SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
Chapter 8

POLYMERS
PHY351
Introduction to Polymer
2
Polymers

Plastics

Elastomers

Thermoplastics

Thermosetting Plastics

Can be
reheated and
formed
into new
materials

Cannot be reformed
by reheating.
Set by chemical reaction.
 Plastics

- are a large and varied group of synthetic materials that are processes
by forming or molding into shape.

 Elastomers or rubbers

- are a material that at room temperature stretches under a low stress
to at least twice its length and then quickly returns to almost its original
length upon removal of the stress.

3
 Thermoplastics

- Linear or branched polymers which chains of molecules are NOT
INTERCONNECTED to one another.
- Low density, low tensile strength, high insulation, good corrosion
resistance.
- Are considered to fracture primarily in a brittle mode.

 Thermosetting plastics

- Thermosetting or thermoset plastic are formed with a NETWORK
molecular structure of primary covalent bonds.
- High thermal and dimensional stability, rigidity, resistance to creep,
light weight.
- Are considered to fracture primarily by the brittle and ductile manner.

4
Question 1
5

a.

Define and differentiate polymers, plastics and elastomers.

b.

Give 3 example of thermoplastic and thermosetting plastic.

c.

Give 2 example application of thermoplastic and thermosetting
plastic.
Advantages of Polymer
6

 Wide range of properties.
 Minimum finishing.
 Minimum lubrication.
 Good insulation.
 Light weight.
 Noise Reduction.

c)

Figure 10.1: Some application for engineering plastic
a) TV remote control casing
b) Semiconductor wafer wands
Nylon themoplastic reinforced with 30% glass fiber to replace aluminium in the manifold of the
turbodiesel engine
Polymerization
7
 Polymerization:

- is the process by a small molecules consisting of one (monomer) or few
(oligomers) units are chemically joined to create a giant molecules.
 Chain growth polymerization:

- Small molecules covalently bond to form long chains (monomers) which in
turn bond to form polymers.
 Stepwise polymerization:

- Monomers chemically react with each other to produce linear polymers
and a small molecule of byproduct.
 Network polymerization:

- Chemical reaction takes place in more than two reaction sites (3D
network).
Chain Polymerization Steps
8
1.

Initiation:
 A radical is needed.
 Example: Ethylene
- One of free radicals react with ethylene molecule to form new longer
chain free radical.

2.

Propagation:

Process of extending polymer chain by addition of monomers.

Energy of system is lowered by polymerization.

3.

Termination: By addition of termination free radical.
 Or by combining of two chains
 Impurities.
Structural Feature of Polymers
9

 The simple molecules that are covalently bonded into long chains are

called monomers.

 The long chain molecule formed from the monomer units is called a

polymer.

 The number of active bonds in a monomer has is called

functionality.

 Homopolymers are polymeric materials that consist of polymer

chain made up of single repeating units.

 Copolymers consist of polymer chains made up of two or more

chemically different repeating units that can be in different sequences.
Mechanical Properties of Polymers
10

 Flexural and dynamic moduli

 Viscoelestic deformation
 Elastomeric deformation
 Creep deformation

 Stress relaxation
Flexural and dynamic moduli


The flexural strength of a material is
defined as its ability to resist deformation
under load.



Flexural modulus is the ratio of stress to strain in flexural deformation.

Figure 10.43:
Tensile stress versus strain curves for PMMA at
various temperature. A britlle-ductile transition
occurs between 860C and 1040C.
11
Viscoelestic deformation



Viscosity occur when temperature is above the glass transition
temperature.



Viscoelastic deformation of a material is the deformation by elastic
deformation and viscous flow of the material when stress is applied.

12
Elastomeric deformation


The strength of thermoplastics cam be considerably increased by
addition of reinforcements.



Thermosetting plastic without reinforcements are strengthened by
the creation of a network of covalent bonding throughout the
structure of the material.



During the elastic deformation, covalent bond of the molecular
chains are stretch and distort, allowing the chain to elongate
elastically.

13
Creep deformation
 Polymeric materials subjected to a load may creep.
Creep is a time dependent permanent deformation with constant stress
or load.
 Creep is low below Tg (above Tg, the behavior is viscoelastic). Glass fiber
reinforcements decreases creep.

14
Stress relaxation
 Stress relaxation is a reduction of the stress acting on a material over a
period of time at a constant strain due to viscoelastic deformation.
 Stress relaxation is due to breaking and formation of secondary bonds.
 Stress relaxation allow the material to attain a lower energy states
spontaneously if there is sufficient activation energy for the process to
occur.

15
t

   0e 
1



 Ce

Q
RT

Where;
σ
σo
τ
T
R
C

= Stress after time t.
= Initial stress
= relaxation time.
= temperature
= molar gas constant.
= rate constant independent of temperature
16
Question 2
17

a.

b.

A stress of 7.6 MPa is applied to an elastomeric material at
constant strain. After 40 days at 200C, the stress decreases to
4.8 MPa.
i.
What is the relaxation time constant for this material?
ii.
What will be the stress after 60 days at 200C?
(Answer: 88.5 days, 3.6MPa)
The relaxation time for an elastomer at 250C is 40 days, while at
350C the relaxation time is 30 days. Calculate the activation
energy for this stress relaxation process. Given R = 8.314
(Answer : 22 kJ/mol)
Optical Properties of Polymers
18

 Many plastics have excellent transparency.


If crystalline regions having high refractive index are larger than
wavelength of light, the light will be scattered.

Figure 15.7: Multiple internal reflections at the crystallineregion interfaces reduce the transparency of partly
crystalline thermoplastics.
Luminescence
19

 Luminescence is the process by which substance absorbs energy and

spontaneously emits visible or near visible radiation.
 Electrons are excited by input energy and drop to lower energy level.
 Fluorescence: Emissions occur within 10-8 seconds after excitation.
 Phosphorescence: Emissions occur 10-8 seconds after excitation.


Produced by material called phosphors.

 Emission spectra can be controlled by adding activators.
Photoluminescence
20

 Ultraviolet radiation from a mercury arc is converted into visible light

by using halophosphate phosphor.



In fluorescent lights, calcium halophosphate with 20% F - replaced
by Cl- is used.
Antimony ions (Sb3+) produce blue emission and manganese ions
(Mn2+) provide orange-red emission band).
Cathodoluminescence
21

 Produced by energized cathode that generates

a beam of high energy bombarding electrons.
Examples:Electron microscope, CRO, TV Screen.
 In TV screen, the signal is rapidly scanned

over the screen deposited with blue, green and
red emitting phosphors to produce images.
 Intensity of luminescence:

I
I0



t



I0 = initial intensity
τ = relaxation time constant
I = fraction of luminescence after time t.

22
Question 3
23

a.

A colour TV phosphor has a relaxation time of 3.9 x 10-3 s. How long
will it take for the intensity of this phosphor material to decrease to
10% of its original intensity?
(Answer : 9 x 10-3s)
References
24

 A.G. Guy (1972) Introduction to Material Science, McGraw Hill.
 J.F. Shackelford (2000). Introduction to Material Science for

Engineers, (5th Edition), Prentice Hall.
 W.F. Smith (1996). Principle to Material Science and Engineering, (3 rd
Edition), McGraw Hill.
 W.D. Callister Jr. (1997) Material Science and Engineering: An
Introduction, (4th Edition) John Wiley.

Más contenido relacionado

La actualidad más candente

Melamine Formaldehyde
Melamine Formaldehyde Melamine Formaldehyde
Melamine Formaldehyde VinayKumar2893
 
Glass transition temperature
Glass transition temperatureGlass transition temperature
Glass transition temperaturechemnidhi
 
Unit 3-polymers
Unit 3-polymersUnit 3-polymers
Unit 3-polymersGreen Chem
 
Polymers & polymerization
Polymers & polymerizationPolymers & polymerization
Polymers & polymerizationVijay Kumar
 
Crystallization and crystallinity of polymers
Crystallization and crystallinity of polymersCrystallization and crystallinity of polymers
Crystallization and crystallinity of polymersPrasanta Baishya
 
Miscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer BlendsMiscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer BlendsAbhinand Krishna
 
Polymer properties and characterisation
Polymer properties and characterisationPolymer properties and characterisation
Polymer properties and characterisationArchana Nair
 
Mechanism of Polymerization
Mechanism of Polymerization Mechanism of Polymerization
Mechanism of Polymerization SumeetJha12
 
polymers and polymerization.
polymers and polymerization.polymers and polymerization.
polymers and polymerization.aghaabdulaziz606
 
Techniques of Polymerization
Techniques of PolymerizationTechniques of Polymerization
Techniques of PolymerizationHaseeb Ahmad
 
Polymer behaviour in solution & effect of molecular weight in polymer
Polymer behaviour  in  solution & effect of molecular weight in polymerPolymer behaviour  in  solution & effect of molecular weight in polymer
Polymer behaviour in solution & effect of molecular weight in polymerSyed Minhazur Rahman
 
The structure and properties of polymers
The structure and properties of polymersThe structure and properties of polymers
The structure and properties of polymersonlinemetallurgy.com
 
Conducting polymers
Conducting polymersConducting polymers
Conducting polymersSouma Ghosh
 

La actualidad más candente (20)

Melamine Formaldehyde
Melamine Formaldehyde Melamine Formaldehyde
Melamine Formaldehyde
 
characterization of polymers
characterization of polymerscharacterization of polymers
characterization of polymers
 
Properties of polymers
Properties of polymersProperties of polymers
Properties of polymers
 
Glass transition temperature
Glass transition temperatureGlass transition temperature
Glass transition temperature
 
Unit 3-polymers
Unit 3-polymersUnit 3-polymers
Unit 3-polymers
 
polymer
polymerpolymer
polymer
 
Polymers & polymerization
Polymers & polymerizationPolymers & polymerization
Polymers & polymerization
 
Crystallization and crystallinity of polymers
Crystallization and crystallinity of polymersCrystallization and crystallinity of polymers
Crystallization and crystallinity of polymers
 
Miscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer BlendsMiscibility and Thermodynamics of Polymer Blends
Miscibility and Thermodynamics of Polymer Blends
 
Polymer
Polymer Polymer
Polymer
 
Thermal degradation of Polymers
Thermal degradation of PolymersThermal degradation of Polymers
Thermal degradation of Polymers
 
Polymer properties and characterisation
Polymer properties and characterisationPolymer properties and characterisation
Polymer properties and characterisation
 
Mechanism of Polymerization
Mechanism of Polymerization Mechanism of Polymerization
Mechanism of Polymerization
 
polymers and polymerization.
polymers and polymerization.polymers and polymerization.
polymers and polymerization.
 
Polymers
PolymersPolymers
Polymers
 
Techniques of Polymerization
Techniques of PolymerizationTechniques of Polymerization
Techniques of Polymerization
 
Polymer behaviour in solution & effect of molecular weight in polymer
Polymer behaviour  in  solution & effect of molecular weight in polymerPolymer behaviour  in  solution & effect of molecular weight in polymer
Polymer behaviour in solution & effect of molecular weight in polymer
 
The structure and properties of polymers
The structure and properties of polymersThe structure and properties of polymers
The structure and properties of polymers
 
Polymers
PolymersPolymers
Polymers
 
Conducting polymers
Conducting polymersConducting polymers
Conducting polymers
 

Similar a Introduction to Polymers: Properties, Types and Applications

lect dental-polymers.ppt including heat and cold
lect dental-polymers.ppt including heat and coldlect dental-polymers.ppt including heat and cold
lect dental-polymers.ppt including heat and coldmanjulikatyagi
 
Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2PoojaKhandelwal45
 
Organic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyOrganic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyvvgk-thalluri
 
Conducting polmers
Conducting polmersConducting polmers
Conducting polmersAmit Soni
 
Textile raw material 1
Textile raw material 1Textile raw material 1
Textile raw material 1sujanahamed
 
Introduction of polymer
Introduction of polymerIntroduction of polymer
Introduction of polymerVISHAL THAKRE
 
unitiiipolymers-121111071423-phpapp02.pdf
unitiiipolymers-121111071423-phpapp02.pdfunitiiipolymers-121111071423-phpapp02.pdf
unitiiipolymers-121111071423-phpapp02.pdfSaumya Acharya
 
Polymers,composites and smart materials
Polymers,composites and smart materialsPolymers,composites and smart materials
Polymers,composites and smart materialsAsrarShah2
 
Thermoplastic and thermosetting polymers
Thermoplastic and thermosetting polymersThermoplastic and thermosetting polymers
Thermoplastic and thermosetting polymersMohammed Layth
 
Polymers 12th State Board
Polymers 12th State BoardPolymers 12th State Board
Polymers 12th State BoardFreya Cardozo
 
conducting metal syntethic polymers level 4.ppt
conducting metal syntethic polymers level 4.pptconducting metal syntethic polymers level 4.ppt
conducting metal syntethic polymers level 4.pptBobStewart49
 
Conductive Polymer
Conductive PolymerConductive Polymer
Conductive PolymerChilekotha1
 

Similar a Introduction to Polymers: Properties, Types and Applications (20)

Methods of polymerisation
Methods of polymerisationMethods of polymerisation
Methods of polymerisation
 
lect dental-polymers.ppt including heat and cold
lect dental-polymers.ppt including heat and coldlect dental-polymers.ppt including heat and cold
lect dental-polymers.ppt including heat and cold
 
(6)Polymer.pdf
(6)Polymer.pdf(6)Polymer.pdf
(6)Polymer.pdf
 
Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2Dental polymers with recent advancements in dental base techniques 2
Dental polymers with recent advancements in dental base techniques 2
 
Organic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyOrganic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphology
 
Conducting polmers
Conducting polmersConducting polmers
Conducting polmers
 
Elastomeric Fiber
Elastomeric Fiber Elastomeric Fiber
Elastomeric Fiber
 
Modern Materials ppt.pptx
Modern Materials ppt.pptxModern Materials ppt.pptx
Modern Materials ppt.pptx
 
Textile raw material 1
Textile raw material 1Textile raw material 1
Textile raw material 1
 
Pdoc
PdocPdoc
Pdoc
 
Introduction of polymer
Introduction of polymerIntroduction of polymer
Introduction of polymer
 
unitiiipolymers-121111071423-phpapp02.pdf
unitiiipolymers-121111071423-phpapp02.pdfunitiiipolymers-121111071423-phpapp02.pdf
unitiiipolymers-121111071423-phpapp02.pdf
 
Polymers,composites and smart materials
Polymers,composites and smart materialsPolymers,composites and smart materials
Polymers,composites and smart materials
 
Polymers
PolymersPolymers
Polymers
 
Engineering polymers
Engineering polymersEngineering polymers
Engineering polymers
 
Engineering polymers
Engineering polymersEngineering polymers
Engineering polymers
 
Thermoplastic and thermosetting polymers
Thermoplastic and thermosetting polymersThermoplastic and thermosetting polymers
Thermoplastic and thermosetting polymers
 
Polymers 12th State Board
Polymers 12th State BoardPolymers 12th State Board
Polymers 12th State Board
 
conducting metal syntethic polymers level 4.ppt
conducting metal syntethic polymers level 4.pptconducting metal syntethic polymers level 4.ppt
conducting metal syntethic polymers level 4.ppt
 
Conductive Polymer
Conductive PolymerConductive Polymer
Conductive Polymer
 

Más de Miza Kamaruzzaman (20)

Cmt458 lect3
Cmt458 lect3Cmt458 lect3
Cmt458 lect3
 
Cmt458 chapter 1 chemical thermodynamic
Cmt458 chapter 1 chemical thermodynamicCmt458 chapter 1 chemical thermodynamic
Cmt458 chapter 1 chemical thermodynamic
 
Cmt458 chemical thermodynamic
Cmt458 chemical thermodynamicCmt458 chemical thermodynamic
Cmt458 chemical thermodynamic
 
Tutorial 5
Tutorial 5Tutorial 5
Tutorial 5
 
Phy351 ch 9
Phy351 ch 9Phy351 ch 9
Phy351 ch 9
 
Phy351 ch 6
Phy351 ch 6Phy351 ch 6
Phy351 ch 6
 
Phy351 ch 5
Phy351 ch 5Phy351 ch 5
Phy351 ch 5
 
Phy351 ch 4
Phy351 ch 4Phy351 ch 4
Phy351 ch 4
 
Phy351 ch 3
Phy351 ch 3Phy351 ch 3
Phy351 ch 3
 
Phy351 ch 2
Phy351 ch 2Phy351 ch 2
Phy351 ch 2
 
Phy351 ch 1 introdution to material, force
Phy351 ch 1 introdution to material, forcePhy351 ch 1 introdution to material, force
Phy351 ch 1 introdution to material, force
 
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eqPhy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
 
Phy351 ch 9
Phy351 ch 9Phy351 ch 9
Phy351 ch 9
 
Phy351 ch 8
Phy351 ch 8Phy351 ch 8
Phy351 ch 8
 
Phy351 ch 7
Phy351 ch 7Phy351 ch 7
Phy351 ch 7
 
Phy351 ch 6
Phy351 ch 6Phy351 ch 6
Phy351 ch 6
 
Phy351 ch 5
Phy351 ch 5Phy351 ch 5
Phy351 ch 5
 
Phy351 ch 4
Phy351 ch 4Phy351 ch 4
Phy351 ch 4
 
Phy351 ch 3
Phy351 ch 3Phy351 ch 3
Phy351 ch 3
 
Phy351 ch 2
Phy351 ch 2Phy351 ch 2
Phy351 ch 2
 

Último

0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...lizamodels9
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
 
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature SetCreating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature SetDenis Gagné
 
Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...
Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...
Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...lizamodels9
 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfOnline Income Engine
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesDipal Arora
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Servicediscovermytutordmt
 
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 DelhiCall Girls in Delhi
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxWorkforce Group
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...Any kyc Account
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
 
Best Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in IndiaBest Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in IndiaShree Krishna Exports
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 

Último (20)

0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
Call Girls In DLf Gurgaon ➥99902@11544 ( Best price)100% Genuine Escort In 24...
 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
 
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature SetCreating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
Creating Low-Code Loan Applications using the Trisotech Mortgage Feature Set
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...
Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...
Call Girls In Holiday Inn Express Gurugram➥99902@11544 ( Best price)100% Genu...
 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdf
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Service
 
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptx
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
 
Best Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in IndiaBest Basmati Rice Manufacturers in India
Best Basmati Rice Manufacturers in India
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 

Introduction to Polymers: Properties, Types and Applications

  • 2. Introduction to Polymer 2 Polymers Plastics Elastomers Thermoplastics Thermosetting Plastics Can be reheated and formed into new materials Cannot be reformed by reheating. Set by chemical reaction.
  • 3.  Plastics - are a large and varied group of synthetic materials that are processes by forming or molding into shape.  Elastomers or rubbers - are a material that at room temperature stretches under a low stress to at least twice its length and then quickly returns to almost its original length upon removal of the stress. 3
  • 4.  Thermoplastics - Linear or branched polymers which chains of molecules are NOT INTERCONNECTED to one another. - Low density, low tensile strength, high insulation, good corrosion resistance. - Are considered to fracture primarily in a brittle mode.  Thermosetting plastics - Thermosetting or thermoset plastic are formed with a NETWORK molecular structure of primary covalent bonds. - High thermal and dimensional stability, rigidity, resistance to creep, light weight. - Are considered to fracture primarily by the brittle and ductile manner. 4
  • 5. Question 1 5 a. Define and differentiate polymers, plastics and elastomers. b. Give 3 example of thermoplastic and thermosetting plastic. c. Give 2 example application of thermoplastic and thermosetting plastic.
  • 6. Advantages of Polymer 6  Wide range of properties.  Minimum finishing.  Minimum lubrication.  Good insulation.  Light weight.  Noise Reduction. c) Figure 10.1: Some application for engineering plastic a) TV remote control casing b) Semiconductor wafer wands Nylon themoplastic reinforced with 30% glass fiber to replace aluminium in the manifold of the turbodiesel engine
  • 7. Polymerization 7  Polymerization: - is the process by a small molecules consisting of one (monomer) or few (oligomers) units are chemically joined to create a giant molecules.  Chain growth polymerization: - Small molecules covalently bond to form long chains (monomers) which in turn bond to form polymers.  Stepwise polymerization: - Monomers chemically react with each other to produce linear polymers and a small molecule of byproduct.  Network polymerization: - Chemical reaction takes place in more than two reaction sites (3D network).
  • 8. Chain Polymerization Steps 8 1. Initiation:  A radical is needed.  Example: Ethylene - One of free radicals react with ethylene molecule to form new longer chain free radical. 2. Propagation:  Process of extending polymer chain by addition of monomers.  Energy of system is lowered by polymerization. 3. Termination: By addition of termination free radical.  Or by combining of two chains  Impurities.
  • 9. Structural Feature of Polymers 9  The simple molecules that are covalently bonded into long chains are called monomers.  The long chain molecule formed from the monomer units is called a polymer.  The number of active bonds in a monomer has is called functionality.  Homopolymers are polymeric materials that consist of polymer chain made up of single repeating units.  Copolymers consist of polymer chains made up of two or more chemically different repeating units that can be in different sequences.
  • 10. Mechanical Properties of Polymers 10  Flexural and dynamic moduli  Viscoelestic deformation  Elastomeric deformation  Creep deformation  Stress relaxation
  • 11. Flexural and dynamic moduli  The flexural strength of a material is defined as its ability to resist deformation under load.  Flexural modulus is the ratio of stress to strain in flexural deformation. Figure 10.43: Tensile stress versus strain curves for PMMA at various temperature. A britlle-ductile transition occurs between 860C and 1040C. 11
  • 12. Viscoelestic deformation  Viscosity occur when temperature is above the glass transition temperature.  Viscoelastic deformation of a material is the deformation by elastic deformation and viscous flow of the material when stress is applied. 12
  • 13. Elastomeric deformation  The strength of thermoplastics cam be considerably increased by addition of reinforcements.  Thermosetting plastic without reinforcements are strengthened by the creation of a network of covalent bonding throughout the structure of the material.  During the elastic deformation, covalent bond of the molecular chains are stretch and distort, allowing the chain to elongate elastically. 13
  • 14. Creep deformation  Polymeric materials subjected to a load may creep. Creep is a time dependent permanent deformation with constant stress or load.  Creep is low below Tg (above Tg, the behavior is viscoelastic). Glass fiber reinforcements decreases creep. 14
  • 15. Stress relaxation  Stress relaxation is a reduction of the stress acting on a material over a period of time at a constant strain due to viscoelastic deformation.  Stress relaxation is due to breaking and formation of secondary bonds.  Stress relaxation allow the material to attain a lower energy states spontaneously if there is sufficient activation energy for the process to occur. 15
  • 16. t    0e  1   Ce Q RT Where; σ σo τ T R C = Stress after time t. = Initial stress = relaxation time. = temperature = molar gas constant. = rate constant independent of temperature 16
  • 17. Question 2 17 a. b. A stress of 7.6 MPa is applied to an elastomeric material at constant strain. After 40 days at 200C, the stress decreases to 4.8 MPa. i. What is the relaxation time constant for this material? ii. What will be the stress after 60 days at 200C? (Answer: 88.5 days, 3.6MPa) The relaxation time for an elastomer at 250C is 40 days, while at 350C the relaxation time is 30 days. Calculate the activation energy for this stress relaxation process. Given R = 8.314 (Answer : 22 kJ/mol)
  • 18. Optical Properties of Polymers 18  Many plastics have excellent transparency.  If crystalline regions having high refractive index are larger than wavelength of light, the light will be scattered. Figure 15.7: Multiple internal reflections at the crystallineregion interfaces reduce the transparency of partly crystalline thermoplastics.
  • 19. Luminescence 19  Luminescence is the process by which substance absorbs energy and spontaneously emits visible or near visible radiation.  Electrons are excited by input energy and drop to lower energy level.  Fluorescence: Emissions occur within 10-8 seconds after excitation.  Phosphorescence: Emissions occur 10-8 seconds after excitation.  Produced by material called phosphors.  Emission spectra can be controlled by adding activators.
  • 20. Photoluminescence 20  Ultraviolet radiation from a mercury arc is converted into visible light by using halophosphate phosphor.   In fluorescent lights, calcium halophosphate with 20% F - replaced by Cl- is used. Antimony ions (Sb3+) produce blue emission and manganese ions (Mn2+) provide orange-red emission band).
  • 21. Cathodoluminescence 21  Produced by energized cathode that generates a beam of high energy bombarding electrons. Examples:Electron microscope, CRO, TV Screen.  In TV screen, the signal is rapidly scanned over the screen deposited with blue, green and red emitting phosphors to produce images.
  • 22.  Intensity of luminescence: I I0  t  I0 = initial intensity τ = relaxation time constant I = fraction of luminescence after time t. 22
  • 23. Question 3 23 a. A colour TV phosphor has a relaxation time of 3.9 x 10-3 s. How long will it take for the intensity of this phosphor material to decrease to 10% of its original intensity? (Answer : 9 x 10-3s)
  • 24. References 24  A.G. Guy (1972) Introduction to Material Science, McGraw Hill.  J.F. Shackelford (2000). Introduction to Material Science for Engineers, (5th Edition), Prentice Hall.  W.F. Smith (1996). Principle to Material Science and Engineering, (3 rd Edition), McGraw Hill.  W.D. Callister Jr. (1997) Material Science and Engineering: An Introduction, (4th Edition) John Wiley.