la malla de tierra sobre la tierra de referencia. Por tal razón, estos conductores deben eliminarse o sufrir un tratamiento aislante especial. 8.4.- Diseño de una puesta a tierra en AT 8.4.1.- Introducción El diseño de un sistema de puesta a tierra, se basa en la necesidad de proteger a las personas y/o equipos de tensiones peligrosas que puedan aparecer entre la estructura metálica y el terreno, ya sea en condiciones normales de operación o ante una falla. El informe considera el diseño de las mallas de A.T. – B.T. y computación sin electrodos verticales de puesta a tierra, de acuerdo al tipo de terreno, características de la subestación y a los niveles de corto circuito del sistema, entregados por la compañía distribuidora de electricidad. Estos cálculos permiten determinar la superficie, reticulado y largo del conductor empleado en las mallas, además de las tensiones a las cuales quedarán expuestas las personas. 8.4.2.- MALLA A TIERRA EN A.T. 1) Se requiere diseñar un sistema de puesta a tierra en A.T. según los siguientes datos: SS/EE: DATOS DEL SISTEMA S = 300 (KVA) Icc 3φ = 2500 (A) V =12/0.4 (A) Icc 1φ = 1850 (A) Ip = 14.43 (A) tdf = 0.75 (Seg) Is = 433 (A) Z = 3.74 % Fusible = 25 (A) Medardo Navarro C. 56
  57. 57. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar DATOS DEL TERRENO Terreno de 3 capas Curva = K15-10 (1-10-1) E1 = 0.3 m E2 = 3 m E3 = 1000 m ρ1 = 40 x 1 = 40 (Ω m) ρ2 = 40 x 10 = 400 (Ω m) ρ3 = 40 x 1 = 40 (Ω m) h1 = E1 = 0.3 m h2 = E1 + E2 = 0.3 + 3 = 3.3 m h3 = E1+ E2 + E3 = 0.3 + 3.3 + 1000 = 1003.3 m 2) Se busca el valor de Rpt (Rf) que permita limitar la circulación de corriente Icc1φ a 850 Amp, considerando los valores de Icoci monofásica y trifásica del sistema de acuerdo a la ecuación: ( V ) 2 ( ) ( ) 3 2 X X X − + + 2 1 2 3 9 FN R cc 1 F Rpt ( ) I = φ 3) Se calculan los parámetros del sistema X = X = VFN ; ( )1 2 3φ 1 2 Icc X = VFN − + 3 X X Icc 1 0 φ 12000 3 2500 1 2 X = X = Medardo Navarro C. 57
  58. 58. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar = = 2.7712(Ω) 1 2 X X 0 X = x − + (2.7712 2.7712) 3 12000 3 1850 = 5.6925(Ω) 0 X 4) Cálculo de RF (Rpt) ( ) 2 x 3 12000 3 2 ( ) ( ) 2.7712 2.7712 5.6925 − + + 9 850 2 R F Rpt ( ) = = 7.2395(Ω) F (Rpt ) R La Rpt necesaria para limitar la corriente de falla es de 7.2395 Ω 5) Conociendo el valor de Rpt, (7.24 Ω) se diseña una malla tentativa de 54 m2, considerando las características del terreno. Datos de la malla: 1.5 m 1.5m A = 9 m B = 6 m Medardo Navarro C. 58
  59. 59. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar S = 54 m2 Sección cond. = 21.2 mm2 Diámetro cond. = 5.195 x 10–3 h = 0.6 m L = (A x na) + (B x nb); L = (9 x 5) + (6 x 7) L = 87 m Datos del terreno E1 = 0.3 m E2 = 3 m E3 = 1000 m ρ1 = 40 (Ω m) ρ2 = 400 (Ω m) ρ3 = 40 (Ω m) h1 = 0.3 m h2 = 3.3 m h3 = 1003.3 m 6) Se calcula Rpt de acuerdo a la ecuación: ⎞ ⎟ ⎟⎠ ⎛ Ln L L K L 2 1 K ρ R eq pt π = 2 ⎜ ⎜⎝ − ⋅ + h ⋅ d ⋅ ⋅ S Para el cálculo de Rpt, no se demuestra el desarrollo completo del ejercicio, solamente se indican los valores obtenidos en cada paso. valores obtenidos: r = 4.1459 2 16.7619 1 V = 0.2584 1 F = 2 V = 2.1900 2 F = 2 16.8287 0 r = 2 12.0324 3 V = 4.1022 3 F = 2 39.3525 0 q = 2 0.00066 ρeq = 69.4186 Ωm Medardo Navarro C. 59
  60. 60. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 1.1862 1 K = 4.9493 2 K = = 4.3229Ω pt R La superficie de la malla (54 m2) no nos entrega la Rpt (7.2395Ω) necesaria para limitar la corriente de falla, por lo que sé rediseñará una nueva. 7) Usando la ecuación de Laurent y Nieman, que indica: R eq eq ρ ρ = + 4 r L El segundo término de la ecuación ρeq /L se hace igual a uno, quedando: R eq eq ρ ρ R eq ρ = + 4 1 r L = + 4 r : Luego se despeja el radio para calcular la nueva superficie de la malla. r eq ρ 4⋅( −1) = Rpt 69.4186 = ⋅ − r ( ) 2.7814m 4 7.2395 1 = S = π x r2 S = π x (2.7814)2 S = 23.7824 m2 ≈ 24 m2 8) Según la superficie resultante por el método de Laurent, se diseña una nueva malla de 6 x 4 m. Datos de la malla S = 24 m2 Sección cond. = 21.2 mm2 Diámetro cond. = 5.195 x 10–3 h = 0.6 m Medardo Navarro C. 60
  61. 61. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Cuadriculado de la malla 1 m A = 6 m B = 4 m 1.5m L = (A x na) + (B x nb); L = (6 x 4) + (4 x 5) L = 44 m 9) Se calcula la Rpt con la nueva superficie y largo del conductor. Valores obtenidos: r = 2.7639 2 7.2222 1 V = 0.2390 1 F = 2 V = 1.7688 2 F = 2 7.2794 0 r = 2 4.1504 3 V = 2.6980 3 F = 2 18.5956 0 q = 2 0.000135 ρeq = 81.6854Ωm 1.0823 1 K = 4.5614 2 K = = 7.39Ω pt R 10) Con el valor de Rpt obtenido, se calcula la IF o Icoci, por la ecuación: Medardo Navarro C. 61
  62. 62. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar I 3 V FN ( ) ( )2 = F + + + R X X X 1 2 0 3 2 pt I x F 3 12000 3 + + + (3 7.39)2 (2.7712 2.7712 5.6925)2 = x I (A) F = 836.2610 11) Determinación de los tiempos de despeje de falla y máxima exposición a la falla. 12) El tiempo de despeje de la falla del sistema entregado por la compañía es de 0.75 Seg. Este tiempo corresponde al tiempo de despeje del interruptor o fusible, ubicado aguas arriba de la S/E a instalar. 13) De acuerdo a las corrientes nominales del transformador, el fusible que lo protege contra corto circuitos es de 25T, el que tendrá un tdf de 0.085 seg. Este tiempo se obtiene de la intersección de la curva del fusible con la IF’. 14) Se determina un tiempo máximo de exposición a la falla de 0.5 seg., tiempo que es mayor que el de fusión total del fusible que protege a la S/E, dando así un margen de seguridad al cálculo de la malla. 15) Cálculo de la IF’. Al valor de la corriente de falla (IF), obtenido anteriormente se agregan dos factores, por concepto de las componentes de C.C. en los primeros instantes de la IF y por el crecimiento vegetativo del sistema. Para los aproximadamente 850 Amp de IF, el tiempo de operación del fusible es de 0.085 Seg. Por tabla se aplica un factor de decremento (FD) de 1.32 y crecimiento vegetativo del sistema de un 10%. La IF’ considerada para el diseño de la malla queda establecida por la ecuación: IF’ = IF x FD x Fcv Medardo Navarro C. 62
  63. 63. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar IF’ = 836.2610 x 1.32 x 1.10 IF’ = 1214.2509 Amp 15) Comprobación de la sección del conductor empleado. La sección del conductor empleado, se comprueba a través de la siguiente ecuación: Sección A Icoci − Log Tm Ta ⎛ + + t Ta 10 1974 234 ⋅ ⎞ ⎟⎠ ⎜⎝ ⋅ = 33 1 ( ) donde: I = corriente en Amperes. A = sección del conductor de cobre, en mm2 t = tiempo, en seg. , durante el cual la corriente I es aplicada (0.5 seg). Tm = temperatura máxima admisible, en ºC (90 °C). Ta = temperatura ambiente, en ºC (25 °C). Por lo tanto: ( ) 1214.2509 90 − 25 ⎛ + 234 25 ⎜⎝ + 33 0.5 ⎞ 1 1974 Log 10 ⋅ ⎟⎠ ⋅ = Sección A Sección(A) = 8.0125mm2 El valor obtenido es menor al establecido por la norma para una malla de AT, por lo que se emplea un conductor de 21.2 mm2. Medardo Navarro C. 63
  64. 64. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 16) Cálculo de los voltajes máximos tolerables por el cuerpo humano. Para calcular los voltajes máximos tolerables por el cuerpo humano se considera: Superficie cubierta por gravilla con ρs = 3000 Ωm Tiempo máximo de exposición a la falla de 0.5 Seg. 17) Voltaje de contacto (Vc) y de paso (Vp). Estas quedan establecidas por las ecuaciones: = 116 0.17 + ⋅ρ V S C t V 116 0.17 3000 v C = 885.3( ) + ⋅ 0.5 = = 116 0.7 + ⋅ρ V S P t V 116 0.7 3000 v P = 3133.89( ) + ⋅ 0.5 = V 885.3(v) C = V 3133.89(v) P = 18) Cálculo de voltajes mano-pie (Vmp) y pie-pie (Vpp) Estos voltajes se determinan por la ecuación: V K K I pp s i eq = ⋅ ⋅ρ ⋅ V = K ⋅ K ⋅ρ ⋅ I mp m i eq L ; L debemos calcular Km y Ks: Medardo Navarro C. 64
  65. 65. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar ⎤ ⎥⎦ 1 2 π π K L D 1 ⎡ 3 5 m n n 6 = + L ⎛ etc ⎜⎝ ⎢⎣ ⎞ ⋅ ⋅ ⋅ ⋅ ⎟⎠ ⋅⎛ ⎟⎠ ⎜⎝ ⎞ hd 4 2 16 ⎤ ⎥⎦ 1 3 5 4 7 6 + ⎡ ⋅ ⋅ 1.5 1 2 K L m n n L = − 8 ⎢⎣ π π x 16 ⋅ 0.6 ⋅ 5.195 10 2 3 = 0.414 m K Ki = 0.65 + 0.17 x n Ki = 0.65 + 0.17 x 5 Ki = 0.5525 V K K I mp m i eq = ⋅ ⋅ρ ⋅ L = 0.414 ⋅0.5525⋅81.6854 ⋅1214.2509 mp V 44 = 515.6236 mp V V K K I PP S i = ⋅ ⋅ ρ ⋅ L ⎤ 1 1 1 1 1 etc KS π = + ........ . ⎥⎦ ⎡ + + + + ⎢⎣ h D + h 2 D 3 D 2 ⎤ ⎥⎦ ⎡ 1 1 ⎢⎣ ⎤ ⎥⎦ 1 1 1 1 1 ⎢⎣+ ⎡ + + + + 1 1.5 + 0.6 + 2 ⋅ 0.6 K = S π 1 6 5 4 3 2 1.5 = 0.7245 S K = 0.7245 ⋅ 0.5525 ⋅ 81.6854 ⋅ 1214.2509 PP V 44 = 902.3413 PP V Medardo Navarro C. 65
  66. 66. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar mano pie c V ∠V − 515.6236∠885.3 pie pie p V ∠V − 902.3413∠3133.89 De acuerdo a los valores obtenidos el diseño de la malla cumple con los requerimientos según lo establecida en la en la norma NCH/84. 8.4.3.- MALLA DE B.T. Para evitar el cálculo de una nueva malla, se diseña una malla de dimensiones similares a la de A.T. ( 54 m2) considerando que la Rpt debe ser menor a 20Ω. 1) Cálculo de las tensiones base V II V = 12 KV VbI KV 12 KV VbII KV 0.4 KV V II V I V II × 12 0.4 = + b = N KV V I V II V I N b = = b N 0.4 b V I N 12 S KVA b = 300 Medardo Navarro C. 66
  67. 67. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar 2.- Cálculo de la Impedancia base I y II ( ) 2 ( ) 2 = = 12 = 480 Ω 300 Z I KV I b b b S ( ) 2 ( 0.4 ) 2 = = = 0.53Ω 300 Z II KV II b b b S 3.- Cálculo de la corriente base I y II I II S 300 = A A 300 = = b 14.43 b V I I I S b ⋅ 3 12 3 ⋅ = = = b 433.012 b V II b ⋅ 3 0.4 3 ⋅ 4.- Cálculo de la secuencia positiva, negativa y cero. X = X = VFN ; ( )1 2 3φ 1 2 Icc X = VFN − + 3 X X Icc φ 1 0 12000 3 2500 1 2 X = X = = = 2.7712(Ω) 1 2 X X 0 X = x − + (2.7712 2.7712) 3 12000 3 1850 = 5.6925(Ω) 0 X 5.- Se calculan los valores en pu Del transformador: Z1 = 3.74 % = 0.0374 (pu) Z2 = 0.0374 (pu) Z0 = 0.9 Z1 = 0.0336 (pu) Medardo Navarro C. 67
  68. 68. UNIVERSIDAD DE LA FRONTERA - Curso de Mallas a Tierra –Primer Semestre-2008 - Versión Preliminar Del sistema: X1 = 2.7712 (Ω) 5.77x10-3 (pu) X2 = 2.7712 (Ω) 5.77x10-3 (pu) X0 = 5.6925 (Ω) 0.0118 (pu) ZbI = 480Ω X1 = X2 = 2.7712 = 5.77x10-3 (pu) 480 X0 = 5.6925 = 0.0118 (pu) 480 6.- Cálculo de Rpt para una malla en BT en (pu) Se diseña una malla de 54 m2, considerando que la Rpt debe ser menor a 20Ω. Cuadriculado de la malla: 1.5 m 1.5m A = 9m B = 6m Datos de la malla: S = 54 m2 Sección cond. = 21.2 mm2 Diámetro cond. = 5.195 x 10–3 h = 0.6 m L = (A x na) + (B x nb); L = (9 x 5) + (6 x 7) L = 87 m Medardo Navarro C. 68

×