SlideShare una empresa de Scribd logo
1 de 180
Descargar para leer sin conexión
EVALUATION OF A TERRAIN-SENSITIVE,
PROPAGATION PATH LOSS MODEL BASED UPON THE
GEOMETRICAL THEOKY OF DIFFRACTION, MODIFIED FOR
FINITE CONDUCTIVITY AND LOCAL SURFACE HOUGHNESS:
A Thesis Presented t o
The F a c u l t y of t h e College of Engineering and Technology
Ohio U n i v e r s i t y
I n Partial F u l f i l l m e n t
of t h e Requirements f o r t h e Degree
Master of Science
Richard Ma.
November 1983
I INTRODUCTION
The work p r e s e n t e d i n t h i s paper was funded by
S o u t h e a s t e r n Conference f o r E l e c t r i c a l Engineering Education
under c o n t r a c t N60921-81-D-A191. The purpose of t h i s
r e s e a r c h i s t o i n v e s t i g a t e t h e f e a s i b i l i t y of employing
Geometrical Theory of D i f f r a c t i o n f o r modeling
e l e c t r o m a g n e t i c wave propagat i o n path l o s s over i r r e g u l a r
t e r r a i n .
The GTD approach t o c a l c u l a t i n g e l e c t r o m a g n e t i c f i e l d s
can be d i v i d e d i n t o two p a r t s : a g e o m e t r i c a l p r o c e s s of
f i n d i n g which r a y s e x i s t and where t h e i r r e f l e c t i o n and/or
d i f f r a c t i o n p o i n t s l i e , and a mathematical p r o c e s s of
e v a l u a t i n g t h e magnitude and phase of t h e corresponding
e l e c t r i c f i e l d at t h e r e c e i v e r l o c a t i o n by summing t h e s e
r a y s . A t o t a l of f o u r t e e n d i f f e r e n t ray-types a r e considered
by t h e model used i n t h i s s t u d y (e.g. d i r e c t , r e f l e c t e d ,
d i f f r a c t e d , r e f l e c t e d - d i f f r a c t e d , and r e f l e c t e d - r e f l e c t e d -
d i f f r a c t e d ) . I n p u t parameters t o t h e model i n c l u d e a
p i e c e w i s e - l i n e a r two-dimensional t e r r a i n p r o f i l e , t h e
l o c a t i o n s of t h e t r a n s m i t t i n g and r e c e i v i n g antennas,
frequency, d i s t a n c e s , and t h e e l e c t r i c a l c o n s t a n t s of t h e
ground. S i n c e t h e GTD method i s e n t i r e l y a n a l y t i c a l ,
t r o p o s p h e r i c a t t e n u a t i o n e f f e c t s a r e not i n c l u d e d i n t h e
model.
I n p a s t , GTD h a s been used t o determine t h e Instrument
Landing System ( I L s ) g l i d e s l o p e performance. For t h a t
a p p l i c a t i o n , t h e wavelength is a p p r o x i m a t e l y I m , i n c i d e n c e
a n g l e s a r e u s u a l l y n e a r g r a z i n g , and t h e f i e l d s a r e
h o r i z o n t a l l y p o l a r i z e d . Under t h e s e c o n d i t i o n s , t h e ground
i t s e l f is assumed t o b e a p e r f e c t c o n d u c t o r , and t h e g r o s s
i r r e g u l a r i t i e s s u c h as d r o p o f f s and h i l l s a r e more i m p o r t a n t
t h a n s u r f a c e roughness. However, t o p r o v i d e more meaningful
r e s u l t s when e s t i m a t i n g p r o p a g a t i o n l o s s e s f o r a wide
v a r i e t y o f t e r r a i n and r e c e i v e r - t r a n s m i t t e r g e o m e t r i e s , t h e
i
model was modified t o a c c o u n t f o r f i n i t e c o n d u c t i v i t y and
l o c a l s u r f a c e roughness f o r b o t h h o r i z o n t a l and v e r t i c a l
p o l a r i z a t i o n . T h i s m o d i f i c a t i o n is one of t h e c r u c i a l f a c e t s
o f t h i s r e s e a r c h .
Although t h e r e e x i s t o t h e r p r o p a g a t i o n p a t h l o s s models,
t h e y a l l have l i m i t a t i o n s . The P h y s i c a l O p t i c s ( P O ) model,
which c a l c u l a t e s t h e f i e l d s t r e n g t h by summing f i e l d s re-
r a d i a t e d by ground c u r r e n t s h a s t h e d i s a d v a n t a g e of
r e q u i r i n g l o n g computation t i m e . I t s performance i s a l s o
l i m i t e d by f a i l i n g t o p r o v i d e a c o r r e c t f i e l d i n t e r a c t i o n
between l i n e a r segments c o m p r i s i n g t h e p r o f i l e . Another
model, developed by Longley-Rice, which is i n t e n d e d t o
d e t e r m i n e p r o p a g a t i o n l o s s f o r p a t h s where o n l y l i m i t e d
i n f o r m a t i o n d e f i n i n g t e r r a i n i s a v a i l a b l e . I n p a r t i c u l a r ,
t h e model i s i n t e n d e d t o e s t i m a t e p r o p a g a t i o n p a t h l o s s e s
f o r t e r r a i n p r o f i l e s g i v e n i n t h e C o n t i n e n t a l U n i t e d S t a t e s
(COWS) data base. The Longley-Rice model is S t a t i s t i c a l i n
n a t u r e , and h a s been known t o g i v e r e s u l t s n o t as a c c u r a t e
i n some c i r c u m s t a n c e s s u c h as s h o r t r a n g e p a t h s . The
s h o r t c o m i n g s of e x i s t i n g models l e d t o t h e developments o f
t h e GTD model as a n a l t e r n a t i v e t o o l i n p r e d i c t i n g
p r o p a g a t i o n p a t h l o s s .
F i n a l l y , GTD modeled d a t a were compared a g a i n s t measured
p a t h l o s s d a t a t o p r o v i d e a n e v a l u a t i o n o f p r e d i c t i o n
p e r f o r m a n c e c a p a b i l i t y . These comparisons, which were made
o v e r a r a n g e of d i s t a n c e s and f r e q u e n c i e s , show t h a t GTD i s
a f e a s i b l e means f o r p r e d i c t i n g s h o r t - r a n g e p r o p a g a t i o n p a t h
l o s s e s .
I I GTD BACKGROUND and DEVELOPMENT
The G e o m e t r i c a l Theory o f D i f f r a c t i o n (GTD) i s a n
a n a l y t i c a l method f o r d e t e r m i n i n g t h e a m p l i t u d e and phase o f
e l e c t r o m a g n e t i c wave b e h a v i o r r e s u l t i n g from i n t e r a c t i o n
w i t h c o n d u c t i n g s u r f a c e s . The t h e o r y i s b a s i c a l l y a n
e x t e n s i o n o f Geometric O p t i c s (GO) which i n c l u d e s
d i f f r a c t i o n . The t h e o r y h a s its o r i g i n i n a mathematical
work by Sommerfeld. H i s p a p e r 11 1 p u b l i s h e d i n 1896,
d e s c r i b e s t h e mathematics of d i f f r a c t i o n f o r a p e r f e c t l y
c o n d u c t i n g , i n f i n i t e - l e n g t h h a l f - p l a n e . I n i t , h e emplogs
t h e F r e s n e l i n t e g r a l method t o e v a l u a t e t h e n l e z f r i c f i e 1 2
v a r i a t i o n as t h e o b s e r v a t i o n p o i n t changes i n ; c c a t i o n f ~ o m
t h e i l l u m i n a t e d r e g i o n t o t h e shadow r e g i o n . However, t h e
drawback of Sommerfeld's work i s t h a t i t i s o n l y l i m i t e d t o
h a l f - p l a n e a p 2 l i c a t i c n s . S t a r t i n g i n 1953, it xas K e l l e r
[ 2 , 7 , 4 J who s y s t e m a t i c a l l y developed t h e Geometrical Theory
o f d i f f r a c t i o n f o r more g e n e r a l a p p l i c a t i o n s . S i n c e t h e n ,
t h i s method h a s undergone improvements by many workers and
is s t i l l undergoing changes 151 t o meet v a r i o u s
r e q u i r e m e n t s .
I n K e l l e r ' s o r i g i n a l work, a s y m p t o t i c expansions were
used t o d e s c r i b e f i e l d b e h a v i o r . The r e s u l t t h u s o b t a i n e d
y i e l d e d u n r e a l i s t i c s i n g u l a r i t i e s i n t h e immediate v i c i n i t y
o f t h e shadow and r e f l e c t i o n b o u n d a r i e s . L a t e r , Kouyoum j i a n
and co-workers modified Keller's work t o a uniform s o l u t i o n
which p r o v i d e s a c o n t i n u o u s f i e l d everywhere; t h i s r e v i s e d
t h e o r y i s t h e Uniform Theory o f D i f f r a c t i o n (UTD). The
method addressed i n t h i s t h e s i s i s a d i r e c t a p p l i c a t i o n of
UTD. S i n c e UTD i s an e x t e n s i o n of GTD c o n c e p t , i t is
commonly r e f e r r e d t o as GTD.
Geometrical O p t i c s (GO)
Geometrical O p t i c s , o r r a y o p t i c s , was o r i g i n a l l y
developed t o a n a l y z e t h e p r o p a g a t i o n of l i g h t , where t h e
f r e q u e n c y i s s u f f i c i e n t l y h i g h t h a t t h e wave n a t u r e o f l i g h t
need not be c o n s i d e r e d . GO t h e o r y assumes t h e f l o w o f
e l e c t r o m a g n e t i c r a d i a t i o n between two p o i n t s i n s p a c e c a n b e
viewed as t r a v e l l i n g i n s t r a i g h t l i n e s c a l l e d r a y s ; f u r t h e r ,
r a y s a r e assumed t o n o t i n t e r f e r e w i t h one a n o t h e r and hence
I
c a n be summed v e c t o r i a i l y i . , conform t o t h e laws o f
s u p e r p o s i t i o n ) .
Two fundamental r a y t y p e s a r e c o n s i d e r e d i n GO. They a r e
d i r e c t and r e f l e c t e d r a y s ( * ) as i l l u s t r a t e d i n F i g u r e 2-1.
A d i r e c t ray e x i s t s i f t h e r e is no b l o c k a g e a l o n g t h e r a y
p a t h between t h e t r a n s m i t t i n g a n t e n n a and r e c e i v i n g a n t e n n a .
A r e f l e c t e d r a y i s g e n e r a t e d i f t h e r e a r e p o i n t s on t h e
t e r r a i n p r o f i l e which s a t i s f y S n e l l ' s Law o f r e f l e c t i o n ,
v i z , t h e r e i s a r e f l e c t i o n a r e a which c a u s e s t h e a n g l e of
i n c i d e n t of t h e i n c i d e n t r a y t o e q u a l t o t h e a n g l e of
( * ) R e f r a c t i o n phenomenon i s e x c l u d e d i n t h i s a p p l i c a t i o n
because t h e a m p l i t u d e o f t h e r e f r a c t e d r a y t r a n s m i t t e d
t h r o u g h h i l l s would be t o o weak t o be s i g n i f i c a n t .
r e f l e c t i o n as shown i n t h e F i g u r e . I n t h e a p p l i c a t i o n h e r e ,
t h e w a v e l e n g t h o f GO f i e l d i s assumed t o b e small compared
t o t e r r a i n v a r i a t i o n s , s o t h a t r e f l e c t i o n is c o n s i d e r e d t o
b e a l o c a l phenomenon. C o n s e q u e n t l y , r e f l e c t i o n i s assumed
t o e m i n a t e from a p o i n t r a t h e r t h a n a n area. T h a t p o i n t i s
commonly c a l l e d p o i n t of reflect i o n .
Also, G e o m e t r i c a l O p t i c s assumes t h e p h a s e o f t h e d i r e c t
and r e f l e c t e d r a y t o b e p r o p o r t i o n a l t o t h e t o t a l o p t i c a l
p a t h l e n g t h o f t h e r a y from a r e f e r e n c e p o i n t , where t h e
p h a s e is d e f i n e d t o b e z e r o . The a m p l i t u d e v a r i e s a c c o r d i n g
t a t h e p r i n c i p l e of c o n s e r v a t i o n of e n e r g y ; t h u s f i e l d
i z t e n s i t y d e c r e a s e s w i t h i n c r e a s i n g d i s t a n c e as d e s c r i b e d
below.
Throughout t h i s t h e s i s , t h e r e c e i v i n g p o i n t i s l o c a t e d i n
t h e f a r f i e l d o f t h e a n t e n n a , and h e n c e , a r a y i s c o n s i d e r e d
t o b e i n t h e form o f p l a n e wave a t t h e p o i n t o f r e f l e c t i o n .
F o r a f a r - f i e l d a p p l i c a t i o n , a GO f i e l d s u c h as t h e d i r e c t
r a y c a n b e o b t a i n e d b y c o n s i d e r i n g o n l y t h e l e a d i n g term i n
t h e a s y m p t o t i c , high-frequency s o l u t i o n o f Maxwell's
e q u a t i o n 161. The s o l u t i o n t h u s o b t a i n e d i n d i c a t e s t h a t
f i e l d i n t e n s i t y d e c r e a s e s i n v e r s e l y w i t h d i s t a n c e and i n c u r s
a phase v a r i a t i o n o f e-1 BR, where R i s t h e p a t h d i s t a n c e
measured from t h e t r a n s m i t t i n g a n t e n n a t o t h e r e c e i v i n g
a n t e n n a , and B=2n/X i s t h e p h a s e c o n s t a n t o f t h e wave.
To i l l u s t r a t e t h e r e f l e c t e d r a y and t h e method f o r
c a l c u l a t i n g its c o n t r i b u t i o n , r e f e r t o F i g u r e 2-2, which
d e p i c t s t h e d i r e c t and r e f l e c t e d r a y s , and a n image
r e p r e s e n t a t i o n o f t h e s o u r c e . B o t h t h e d i r e c t and r e f l e c t e d
r a y s a r e eminated from t h e s o u r c e a n t e n n a r a d i a t i n g a t a
h e i g h t h above a f l a t ground p l a n e , a s s u m i n g p e r f e c t
c o n d u c t i v i t y . The o b s e r v a t i o n p o i n t i s l o c a t e d as i n d i c a t e d
i n t h e f i g u r e , and i s i n t h e f a r - f i e l d r e g i o n o f t h e
a n t e n n a . Image t h e o r y 171 s t a t e s t h a t a n e q u i v a l e n t
c o n f i g u r a t i o n w i l l r e s u l t i f t h e ground p l a n e is removed,
and a n image s o u r c e i s added a t a d i s t a n c e -h from w h e r e t h e
ground p l a n e had b e e n , as i n d i c a t e d i n t h e f i g u r e . The
a n p i i t u d e o f tze imge mirre.~L - a q u a 1 t o t h e a m p l i t u d e of
t h e d i r e c t s o u r c e and is i n p h a s e f o r v e r t i c a l p o l a r i z a t i o n
and o u t of p h a s e f o r h o r i z o n t a l 2 o l a r i z a t i o n as i s shown i n
F i g ~ r e2-3. The distanse 2, S e t w e e n t h e o b s e r v e r and t h e
i n a g e s o u r c e i s e q u a l t o :
where h i s t h e h e i g h t o f t h e a n t e n n a from t h e ground. F o r
p r a c t i c a l a p p l i c a t i o n s , t h e r e f l e c t i n g s u r f a c e w i l l
i n t r o d u c e l o s s e s and p h a s e s h i f t t o t h e i n c i d e n t f i e l d d u e
t o i m p e r f e c t c o n d u c t i v i t y and s u r f a c e roughness. T h e s e
e f f e c t s a r e a c c o u n t e d f o r by t h e complex v a l u e d r e f l e c t i o n
c o e f f i c i e n t ( r ). I n case of p e r f e c t c o n d u c t i v i t y , ( r )
r e d u c e s t o +1 f o r v e r t i c a l p o l a r i z a t i o n and -1 f o r
h o r i z o n t a l p o l a r i z a t i o n , b o t h o f which i n d i c a t e s i n c i d e n t
f i e l d i s t o t a l l y r e f l e c t e d t o t h e o b s e r v a t i o n p o i n t . G i v e n
t h e above i n f o r m a t i o n a b o u t t h e p h a s e s h i f t and l o s s e s
i n c u r r e d by t h e e a r t h s u r f a c e , t h e r e f l e c t e d r a y
c o n t r i b u t i o n c a n b e w r i t t e n as:
where Eo is a c o n s t a n t r e p r e s e n t i n g t h e f i e l d i n t e n s i t y a t
t h e r e f e r e n c e p o i n t .
The d i r e c t f i e l d which t r a v e l s a l o n g t h e l i n e j o i n i n g t h e
s o u r c e and o b s e r v a t i o n p o i n t and i s similar t o r e f l e c t e d
r a y ; t h e e n e r g y d e n s i t y d e c r e a s e s i n v e r s e l y w i t h d i s t a n c e
and a phase v a r i a t i o n of e-jBRd ,where R d is t h e p a t h
d i s t a n c e from t h e s o u r c e a n t e n n a t o t h e o b s e r v a t i o n p o i n t
The composite s i g n a l r e c e i v e d a t t h e o b s e r v a t i o n c a n be
c a l c u l a t e d by summing t h e d i r e c t f i e l d and r e f l e c t e d f i e l d
as f o l l o w s :
where Er i s t h e r e c e i v e d f i e l d a t t h e o b s e r v a t i o n p o i n t .
Knowing t h e e l e c t r i c a l p r o p e r t i e s o f t h e r e f l e c t i o n s u r f a c e ,
which d e t e r m i n e s t h e v a l u e o f t h e r e f l e c t i o n c o e f f i c i e n t ,
and t h e l o c a t i o n of t h e o b s e r v a t i o n p o i n t , s i g n a l c a n b e
r e a d i l y d e t e r m i n e d .
D e f i c i e n c y o f G e o m e t r i c a l O p t i c s
The r e f l e c t e d r a y and d i r e c t r a y c o n f i g u r a t i o n c o n s i d e r e d
i n SO c a n cause a s e r i o u s d e f i c i e n c y i f u s e d i n VHF wave
p r o p a g a t i o n m o d e l l i n g o v e r i r r e g u l a r t e r r a i n b e c a u s e it
f a i l s t o a c c o u n t f o r d i f f r a c t i o n . F o r example, c o n s i d e r a
two d i m e n s i o n a l c o n d u c t i n g edge as i l l u s t r a t e d i n F i g u r e
2-4. If o b s e r v a t i o n s are made on a c i r c l e o f c o n s t a n t r a d i u s
as i l l u s t r a t e d , s t a r t i n g i n r e g i o n I , moving c l o c k w i s e t o
r e g i o n 11, t h e f o l l o w i n g w i l l b e o b s e r v e d . F i r s t , t h e
r e f l e c t e d r a y d i s a p p e a r s at and below t h e r e f l e c t i o n
boundary b e c a u s e t h e p o i n t of r e f l e c t i o n migrates beyond t h e
edge. C o n s e q u e n t l y , GO p r e d i c t s a f i e l d d i s c o n t i n u i t y a t t h e
r e f l e c t i o n boundary. A l s o , c o n s i d e r t h e immediate v i c i n i t y
oi ?he shadzw 3oundsry where t h e d i r e c t r a y i s b l o c k e d by
t h e t i p of t h e edge; GO a g a i n p r e d i c t s a f i e l d d i s c o n t i n u i t y
st t h e shadow boundary d u e t o t h e l o s s o f t h e d i r e c t r a y .
S i n c e Geometric-Optics f a i l s t o a c c o u n t f o r t h e phenomena
o f d i f f r a c t i o n , a b r u p t and u n r e a l i s t i c f i e l d d i s c o n t i n u i t i e s
a c r o s s t h e shadow and r e f l e c t i o n b o u n d a r i e s a r e p r e d i c t e d b y
GO. I n a d d i t i o n , r e g i o n I11 (shadow r e g i o n ) w i l l b e
d e t e r m i n e d by GO t o h a v e z e r o f i e l d i n t e n s i t y , a g a i n a n
u n r e a l i s t i c c a l c u l a t i o n . T h e s e d e f i c i e n c i e s l e d t o t h e
development o f GTD.
D i f f r a c t i o n
D i f f r a c t e d r a y s , a c c o r d i n g t o Keller 181, h a v e c e r t a i n
p r o p e r t i e s :
1 . The d i f f r a c t e d f i e l d p r o p a g a t e s a l o n g r a y p a t h s
t h a t i n c l u d e p o i n t s on t h e boundary s u r f a c e . T h e s e r a y
p a t h s obey t h e p r i n c i p l e of Fermat, a l s o known as t h e
p r i n c i p l e of t h e s h o r t e s t o p t i c a l path.
2. A d i f f r a c t e d wave p r o p a g a t e s a l o n g i t s ray p a t h s o
t h a t t h e energy d e n s i t y d e c r e a s e s i n v e r s e l y w i t h
i n c r e a s i n g i n d i s t a n c e , and t h e phase d e l a y e q u a l s t h e
wave number t i m e s t h e d i s t a n c e a l o n g t h e r a y p a t h .
3. D i f f r a c t i o n , l i k e r e f l e c t i o n and t r a n s m i s s i o n , i s a
l o c a l phenomenon at h i g h f r e q u e n c i e s . That is, i t
depends o n l y on t h e n a t u r e of t h e boundary s u r f a c e and
t h e i n c i d e n t f i e l d i n t h e immediate neighborhood of
t h e p o i n t of d i f f r a c t i o n .
Contemporary GTD t h e o r y can be used t o c a l c u l a t e d i f f r a c t i o n
from cones, curve s u r f a c e s , and wedges 131. However, t h e
work addressed h e r e models t e r r a i n as +U W U - u ~ ~ ~ ~ C I L O A U L L ~ L ,---'---'
p i e c e w i s e - l i n e a r segments; hence only wedge d i f f r a c t ion is
c o n s i d e r e d , a l t h o u g h it i s l i k e l y t h a t p r o p z g a t i o n p a t h s may
b e encountered where o t h e r t y p e s of d i f f r a c t i o n may provide
more meaningful r e s u l t s .
The v a l u e o f a d i f f r a c t e d r a y i s c a l c u l a t e d by t h e v a l u e
o f t h e i n c i d e n t p l a n e wave at t h e p o i n t of d i f f r a c t i o n
m u l t i p l i e d by a d i f f r a c t i o n c o e f f i c i e n t . T h i s is s i m i l a r t o
t h e r e f l e c t e d r a y , which i s o b t a i n e d by m u l t i p l y i n g t h e
i n c i d e n t r a y by a r e f l e c t i o n c o e f f i c i e n t . The d i f f r a c t i o n
c o e f f i c i e n t f o r a wedge c o n f i g u r a t i o n is determined by t h e
geometry i n t h e immediate neighborhood of t h e p o i n t of
d i f f r a c t i o n .
To i l l u s t r a t e how f i e l d c o n t i n u i t y n e a r t h e shadow and
r e f l e c t i o n b o u n d a r i e s is p r e s e r v e d as a r e s u l t of t h e
d i f f r a c t e d - r a y c o n t r i b u t i o n , c o n s i d e r a r a y i n c i d e n t on a
two-dimensional edge as i l l u s t r a t e d i n F i g u r e 2-5. GTD
employs t h e f o l l o w i n g e x p r e s s i o n t o d e s c r i b e t h e f i e l d
b e h a v i o r of d i f f r a c t i o n [ I 0 1 :
I I
I I i'i
D ( @ , @ ' I = ~ d '( @ - $ ' ) + Dn ( @ - @ I )
I I
II
where Dd' and D, are t h e v e r t i c a l and h o r i z o n t a l
p o l a r i z a t i o n d i f f r a c t i o n c o e f f i c i e n t terzas f o r t h e edge
f a c e s o and n r e s p e c t i v e l y .
These f o u r terms are u s e d t o c a m n ~ n a a t er ---- f o r t h e
d i s c o n t i n u i t y i n t h e g e o m e t r i c a l - o p t i c s f i e l d a t a shadow
and r e f l e c t i o n boundary f o r t h e two f a c e s of t h e wedge. For
i n s t a n c e , t h e terms o f t h e form ( @ - @ I ) are t o compensate f o r
t h e l o s s o f t h e d i r e c t r a y a t t h e shadow boundary; t h o s e of
t h e form + a r e t o compensate f o r t h e l o s s of t h e
r e f l e c t e d r a y at r e f l e c t i o n b o u n d a r y . Thus, t h e GTD
d i f f r a c t i o n c o e f f i c i e n t e n a b l e s a r e a l i s t i c f i e l d t o b e
c a l c u l a t e d r e g a r d l e s s of t h e l o c a t i o n of t h e o b s e r v a t i o n
p o i n t .
The o v e r a l l e l e c t r i c f i e l d i n a n y of t h e t h r e e r e g i o n i n
s p a c e c a n now b e w r i t t e n as:
where t h e e l e c t r i c f i e l d c o n t r i b u t i o n from d i f f r a c t i o n is
o b t a i n e d b y GTD method. While t h e above e q u a t i o n a p p l i e s
o n l y t o a p e r f e c t l y c o n d u c t i n g edge, m o d i f i c a t i o n f o r f i n i t e
c o n d u c t i v i t y a p p l i c a t i o n s have been performed, and i s
d e s c r i b e d i n t h e n e x t c h a p t e r .
I I I GTD M o d i f i e d f o r F i n i t e C o n d u c t i v i t y and S u r f a c e
Roughness
I n t h e e a r l y development o f GTD, t h e t h e o r y assumed t h a t
d i f f r a c t i v e e d g e s w e r e p e r f e c t l y c o n d u c t i n g , w h i c h
s i m p l i f i e d t h e d i f f r a c t i o n c o e f f i c i e n t e x p r e s s i o n . Because
p r o p a g a t i o n m o d e l i n g i n v o l v e s d i f f r a c t i o n from i m p e r f e c t l y -
c o n d u c t i n g s u r f a c e s , GTD t h e o r y was m o d i f i e d i n o r d e r t o
p r o v i d e more m e a n i n g f u l r e s u l t s when e s t i m a t i n g t e r r a i n
d i f f r a c t i o n . The o b j e c t i v e s s o u g h t i n i m p l e m e n t i n g t h e
m o d i f i c a t i o n were t o match t h e r e f l e c t e d Tay : o n t r i b u t i o n a t
t h e r e f l e c t i o n b o u n d a r y , a n 2 "LA..
tlmmi+$e.2 r a Y
c o n t r i b u t i o n a t t h e shadow b o u n d a r y . These o b j e c t i v e s were
met, and s u b s e q u e n t c o n t i n u i t y c h e c k s a t t h e shadow and
r e f l e c t i o n b o u n d a r i e s i n d i c a t e d t h a t c o n t i n u i t y had n o t b e e n
v i o l a t e d b y t h e m o d i f i c a t i o n .
I n o r d e r t o p r o v i d e i n s i g h t i n t o wave i n t e r a c t i o n w i t h
t e r r a i n , t h i s c h a p t e r b e g i n s w i t h a d i s c u s s i o n of t h e
e f f e c t s o f f i n i t e l y - c o n d u c t i n g a n d l o c a l l y - r o u g h t e r r a i n on
wave r e f l e c t i o n , which is t h e n e x t e n d e d t o d e f i n i n g t h o s e
c o n s t r a i n t s imposed by t h e e f f e c t s o n t h e d i f f r a c t i o n
c o e f f i c i e n t .
F i n i t e C o n d u c t i v i t y R e f l e c t i o n C o e f f i c i e n t
The b e h a v i o r of t h e v e r t i c a l and h o r i z o n t a l r e f l e c t i o n
c o e f f i c i e n t f o r f i n i t e c o n d u c t i v i t y i s i l l u s t r a t e d i n F i g u r e
3-1, where t h e p e r c e n t a g e of r e f l e c t i o n i s p l o t t e d a g a i n s t
t h e i n c i d e n c e a n g l e f o r f r e s h water and commonly-encountered
e a r t h s u r f a c e s . The c o n d u c t i v i t y and p e r m i t t i v i t y o f t h e
medium a r e shown i n t h e f i g u r e .
I n F i g u r e 3-1, i t is s e e n t h a t as t h e i n c i d e n c e a n g l e
changes t o 90 d e g r e e s ( i . e . g r a z i n g a n g l e ) , t h e magnitude of
t h e r e f l e c t ion c o e f f i c i e n t approaches u n i t y . I n such c a s e ,
t h e phase a n g l e of t h e r e f l e c t i o n c o e f f i c i e n t , approaches
-180 d e g r e e s as d e p i c t e d i n F i g u r e 3-2. A s a r e s u l t , a
r e f l e c t i o n c o e f f i c i e n t of -1 w i l l occur a t g r a z i n g zr,gle
f o r a l l common ground p l a n e s .
Rough S u r f a c e s
The laws of r e f l e c t i o n by a p e r f e c t l y smooth s u r f a c e
c a n n o t , i n g e n e r a l , b e d i r e c t l y a p p l i e d t o t e r r a i n due t o
s u r f a c e i r r e g u l a r i t i e s . One of t h e major d i f f e r e n c e i n t h e
c h a r a c t e r i s t i c s of a smooth s u r f a c e and a rough s u r f a c e is
t h a t a smooth p l a n e ( o f s u f f i c i e n t l y l a r g e dimensions) w i l l
r e f l e c t t h e i n c i d e n t wave s p e c u l a r l y , o r i n a s i n g l e
d i r e c t i o n , w h i l e a rough s u r f a c e w i l l s c a t t e r energy
d i f f u s e l y . The d e g r e e of roughness depends upon t h e
wavelength and angle of i n c i d e n c e . To account f o r s u r f a c e
INCIDENTRNGLE
d
In
P--
m
LL
u
D
00
In--
rn
lL
u
oI
U)
N
0
0
Figure3-1Amplitudeofreflectioncoefficientasafunctionofincidentangle
horizontaL
--
conductivity=0.012O/m
relativepermittivity=15.0
frequency=300MHz
--
II1-----
I1I
1
18.0036.0054.0072.0090
conductivity=0.012U/m
relativepermittivity=15.0
frequency=300MHz
0
0verticalpolarization
rn
0
0
Wo
-Id=co--
ZI
a
WZ
cnrn
a0
nI
0
0
rn
0
00
d
I
horizontalpolarization
1
I
1
I
1
I
1
II
0.0018.0036.0054.0072.0090.00
INCIDENTANGLEFigure3-2Phaseofreflectioncoefficientasafunctionofincidentangle
roughness, a f a c t o r is u s e d t o modify t h e r e f l e c t i o n
c o e f f i c i e n t . T h i s modified r e f l e c t i o n c o e f f i c i e n t is
d e f i n e d by L I I ] :
where 4' is t h e plane-wave r e f l e c t i o n c o e f f i c i e n t f o r
L
s p e c u l a r r e f l e c t i o n from a rough s u r f a c e , Ro
II
i s t h e
plane-wave r e f l e c t i o n c o e f f i c i e n t f o r a f l a t smooth s u r f a c e
( R' is f o r h o r i z o n t a l p o l a r i z a t i o n , and R " i s f o r
v e r t i c a l p o l a r i z a t i o n ) , and 6 s i s t h e s u r f a c e r o u g h n e s s
f a c t o r .
The t h e o r y d e s c r i b i n g t h e e f f e c t s of rough s u r f a c e s o n
t h e r e f l e c t i o n assume t h a t t e r r a i n e l e v a t i o n a r e G a u s s i a n l y
d i s t r i b u t e d w i t h r e s p e c t t o t h e mean e l e v a t i o n . According
t o C e n t r a l L i m i t Theorem 11 21, random 2-dimensional t e r r a i n
roughness w i l l converge t o a G a u s s i a n d i s t r i b u t i o n as t h e
number of terms i n t h e sum i s l a r g e (The t e r r a i n
i n v e s t i g a t e d i n t h i s p a p e r r a n g e s from 0.5 k i l o m e t e r t o 120
k i l o m e t e r s w i t h v a r i o u s s h a p e s and f e a t u r e s s o t h a t t h e
number of t e r m s are c o n s i d e r e d l a r g e ) . F o r a G a u s s i a n
Model, 6 s is d e f i n e d by 1131 :
A + i s t h e phase s h i f t between t h e s h o r t e s t and t h e l o n g e s t
r e f l e c t e d p a t h . C o n s i d e r r a y s 1 and 2 ( F i g u r e 3-3) i n c i d e n t
on a s u r f a c e w i t h i r r e g u l a r i t i e s of h e i g h t Ah a t a grazing
a n g l e Y . The p a t h d i f f e r e n c e between t h e two r a y s i s :
A r = 2 A h s i n y
and hence t h e p h a s e d i f f e r e n c e is:
4rAh
-s i n y
where Ah is t h e s t a n d a r d d e v i a t i o n o f t h e t e r r a i n
e l e v a t i o n a l o n g e a c h p i e c e w i s e - 1 i n e a r s e c t i o n o f t h e t e r r a i n
..d e f i n i n g t h e p r o f i l e and X t h e w a v e l e n g t h . The vai1~ -n
i s assumed t o b e c o n s t a n t t h r o u g h o u t t h e e n t i r e p r o p a g a t i o n
p a t h , however, t h e model c o u l d b e m o d i f i e d t o a c c e p t
d i f f e r e n t v a l u e s f o r d i f f e r e n t p a r t s o f t h e p r o f i l e . I f A @ ,
t h e phase d i f f e r e n c e is small, t h e two r a y s w i l l b e a i r n o s t
i n phase as t h e y are i n t h e case o f a p e r f e c t l y smooth
s u r f a c e . T h i s A @ i s t h e same v a r i a b l e as is u s e d i n t h e
R a y l e i g h c r i t e r i o n 1141 i n d e t e r m i n i n g w h e t h e r t h e s u r f a c e
i s smooth f o r a g i v e n f r e q u e n c y .
F i n i t e C o n d u c t i v i t y D i f f r a c t i o n C o e f f i c i e n t
To i l l u s t r a t e t h e edge d i f f r a c t i o n c o e f f i c i e n t s f o r two
d i e l e c t r i c p l a t e s and t o show how f i e l d c o n t i n u i t y n e a r
shadow and r e f l e c t i o n b o u n d a r i e s is p r e s e r v e d , c o n s i d e r a
r a y i n c i d e n t on a d i e l e c t r i c edge as d e p i c t e d i n F i g u r e 3-4.
I n t h e two dimensional c a s e t h e d i f f r a c t i o n c o e f f i c i e n t is
expressed as 1151:
I A
I1 II
I I
II I1
+ AoDo ( @ + @ ' I + A,D,(++@')
f i iII I
where Lo , L, , A, , A: are f i n i t e c o n d u c t i v i t y c o r r e c t i o n
c o n s t a n t s n e c e s s a r y t o p r e s e r v e f i e l d c o n t i n u i t y a t t h e
r e f l e c t i o n boundary and shadow boundary f o r t h e d i e l e c t r i c
wedge. I n t h e c a s e of the p e r f e c t l y c o n d u c t i n g edge
d i s c u s s e d i n Chapter 2 , these fozr cz;.sta~"~ts a r e e q u a l t o
1 I
II II
u n i t y . The terms L o and Ln a r e c o r r e c t i o n terms t o a c c o u n t
f o r v a r i a t i o n s i n phase and a m p l i t u d e due t o d i f f e r e n c e s
between f i n i t e l y conducting wedges and p e r f e c t l y c o n d u c t i n g
wedges at t h e shadow boundary f o r t h e d i e l e c t r i c p l a t e o and
I
n r e s p e c t i v e l y ; rfw h i l e A! and An a c c o u n t f o r s u c h
d i f f e r e n c e s a t t h e r e f l e c t i o n boundary. A t shadow
b o u n d a r i e s , t h e d i f f e r e n c e between f i n i t e and p e r f e c t
c o n d u c t i v i t y i s t h a t energy may b e t r a n s m i t t e d t h r o u g h t h e
f i n i t e l y - c o n d u c t i n g medium. If t r a n s m i s s i o n d o e s o c c u r s ,
I I
I I
t h i s must b e accounted f o r by t h e c o n s t a n t s L! and L, . For
high-frequency t e r r a i n modeling, r a y t r a n s m i t t e d t h r o u g h
;i 4h i l l s and mountains is n e g l i g i b l e , t h u s L o =Ln = l .
The r e f l e c t e d f i e l d which is modified by t h e r e f l e c t i o n
c o e f f i c i e n t v a n i s h e s at t h e r e f l e c t i o n boundary; as a
r e s u l t , t h e d i f f r a c t e d f i e l d is r e q u i r e d t o i n c r e a s e i n
a m p l i t u d e t o compensate f o r t h e r e f l e c t e d r a y l o s s a t t h e
r e f l e c t i o n boundary s o t h a t t h e t o t a l high-f requency f i e l d
i s c o n t i n u o u s everywhere. I n t h i s a p p l i c a t i o n , A, and A,
a r e s e t t o e q u a l t o t h e r e f l e c t i o n c o e f f i c i e n t s of t h e edge
I
iss u r f a c e s 0 and n, r e s p e c t i v e l y . T h e r e f o r e , A! = Rg f o r t h e
L
two d i m e n s i o n a l c a s e . 4 i s e q u a l t o t h e modified
r e f l e c t i o n c o e f f i c i e n t f o r rough s u r f a c e s a p p l i c a t i o n as
d e s c r i b e d e a r l i e r .
To demonstrate t h a t t h e above changes t o t h e d i f f r a c t i o n
c o e f f i c i e n t s do n o t v i o l a t e c o n t i n u i t y c o n s t r a i n t s ,
c o n t i n u i t y t e s t s were performed. The r e s u l t s of t h e s e t e s t s
p r e s e n t e d i n Appendix A show t h a t t h e m o d i f i c a t i o n s zbcxre d s
n o t v i o l a t e any GTD c o n c e p t s . The f o l l o w i n g c h a p t e r w i l l
p r e s e n t s a model e v a l u a t i o n by comparison w i t h measured
I V Measured and Modeled Data Comparisions
The GTD model modified f o r rough s u r f a c e s and f i n i t e
c o n d u c t i v i t y h a s been used t o p r e d i c t p r o p a g a t i o n p a t h l o s s
f o r a v a r i e t y o f t e r r a i n p r o f i l e s . T h i s c h a p t e r p r e s e n t s
t h o s e r e s u l t s a l o n g w i t h measured d a t a f o r t e r r a i n p r o f i l e s
o f d i f f e r e n t l e n g t h s and c o n t o u r s . These r e s u l t s e n a b l e a
r e a l i s t i c e v a l u a t i o n o f t h e model's performance, which i n
t u r n d e t e r m i n e s t h e f e a s i b i l i t y of employing t h e model i n
g e n e r a l p r o p a g a t i o n p a t h l o s s p r e d i c t i o n .
Yeaauzsd d a t a were o b t a i n e d from a p r o p a g a t i o n
e x p e r i a e n t r e p o r t by McQuate, e t . a l . 116 J and were reduced
t o d i g i t a l f 3 r m a t t o s f f o r d comparison w i t h modeled d a t a .
~h~ referenced r e p o r t c o n t a i n s t a b u l a t i o n s 0 f
e l e c t r o m a g n e t i c p r o p a g a t i o n l o s s d a t a r e s u l t i n g from
p r o p a g a t i o n measurements o v e r i r r e g u l a r t e r r a i n i n Colorado
w i t h p a t h l e n g t h s r a n g i n g from 0 . 5 t o 120 km a t seven
f r e q u e n c i e s i n t h e 230- t o 9200-MHz range. These reduced
d a t a c o n s i s t p r i m a r i l y of g r a p h s showing b a s i c t r a n s m i s s i o n
l o s s v s . r e c e i v i n g a n t e n n a h e i g h t d e r i v e d from t h e
measurement of each p a t h . I n f o r m a t i o n a b o u t t h e p r o p a g a t i o n
p a t h a r e g i v e n by photographs, a t e r r a i n p r o f i l e , and a
d e s c r i p t i o n o f v e g e t a t i o n c o v e r . All t r a n s m i s s i o n s were
c o n t i n u o u s wave and f r e q u e n c i e s of 230, 410, 751, 910, 1846,
4595, and 9190 MHz were used w i t h h o r i z o n t a l p o l a r i z a t i o n
o n l y .
To adopt t h e McQuatels t e r r a i n p r o f i l e as i n p u t d a t a t o
t h e GTD model, t h e p r o f i l e was f i r s t approximated by
p i e c e w i s e - l i n e a r segments which r e p r e s e n t t h e o r i g i n a l p a t h .
I n some c a s e s , t h i s p r o c e s s c a n proceed i n a
s t r a i g h t f o r w a r d manner, i f t h e predominant s l o p e s and
d i f f r a c t i v e e d g e s a r e w e l l d e f i n e d . However, i n o t h e r
c a s e s , t h e p r o c e s s i s n o t s o s t r a i g h t f o r w a r d , p a r t i c u l a r l y
t h o s e p r o f i l e s i n v o l v i n g m u l t i p l e peaks and l a r g e i r r e g u l a r
roughness. O f t e n , a p r o f i l e c a n b e r e p r e s e n t e d by more t h a n
one p i e c e w i s e - l i n e a r i z e d a p p r o x i m a t i o n . Under t h i s
r' - , - : : - ~ + 3 r , , - i =
--- --- " - * - " ,
f i 2 i.r- + n
=, ." t h e u s e r , based o n h i s uwn
e x p e r i z n c e , ,a i a ~ e r - i n e whether an edge c o n s t i t u t e s
d i f f r a c t i o n o r r e f l e c t i a n ; o r i f t h e edge i s merely a
s o u r c e of l o c a l s u r f a c e roughness. Thus, t h e r e i s no well-
d e f i c e d methodology e s t a b l i s h e d t o a i d i n t h e l i n e a r i z a t i o n
p r o c e s s , a i t h o u g n it is known t h a t t h e number o f e d g e s
d e f i n i n g t h e t e r r a i n s h o u l d b e k e p t t o a minimum due t o t h e
cumulative e f f e c t of computer e r r o r s . These f a c t o r s a r e
d i s c u s s e d where a p p l i c a b l e a l o n g w i t h t h e p r e s e n t a t i o n of
t e r r a i n p r o f i l e and p i e c e w i s e - l i n e a r approximation.
rn, ,,,.-: A,
A u V V L U ~ a "vnchiiiark f o r t h e GTD model performance,
modeled d a t a from t h e Longley-Rice Point-to-Point model
L17 , I 81 is a l s o p l o t t e d a l o n g w i t h GTD-modeled r e s u l t s and
measured d a t a . The Longley-Rice model was developed a t t h e
I n s t i t u t e f o r Telecommunication S c i e n c e , and i s r e f e r r e d t o
h e r e as t h e ITS model. I n p u t d a t a r e q u i r e d by b o t h t h e GTD
and ITS models a r e i d e n t i c a l . S i n c e t h e i n c l u s i o n of ITS
modeled d a t a s e r v e s o n l y as b a s e l i n e i n f o r m a t i o n , a
d i s c u s s i o n of its p e r f o r m a n c e is n o t i n c l u d e d .
The p r e s e n t a t i o n of d a t a are a r r a n g e d a c c o r d i n g t o t h e
p a t h l e n g t h , s t a r t i n g w i t h t h e s h o r t e s t p a t h ; i n a l l ,
e l e v e n p a t h s a r e p r e s e n t e d . P r e c e e d i n g e a c h o f t h e p a t h s
i n v e s t i g a t e d , a b r i e f d e s c r i p t i o n is o f f e r e d o n t h e s a l i e n t
c h a r a c t e r i s t i c s o f t h e p a t h (e.g. w h e t h e r i t i s w i t h i n l i n e
o f s i g h t o r beyond l i n e o f s i g h t ) , a s s u m p t i o n s made i n t h e
l i n e a r i z a t i o n p r o c e s s , and where a p p r o p r i a t e , comments on
t h e b e h a v i o r o f GTD modeled r e s u l t s . The t e r r a i n p r o f i l e
i t s e l f is a redrawn from M c Q u a t e ' s r e p o r t , a l o n g w i t h t h e
p i e c e w i s e l i n e a r a p p r o x i m a t i o n o f t h e p r o f i l e , r e p r e s e n t e d
by d o t t e d l i n e s s u p e r i m p o s e d on t h e t e r r a i n p r o f i l e . The
i n p u t d a t a f i l e s f o r t h o s e e l e v e n p r o f i l e s can b e f o u n d i n
Appendix 3.
A . DATA REDUCTION
A l l t e r r a i n i n f o r m a t i o n and measured p r o p a g a t i o n p a t h
l o s s d a t a were o b t a i n e d from a h a r d copy o f t h e McQuate
r e p o r t . To r e t r i e v e t h o s e d a t a from g r a p h s i n t h e r e p o r t ,
a n e l e c t r o n i c d i g i t i z e r was u s e d t o f a c i l i t a t e t h e p r o c e s s .
A s i n g l e d a t a p o i n t was o b t a i n e d b y moving a n o p t i c a l v i e w e r
( u s i n g t h e f r o n t p a n e l c o n t r o l s ) o v e r t h e d e s i r e d l o c a t i o n
o n t h e curve and t h e n p r e s s i n g a b u t t o n on t h e d i g i t i z e r .
The c o - o r d i n a t e o f t h a t p o i n t was a u t o m a t i c a l l y s c a l e d and
t r a n s l a t e d i n t o t h e a p p r o p r i a t e v a l u e s as a p p e a r e d i n t h e
r e p o r t , which was s t o r e d d i s c r e t e l y i n computer d i s k
s t o r a g e . The o n l y d a t a t h a t t h e o p e r a t o r had t o e n t e r d u r i n g
t h e p r o c e s s was: f o r t h e c a s e of P a t h l o s s d a t a , t h e d e c i b e l
p a t h l o s s s c a l e increment on t h e Y-axis; and f o r t h e t e r r a i n
p r o f i l e , t h e l e n g t h and h e i g h t of t h e p a t h .
P a t h l o s s d a t a were sampled a t t h e i n t e r v a l of e v e r y 1 / 2
meter o v e r t h e e n t i r e a n t e n n a h e i g h t movement r a n g e of 13
meters. By f o l l o w i n g a p r e d e f i n e d procedure o f d i g i t i z i n g
t h e p a t h l o s s d a t a , t h e s e v e n c u r v e s c o r r e s p o n d i n g t o t h e
seven d i f f e r e n t f r e q u e n c i e s i n t h e McQuate's r e p o r t were
o r g a n i z e d i n t o a n a t r i x f i l e .
A dewlett-Packard 7225A G r a p h i c s P l o t t e r equipped v i t h a
o p t i c a l viewer was employed f o r t h i s e f f o r t ( t h e optical
viewer is loaded l i k e a pen f o r v i e w i n g ) .
The p l o t t e r was connected i n a p a r a l l e l c o n f i g u r a t i o n
w i t h an ADM-3A CRT t e r m i n a l . The computer t o which t h i s
hardware was connected was a n IBX 4341 running under -$%/SP
CMS t i m e s h a r e mode. To p r o v i d e p r o p e r handshaking f o r d a t a
t r a n s f e r between t h e h o s t computer and p l o t t e r , a n ASSEMBLER
r o u t i n e was w r i t t e n . P l o t t e r ~zsolutlon i n b o t h a x e s
exceeds 0.001 i n c h , i n d i c a t i n g t h a t q u a n t i z a t i o n and
t r u n c a t i o n e r r o r s can be c o n s i d e r e d i n s i g n i f i c a n t . The hard
copy r e p o r t from which t h e s e d a t a were t a k e n was a Xerox
copy of t h e o r i g i n a l r e p o r t . Thus, d a t a were l i k e l y
contaminated by photocopy d i s t o r t i o n e r r o r s . Evidence of
such e r r o r s a p p e a r as s l i g h t l y curved a x e s , non-squareness,
and d i s t o r t i o n . To compensate f o r s u c h e r r o r s , t h e end
p o i n t s of t h e a x e s were e n t e r e d , from t h e p l o t t e r , t o t h e
s o f t w a r e ; t h i s i n f o r m a t i o n was t h e n u s e d t o c o r r e c t
s u b s e q u e n t d a t a from t h e p l o t t e r v i a a l i n e a r i n t e r p o l a t i o n
method. A l l d a t a f i l e s t h u s o b t a i n e d were c h e c k e d a g a i n s t
t h e o r i g i n a l d a t a ; any e r r o r s , which were u s u a l l y o b v i o u s
when t h e y e x i s t e d , were c o r r e c t e d by e d i t i n g t h e a s s o c i a t e d
d a t a f i l e .
i'leasured p a t h l o s s d a t a a r e p l o t t e d v e r s u s r e c e i v e r
a n t e n n a h e i g h t , w i t h one p l o t f o r e a c h f r e q u e n c y . The ITS
modeled and GTD modeled d a t a a r e a l s o p l o t t e d on t h e same
g r a p h t o e n a b l e a d i r e c t p e r f o r m a n c e e v a l u a t i o n t o b e made;
t h e s e model r e s u l t s r e p r e s e n t a b s o l u t e p a t h l o s s , r a t h e r
t h a n r e l a t i v e l o s s .
B. P r e s e n t a t i o n of d a t a
1 . P a t h R1-0.5-TI (0.5~n., f l a t , w i t h i n l i n e o f s i g h t )
T h i s t e r r a i n p r o f i l e is shown i n F i g u r e 4-1. A s c a n be
s e e n , t h e p r o f i l e i s made u p o f f l a t ground s l o p i n g down
t o w a r d s t h e t r a n s m i t t i n g a n t e n n a . B e c a u s e o f p r o f i l e
s i m p l i c i t y , t h e l i n e a r i z a t i o n p r o c e s s was s t r a i g h t f o r w a r d ,
r e s u l t i n g i n a modeled p r o f i l e d e f i n e d s o l e l y b y t h e
e n d p o i n t s .
T h i s p r o f i l e was t h e f i r s t o n e t o b e c h o s e n i n t h e
development stage o f t h e GTD model t o v e r i f y t h a t no g r o s s
e r r o r s e x i s t e d .
The second r e a s o n i n s e l e c t i n g t h i s p r o f i l e was t o s t u d y
t h e l o c a l s u r f a c e r o u g h n e s s f a c t o r and i t s e f f e c t s o n t h e
v e r t i c a l l o b e s t r u c t u r e which arises from t h e i n t e r f e r e n c e
between t h e d i r e c t r a y and r e f l e c t e d r a y s . F o r a f l a t g r o u n d
p l a n e , s u c h as t h e one d i s c u s s e d h e r e , t h e GTD model
o p e r a t e s as a G e o m e t r i c a l O p t i c s model s i n c e t h e r e a r e no
d i f f r a c t i v e edges. Thus, GTD model estimates o f p a t h l o s s
are based e x c l u s i v e l y on a s i n g l y - r e f l e c t e d r a y and d i r e c t
r a y F o r s u c h a c o n f i g u r a t i o n , t h e b e h a v i o r o f t h e m o d i f i e d
r e f l e c t i o n c o e f f i c i e n t f o r l o c a l s u r f a c e r o u g h n e s s c a n b e
s t u d y e x p l i c i t l y .
Measured and Modeled d a t a f o r t h i s t e r r a i n p r o f i l e are
p l o t t e d i n F i g u r e s 4-2 t h r o u g h 4-8, w i t h t h e g r o u n d e l e c t r i c
c o n s t a n t s used as shown i n t h e f i g u r e . D u r i n g t h e
i n v e s t i g a t i o n o f t h i s p r o f i l e , t h e e l e c t r i c a l c o n s t a n t s o f
t h e ground p l a n e w e r e v a r i e d o v e r a wide r a n g e of v a l u e s t o
d e t e r m i n e i t s e f f e c t s o n t h e r e c e i v e d f i e l d . The r e s u l t o f
t h i s e x p e r i m e n t showed t h a t f i e l d s t r e n g t h d i d n o t c h a n g e
a p p r e c i a b l y . T h i s is a n e x p e c t e d r e s u l t f o r h o r i z o n t a l
p o l a r i z a t i o n b e c a u s e i t s p r o p e r t i e s a t low a n g l e s o f
i n c i d e n c e a r e similar t o p e r f e c t l y c o n d u c t i n g ground p l a n e s .
However, t h i s r e s u l t would n o t b e e x p e c t e d f o r v e r t i c a l
p o l a r i z a t i o n o r f o r p a t h s i n v o l v i n g h i g h i n c i d e n c e a n g l e s .
A d d i t i o n a l l y , a r a n g e o f l o c a l s u r f a c e r o u g h n e s s
-,~-.F-a+I..c., s i Y 1 * 1 - 3 were i n v e s t i g a t e d t o d e t e r m i n e its e f f e c t o n t h e
modeled data. G e n e r a l l y , t h e model i s s e n s i t i v e t o t h e l o c a l
s u r f a c e r o u g h n e s s ; t h e l a r g e r t h e modeled s u r f a c e r o u g h n e s s ,
t h e s m a l l e r %he modeled l o b i n g d e p t h . The a c t u a l p r o f i l e
f o r e g r o u n d c o n s i s t s of a l t e r n a t i n g s t r i p s o f plowed ground
and wheat s t u b b l e ; t h e r e f o r e a r a n g e o f s u r f a c e r o u g h n e s s
v a l u e s from 6-1 8 i n c h e s were u s e d , which i s r e a s o n a b l e based
upon t h e d e s c r i p t i o n o f t h e p r o f i l e . Those v a l u e s p r o v i d e d
good r e s u l t s i n t h e modeled d a t a , a l t h o u g h g r e a t e s t
agreement b e t w e e n modeled and measured r e s u l t s were o b t a i n e d
u s i n g a r o u g h n e s s v a l u e e q u a l t o 9 i n c h e s . Hence, 9 i n c h e s
o f l o c a l s u r f a c e r o u g h n e s s is u s e d f o r a l l s u b s e q u e n t
modeled d a t a f o r t h i s p r o f i l e .
F o r t h e f i r s t t h r e e l o w e r f r e q u e n c i e s p l o t s u s i n g t h e 9
i n c h e s l o c a l s u r f a c e r o u g h n e s s f a c t o r , t h e l o b i n g e f f e c t is
n o t p r o m i n e n t , and t h e modeled d a t a i s i n c l o s e a g r e e m e n t
w i t h t h e measured d a t a . A t h i g h e r f r e q u e n c i e s , v e r t i c a l
l o b i n g d o e s becoming more n o t i c e a b l e w i t h t h e s i z e and t h e
d e p t h o f t h e l o b e n u l l s , and as w e l l as t h e s p a c i n g b e t w e e n
t h o s e n u l l s b e i n g i n good a g r e e m e n t f o r b o t h measured and
modeled d a t a . I n some i n s t a n c e s , t h e modeled l o b i n g o c c u r s
a t d i f f e r e n t r e c e i v e r a n t e n n a h e i g h t s t h a n d o e s t h e measured
l o b i n g , c a u s i n g a n a p p a r e n t d i v e r g e n c e between t h e measured
and modeled d a t a . However, t h i s s e p a r a t i o n is c o n s i d e r e d t o
b e c a u s e d b y e r r o r s i n t e r r a i n p r o f i l e d e f i n i t i o n o r
a n t e n c a h e l g A t hats rstfier t:sn >"> - 3 d e l i n g e r r o r .
7 :&" O C
0
2 a
Fi
aJ
4
Q , a a J
Q u a
g 2 gffl
P a m
b Q , b
U X H
m
G
0-
ZR
0)
0)
C
C
m
2
0
a
er
U
a
'ti
k
3
LO
4
L?-Y
-
0
0
1 : I
I
I
o-OOI- oo-ori- oo-oai- oo-osi- oo-oni-
[BQI SSOl Hltfd
'(I
0)
a
d
0)
d
Q , ' ( I a l
a 0 ) m
g 2 gLO
P a r / ]
E aJ E-r
W E H
2 . P a t h R1-5-T6A (4.6 km., Mixed P a t h w i t h Double
D i f f r a c t i v e E d g e s )
T h i s t e r r a i n p r o f i l e , shown i n F i g u r e 4-9, i s made u p o f
r o l l i n g h i l l s . The p i e c e w i s e l i n e a r a p p r o x i m a t i o n p r o c e s s
was s t r a i g h t f o r w a r d , r e s u l t i n g i n t h e s e v e n e d g e s
r e p r e s e n t e d b y t h e d o t t e d l i n e i n t h e figure. O f p r i m a r y
i n t e r e s t i n t h i s p r o f i l e is t h e d o u b l y - d i f f r a c t i v e e d g e s
which h a s its shadow boundary c o r r e s p o n d i n g t o a r e c e i v i n g
a n t e n n a h e i g h t of 9 meter. A t t h a t h e i g h t , t h e r e c e i v i n g
a n t e n n a is i n a s t r a i g h t l i n e a l o n g t h e two d i f f r a c t i v e
e d g e s ~ d i t ht h e t r a n s m i t t i n g a n t e n n a . Below t h i s h e i g h t , t h e
p a t n is b l o c k e d , and is below l i n e o f s i g h t . Above t h e 9
m e t e r a n t e n n a h e i g h t , t h e p a t h i s w i t h i n l i n e of s i g h t .
T h i s t y p e o f c o n f i g u r a t i o n i s of c o n s i d e r a b l e i n t e r e s t w i t h
r e g a r d s t o GTD m o d e l i n g t h e o r y b e c a u s e i t i n v o l v e s
c a i c u l a t i o n s of two r a p i d l y v a r y i n g f i e l d s n e a r t h e
t r a n s i t i o n r e g i o n ; i f GTD h a s a r e g i o n i n which t h e t h e o r y
i s n o t s t r i c t l y a p p l i c a b l e , i t would b e i n a t r a n s i t i o n
r e g i o n s u c h as t h e one p r e s e n t e d i n t h i s p r o f i l e .
F i g u r e s 4-10 t h r o u g h 4-1 6 p r e s e n t p l o t s o f measured
and modeled r e s u l t s . R e f e r r i n g t o t h e 230 MHz p l o t i n F i g u r e
4-10, a f i e l d d i s c o n t i n u i t y o f a b o u t 5 d e c i b e l s s e e n a t t h e
t r a n s i t i o n r e g i o n d i s c r i b e d above. T h i s d i s c o n t i n u i t y i s t h e
l a r g e s t o b s e r v e d i n model r e s p o n s e and is n o t c o n s i d e r e d t o
b e s i g n i f i c a n t l y d e t r e m e n t e l w i t h r e g a r d s t o p r o p a g a t i o n
modeling. A s t h e f r e q u e n c y becomes h i g h e r , t h e d i s c o n t i n u i t y
v a n i s h e s as is s e e n i n t h e f i g u r e . The r e a s o n f o r t h i s
b e h a v i o r i s t h a t t h e a r e a of t h e t r a n s i t i o n r e g i o n d e f i n i n g
t h e r a p i d l y - v a r y i n g f i e l d s d e c r e a s e s w i t h i n c r e a s i n g
f r e q u e n c y . Although t h e d i s c o n t i n u i t i e s may s t i l l be
p r e s e n t , t h e y a r e a p p a r e n t l y bypassed i n t h e s a m p l i n g scheme
used f o r d a t a r e t r i e v a l .
G e n e r a l l y good agreement is demonstrated between t h e
modeled d a t a and t h e measured d a t a a l t h o u g h t h e r e i s a b i a s
e r r o r t h a t t e n d s t o i n c r e a s e w i t h f r e q u e n c y . T h i s i n c r e a s i n g
- .
o i a a e r r o r , a c c o r d i n g t o p r e v i o u s e x p e r i e n c e 119 ) g a i n e d
-l r o s ~ r o p a g a t i o nmodeling, i s l i k e l y d u e t o t r e e s w i t h i n t h e
p a t h t h a t a r e n o t t a k e n i n t o a c c o u n t by t h e model, whose
a b s o r p t i v e e f f e c t s i n c r e a s e w i t h f r e q u e n c y .
0
0
a
>
I
+X
- - - - -
!
OO'OL- 00 08- 00 08- 00'
0
0
m
)8
1P
a
I
M
8 X l
O X j
a X
a X
8 X I-
8 X
a X
a
0
8 [f
Q >
8
0
8
8
I
8 X
+ -- '+.- A"ooqor- 00-od- 00-od- 00-oor- oo 011- oo 021- oo orr- 00-ohi- oo.0~1--
(90)S S Q ~H L ~ M
0
0
ex
B#
ex I T~
I
I
ex
8 X
8 X 1'e X
8 X I
8 X 1::0 X
8 X
8 X
ee xx
1;;r-a8 X
8 X
8 X
8
8
8
0
8
i""
a X i"
oo-ooi-- oo*oz;- OO.DO;-
0 L Q
- a3
r n .
2 2
s
3
2 5C
0 -4
U
a 0
'+I
k
7 II
K'
;2S 'Z
3. P a t h R1-5-T5A (5.0 Km., beyond L i n e o f s i g h t )
R e f e r i n g t o t h e drawing of t h e t e r r a i n p r o f i l e i n F i g u r e
4-7, i t is s e e n t h a t t h e d i r e c t p a t h is b l o c k e d f o r a l l
a n t e n n a h e i g h t . The p i e c e w i s e - l i n e a r i z e d model i s
approximated by 3 p l a t e s .
GTD c a l c u l a t e d r e s u l t s f r o m t h i s p i e c e w i s e l i n e a r
t e r r a i n model f o r t h e lower f r e q u e n c i e s a r e e x t r e m e l y c l o s e
t o t h e measured d a t a as c a n b e s e e n f r o m P i g u r e s 4-18
t h r o u g h 4-23. A s f r e q u e n c y becomes h i g h e r , d i s c r e p a n c i e s
between measured and modeled d a t a i n c r e a s e s . The r e a s o n may
b e due t o l o s s e s caused by t r e e s o r o t h e r i n t e r v e n i n g
o b j e c t s as was observed w i t h t h e p r e v i o u s p a t h .
xxxxxGTDModeled
-Measured
QDBOQITSModeled
LocalSurfaceRoughness(one
sic~ma)=9inches(0.2286meters)
Frequency=910MHz
Conductivity=0.012U/m
RelativePermittivity=15.0
Figure4-21.Pathlossvs.receiving
antennaheightforProfileR1-5-T5A,
Figure4-17.Transmitterheightisat
7.3meters.
'r.oos;005;007:00B;001i.0019.00
RCVR.ANT.HT.[MI
4. P a t h RI -10-T2A (9.8 Km. , Beyond L i n e of S i g h t )
The t e r r a i n p r o f i l e a l o n g w i t h t h e p i e c e w i s e l i n e a r
a p p r o x i m a t i o n a r e shown i n F i g u r e 4-24. The p a t h i s beyond
l i n e of s i g h t , w i t h t h e d i r e c t r a y b l o c k e d b y a h i l l . A
t o t a l o f 7 edges a r e used as i n p u t d a t a .
The measured and modeled d a t a a r e shown i n F i g u r e s 4-25
through 4-31; c l o s e agreement between t h e two w e r e o b t a i n e d
f o r a l l f r e q u e n c i e s . A l s o , t h e measured d a t a d o n o t s u f f e r
t h e high-frequency e r r o r s e v i d e n t i n t h e p r e v i o u s two
p r o f i l e s ; zne r e a s o n may b e d u e t o t h e a b s e n c e of t r e e s
a l o n g t h e p a t h .
5. P a t h R1-10-T3 (9.6 Km., Line of S i g h t )
- .--
The t e r r a i n p r o f i l e f o r t h i s p a t h i s shown i n F i g u r e 4-32
Because t h e p i e c e w i s e - l i n e a r approximation does n o t f i t t h e
a c t u a l t e r r a i n p r o f i l e as c l o s e l y as t h e p r e v i o u s p r o f i l e s ,
t h e l o c a l t e r r a i n roughness f a c t o r was a d j u s t e d d u r i n g t h e
experiment t o i n v e s t i g a t e its e f f e c t s . I n t h i s e f f o r t ,
l o c a l t e r r a i n roughness v a l u e s of .2286 meter and 2 meters
were used. The GTD program was r u n w i t h t h e same l i n e a r i z e d
t e r r a i n p r o f i l e u s i n g t h e s e d i f f e r e n t l o c a l s u r f a c e
roughness parameters.
The f i r s t s e t of c a l c u l a t e d r e s u l t s u s i n g 9 i n c h e s l o c a l
s u r f a c e roughness a r e shown from F i g u r e s 4-33 t h r o u g h 4-39.
GTD modeled r e s u l t s a r e i n c l o s e a g r e e n e n t with t h e measured
d a t a , except at 751 MHz. A t 751 LVIHZ, a n anomaly i s obvious
i n t h e measured d a t a , where t h e p a t h l o s s a t 751 MHz is
i n c o n s i s t e n t with t h e r e p o r t e d l o s s e s at h i g h e r o r lower
f r e q u e n c i e s ; hence comments on GTD modeled performance a t
t h a t frequency a r e not o f f e r e d . A t 1846 MHz, GTD over
e s t i m a t e s t h e d e p t h of t h e v e r t i c a l l o b e .
Secondly, t h e roughness f a c t o r w a s a d j u s t e d over a wide
range of v a l u e s . I t was found t h a t by i n c r e a s i n g t h e
roughness f a c t o r t o 2 m e t e r s , t h e d e p t h of t h e l o b i n g was
c l o s e r t o t h e measured d a t a . The new p a t h l o s s e s t i m a t e f o r
1846 31Hz i s p l o t t e d on F i g u r e 4-44; and o t h e r f r e q u e n c i e s
a r e shown i n F i g u r e s 4-40 t h r o u g h 4-46. G e n e r a l l y , t h e l o c a l
t e r r a i n roughness f a c t o r d o e s n o t i n c u r a not i c e a b l e e f f e c t
o n f r e q u e n c i e s lower t h a n 1 G H z . O t h e r v a l u e s o f t e r r a i n
r o u g h n e s s f a c t o r r a n g i n g from 0.5 t o 5 m e t e r s were
a t t e m p t e d , b u t b a s e d upon t h e s i z e and t h e d e p t h o f t h e
l o b e , and t a k i n g i n t o c o n s i d e r a t i o n t h e v a r i a t i o n o f t h e o f
t h e l i n e a r i z e d p r o f i l e with r e s p e c t t o t h e a c t u a l t e r r a i n
p r o f i l e , a f i n a l v a l u e o f 2 m e t e r was s e l e c t e d .
0
0
.e
X e
5"
x e
X e
X e
x e
x e
X 0
X
X .
a
X
I
+.---- AXooaoL- 00 08- oo 08- o 0 - oo.oci-oo.oni-oososr-@(gal SSO-I ~ l t i d
0
0
B
m
8L I
8(
j
I
- 8
oo-0:- 00-00- 00-06- 00-001- o ~ * o ~ i -00-ozi~ oo'06i- 00-obi-
(801 SSOl Hltfd
4 4
a a a ,
a a , a
g : i ?ffl
C l a m
E a I 3
W X H
6 . P a t h R1-20-TI (27.7 Km., Beyond L i n e of s i g h t )
The t e r r a i n p r o f i l e a l o n g w i t h t h e p i e c e w i s e - l i n e a r
a p p r o x i m a t i o n a r e p r e s e n t e d i n F i g u r e 4-47. The
approximation o n l y t e n d s t o i n c l u d e t h e major p e a k s and
s l o p e s of t h e a c t u a l t e r r a i n . The approximation c o n s i s t s of
5 e d g e s as s e e n i n t h e f i g u r e . Because of v a r i a t i o n s of
t h e a c t u a l t e r r a i n w i t h r e s p e c t t o t h e l i n e a r approximation,
a modeled l o c a l roughness p a r a m e t e r o f 2 meter was chosen.
C a l c u l a t e d r e s u l t s from GTD modeled and measured d a t a a r e
. - .
a i i o % - ~i i i 4-48 t h r o u g h 4-54. A s a a s n from t h e s e
figures, 223 r e s u l t s show a l a r g e r l o s s t h a n t h e measured
d a t a a s t h e f r e q u e n c y i n c r e a s e s , e s p e c i a l l y t h o s e above 910
MU?., These e x c e s s i v e v a r i a t i o n s may b e caused by modeled- ----
~ ~ i t ;rat'ri reflection from t h e c o m p a r a t i v e l y smooth segments
used t o approximate t h e i r r e g u l a r t e r r a i n .
C,
P - a
C
-4 m
$ 4
.rl
a J L J
U O C
a, CJ tn
k I .4
4 a,
. I r ; C
? a h
.-I a,
rn .4 4J
r n u - i c ,
0 0 .4
d k
h W
C
5 k l d
l d O h
h W B
rl d
a 5 Q)
a a l aO L I O
E 2 5 :
a r d r n
E-1 s E-(
W E H
0
0
X
a x
0 X I
. X
a X
a X
a X
a
a
rn
X O
X .
X a
X
X .x
.X
.X
X
.X
e x
8(
a
e x
'--T-'-00-oat- 00 on- -m*mi- 00-osi- w-osi- oo*o~i-
(80)SSOl Hltfd
XXXXXGTDModeled
-Measured
8Qaec)ITSModeled
7-I
1.003.005.00:---+-------I---+-------I
7.008-0011-0013.00
RCVR.FINT.HT.(MI
LocalSurfaceRoughness(one
sigma)=2meters
Frequency=1846MHz
Conductivity=0.012U/m
RelativePermittivity=15.0
Figure4-52.Pathlossvs.receiving
antennaheightforProfileR1-20-Ti,
Figure4-47.Transmitterheightisat
7.3meters.
0
X a
X '3X O I
xm
xe isXb
X.
xe
*
i:"Y C
W
r
m
X .
X a
X a
X
X
X
X
X
X
X
i""
X
X
Y 1 L < -AXoo.oo:- w - o t i - 00-ozi- ooosi- oonmi- oo*osi- h * o s i - 0 0 - o ~ i - ooos~--
(001SSQl Hltld
XXXXXGTDModeled
---Measured
aQa@JQITSModeled
LocalSurfaceRoughness(one
sicpa)=2meters
Frequency=9190MHz
Conductivity=0.012U/m
RelativePermittivity=15.0
Figure4-54.Pathlossvs.receiving
I
antennaheightforProfileRl-20-T1,
grFigure4-47.Transmitterheightisat
-_t___17.3meters.
'1.003.005.007.008.0011.0019.00
RCVR.RNT.HT.(MI
7. P a t h T I - 2 0 4 4 (20.7 Km., Beyond L i n e of S i g h t )
The l i n e a r i z e d approximation and t e r r a i n p r o f i l e f o r t h i s
p a t h a r e shown i n F i g u r e 4-55. The l i n e a r i z e d model
c o n s i s t s of 6 edges which f o l l o w o n l y t h e m a j o r t e r r a i n
f e a t u r e s ; a g a i n , a l o c a l t e r r a i n roughness f a c t o r of 2
meters was used f o r modeling.
The modeled and measured d a t a f o r t h i s p r o f i l e a r e shown
i n F i g u r e s 4-45 through 4-61. As can be s e e n from t h e
F i g u r e s , t h e p l o t s a r e similar t o t h a t of t h e p r e v i o u s
przlf lie. ,7 .n7.
A t f r e q u e n c i e s below 1 GZZ? ~ T L U modeled r e s u l t s
show c l o s e agreement w i t h meaanred d a t a ; vhilz above t h a t
f r e q u e n c y , GTD c o n s i s t e n t l y g i v e s a h i g h e r v a l u e t h a n t h e
r n e ~ q u red d a t a ,
0
X B
X 8
X e
X . i"0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
i'"
X
X
, Y l
oo*oo:- 00-01i- 00-ozi- oo9osi- oo*mi.- 00*bi- OO-mi- 0 0 - o ~ i -
(90)SSOl Hltfd
8 . 49.0 K m . , Beyond L i n e of S i g h t Path.
The t e r r a i n p r o f i l e f o r t h i s p r o f i l e i s shown i n F i g u r e
6-62. Because of t h e c o m p l e x i t y o f t h i s p r o f i l e , two
p i e c e w i s e - l i n e a r approximations were u s e d . The p u r p o s e of
i n v e s t i g a t i n g b o t h a p p r o x i m a t i o n s is t o d e t e r m i n e t h e
r e l a t i o n s h i p between modeled t e r r a i n v a r i a t i o n and t h e l o c a l
s u r f a c e roughness parameter. The f i r s t a p p r o x i m a t i o n ,
c o n s i s t i n g of 17 edges, i s shown by t h e d o t t e d l i n e i n
F i g u r e 4-62. T h i s model d e f i n e s more a c c u r a t e l y t h e t e r r a i n
p r o f i l e , hence, a roughness p a r a m e t e r of 9 i n c h e s is used.
P4eas:ired and GTD modeled d a t a f o r t h e 17 edge p r o f i l e are
givan iz P i g u r e 4-63 through F i g u r e 4-69. A s s e e n i n t h e s e
f i g u r e s , evidence o f e x c e s s i v e v e r t i c a l l o b i n g i s observed
f o r f r e q u e n c i e s above 410 MHz.
A l e s s - a c c u r a t e l y d e f i n e d l i n e a r i z e d p r o f i l e f o r t h e same
p a t h i s shown i n F i g u r e 4-70. S i n c e t h i s modeled p r o f i l e
h a s a g r e a t e r v a r i a t i o n w i t h r e s p e c t t o t h e a c t u a l p r o f i l e
t h a n t h e 17 edge approximation, a l o c a l t e r r a i n roughness
f a c t o r of 2 meter is u s e d . GTD modeled and measured d a t a f o r
t h i s l i n e a r i z e d p r o f i l e are p r e s e n t e d i n F i g u r e s 4-71
through 4-77. These f i g u r e s show GTD e s t i m a t e d p a t h l o s s and
v e r t i c a l l o b i n g are i n c l o s e r a g r e e m e n t s w i t h t h e measured
d a t a t h a n p r e v i o u s model employing s m a l l e r s u r f a c e roughness
f a c t o r , e s p e c i a l l y a t f r e q u e n c i e s o f 751 MHz and above.
An important o b s e r v a t i o n is p r o v i d e d by t h e s i m p l e two-
p r o f i l e i n v e s t i g a t i o n presented above. The accuracy o f t h e
GTD model does n o t s o l e l y depend on t h e accuracy o f t h e
i n p u t l i n e a r i z e d t e r r a i n p r o f i l e ; some combinations of
p r o f i l e d e f i n i t i o n and l o c a l s u r f a c e roughness f a c t o r a r e
necessary f o r model accuracy. The r u l e s f o r d e t e r m i n i n g what
combination c o n s t i t u t e s a n optimum combination would r e q u i r e
a n in-depth s t u d y which is beyond t h e scope of t h e
f e a s i b i l i t y s t u d y o f f e r e d i n t h i s t h e s i s .
u
D - a
E:
..I m
3 d' .r(
-4
a 5' 4J
U O C
Q a D
k I .r(
rl 0)
* d C
m
0
X
9
X 0
X .
X 0
X .
X .
X .
 X .
X .
X .
X 0
e
'--T+-00'001- 0 0 0 t r - 0 0 . 0 ~ i - 00*06i i- r n o o e i -
(80) SSQl Hltfd
'8 a
rl d
Q ) a Q)
a Q) a
2 9 gcn
C l a m
B Q ) E
U X H
X
s - . :  , L - -A:!M*M:- w-oti- 00-ozi- oo-osi- oo'mi- oo-ost- oo-wi- o o * o ~ i - m*oet--
(901SSBl Hltfd
(I)
(I)
aJ
C
J2
a9)
rl
2rl
aJ
$ % a
O k O
z ; x
C l a m
B a l E
U E H
9- P a t h TI-50-TI (52.5 Km., L i n e of S i & t )
The t e r r a i n p r o f i l e , a l o n g w i t h l i n e a r i z e d model are
g i v e n i n F i g u r e 4-78. As can b e s e e n , t h e p a t h is unblocked
and a t o t a l o f of f i v e edges a r e u s e d i n t h e l i n e a r
approximation, w i t h a modeled s u r f a c e roughness f a c t o r of 2
meters.
Measured and modeled d a t a a r e shown i n F i g u r e s 4-79
through 4-84. GTD modeled r e s u l t s do n o t show t h e d e g r e e of
v e r t i c a l l o b i n g as is e v i d e n t i n t h e measured d a t a . The
r e a s o n may b e due t o an e x c e s s i v e l o c a l s u r f a c e roughness
parameter a n d / o r improper placement of t e r r a i n p r o f i l e
edges. S i n c e t h e p r o f i l e does n o t c o n s i s t d i f f r a c t i v e edge,
t h e l i m i t o f GTD model's c a p a b i l i t y i n p r e d i c t i n g l o n g p a t h s
cannot be determined.
I $
i'"
8 X
- +--y-t---oo.oo:- on-o~i- oo-oai- no-ori- &*mi- oo*osi- ^oo-wt- OOOLI-
(001SSOl Hltfd
0
0
j4
tl%g
0 .
C
x
X 8
i""
+--Ft- -
i'JsooWoor- w otr- w-ozi- on*oei- OO-mi-w b * ~ ~ i -m-osi- OO*OL~- on*o~r-~
[aa) S S Q ~H L U ~
;s
f-;
1 -i soo*w!- o o * o ~ i - oo*ozi- w*ori- oo-mi- %-mi- oo-ow- ooocr- ~ * o s r - ~
(001SSQ1 Hltfd
4J
g - a
0
0
X
X
X
T"
X
I
X
X
X
X 0
X
X
X
X
X 0
X
x a
X e
X a
x a
X
x a
x a
x a
X
i""
X
- " . Y
m.oor- watt- ao=ozi- oagoci- m*lai- w-mi- w-OQI- an-o~i-
(801SSQl Hltfd
10. P a t h R3-80-T3 (80 Km., L i n e of S i g h t )
The t e r r a i n p r o f i l e f o r t h i s l o n g p a t h i s shown i n F i g u r e
4-86. Again, t h e p a t h is w i t h i n l i n e of s i g h t . c o n s i s t s no
n a j o r d i f f r a c t i v e edges, The l i n e a r approximation f o r GTD
i n p u t u s e s 12 edges as i s shown i n t h e Figure.
The measured and modeled d a t a a r e o f f e r e d i n F i g u r e s 4-86
through 4-91. GTD modeled d a t a h a s a b i a s e d e r r o r on a l l
f r e q u e n c i e s , perhaps due t o t r o p o s p h e r i c e f f e c t s not
considered by t h e computer model; t h u s t h i s f r e e - s p a c e l o s s
e s t i m a t e does n o t appear u n r e a i i s t i c . iiowever, i t shouid be
noted t h a t t h i s p a t h can not c o n c l u s i v e l y determine GTD
a o d e l performance l i m i t s due t o t r o p o s p h e r i c e f f e c t s n o t
b e i n g t a k e n i n t o account by t h e model. A more
r e p r e s e n t a t i v e e v a l u a t i o n of GTD model f o r l o n g e r ~ a t h s
would be provided by a p a t h c o n t a i n i n g pronuounced
d i f f r a c t i v e edges; u n f o r t u n a t e l y , such a p a t h i s n o t g i v e n
i n McQuate, e t . a l .
0
x
X
X
X
X
X
X
X
X
X
X
x
X
X
X
X
X
X
X
X
X
X
X
I""
X
- Y 1 + '
00-oor- 00-011- oo-ozi- oo.osi- ao-mi- w0osr- wmosi- OO*OL~-
(00)SSOl Hltfd
> a &
d a,
V) .rl 4J
c n u u
0 8 -4
d
5C
S k ,( d O k
Q ' H h
1 1 . P a t h R2-120-TI ( 1 1 5 km., L i n e of S i g h t )
A s s e e n i n F i g u r e 4-92, t h i s t e r r a i n p r o f i l e is t h e
l o n g e s t i n v e s t i g a t e d i n t h i s t h e s i s . Again, i t does n o t
i n c l u d e any d i f f r a c t i v e edges, s o t h a t t h e p o t e n t i a l
performance of GTD on l o n g p a t h s can n o t b e e v a l u a t e d .
Measured and GTD modeled d a t a f o r t h i s p a t h are shown i n
F i g u r e 4-93 t h r o u g h 4-95. GTD modeled d a t a shows
u n r e a l i s t i c a l l y large v e r t i c a l l o b i n g , which a l t h o u g h can be
decreased by r a i s i n g t h e s u r f a c e roughness f a c t o r , t h e b i a s
e r r o r between measured and modeled r e s u l t s as e x i s t e d i n the
p r e v i o u s model w i l l n o t d e c r e a s e . T h i s b i a s e r r o r i s a g a i n
considered t o be due t o t r o p o s p h e r i c e f f e c t . Higher
f r e q u e n c i e s d a t a a r e n o t a v a i l a b l e from t h e McQuatels and
hence comparisons cannot be made.
aal
a
4
al
4
. a aJ
a al a
a g a
a a v )
B a J B
U x H
V RECOMMENDATIONS
While undergoing t h e GTD model performance e v a l u a t i o n on
propagation p a t h l o s s , c e r t a i n s u g g e s t i o n s and o b s e r v a t i o n s
l e d t o t h e f o l l o w i n g recommendations.
1 . The t e r r a i n l i n e a r i z a t i o n p r o c e s s s h o u l d be c a l c u l a t e d
a n a l y t i c a l l y by computer a l g o r i t h m t o determine t h e a c t u a l
mechanism of s c a t t e r i n g from t h e t e r r a i n edges, and hence
e l i m i n a t e t h e p r e s e n t u s e r dependent f a c t o r .
2. The v a l u e of l o c a l t e r r a i n roughness f a c t o r s h o u l d b e
obtained by t h e a c t u a l g a u s s i a n a v e r a g e o f t h e t e r r a i n
i r r e g u l a r i t i e s i n a d d i t i o n t o t h e two v a l u e s b e i n g chosen
i n t h i s t h e s i s . However, i f i r r e g u l a r i t i e s vary g r o s s l y
over d i f f e r e n t p a t h segments, GTD model s h o u l d be c a p a b l e t o
a s s i g n v a r i a b l e v a l u e s t o d i f f e r e n t edge segments.
3. GTD model does n o t i n c l u d e t h e e f f e c t s o f f o r e s t e d
a r e a s i n p r e d i c t i n g p a t h l o s s a l t h o u g h i t h a s been
demonstrated t h a t t h e s e e f f e c t s can be e s t i m a t e d a c c u r a t e l y
1191. Consequently, GTD model s h o u l d be modified t o i n c l u d e
t h e known e f f e c t s of f o r e s t e d a r e a s .
4. I n t h i s s t u d y , o n l y t h e h o r i z o n t a l p o l a r i z e d f i e l d was
i n v e s t i g a t e d . S i m i l i a r s t u d i e s s h o u l d b e u n d e r t a k e n f o r
v e r t i c a l and c i r c u l a r p o l a r i z e d wave s o as t o expose f u r t h e r
c a p a b i l i t i e s of t h e GTD model.
5. A s p r e s e n t l y c o n f i g u r e d , G T D model c a n o n l y c a l c u l a t e
d i f f r a c t i v e edges t h a t a r e p e r p e n d i c u l a r t o t h e p r o p a g a t i o n
p a t h . M o d i f i c a t i o n of GTD model t o a c c o u n t f o r d i f f r a c t i o n
from obliquely-angled edges would improve p r e d i c t i o n
a c c u r a c y f o r c e r t a i n p r o f i l e s .
6. E f f e c t s of t r o p o s p h e r e s u c h as: r e f r a c t i o n ( b e n d i n g )
o f wave by nonhomogeneous atmosphere; a b s o r b t i o n by oxygen
and water vapor molecules, a b s o r b t i o n and s c a t t e r i n g b y
p r e c i p i t a t i o n o f c l o u d s t h a t a r e n o t i n c l u d e d a t p r e s e n t
s h o u l d be implemented i n f u t u r e work.
V I C o n c l u s i o n
A computer model h a s b e e n d e v e l o p e d t o e s t i m a t e
e l e c t r o m a g n e t i c wave p r o p a g a t i o n o v e r i r r e g u l a r t e r r a i n
u s i n g t h e G e o m e t r i c a l Theory o f D i f f r a c t i o n (GTD) m o d i f i e d
t o a c c o u n t f o r f i n i t e c o n d u c t i v i t y and l o c a l g r o u n d s u r f a c e
r o u g h n e s s . Based upon comparisons of GTD modeled d a t a w i t h
measured d a t a , t h e f o l l o w i n g c o n c l u s i o n s a r e o f f e r e d :
1 . GTD p r o v i d e s a c c u r a t e p r e d i c t i o n c a p a b i l i t i e s f o r
i r r e g u l a r t e r r a i n w i t h p a t h l e n g t h s from 0.5 t o 80 Km., a t
s e v e n f r e q u e n c i e s i n t h e 230- t o 9200- MHz r a n g e ; b o t h
w i t h i n and beyond l i n e of s i g h t p a t h s f o r h o r i z o n t a l l y -
p o l a r i z e d wave.
2. The m o d i f i e d d i f f r a c t i o n c o e f f i c i e n t used t o a c c o u n t
f o r f i n i t e c o n d u c t i v i t y and l o c a l s u r f a c e r o u g h n e s s does n o t
a f f e c t f i e l d c o n t i n u i t y a t and n e a r t h e v i c i n i t y o f t h e
shadow and r e f l e c t i o n b o u n d a r i e s .
3. The p r e s e n c e of d o u b l e d i f f r a c t e d e d g e s w i t h i n t h e
f i e l d t r a n s i t i o n r e g i o n c a u s e d minor f i e l d d i s c o n t i n u i t i e s ,
a l t h o u g h t h e s e e f f e c t s are n o t c o n s i d e r e d d e t r e m e n t a l t o
p r e d i c t i o n a c c u r a c y .
4. G T D a c c u r a c y depends upon on a n o p t i m i z e d c o m b i n a t i o n
o f b o t h t h e l o c a l s u r f a c e r o u g h n e s s p a r a m e t e r and t h e
p i e c e w i s e - l i n e a r i z e d t e r r a i n d a t a .
5. GTD a c c u r a c y d e c r e a s e s f o r l o n g e r p a t h s i n v e s t i g a t e d ,
a p p a r e n t l y due t o t r o p o s p h e r i c a t t e n u a t i o n e f f e c t s not
accounted f o r by t h e model.
b . T h e v a l u e of t h e l o c a l s u r f a c e roughness f a c t o r
n e c e s s a r y f o r r e a l i s t i c v e r t i c a l l o b e e s t i m a t e s t e n d s t o
i n c r e a s e w i t h p a t h l e n g t h , and t h u s t h e s i z e of t h e F r e s n e l
Zone.
V I1 ACKNOWLEDGEMENTS
The a u t h o r is i n d e b t e d t o h i s a d v i s o r Dr. Kent Chamberlin
who g e n e r o u s l y gave h i s t i m e , e n d l e s s p a t i e n c e , a n d g u i d a n c e
d u r i n g t h i s e f f o r t .
S p e c i a l g r a t i t u d e is due t o Dr. R.J. Luebbers and D r .
V i c h a t e Unguichian, who developed t h e b a s i c GTD model.
Thanks a l s o t o Wong Sheung Shun f o r t e c h n i c a l drawings.
VIII REFERENCE
11 1 Sommerfeld, A . "Mathematische Theorie d e r D i f f r a k t i o n , "
Math. Ann., vol. 47, pp. 317-374, 1896.
121 K e l l e r , J. B., "The Geometrical Theory o f D i f f r a c t i o n , "
Symposium on Microwave O p t i c s , McGill U n i v e r s i t y ,
Montreal, Canada; June 1953.
L3J K e l l e r , J. B., " The Geometrical Theory o f D i f f r a c t i o n . "
i n The C a l c u l u s of V a r i a t i o n s --and Its ~ ~ ~ l i c a t i o n s ,
McGraw H i l l Book cK, I n c . , New York, N.Y., 1958.
141 K e l l e r , J. B , "Geometrical Theory o f D i f f r a c t i o n , " J.
Opt. Soc. Am., 52, pp.116-130, February 1962.
151 Robert C . Hansen, E d i t o r , "Geometric Theory of
D i f f r a c t i o n , " IEEE P r e s s , New York, N.Y., 1981.
. - , ---I ? ! "!'"a- J -------7 Pi., t'An Asymptotic S o l u t i o n of Maxwell's
Zquations" published i n "The Theory o f Electromagnetic- *
Naves, " a Symposium, I n t e r s c i e n c e h b l i s h e r s , I n c . , New--
+,-- 3 . 1 1 . See a l s o M. KLi2e, "Electromagnetic
2hzo.q and Geometerical O p t i c s , " p u b l i s h e d i n
"Electromagnetic Waves" by L.E. Langer; U n i v e r i s t y o f
i J 4n l u b v l L u ; L rm n nv,n -m P r e s s , Madison; 1962.
i 7 j Weeks, W.L., "Antenna EngineeringH, McGraw-Hi 11
P u b l i s h i n g Company LTD, New York, N.Y., pp 39-40, 1968.
131 K e l l e r , J. B . , "Geometrical Theory of D i f f r a c t i o n " J .
Opt. Soc. Amer., v o l . 52, pp. 116-130.
131 I b i d . , Robert C . Hansen, pp. 83-218.
L101 Kouyoumjian, R. G . , "A Uniform Geometrical Theory o f
D i f f r a c t i o n f o r an Edge i n a P e r f e c t l y Conducting
S u r f a c e " , Proc. IEE, v o l . 62, pp. 1448-1461, Nov. 1974.
Ll 11 Beckmann, P. and S p i z z i c h i n o , A . The S c a t t e r i n 6 of
E l e c t r o m a g n e t i c Waves from Rough S u r f a c e s , P e r g a m z
P r e s s , New York, 1963,Chapter 12.
1121 Larson, H. and Shubert. B . , P r o b a b i l i s t i c Models i n
E n g i n e e r i n g S c i e n c e s , v o l 1 , John Wiley & ~ o n n c . ,
New York, pp 358, 1979.
L13j I b i d . , Bechmann, P. and S p i z z i c h i n o , A . S e c t . 5.3.
114J Rayleigh, Lord, "On The L i g h t Dispersed from F i n e L i n e s
Ruled upon R e f l e c t i n g S u r f a c e s o r Transmitted by Very
Narrow S l i t s , " P h i l . Mag. 1 4 , pp. 350-359, 1907.
1151 Rojas-Teran, R. G . , and Burnside, W. D . , "GTD A n a l y s i s
o f Airborne Antenna i n t h e Presence of Lossy D i e l e c t r i c
Layers", Ohio S t a t e U n i v e r s i t y E l e c t r o - S c i e n c e
Laboratory Report.
1161 McQuate, P. L. e t a l , "Tabulations of P r o p a g a t i o n Data
o v e r I r r e g u l a r T e r r a i n i n t h e 230-920OMHz Fr equency
Range", ESSA Report ERL-65-ITS-58, U. S. Department of
Commerce, March 1968.
1171 Longley, A. G. and R i c e , P. L. " P r e d i c t i o n of
Tropospheric Radio Transmission Loss Over I r r e g u l a r
T e r r a i n " , ESSA Report ERL79-ITS-67, U.S. Department of
Commerce, 1968.
1181 R i c e , P. L. e t a l , "Transmission Loss P r e d i c t i o n s f o r
Tropospheric Communication C i r c u i t s " , Volume I , Report
AD-687-820, U. S. Department of Commerce, J a n u a r y , 1967.
1131 Chamberlin, K. A . " I n v e s t i g a t i o n and Development of VHF
Ground-Air Propagation Nodeling INncluding t h e
A t t e n u a t i n g E f f e c t s of F o r e s t e d Areas f o r Within-Line-
of-Sight Propagation Paths", Ohio U n i v e r s i t y Avionics
Engineering C e n t e r , March 1982.
X Appendix
A . D i f f r a c t i o n C o e f f i c i e n t Boundaries C o n t i n u i t y Checks
S e v e r a l c r i t i c a l b o u n d a r i e s c o n t i n u i t y c h e c k s f o r
d i f f e r e n t r a y t y p e s have b e e n d e v i s e d t o e n s u r e t h a t t h e
modified d i f f r a c t i o n c o e f f i c i e n t does not v i o l a t e t h e b a s i c
t h e o r y of t h e GTD fundamentals. I n t o t a l , t h r e e s e t s of
edges a r e s t u d i e d ; t h e y a r e : a t t h e shadow boundary f o r a
s i n g l y - d i f f r a c t e d r a y geometry; a t t h e r e f l e c t i o n boundary
f o r a d i r e c t , s i n g l y - r e f l e c t e d and s i n g l y - d i f f r a c t e d r a y ;
and at t n e r e f l e c t i o n boundar~?J A d -F n r t w s c a s e s i n v o l v i n g
higher-order r a y s .
V e r i f i c a t i o n of f i e l d c o n t i n u i t y at t h o s e b o u n d a r i e s f o r
lower-order ray t y p e s and as w e l l as h i g h e r - o r d e r r a y t y p e s
a r e considered s u f f i c i e n t proof o f p r o p e r GTD o p e r a t i o n .
Both t h e h o r i z o n t a l and v e r t i c a l f i e l d p o l a r i z a t i o n a r e
i n v e s t i g a t e d i n t h e s e checks. I n a d d i t i o n , c o n t i n u i t y check
a r e c a r r i e d o u t i n p e r f e c t c o n d u c t i v i t y f o r t h e same p r o f i l e
which r e p r e s e n t t h e GTD model b e f o r e i t is modified s o as t o
p r o v i d e a b a s e l i n e i n f o r m a t i o n . A a o r e d e t a i l e d e x p l a n a t i o n
o f each o f t h e f i e l d c o n t i n u i t y check o p e r a t i o n a r e i n c l u d e d
i n t h e i r c o r r e s p o n d i n g s e c t i o n .
1 . R e f l e c t i o n Boundary Check
The geometry used f o r s i n g l y d i f f r a c t e d r a y c o n t i n u i t y
check a t r e f l e c t i o n boundary i s shown i n F i g u r e A-1 . The
p r o f i l e , which c o n s i s t s o f a t r a n s m i t t i n g a n t e n n a r a d i a t i n g
o v e r t h e h o r i z o n t a l ground p l a n e i s t r u n c a t e d a t 13 meter
t o c r e a t e a r e f l e c t i o n boundary. The r e c e i v i n g a n t e n n a i s
allowed t o e l e v a t e from 1 meter t o 81 meter h e i g h t and i s
l o c a t e d at t h e v e r t i c a l c o o r d i n a t e . Three r a y t y p e s e x i s t :
d i r e c t r a y , s i n g l y r e f l e c t e d r a y and s i n g l e d i f f r a c t e d r a y ;
and s i n c e by t h e s p e c i a l c o n f i g u r a t i o n of t h i s edge, o t h e r
r a y t y p e s ' e x i s t e n c e is r u l e d o u t o v e r t h e e n t i r e r e c e i v i n g
a n t e n n a h e i g h t range. The r e f l e G i o n -:a7=dsA7, , i s l i n e d by
t h e p o i n t at which t h e r e f l e c t e d r a y v a n i s h e s , o c c u r s at 1 1
meters of t h e a n t e n n a h e i g h t f o r t h e geometry shown.
The purpose of r e f l e c t i o n boundary c o n t i n u i t y check i s t o
e n s u r e a p r o p e r e l e c t r i c f i e l d t r a n s i t i o n a t t h e r e f l e c t i o n
boundary when t h e r e f l e c t i o n r a y v a n i s h e s . S i n c e f i e l d
i n t e n s i t y d e c r e a s e s , t h e d i f f r a c t e d r a y s h o u l d r i s e i n
amplitude t o compensate t h e l o s s of r e f l e c t e d r a y s o t h a t
f i e l d c o n t i n u i t y would be p r e s e r v e d . The d i f f r a c t e d ray
a l s o p r o v i d e s f i e l d v a l u e a t t h e shadow r e g i o n . Any a b r u p t
changes at t h e boundary i n d i c a t e s t h a t a n e r r o r i n t h e
d i f f r a c t e d f i e l d c a l c u l a t i o n h a s occured.
'dith t h e above f a c t s , r e f e r t o F i g u r e A-2 which is a p l o t
of t h e GTD e s t i m a t e d p a t h l o s s f o r t h e geometry of F i g u r e
A-1 assuming p e r f e c t c o n d u c t i v i t y . A s s e e n i n t h i s F i g u r e ,
c a l c u l a t e d f i e l d s a r e continuous at t h e r e f l e c t ion boundary
as is expected, because GTD model o p e r a t e s a c c o r d i n g t o t h e
conventional GTD b e f o r e modification.
The f i n i t e c o n d u c t i v i t y p a t h l o s s f o r a s i n g l y r e f l e c t e d
r a y o f t h e same geometry i s p l o t t e d on F i g u r e A-3, w i t h t h e
ground e l e c t r i c c o n s t a n t s i n d i c a t e d i n t h e Figure. S i n c e
o n l y t h e s i n g l y r e f l e c t e d ray e x i s t s t h e f i e l d d i s a p p e a r s
below t h e r e f l e c t i o n boundary a t 1 1 meter r e c e i v e r antenna
h e i g h t . F i e l d c o n t r i b u t i o n below t h e r e f l e c t i o n boundary i s
provided by t h e d i f f r a c t e d and d i r e c t rays. F i g u r e A-4 shows
t h i s c o n t r i b u t i o n i n t h e f i n i t e c o n d u c t i v i t y c a s e . And a l s o
can be seen i n t h e Figure, t h e f i e l d t r a n s i t i o n i s smooth
a c r o s s t h e r e f l e c t i o n boundary. The v e r t i c a l p o l a r i z a t i o n
r a y s u f f e r s a higher l o s s t h a n t h e p e r f e c t c o n d u c t i v i t y
c a s e ; and t h e h o r i z o n t a l p o l a r i z a t i o n f i e l d v a l u e f o r t h e
f i n i t e c o n d u c t i v i t y c a s e i s e s s e n t i a l l y unchanged from t h e
p e r f e c t c o n d u c t i v i t y case of F i g u r e A-2. The smooth f i e l d
t r a n s i t ion a c r o s s t h e r e f l e c t i o n boundary v e r i f i e s t h e GTD
r e f l e c t i o n boundary o p e r a t i o n f o r lower o r d e r r a y s .
2. Shadow Boundary Check
The purpose o f t h i s shadow boundary c o n t i n u i t y check is
t o e n s u r e t h a t f i e l d c o n t i n u i t y i s p r e s e r v e d a t t h e shadow
boundary s o t h a t GTD fundamental i s n o t v i o l a t e d . The
t e s t i n g i n v o l v e s s i n g l y d i f f r a c t e d r a y and d i r e c t r a y . The
p r o f i l e geometry employed is shown i n F i g u r e A-5.
A s one c a n s e e from t h e f i g u r e , t h e t r a n s m i t t i n g a n t e n n a
i s l o c a t e d a t t h e right-hand end of t h e two p l a t e s t h a t
c o n s t i t u t e t h e p r o f i l e , whereas t h e r e c e i v i n g a n t e n n a is
l o c a t e d st zne p c o o r d i n a t e as b e f o r e , b e i n g c a p a j l e o f
e l e v a t e d from one meters h e i g h t through twenty-f i v e meter.
S i n c e the t r m i t t i x & ~ t e n n a h e i g h t is t h e s a n e as t h e
peak ~f the p r o f i l e , t h e shadow boundary becomes a s t r a i g h t
h o r i z o n t a l l i n e e x t e n d i n g from t h e peak t o t h e r e c e i v i n g
a n t e n n a o r d i n a t e at 15 meter. The e x i s t e n c e of o t h e r r a y
t y p e s a r e n o t p o s s i b l e i n t h i s g e o m e t r i c a l c o n f i g u r a t i o n , as
t h e r e f l e c t e d r a y from t h e t r a n s m i t t i n g a n t e n n a o n t h e two
p l a t e s w i l l t r a v e l o u t s i d e t h e r a n g e of t h e r e c e i v i n g
antenna. A s a r e s u l t , i n t e r f e r e n c e from r a y s o t h e r t h a n t h e
s i n g l y d i f f r a c t e d and d i r e c t ones does not e x i s t .
The c a s e f o r p e r f e c t c o n d u c t i v i t y e d g e s which r e p r e s e n t s
GTD r e s u l t s b e f o r e m o d i f i c a t i o n is p r e s e n t e d f i r s t . F i g u r e
A-6 is a p l o t of r e c e i v e r a n t e n n a h e i g h t v e r s u s p a t h l o s s
t h e s i n g l y d i f f r a c t e d r a y . As e v i d e n t from t h e f i g u r e ,
f i e l d d i s c o n t i n u i t y o c c u r s f o r b o t h p o l a r i z a t i o n s at t h e
shadow boundary. T h i s is caused by t h e d i s a p p e a r a n c e of t h e
d i r e c t ray a t t h e boundary. Thus, by t h e a d d i t i o n o f t h e
d i r e c t r a y s , c o n t i n u i t y i s a g a i n presvered a c r o s s t h e shadow
boundary as s e e n i n t h e p l o t o f F i g u r e A-7 f o r t h e p e r f e c t l y
conducting case.
F i n i t e c o n d u c t i v i t y p l o t of p a t h l o s s f o r t h e geometry o f
F i g u r e A-5 is shown on F i g u r e A-7. Again, as i n t h e p r e v i o u s
c a s e o f p e r f e c t l y conducting edges d i f f r a c t e d r a y ,
d i s c o n t i n u i t y o c c u r s at t h e shadow boundary due t o t h e
disapperance of t h e d i r e c t r a y . Refering t o F i g u r e A-9,
which p l o t s t h e t o t a l f i e l d c o n t r i b u t i o n s o f t h e d i f f r a c t e d
and a l s o t h e d i r e c t r a y , it is s e e n t h a t t h e f i e l d
c o n t i n u i t y i s win p s s z n e r l z% t h e shadow, p r o v i n g t h a t
t h e modified d i f f r a c t i o n c o e f f i c i e n t is performing i n a
f a s h i o n c o n s i s t a n t with GTD.
3. R e f l e c t i o n Boundary check f o r Higher-order r a y s
The geometry used f o r t h i s t e s t i s shown on F i g u r e A-10,
which c o n s i s t s of seven edges. The r e f l e c t i o n boundary f o r
t h e r e f l e c t e d - d i f f r a c t e d - d i f f r a c t ed ray and r e f l e c t e d -
d i f f r a c t e d - r e f l e c t e d ray i s l o c a t e d a t 1 1 meter of t h e
r e c e i v i n g antenna height. The purpose of t h i s t e s t is t o
check t h a t lower-order r a y s and higher-order r a y s compensate
each another t o preserve f i e l d 1 c o n t i n u i t y a t r e f l e c t i o n
boundary.
Assuming p e r f e c t con&uc-tivity edges, F i g u r e A-l l &ws a
p l o t of t h e p a t h l o s s f o r t h e r e f l e c t e d - d i f f r a c t e d - r e f l e c t e d
and r e f l e c t e d - d i f f r a c t e d - d i f f r a c t e d r a y s as t h e r e c e i v i n g
antenna moves from t h e shadow r e g i o n t o t h e l i t e r e g i o n . P_
f i e l d d i s c o n t i n u i t y i n excess of 18 db can be observed a t
t h e r e f l e c t i o n boundary. This i s due t o t h e f a c t t h a t lower
o r d e r r a y s a r e absented ( i . e . d i f f r a c t e d - r e f l e c t e d ,
d i f f r a c t e d , o r s i n g l y d i f f r a c t e d ) t o compensate t h e higher-
o r d e r r e f l e c t e d ray l o s s e s at t h e boundary. T o t a l path l o s s
f o r t h e geometry of F i g u r e A-10 i s p l o t t e d i n F i g u r e A-12
f o r t h e p e r f e c t c o n d u c t i v i t y c a s e ; and as expected, f i e l d i s
again continuous w i t h t h e a d d i t i o n of lower-ordered ray
t y p e s although t h e i n t e n s i t y is rapidly-varying due t o t h e
number of r a y s i n t e r a c t i n g i n t h e v i n c i n i t y o f t h e boundary
and t h e i r r e l a t i v e l y s t r o n g l e v e l because o f p e r f e c t
conductivity.
P a t h l o s s v e r s u s r e c e i v i n g a n t e n n a h e i g h t f o r t h e
f i n i t e l y c o n d u c t i n g edges f o r t h e r e f l e c t e d - d i f f r a c t ed-
r e f l e c t e d r a y and t h e r e f l e c t e d - d i f f r a c t e d d i f f r a c t e d r a y i s
p l o t t e d on F i g u r e A-13. Again, more t h a n 2 3 db of f i e l d
d i s c o n t i n u i t i e s can be observed a t t h e r e f l e c t ion boundary
a t 11 meters. The r e a s o n t h a t t h i s f i g u r e is h i g h e r t h a n t h e
18 db i n t h e p e r f e c t l y conducting edges is because f i e l d s
are f u r t h e r a t t e n u a t e d by f i n i t e c o n d u c t i v i t y edges.
T o t a l p a t h l o s s e s with t h e c o n t r i b u t i o n s of a l l e x i s t i n g r a y
t y p e s is shown i n F i g u r e A-14, assuming t h e same ground
e l e c t r i c a l p r o p e r t i e s as b e f o r e . Once a g a i n , t h e f i e i d
c o n t i n u i t y i s p r e s e r v e d a t t h e r e f l e c t i o n boundary a t 1 1
meter, which s u f f i c i e n t l y i n d i c a t e s t h a t t h e modified GTD
t h e o r y i n t h e higher and lower ray t y p e s combinations is
k e p t .
B. Modeled P a t h P r o f i l e
A l l t h e t e r r a i n p r o f i l e s i n p u t d a t a i n v e s t i g a t e d i n t h i s
t h e s i s a r e g i v e n i n t h i s s e c t i o n . These d a t a a r e i n t h e
o r i g i n a l form b e i n g read i n by t h e GTD model t o g e n e r a t e t h e
c a l c u l a t e d p a t h l o s s i n d e c i b e l s , which were s u b s e q u e n t l y
p l o t t e d v e r s u s r e c e i v i n g a n t e n n a h e i g h t . F i r s t , a n
e x p l a i n a t i o n of t h e i n p u t d a t a format and its f u n c t i o n t o
t h e GTD model is given. It is t h e n followed by t h e t e r r a i n
p r o f i l e f i l e s .
A t y p i c a l i n p u t d a t a f i l e w i l l l o o k l i k e t h e f o l l o w i n g :
NE, ICON, YMIN, YMAX, EPSIR, SIGMA, DELTAG
XN YN ZN
FREQ1
--> RAY-TYPE CONTRGL PARAMZTERS
Where
H E , ( 1 5 )
I C O N , ( 1 5 )
ICON = 1
ICON = 0
YMIN, ( F I O . 5 )
YMAX, ( F 1 0 . 5 )
E P S I R , ( F 1 0 . 5 )
SIGMA, ( F 1 0 . 5 )
DELTAG, ( F 1 0 . 5 )
number of edges
i n f o r m a t i o n o u t p u t c o n t r o l
d e t a i l e d p r i n t o u t
b r i e f o u t p u t summary
min db v a l u e of p l o t a x i s
max db v a l u e of p l o t a x i s
r e l a t i v e p e r m i t t i v i t y o f ground
ground c o n d u c t i v i t y i n MHO/METER
s u r f a c e roughness f a c t o r i n meter
Second r e c o r d t o t h e n-th record: X , Y , Z c o o r d i n a t e of t h e
edge i n 32'10.5 format, where n is equal t o N E (no. o f
e d g e s ) , i n t h e p r e v i o u s r e c o r d .
Ray-type c o n t r o l parameters (Format = 1 3 1 1 )
J D I R DIRECT RAY
J R E F SINGLY REFLECTED RAY
J R R REFLECTED-REFLECTED RAY
J R D REFLECTED-D IFFRACTED RAY
J R R D REFLECTED-REFLECTED-DIFFRACTED RAY
J R D R REFLECTED-D IFFRACTED-REFLECTED RAY
J D I R SINGLY DIFFRACTED RAY
J D R DIFFRACTED-REFLECTED RAY
JDRD DIFFRACTED-REFLECTED-D IFFRACTED RAY
J D D DOUBLY-D IFFRACT ED RAY
J D D R DIFFRACTED-D IFFRACTED-REFLECTED RAY
JDRR DIFFRACTED-REFLECTED-REFLECT ED RAY
J R D D REFLECTED-D IFFRACTED-DIFFRACTED RAY
If any of t h e above parameter is b e i n g s e t t o 1 , t h a t
s p e c i f i c r a y t y p e is ignored d u r i n g t h e computations. Other
v a l u e s simply implied t h a t r a y t y p e is i n c l u d e d .
Frequencies i n megahertz s h o u l d be e n t e r e d i n F10.3 format.
2. L i s t i n g s of Path P r o f i l e Data
1. Path R1-0.5-T1
2. Path R 1 - 5 - T ~ A
3. Path R1-5-T5A
5. Path R1-10-T3
6. Path R1-20-TI
7. Path R1-20-T4
6 0-2 10.OOOOO -90 .00000 15.OOOOO 0.01200 2.00000
0.0 00.ooo 1589.320
0.0 8197.234 1500.574
0.0 10636.652 1542.418
0.0 13536.961 1~~3.03-j
0.0 18889.855 1566.680
0.0 20740.242 1551.000
230.0
0000000000000000
410.0
751.0
910.0
1846.0
4595.0
9190.0
9. Path R1-50-T1
11. Path R2-120-T1
11. 0-210.00000 -go.ooooo 15.00000 0.01200 0.22860
I? .? 9.0 2556.481

Más contenido relacionado

La actualidad más candente

PARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATION
PARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATIONPARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATION
PARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATIONDr. Michael Agbaje
 
SC4 Workshop 1: Helena Gellerman: data analyses in transport
SC4 Workshop 1: Helena Gellerman: data analyses in transport SC4 Workshop 1: Helena Gellerman: data analyses in transport
SC4 Workshop 1: Helena Gellerman: data analyses in transport BigData_Europe
 
Taxmann's GST Mini Ready Reckoner | July 2020
Taxmann's GST Mini Ready Reckoner | July 2020Taxmann's GST Mini Ready Reckoner | July 2020
Taxmann's GST Mini Ready Reckoner | July 2020Taxmann
 
Karasopoulos mi st smv x-40a aiaa paper
Karasopoulos   mi st smv x-40a aiaa paperKarasopoulos   mi st smv x-40a aiaa paper
Karasopoulos mi st smv x-40a aiaa paperkarasoha
 
Acute stroke imaging and intervention-dr. n khandelwal
Acute stroke  imaging and intervention-dr. n khandelwalAcute stroke  imaging and intervention-dr. n khandelwal
Acute stroke imaging and intervention-dr. n khandelwalTeleradiology Solutions
 
ATC UK 2015: Enhancing Drop Testing Simulation for Luxury Smartphones
ATC UK 2015: Enhancing Drop Testing Simulation for Luxury SmartphonesATC UK 2015: Enhancing Drop Testing Simulation for Luxury Smartphones
ATC UK 2015: Enhancing Drop Testing Simulation for Luxury SmartphonesAltair
 
Lap machine manual
Lap machine manualLap machine manual
Lap machine manualMuqthiar Ali
 
Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...
Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...
Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...ÉTAMINE STUDIOS
 
How Recruiters Actually Read Cover Letters
How Recruiters Actually Read Cover LettersHow Recruiters Actually Read Cover Letters
How Recruiters Actually Read Cover LettersJeremy Schifeling
 
Dr. Frances Elliot
Dr. Frances ElliotDr. Frances Elliot
Dr. Frances ElliotInvestnet
 
Bostater_Undergraduate_Portfolio
Bostater_Undergraduate_PortfolioBostater_Undergraduate_Portfolio
Bostater_Undergraduate_PortfolioSean Bostater
 
AUDIT TRAIL AND TRACEABLILTY OF PRODUCTS
AUDIT TRAIL AND TRACEABLILTY OF PRODUCTSAUDIT TRAIL AND TRACEABLILTY OF PRODUCTS
AUDIT TRAIL AND TRACEABLILTY OF PRODUCTSORGANIL SERVICES
 
Copywriting Social Media
Copywriting Social MediaCopywriting Social Media
Copywriting Social MediaOkina Fitto
 

La actualidad más candente (20)

PARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATION
PARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATIONPARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATION
PARASITIC COMPUTING: PROBLEMS AND ETHICAL CONSIDERATION
 
H3LP DTR V.2.0.
H3LP DTR V.2.0.H3LP DTR V.2.0.
H3LP DTR V.2.0.
 
SC4 Workshop 1: Helena Gellerman: data analyses in transport
SC4 Workshop 1: Helena Gellerman: data analyses in transport SC4 Workshop 1: Helena Gellerman: data analyses in transport
SC4 Workshop 1: Helena Gellerman: data analyses in transport
 
Hidrocarburos
HidrocarburosHidrocarburos
Hidrocarburos
 
Taxmann's GST Mini Ready Reckoner | July 2020
Taxmann's GST Mini Ready Reckoner | July 2020Taxmann's GST Mini Ready Reckoner | July 2020
Taxmann's GST Mini Ready Reckoner | July 2020
 
Karasopoulos mi st smv x-40a aiaa paper
Karasopoulos   mi st smv x-40a aiaa paperKarasopoulos   mi st smv x-40a aiaa paper
Karasopoulos mi st smv x-40a aiaa paper
 
Acute stroke imaging and intervention-dr. n khandelwal
Acute stroke  imaging and intervention-dr. n khandelwalAcute stroke  imaging and intervention-dr. n khandelwal
Acute stroke imaging and intervention-dr. n khandelwal
 
ATC UK 2015: Enhancing Drop Testing Simulation for Luxury Smartphones
ATC UK 2015: Enhancing Drop Testing Simulation for Luxury SmartphonesATC UK 2015: Enhancing Drop Testing Simulation for Luxury Smartphones
ATC UK 2015: Enhancing Drop Testing Simulation for Luxury Smartphones
 
Lap machine manual
Lap machine manualLap machine manual
Lap machine manual
 
Training developers in user research af Søeren Vinther Færch, AAU
Training developers in user research af Søeren Vinther Færch, AAUTraining developers in user research af Søeren Vinther Færch, AAU
Training developers in user research af Søeren Vinther Færch, AAU
 
Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...
Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...
Understanding Online Consumer Behavior in Fashion E-commerce by the applicati...
 
Photography Experience
Photography ExperiencePhotography Experience
Photography Experience
 
How Recruiters Actually Read Cover Letters
How Recruiters Actually Read Cover LettersHow Recruiters Actually Read Cover Letters
How Recruiters Actually Read Cover Letters
 
Dr. Frances Elliot
Dr. Frances ElliotDr. Frances Elliot
Dr. Frances Elliot
 
YIEF-2011
YIEF-2011YIEF-2011
YIEF-2011
 
Bostater_Undergraduate_Portfolio
Bostater_Undergraduate_PortfolioBostater_Undergraduate_Portfolio
Bostater_Undergraduate_Portfolio
 
AUDIT TRAIL AND TRACEABLILTY OF PRODUCTS
AUDIT TRAIL AND TRACEABLILTY OF PRODUCTSAUDIT TRAIL AND TRACEABLILTY OF PRODUCTS
AUDIT TRAIL AND TRACEABLILTY OF PRODUCTS
 
Tps tools
Tps toolsTps tools
Tps tools
 
Copywriting Social Media
Copywriting Social MediaCopywriting Social Media
Copywriting Social Media
 
L4G_2015_BROCHURE
L4G_2015_BROCHUREL4G_2015_BROCHURE
L4G_2015_BROCHURE
 

Destacado

Path loss model frin indoor wireless communication
Path loss model frin indoor wireless communicationPath loss model frin indoor wireless communication
Path loss model frin indoor wireless communicationNguyen Minh Thu
 
Pathloss determination using okumura hata model
Pathloss determination using okumura hata modelPathloss determination using okumura hata model
Pathloss determination using okumura hata modelNguyen Minh Thu
 
Baomatmang biquyetvagiaiphap chuongvi
Baomatmang biquyetvagiaiphap chuongviBaomatmang biquyetvagiaiphap chuongvi
Baomatmang biquyetvagiaiphap chuongviNguyen Minh Thu
 
Path loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communicationsPath loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communicationsNguyen Minh Thu
 
Fractura subthrochanterica femoris
Fractura subthrochanterica femoris Fractura subthrochanterica femoris
Fractura subthrochanterica femoris Nezhla Shabani
 
1206 gioi thieu iso27001 2005-b&m
1206 gioi thieu iso27001 2005-b&m1206 gioi thieu iso27001 2005-b&m
1206 gioi thieu iso27001 2005-b&mNguyen Minh Thu
 

Destacado (7)

Path loss model frin indoor wireless communication
Path loss model frin indoor wireless communicationPath loss model frin indoor wireless communication
Path loss model frin indoor wireless communication
 
Pathloss determination using okumura hata model
Pathloss determination using okumura hata modelPathloss determination using okumura hata model
Pathloss determination using okumura hata model
 
Empirical path loss
Empirical path lossEmpirical path loss
Empirical path loss
 
Baomatmang biquyetvagiaiphap chuongvi
Baomatmang biquyetvagiaiphap chuongviBaomatmang biquyetvagiaiphap chuongvi
Baomatmang biquyetvagiaiphap chuongvi
 
Path loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communicationsPath loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communications
 
Fractura subthrochanterica femoris
Fractura subthrochanterica femoris Fractura subthrochanterica femoris
Fractura subthrochanterica femoris
 
1206 gioi thieu iso27001 2005-b&m
1206 gioi thieu iso27001 2005-b&m1206 gioi thieu iso27001 2005-b&m
1206 gioi thieu iso27001 2005-b&m
 

Similar a Evaluation progresion path loss model

1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptx
1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptx1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptx
1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptxJohnLagman3
 
Rigger and Signal Person
Rigger and Signal PersonRigger and Signal Person
Rigger and Signal PersonJason Wilson
 
School Violence and student
School Violence and studentSchool Violence and student
School Violence and studentacastane
 
Running Puppet In Stand Alone Mode
Running Puppet In Stand Alone ModeRunning Puppet In Stand Alone Mode
Running Puppet In Stand Alone Modesarguru90
 
The Library As Indicator Species: Evolution, or Extinction?
The Library As Indicator Species: Evolution, or Extinction?The Library As Indicator Species: Evolution, or Extinction?
The Library As Indicator Species: Evolution, or Extinction?char booth
 
Critical reading final
Critical reading finalCritical reading final
Critical reading finalmeadows42
 
이한나 (Hanna lee) -
이한나 (Hanna lee) -이한나 (Hanna lee) -
이한나 (Hanna lee) -Phil Longwell
 
Antropometria y ergonometria
Antropometria y ergonometriaAntropometria y ergonometria
Antropometria y ergonometriaValentina Lobo
 
Ceh v8 labs module 19 cryptography
Ceh v8 labs module 19 cryptographyCeh v8 labs module 19 cryptography
Ceh v8 labs module 19 cryptographyMehrdad Jingoism
 
Maurizio_Taffone_Emerging_Security_Threats
Maurizio_Taffone_Emerging_Security_ThreatsMaurizio_Taffone_Emerging_Security_Threats
Maurizio_Taffone_Emerging_Security_ThreatsMaurizio Taffone
 
Go for it, or Bail? Learning to Ride the Hype Cycle.
Go for it, or Bail? Learning to Ride the Hype Cycle. Go for it, or Bail? Learning to Ride the Hype Cycle.
Go for it, or Bail? Learning to Ride the Hype Cycle. char booth
 
Classroom Structuring and Management.ppt
Classroom Structuring and Management.pptClassroom Structuring and Management.ppt
Classroom Structuring and Management.pptBelceZeusAsuncion1
 
Strategic Cartography: Identifying IL Intersections Across the Curriculum
Strategic Cartography: Identifying IL Intersections Across the CurriculumStrategic Cartography: Identifying IL Intersections Across the Curriculum
Strategic Cartography: Identifying IL Intersections Across the Curriculumchar booth
 
Beige Brown Minimal Organic Creative Project Presentation 2.pdf
Beige Brown Minimal Organic Creative Project Presentation 2.pdfBeige Brown Minimal Organic Creative Project Presentation 2.pdf
Beige Brown Minimal Organic Creative Project Presentation 2.pdfsugandhshrivastava17
 

Similar a Evaluation progresion path loss model (20)

Research and Development in Roof-Top Solar Potentiality Using LiDAR Technology
Research and Development in Roof-Top Solar Potentiality Using LiDAR TechnologyResearch and Development in Roof-Top Solar Potentiality Using LiDAR Technology
Research and Development in Roof-Top Solar Potentiality Using LiDAR Technology
 
1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptx
1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptx1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptx
1-SYSTEM-ANALYSIS-AND-DESIGN-INTRODUCTION.pptx
 
Rigger and Signal Person
Rigger and Signal PersonRigger and Signal Person
Rigger and Signal Person
 
School Violence and student
School Violence and studentSchool Violence and student
School Violence and student
 
Running Puppet In Stand Alone Mode
Running Puppet In Stand Alone ModeRunning Puppet In Stand Alone Mode
Running Puppet In Stand Alone Mode
 
The Library As Indicator Species: Evolution, or Extinction?
The Library As Indicator Species: Evolution, or Extinction?The Library As Indicator Species: Evolution, or Extinction?
The Library As Indicator Species: Evolution, or Extinction?
 
Critical reading final
Critical reading finalCritical reading final
Critical reading final
 
이한나 (Hanna lee) -
이한나 (Hanna lee) -이한나 (Hanna lee) -
이한나 (Hanna lee) -
 
Antropometria y ergonometria
Antropometria y ergonometriaAntropometria y ergonometria
Antropometria y ergonometria
 
Ceh v8 labs module 19 cryptography
Ceh v8 labs module 19 cryptographyCeh v8 labs module 19 cryptography
Ceh v8 labs module 19 cryptography
 
Cloud-Star V1, V2, V3.pdf
Cloud-Star V1, V2, V3.pdfCloud-Star V1, V2, V3.pdf
Cloud-Star V1, V2, V3.pdf
 
Cloud-Star V1, V2, V3.pdf
Cloud-Star V1, V2, V3.pdfCloud-Star V1, V2, V3.pdf
Cloud-Star V1, V2, V3.pdf
 
Cloud-Star.pdf
Cloud-Star.pdfCloud-Star.pdf
Cloud-Star.pdf
 
Maurizio_Taffone_Emerging_Security_Threats
Maurizio_Taffone_Emerging_Security_ThreatsMaurizio_Taffone_Emerging_Security_Threats
Maurizio_Taffone_Emerging_Security_Threats
 
Go for it, or Bail? Learning to Ride the Hype Cycle.
Go for it, or Bail? Learning to Ride the Hype Cycle. Go for it, or Bail? Learning to Ride the Hype Cycle.
Go for it, or Bail? Learning to Ride the Hype Cycle.
 
Transcripts and PC
Transcripts and PCTranscripts and PC
Transcripts and PC
 
Classroom Structuring and Management.ppt
Classroom Structuring and Management.pptClassroom Structuring and Management.ppt
Classroom Structuring and Management.ppt
 
Wiseman Martin - 20th International Nutrition Congress 2013
Wiseman Martin - 20th International Nutrition Congress 2013Wiseman Martin - 20th International Nutrition Congress 2013
Wiseman Martin - 20th International Nutrition Congress 2013
 
Strategic Cartography: Identifying IL Intersections Across the Curriculum
Strategic Cartography: Identifying IL Intersections Across the CurriculumStrategic Cartography: Identifying IL Intersections Across the Curriculum
Strategic Cartography: Identifying IL Intersections Across the Curriculum
 
Beige Brown Minimal Organic Creative Project Presentation 2.pdf
Beige Brown Minimal Organic Creative Project Presentation 2.pdfBeige Brown Minimal Organic Creative Project Presentation 2.pdf
Beige Brown Minimal Organic Creative Project Presentation 2.pdf
 

Más de Nguyen Minh Thu

Chuan an toan thong tin cho CQNN
Chuan an toan thong tin cho CQNNChuan an toan thong tin cho CQNN
Chuan an toan thong tin cho CQNNNguyen Minh Thu
 
Loi gioi thieu_bao mat mang
Loi gioi thieu_bao mat mangLoi gioi thieu_bao mat mang
Loi gioi thieu_bao mat mangNguyen Minh Thu
 
Chung thuc dien tu va chu ky dien tu
Chung thuc dien tu va chu ky dien tuChung thuc dien tu va chu ky dien tu
Chung thuc dien tu va chu ky dien tuNguyen Minh Thu
 
Propagation measurements and models for wireless channels
Propagation measurements and models for wireless channelsPropagation measurements and models for wireless channels
Propagation measurements and models for wireless channelsNguyen Minh Thu
 
Path loss models for air to-ground radio
Path loss models for air to-ground radioPath loss models for air to-ground radio
Path loss models for air to-ground radioNguyen Minh Thu
 
Path loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communicationsPath loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communicationsNguyen Minh Thu
 
Path loss modeling of mobile radio communication in urban areas
Path loss modeling of mobile radio communication in urban areasPath loss modeling of mobile radio communication in urban areas
Path loss modeling of mobile radio communication in urban areasNguyen Minh Thu
 
Path loss model for indoor communication
Path loss model for indoor communicationPath loss model for indoor communication
Path loss model for indoor communicationNguyen Minh Thu
 
Path loss exponent estimation
Path loss exponent estimationPath loss exponent estimation
Path loss exponent estimationNguyen Minh Thu
 

Más de Nguyen Minh Thu (20)

Fantastic trip
Fantastic tripFantastic trip
Fantastic trip
 
Plugin modul 1-e
Plugin modul 1-ePlugin modul 1-e
Plugin modul 1-e
 
Chuan an toan thong tin cho CQNN
Chuan an toan thong tin cho CQNNChuan an toan thong tin cho CQNN
Chuan an toan thong tin cho CQNN
 
Cac buochackserver
Cac buochackserverCac buochackserver
Cac buochackserver
 
Baomat chuongiv
Baomat chuongivBaomat chuongiv
Baomat chuongiv
 
Baomat chuongiii
Baomat chuongiiiBaomat chuongiii
Baomat chuongiii
 
Baomat chuongii
Baomat chuongiiBaomat chuongii
Baomat chuongii
 
Baomat chuongi
Baomat chuongiBaomat chuongi
Baomat chuongi
 
Loi gioi thieu_bao mat mang
Loi gioi thieu_bao mat mangLoi gioi thieu_bao mat mang
Loi gioi thieu_bao mat mang
 
Wireless security
Wireless securityWireless security
Wireless security
 
Chung thuc dien tu va chu ky dien tu
Chung thuc dien tu va chu ky dien tuChung thuc dien tu va chu ky dien tu
Chung thuc dien tu va chu ky dien tu
 
Propagation measurements and models for wireless channels
Propagation measurements and models for wireless channelsPropagation measurements and models for wireless channels
Propagation measurements and models for wireless channels
 
Plugin roelens2006
Plugin roelens2006Plugin roelens2006
Plugin roelens2006
 
Path loss prediction
Path loss predictionPath loss prediction
Path loss prediction
 
Path loss models
Path loss modelsPath loss models
Path loss models
 
Path loss models for air to-ground radio
Path loss models for air to-ground radioPath loss models for air to-ground radio
Path loss models for air to-ground radio
 
Path loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communicationsPath loss models comparation in radio mobile communications
Path loss models comparation in radio mobile communications
 
Path loss modeling of mobile radio communication in urban areas
Path loss modeling of mobile radio communication in urban areasPath loss modeling of mobile radio communication in urban areas
Path loss modeling of mobile radio communication in urban areas
 
Path loss model for indoor communication
Path loss model for indoor communicationPath loss model for indoor communication
Path loss model for indoor communication
 
Path loss exponent estimation
Path loss exponent estimationPath loss exponent estimation
Path loss exponent estimation
 

Último

Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm Systemirfanmechengr
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringJuanCarlosMorales19600
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Último (20)

Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm System
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineering
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 

Evaluation progresion path loss model

  • 1. EVALUATION OF A TERRAIN-SENSITIVE, PROPAGATION PATH LOSS MODEL BASED UPON THE GEOMETRICAL THEOKY OF DIFFRACTION, MODIFIED FOR FINITE CONDUCTIVITY AND LOCAL SURFACE HOUGHNESS: A Thesis Presented t o The F a c u l t y of t h e College of Engineering and Technology Ohio U n i v e r s i t y I n Partial F u l f i l l m e n t of t h e Requirements f o r t h e Degree Master of Science Richard Ma. November 1983
  • 2.
  • 3. I INTRODUCTION The work p r e s e n t e d i n t h i s paper was funded by S o u t h e a s t e r n Conference f o r E l e c t r i c a l Engineering Education under c o n t r a c t N60921-81-D-A191. The purpose of t h i s r e s e a r c h i s t o i n v e s t i g a t e t h e f e a s i b i l i t y of employing Geometrical Theory of D i f f r a c t i o n f o r modeling e l e c t r o m a g n e t i c wave propagat i o n path l o s s over i r r e g u l a r t e r r a i n . The GTD approach t o c a l c u l a t i n g e l e c t r o m a g n e t i c f i e l d s can be d i v i d e d i n t o two p a r t s : a g e o m e t r i c a l p r o c e s s of f i n d i n g which r a y s e x i s t and where t h e i r r e f l e c t i o n and/or d i f f r a c t i o n p o i n t s l i e , and a mathematical p r o c e s s of e v a l u a t i n g t h e magnitude and phase of t h e corresponding e l e c t r i c f i e l d at t h e r e c e i v e r l o c a t i o n by summing t h e s e r a y s . A t o t a l of f o u r t e e n d i f f e r e n t ray-types a r e considered by t h e model used i n t h i s s t u d y (e.g. d i r e c t , r e f l e c t e d , d i f f r a c t e d , r e f l e c t e d - d i f f r a c t e d , and r e f l e c t e d - r e f l e c t e d - d i f f r a c t e d ) . I n p u t parameters t o t h e model i n c l u d e a p i e c e w i s e - l i n e a r two-dimensional t e r r a i n p r o f i l e , t h e l o c a t i o n s of t h e t r a n s m i t t i n g and r e c e i v i n g antennas, frequency, d i s t a n c e s , and t h e e l e c t r i c a l c o n s t a n t s of t h e ground. S i n c e t h e GTD method i s e n t i r e l y a n a l y t i c a l , t r o p o s p h e r i c a t t e n u a t i o n e f f e c t s a r e not i n c l u d e d i n t h e model. I n p a s t , GTD h a s been used t o determine t h e Instrument Landing System ( I L s ) g l i d e s l o p e performance. For t h a t
  • 4. a p p l i c a t i o n , t h e wavelength is a p p r o x i m a t e l y I m , i n c i d e n c e a n g l e s a r e u s u a l l y n e a r g r a z i n g , and t h e f i e l d s a r e h o r i z o n t a l l y p o l a r i z e d . Under t h e s e c o n d i t i o n s , t h e ground i t s e l f is assumed t o b e a p e r f e c t c o n d u c t o r , and t h e g r o s s i r r e g u l a r i t i e s s u c h as d r o p o f f s and h i l l s a r e more i m p o r t a n t t h a n s u r f a c e roughness. However, t o p r o v i d e more meaningful r e s u l t s when e s t i m a t i n g p r o p a g a t i o n l o s s e s f o r a wide v a r i e t y o f t e r r a i n and r e c e i v e r - t r a n s m i t t e r g e o m e t r i e s , t h e i model was modified t o a c c o u n t f o r f i n i t e c o n d u c t i v i t y and l o c a l s u r f a c e roughness f o r b o t h h o r i z o n t a l and v e r t i c a l p o l a r i z a t i o n . T h i s m o d i f i c a t i o n is one of t h e c r u c i a l f a c e t s o f t h i s r e s e a r c h . Although t h e r e e x i s t o t h e r p r o p a g a t i o n p a t h l o s s models, t h e y a l l have l i m i t a t i o n s . The P h y s i c a l O p t i c s ( P O ) model, which c a l c u l a t e s t h e f i e l d s t r e n g t h by summing f i e l d s re- r a d i a t e d by ground c u r r e n t s h a s t h e d i s a d v a n t a g e of r e q u i r i n g l o n g computation t i m e . I t s performance i s a l s o l i m i t e d by f a i l i n g t o p r o v i d e a c o r r e c t f i e l d i n t e r a c t i o n between l i n e a r segments c o m p r i s i n g t h e p r o f i l e . Another model, developed by Longley-Rice, which is i n t e n d e d t o d e t e r m i n e p r o p a g a t i o n l o s s f o r p a t h s where o n l y l i m i t e d i n f o r m a t i o n d e f i n i n g t e r r a i n i s a v a i l a b l e . I n p a r t i c u l a r , t h e model i s i n t e n d e d t o e s t i m a t e p r o p a g a t i o n p a t h l o s s e s f o r t e r r a i n p r o f i l e s g i v e n i n t h e C o n t i n e n t a l U n i t e d S t a t e s (COWS) data base. The Longley-Rice model is S t a t i s t i c a l i n n a t u r e , and h a s been known t o g i v e r e s u l t s n o t as a c c u r a t e i n some c i r c u m s t a n c e s s u c h as s h o r t r a n g e p a t h s . The
  • 5. s h o r t c o m i n g s of e x i s t i n g models l e d t o t h e developments o f t h e GTD model as a n a l t e r n a t i v e t o o l i n p r e d i c t i n g p r o p a g a t i o n p a t h l o s s . F i n a l l y , GTD modeled d a t a were compared a g a i n s t measured p a t h l o s s d a t a t o p r o v i d e a n e v a l u a t i o n o f p r e d i c t i o n p e r f o r m a n c e c a p a b i l i t y . These comparisons, which were made o v e r a r a n g e of d i s t a n c e s and f r e q u e n c i e s , show t h a t GTD i s a f e a s i b l e means f o r p r e d i c t i n g s h o r t - r a n g e p r o p a g a t i o n p a t h l o s s e s .
  • 6. I I GTD BACKGROUND and DEVELOPMENT The G e o m e t r i c a l Theory o f D i f f r a c t i o n (GTD) i s a n a n a l y t i c a l method f o r d e t e r m i n i n g t h e a m p l i t u d e and phase o f e l e c t r o m a g n e t i c wave b e h a v i o r r e s u l t i n g from i n t e r a c t i o n w i t h c o n d u c t i n g s u r f a c e s . The t h e o r y i s b a s i c a l l y a n e x t e n s i o n o f Geometric O p t i c s (GO) which i n c l u d e s d i f f r a c t i o n . The t h e o r y h a s its o r i g i n i n a mathematical work by Sommerfeld. H i s p a p e r 11 1 p u b l i s h e d i n 1896, d e s c r i b e s t h e mathematics of d i f f r a c t i o n f o r a p e r f e c t l y c o n d u c t i n g , i n f i n i t e - l e n g t h h a l f - p l a n e . I n i t , h e emplogs t h e F r e s n e l i n t e g r a l method t o e v a l u a t e t h e n l e z f r i c f i e 1 2 v a r i a t i o n as t h e o b s e r v a t i o n p o i n t changes i n ; c c a t i o n f ~ o m t h e i l l u m i n a t e d r e g i o n t o t h e shadow r e g i o n . However, t h e drawback of Sommerfeld's work i s t h a t i t i s o n l y l i m i t e d t o h a l f - p l a n e a p 2 l i c a t i c n s . S t a r t i n g i n 1953, it xas K e l l e r [ 2 , 7 , 4 J who s y s t e m a t i c a l l y developed t h e Geometrical Theory o f d i f f r a c t i o n f o r more g e n e r a l a p p l i c a t i o n s . S i n c e t h e n , t h i s method h a s undergone improvements by many workers and is s t i l l undergoing changes 151 t o meet v a r i o u s r e q u i r e m e n t s . I n K e l l e r ' s o r i g i n a l work, a s y m p t o t i c expansions were used t o d e s c r i b e f i e l d b e h a v i o r . The r e s u l t t h u s o b t a i n e d y i e l d e d u n r e a l i s t i c s i n g u l a r i t i e s i n t h e immediate v i c i n i t y o f t h e shadow and r e f l e c t i o n b o u n d a r i e s . L a t e r , Kouyoum j i a n and co-workers modified Keller's work t o a uniform s o l u t i o n which p r o v i d e s a c o n t i n u o u s f i e l d everywhere; t h i s r e v i s e d
  • 7. t h e o r y i s t h e Uniform Theory o f D i f f r a c t i o n (UTD). The method addressed i n t h i s t h e s i s i s a d i r e c t a p p l i c a t i o n of UTD. S i n c e UTD i s an e x t e n s i o n of GTD c o n c e p t , i t is commonly r e f e r r e d t o as GTD. Geometrical O p t i c s (GO) Geometrical O p t i c s , o r r a y o p t i c s , was o r i g i n a l l y developed t o a n a l y z e t h e p r o p a g a t i o n of l i g h t , where t h e f r e q u e n c y i s s u f f i c i e n t l y h i g h t h a t t h e wave n a t u r e o f l i g h t need not be c o n s i d e r e d . GO t h e o r y assumes t h e f l o w o f e l e c t r o m a g n e t i c r a d i a t i o n between two p o i n t s i n s p a c e c a n b e viewed as t r a v e l l i n g i n s t r a i g h t l i n e s c a l l e d r a y s ; f u r t h e r , r a y s a r e assumed t o n o t i n t e r f e r e w i t h one a n o t h e r and hence I c a n be summed v e c t o r i a i l y i . , conform t o t h e laws o f s u p e r p o s i t i o n ) . Two fundamental r a y t y p e s a r e c o n s i d e r e d i n GO. They a r e d i r e c t and r e f l e c t e d r a y s ( * ) as i l l u s t r a t e d i n F i g u r e 2-1. A d i r e c t ray e x i s t s i f t h e r e is no b l o c k a g e a l o n g t h e r a y p a t h between t h e t r a n s m i t t i n g a n t e n n a and r e c e i v i n g a n t e n n a . A r e f l e c t e d r a y i s g e n e r a t e d i f t h e r e a r e p o i n t s on t h e t e r r a i n p r o f i l e which s a t i s f y S n e l l ' s Law o f r e f l e c t i o n , v i z , t h e r e i s a r e f l e c t i o n a r e a which c a u s e s t h e a n g l e of i n c i d e n t of t h e i n c i d e n t r a y t o e q u a l t o t h e a n g l e of ( * ) R e f r a c t i o n phenomenon i s e x c l u d e d i n t h i s a p p l i c a t i o n because t h e a m p l i t u d e o f t h e r e f r a c t e d r a y t r a n s m i t t e d t h r o u g h h i l l s would be t o o weak t o be s i g n i f i c a n t .
  • 8.
  • 9. r e f l e c t i o n as shown i n t h e F i g u r e . I n t h e a p p l i c a t i o n h e r e , t h e w a v e l e n g t h o f GO f i e l d i s assumed t o b e small compared t o t e r r a i n v a r i a t i o n s , s o t h a t r e f l e c t i o n is c o n s i d e r e d t o b e a l o c a l phenomenon. C o n s e q u e n t l y , r e f l e c t i o n i s assumed t o e m i n a t e from a p o i n t r a t h e r t h a n a n area. T h a t p o i n t i s commonly c a l l e d p o i n t of reflect i o n . Also, G e o m e t r i c a l O p t i c s assumes t h e p h a s e o f t h e d i r e c t and r e f l e c t e d r a y t o b e p r o p o r t i o n a l t o t h e t o t a l o p t i c a l p a t h l e n g t h o f t h e r a y from a r e f e r e n c e p o i n t , where t h e p h a s e is d e f i n e d t o b e z e r o . The a m p l i t u d e v a r i e s a c c o r d i n g t a t h e p r i n c i p l e of c o n s e r v a t i o n of e n e r g y ; t h u s f i e l d i z t e n s i t y d e c r e a s e s w i t h i n c r e a s i n g d i s t a n c e as d e s c r i b e d below. Throughout t h i s t h e s i s , t h e r e c e i v i n g p o i n t i s l o c a t e d i n t h e f a r f i e l d o f t h e a n t e n n a , and h e n c e , a r a y i s c o n s i d e r e d t o b e i n t h e form o f p l a n e wave a t t h e p o i n t o f r e f l e c t i o n . F o r a f a r - f i e l d a p p l i c a t i o n , a GO f i e l d s u c h as t h e d i r e c t r a y c a n b e o b t a i n e d b y c o n s i d e r i n g o n l y t h e l e a d i n g term i n t h e a s y m p t o t i c , high-frequency s o l u t i o n o f Maxwell's e q u a t i o n 161. The s o l u t i o n t h u s o b t a i n e d i n d i c a t e s t h a t f i e l d i n t e n s i t y d e c r e a s e s i n v e r s e l y w i t h d i s t a n c e and i n c u r s a phase v a r i a t i o n o f e-1 BR, where R i s t h e p a t h d i s t a n c e measured from t h e t r a n s m i t t i n g a n t e n n a t o t h e r e c e i v i n g a n t e n n a , and B=2n/X i s t h e p h a s e c o n s t a n t o f t h e wave. To i l l u s t r a t e t h e r e f l e c t e d r a y and t h e method f o r c a l c u l a t i n g its c o n t r i b u t i o n , r e f e r t o F i g u r e 2-2, which
  • 10.
  • 11. d e p i c t s t h e d i r e c t and r e f l e c t e d r a y s , and a n image r e p r e s e n t a t i o n o f t h e s o u r c e . B o t h t h e d i r e c t and r e f l e c t e d r a y s a r e eminated from t h e s o u r c e a n t e n n a r a d i a t i n g a t a h e i g h t h above a f l a t ground p l a n e , a s s u m i n g p e r f e c t c o n d u c t i v i t y . The o b s e r v a t i o n p o i n t i s l o c a t e d as i n d i c a t e d i n t h e f i g u r e , and i s i n t h e f a r - f i e l d r e g i o n o f t h e a n t e n n a . Image t h e o r y 171 s t a t e s t h a t a n e q u i v a l e n t c o n f i g u r a t i o n w i l l r e s u l t i f t h e ground p l a n e is removed, and a n image s o u r c e i s added a t a d i s t a n c e -h from w h e r e t h e ground p l a n e had b e e n , as i n d i c a t e d i n t h e f i g u r e . The a n p i i t u d e o f tze imge mirre.~L - a q u a 1 t o t h e a m p l i t u d e of t h e d i r e c t s o u r c e and is i n p h a s e f o r v e r t i c a l p o l a r i z a t i o n and o u t of p h a s e f o r h o r i z o n t a l 2 o l a r i z a t i o n as i s shown i n F i g ~ r e2-3. The distanse 2, S e t w e e n t h e o b s e r v e r and t h e i n a g e s o u r c e i s e q u a l t o : where h i s t h e h e i g h t o f t h e a n t e n n a from t h e ground. F o r p r a c t i c a l a p p l i c a t i o n s , t h e r e f l e c t i n g s u r f a c e w i l l i n t r o d u c e l o s s e s and p h a s e s h i f t t o t h e i n c i d e n t f i e l d d u e t o i m p e r f e c t c o n d u c t i v i t y and s u r f a c e roughness. T h e s e e f f e c t s a r e a c c o u n t e d f o r by t h e complex v a l u e d r e f l e c t i o n c o e f f i c i e n t ( r ). I n case of p e r f e c t c o n d u c t i v i t y , ( r ) r e d u c e s t o +1 f o r v e r t i c a l p o l a r i z a t i o n and -1 f o r h o r i z o n t a l p o l a r i z a t i o n , b o t h o f which i n d i c a t e s i n c i d e n t f i e l d i s t o t a l l y r e f l e c t e d t o t h e o b s e r v a t i o n p o i n t . G i v e n t h e above i n f o r m a t i o n a b o u t t h e p h a s e s h i f t and l o s s e s i n c u r r e d by t h e e a r t h s u r f a c e , t h e r e f l e c t e d r a y
  • 12.
  • 13. c o n t r i b u t i o n c a n b e w r i t t e n as: where Eo is a c o n s t a n t r e p r e s e n t i n g t h e f i e l d i n t e n s i t y a t t h e r e f e r e n c e p o i n t . The d i r e c t f i e l d which t r a v e l s a l o n g t h e l i n e j o i n i n g t h e s o u r c e and o b s e r v a t i o n p o i n t and i s similar t o r e f l e c t e d r a y ; t h e e n e r g y d e n s i t y d e c r e a s e s i n v e r s e l y w i t h d i s t a n c e and a phase v a r i a t i o n of e-jBRd ,where R d is t h e p a t h d i s t a n c e from t h e s o u r c e a n t e n n a t o t h e o b s e r v a t i o n p o i n t The composite s i g n a l r e c e i v e d a t t h e o b s e r v a t i o n c a n be c a l c u l a t e d by summing t h e d i r e c t f i e l d and r e f l e c t e d f i e l d as f o l l o w s : where Er i s t h e r e c e i v e d f i e l d a t t h e o b s e r v a t i o n p o i n t . Knowing t h e e l e c t r i c a l p r o p e r t i e s o f t h e r e f l e c t i o n s u r f a c e , which d e t e r m i n e s t h e v a l u e o f t h e r e f l e c t i o n c o e f f i c i e n t , and t h e l o c a t i o n of t h e o b s e r v a t i o n p o i n t , s i g n a l c a n b e r e a d i l y d e t e r m i n e d . D e f i c i e n c y o f G e o m e t r i c a l O p t i c s The r e f l e c t e d r a y and d i r e c t r a y c o n f i g u r a t i o n c o n s i d e r e d i n SO c a n cause a s e r i o u s d e f i c i e n c y i f u s e d i n VHF wave
  • 14. p r o p a g a t i o n m o d e l l i n g o v e r i r r e g u l a r t e r r a i n b e c a u s e it f a i l s t o a c c o u n t f o r d i f f r a c t i o n . F o r example, c o n s i d e r a two d i m e n s i o n a l c o n d u c t i n g edge as i l l u s t r a t e d i n F i g u r e 2-4. If o b s e r v a t i o n s are made on a c i r c l e o f c o n s t a n t r a d i u s as i l l u s t r a t e d , s t a r t i n g i n r e g i o n I , moving c l o c k w i s e t o r e g i o n 11, t h e f o l l o w i n g w i l l b e o b s e r v e d . F i r s t , t h e r e f l e c t e d r a y d i s a p p e a r s at and below t h e r e f l e c t i o n boundary b e c a u s e t h e p o i n t of r e f l e c t i o n migrates beyond t h e edge. C o n s e q u e n t l y , GO p r e d i c t s a f i e l d d i s c o n t i n u i t y a t t h e r e f l e c t i o n boundary. A l s o , c o n s i d e r t h e immediate v i c i n i t y oi ?he shadzw 3oundsry where t h e d i r e c t r a y i s b l o c k e d by t h e t i p of t h e edge; GO a g a i n p r e d i c t s a f i e l d d i s c o n t i n u i t y st t h e shadow boundary d u e t o t h e l o s s o f t h e d i r e c t r a y . S i n c e Geometric-Optics f a i l s t o a c c o u n t f o r t h e phenomena o f d i f f r a c t i o n , a b r u p t and u n r e a l i s t i c f i e l d d i s c o n t i n u i t i e s a c r o s s t h e shadow and r e f l e c t i o n b o u n d a r i e s a r e p r e d i c t e d b y GO. I n a d d i t i o n , r e g i o n I11 (shadow r e g i o n ) w i l l b e d e t e r m i n e d by GO t o h a v e z e r o f i e l d i n t e n s i t y , a g a i n a n u n r e a l i s t i c c a l c u l a t i o n . T h e s e d e f i c i e n c i e s l e d t o t h e development o f GTD. D i f f r a c t i o n D i f f r a c t e d r a y s , a c c o r d i n g t o Keller 181, h a v e c e r t a i n p r o p e r t i e s : 1 . The d i f f r a c t e d f i e l d p r o p a g a t e s a l o n g r a y p a t h s t h a t i n c l u d e p o i n t s on t h e boundary s u r f a c e . T h e s e r a y
  • 15.
  • 16. p a t h s obey t h e p r i n c i p l e of Fermat, a l s o known as t h e p r i n c i p l e of t h e s h o r t e s t o p t i c a l path. 2. A d i f f r a c t e d wave p r o p a g a t e s a l o n g i t s ray p a t h s o t h a t t h e energy d e n s i t y d e c r e a s e s i n v e r s e l y w i t h i n c r e a s i n g i n d i s t a n c e , and t h e phase d e l a y e q u a l s t h e wave number t i m e s t h e d i s t a n c e a l o n g t h e r a y p a t h . 3. D i f f r a c t i o n , l i k e r e f l e c t i o n and t r a n s m i s s i o n , i s a l o c a l phenomenon at h i g h f r e q u e n c i e s . That is, i t depends o n l y on t h e n a t u r e of t h e boundary s u r f a c e and t h e i n c i d e n t f i e l d i n t h e immediate neighborhood of t h e p o i n t of d i f f r a c t i o n . Contemporary GTD t h e o r y can be used t o c a l c u l a t e d i f f r a c t i o n from cones, curve s u r f a c e s , and wedges 131. However, t h e work addressed h e r e models t e r r a i n as +U W U - u ~ ~ ~ ~ C I L O A U L L ~ L ,---'---' p i e c e w i s e - l i n e a r segments; hence only wedge d i f f r a c t ion is c o n s i d e r e d , a l t h o u g h it i s l i k e l y t h a t p r o p z g a t i o n p a t h s may b e encountered where o t h e r t y p e s of d i f f r a c t i o n may provide more meaningful r e s u l t s . The v a l u e o f a d i f f r a c t e d r a y i s c a l c u l a t e d by t h e v a l u e o f t h e i n c i d e n t p l a n e wave at t h e p o i n t of d i f f r a c t i o n m u l t i p l i e d by a d i f f r a c t i o n c o e f f i c i e n t . T h i s is s i m i l a r t o t h e r e f l e c t e d r a y , which i s o b t a i n e d by m u l t i p l y i n g t h e i n c i d e n t r a y by a r e f l e c t i o n c o e f f i c i e n t . The d i f f r a c t i o n c o e f f i c i e n t f o r a wedge c o n f i g u r a t i o n is determined by t h e geometry i n t h e immediate neighborhood of t h e p o i n t of d i f f r a c t i o n .
  • 17. To i l l u s t r a t e how f i e l d c o n t i n u i t y n e a r t h e shadow and r e f l e c t i o n b o u n d a r i e s is p r e s e r v e d as a r e s u l t of t h e d i f f r a c t e d - r a y c o n t r i b u t i o n , c o n s i d e r a r a y i n c i d e n t on a two-dimensional edge as i l l u s t r a t e d i n F i g u r e 2-5. GTD employs t h e f o l l o w i n g e x p r e s s i o n t o d e s c r i b e t h e f i e l d b e h a v i o r of d i f f r a c t i o n [ I 0 1 : I I I I i'i D ( @ , @ ' I = ~ d '( @ - $ ' ) + Dn ( @ - @ I ) I I II where Dd' and D, are t h e v e r t i c a l and h o r i z o n t a l p o l a r i z a t i o n d i f f r a c t i o n c o e f f i c i e n t terzas f o r t h e edge f a c e s o and n r e s p e c t i v e l y . These f o u r terms are u s e d t o c a m n ~ n a a t er ---- f o r t h e d i s c o n t i n u i t y i n t h e g e o m e t r i c a l - o p t i c s f i e l d a t a shadow and r e f l e c t i o n boundary f o r t h e two f a c e s of t h e wedge. For i n s t a n c e , t h e terms o f t h e form ( @ - @ I ) are t o compensate f o r t h e l o s s o f t h e d i r e c t r a y a t t h e shadow boundary; t h o s e of t h e form + a r e t o compensate f o r t h e l o s s of t h e r e f l e c t e d r a y at r e f l e c t i o n b o u n d a r y . Thus, t h e GTD d i f f r a c t i o n c o e f f i c i e n t e n a b l e s a r e a l i s t i c f i e l d t o b e c a l c u l a t e d r e g a r d l e s s of t h e l o c a t i o n of t h e o b s e r v a t i o n p o i n t . The o v e r a l l e l e c t r i c f i e l d i n a n y of t h e t h r e e r e g i o n i n s p a c e c a n now b e w r i t t e n as:
  • 18.
  • 19. where t h e e l e c t r i c f i e l d c o n t r i b u t i o n from d i f f r a c t i o n is o b t a i n e d b y GTD method. While t h e above e q u a t i o n a p p l i e s o n l y t o a p e r f e c t l y c o n d u c t i n g edge, m o d i f i c a t i o n f o r f i n i t e c o n d u c t i v i t y a p p l i c a t i o n s have been performed, and i s d e s c r i b e d i n t h e n e x t c h a p t e r .
  • 20. I I I GTD M o d i f i e d f o r F i n i t e C o n d u c t i v i t y and S u r f a c e Roughness I n t h e e a r l y development o f GTD, t h e t h e o r y assumed t h a t d i f f r a c t i v e e d g e s w e r e p e r f e c t l y c o n d u c t i n g , w h i c h s i m p l i f i e d t h e d i f f r a c t i o n c o e f f i c i e n t e x p r e s s i o n . Because p r o p a g a t i o n m o d e l i n g i n v o l v e s d i f f r a c t i o n from i m p e r f e c t l y - c o n d u c t i n g s u r f a c e s , GTD t h e o r y was m o d i f i e d i n o r d e r t o p r o v i d e more m e a n i n g f u l r e s u l t s when e s t i m a t i n g t e r r a i n d i f f r a c t i o n . The o b j e c t i v e s s o u g h t i n i m p l e m e n t i n g t h e m o d i f i c a t i o n were t o match t h e r e f l e c t e d Tay : o n t r i b u t i o n a t t h e r e f l e c t i o n b o u n d a r y , a n 2 "LA.. tlmmi+$e.2 r a Y c o n t r i b u t i o n a t t h e shadow b o u n d a r y . These o b j e c t i v e s were met, and s u b s e q u e n t c o n t i n u i t y c h e c k s a t t h e shadow and r e f l e c t i o n b o u n d a r i e s i n d i c a t e d t h a t c o n t i n u i t y had n o t b e e n v i o l a t e d b y t h e m o d i f i c a t i o n . I n o r d e r t o p r o v i d e i n s i g h t i n t o wave i n t e r a c t i o n w i t h t e r r a i n , t h i s c h a p t e r b e g i n s w i t h a d i s c u s s i o n of t h e e f f e c t s o f f i n i t e l y - c o n d u c t i n g a n d l o c a l l y - r o u g h t e r r a i n on wave r e f l e c t i o n , which is t h e n e x t e n d e d t o d e f i n i n g t h o s e c o n s t r a i n t s imposed by t h e e f f e c t s o n t h e d i f f r a c t i o n c o e f f i c i e n t .
  • 21. F i n i t e C o n d u c t i v i t y R e f l e c t i o n C o e f f i c i e n t The b e h a v i o r of t h e v e r t i c a l and h o r i z o n t a l r e f l e c t i o n c o e f f i c i e n t f o r f i n i t e c o n d u c t i v i t y i s i l l u s t r a t e d i n F i g u r e 3-1, where t h e p e r c e n t a g e of r e f l e c t i o n i s p l o t t e d a g a i n s t t h e i n c i d e n c e a n g l e f o r f r e s h water and commonly-encountered e a r t h s u r f a c e s . The c o n d u c t i v i t y and p e r m i t t i v i t y o f t h e medium a r e shown i n t h e f i g u r e . I n F i g u r e 3-1, i t is s e e n t h a t as t h e i n c i d e n c e a n g l e changes t o 90 d e g r e e s ( i . e . g r a z i n g a n g l e ) , t h e magnitude of t h e r e f l e c t ion c o e f f i c i e n t approaches u n i t y . I n such c a s e , t h e phase a n g l e of t h e r e f l e c t i o n c o e f f i c i e n t , approaches -180 d e g r e e s as d e p i c t e d i n F i g u r e 3-2. A s a r e s u l t , a r e f l e c t i o n c o e f f i c i e n t of -1 w i l l occur a t g r a z i n g zr,gle f o r a l l common ground p l a n e s . Rough S u r f a c e s The laws of r e f l e c t i o n by a p e r f e c t l y smooth s u r f a c e c a n n o t , i n g e n e r a l , b e d i r e c t l y a p p l i e d t o t e r r a i n due t o s u r f a c e i r r e g u l a r i t i e s . One of t h e major d i f f e r e n c e i n t h e c h a r a c t e r i s t i c s of a smooth s u r f a c e and a rough s u r f a c e is t h a t a smooth p l a n e ( o f s u f f i c i e n t l y l a r g e dimensions) w i l l r e f l e c t t h e i n c i d e n t wave s p e c u l a r l y , o r i n a s i n g l e d i r e c t i o n , w h i l e a rough s u r f a c e w i l l s c a t t e r energy d i f f u s e l y . The d e g r e e of roughness depends upon t h e wavelength and angle of i n c i d e n c e . To account f o r s u r f a c e
  • 24. roughness, a f a c t o r is u s e d t o modify t h e r e f l e c t i o n c o e f f i c i e n t . T h i s modified r e f l e c t i o n c o e f f i c i e n t is d e f i n e d by L I I ] : where 4' is t h e plane-wave r e f l e c t i o n c o e f f i c i e n t f o r L s p e c u l a r r e f l e c t i o n from a rough s u r f a c e , Ro II i s t h e plane-wave r e f l e c t i o n c o e f f i c i e n t f o r a f l a t smooth s u r f a c e ( R' is f o r h o r i z o n t a l p o l a r i z a t i o n , and R " i s f o r v e r t i c a l p o l a r i z a t i o n ) , and 6 s i s t h e s u r f a c e r o u g h n e s s f a c t o r . The t h e o r y d e s c r i b i n g t h e e f f e c t s of rough s u r f a c e s o n t h e r e f l e c t i o n assume t h a t t e r r a i n e l e v a t i o n a r e G a u s s i a n l y d i s t r i b u t e d w i t h r e s p e c t t o t h e mean e l e v a t i o n . According t o C e n t r a l L i m i t Theorem 11 21, random 2-dimensional t e r r a i n roughness w i l l converge t o a G a u s s i a n d i s t r i b u t i o n as t h e number of terms i n t h e sum i s l a r g e (The t e r r a i n i n v e s t i g a t e d i n t h i s p a p e r r a n g e s from 0.5 k i l o m e t e r t o 120 k i l o m e t e r s w i t h v a r i o u s s h a p e s and f e a t u r e s s o t h a t t h e number of t e r m s are c o n s i d e r e d l a r g e ) . F o r a G a u s s i a n Model, 6 s is d e f i n e d by 1131 : A + i s t h e phase s h i f t between t h e s h o r t e s t and t h e l o n g e s t r e f l e c t e d p a t h . C o n s i d e r r a y s 1 and 2 ( F i g u r e 3-3) i n c i d e n t on a s u r f a c e w i t h i r r e g u l a r i t i e s of h e i g h t Ah a t a grazing
  • 25.
  • 26. a n g l e Y . The p a t h d i f f e r e n c e between t h e two r a y s i s : A r = 2 A h s i n y and hence t h e p h a s e d i f f e r e n c e is: 4rAh -s i n y where Ah is t h e s t a n d a r d d e v i a t i o n o f t h e t e r r a i n e l e v a t i o n a l o n g e a c h p i e c e w i s e - 1 i n e a r s e c t i o n o f t h e t e r r a i n ..d e f i n i n g t h e p r o f i l e and X t h e w a v e l e n g t h . The vai1~ -n i s assumed t o b e c o n s t a n t t h r o u g h o u t t h e e n t i r e p r o p a g a t i o n p a t h , however, t h e model c o u l d b e m o d i f i e d t o a c c e p t d i f f e r e n t v a l u e s f o r d i f f e r e n t p a r t s o f t h e p r o f i l e . I f A @ , t h e phase d i f f e r e n c e is small, t h e two r a y s w i l l b e a i r n o s t i n phase as t h e y are i n t h e case o f a p e r f e c t l y smooth s u r f a c e . T h i s A @ i s t h e same v a r i a b l e as is u s e d i n t h e R a y l e i g h c r i t e r i o n 1141 i n d e t e r m i n i n g w h e t h e r t h e s u r f a c e i s smooth f o r a g i v e n f r e q u e n c y .
  • 27. F i n i t e C o n d u c t i v i t y D i f f r a c t i o n C o e f f i c i e n t To i l l u s t r a t e t h e edge d i f f r a c t i o n c o e f f i c i e n t s f o r two d i e l e c t r i c p l a t e s and t o show how f i e l d c o n t i n u i t y n e a r shadow and r e f l e c t i o n b o u n d a r i e s is p r e s e r v e d , c o n s i d e r a r a y i n c i d e n t on a d i e l e c t r i c edge as d e p i c t e d i n F i g u r e 3-4. I n t h e two dimensional c a s e t h e d i f f r a c t i o n c o e f f i c i e n t is expressed as 1151: I A I1 II I I II I1 + AoDo ( @ + @ ' I + A,D,(++@') f i iII I where Lo , L, , A, , A: are f i n i t e c o n d u c t i v i t y c o r r e c t i o n c o n s t a n t s n e c e s s a r y t o p r e s e r v e f i e l d c o n t i n u i t y a t t h e r e f l e c t i o n boundary and shadow boundary f o r t h e d i e l e c t r i c wedge. I n t h e c a s e of the p e r f e c t l y c o n d u c t i n g edge d i s c u s s e d i n Chapter 2 , these fozr cz;.sta~"~ts a r e e q u a l t o 1 I II II u n i t y . The terms L o and Ln a r e c o r r e c t i o n terms t o a c c o u n t f o r v a r i a t i o n s i n phase and a m p l i t u d e due t o d i f f e r e n c e s between f i n i t e l y conducting wedges and p e r f e c t l y c o n d u c t i n g wedges at t h e shadow boundary f o r t h e d i e l e c t r i c p l a t e o and I n r e s p e c t i v e l y ; rfw h i l e A! and An a c c o u n t f o r s u c h d i f f e r e n c e s a t t h e r e f l e c t i o n boundary. A t shadow b o u n d a r i e s , t h e d i f f e r e n c e between f i n i t e and p e r f e c t c o n d u c t i v i t y i s t h a t energy may b e t r a n s m i t t e d t h r o u g h t h e f i n i t e l y - c o n d u c t i n g medium. If t r a n s m i s s i o n d o e s o c c u r s , I I I I t h i s must b e accounted f o r by t h e c o n s t a n t s L! and L, . For high-frequency t e r r a i n modeling, r a y t r a n s m i t t e d t h r o u g h ;i 4h i l l s and mountains is n e g l i g i b l e , t h u s L o =Ln = l .
  • 28.
  • 29. The r e f l e c t e d f i e l d which is modified by t h e r e f l e c t i o n c o e f f i c i e n t v a n i s h e s at t h e r e f l e c t i o n boundary; as a r e s u l t , t h e d i f f r a c t e d f i e l d is r e q u i r e d t o i n c r e a s e i n a m p l i t u d e t o compensate f o r t h e r e f l e c t e d r a y l o s s a t t h e r e f l e c t i o n boundary s o t h a t t h e t o t a l high-f requency f i e l d i s c o n t i n u o u s everywhere. I n t h i s a p p l i c a t i o n , A, and A, a r e s e t t o e q u a l t o t h e r e f l e c t i o n c o e f f i c i e n t s of t h e edge I iss u r f a c e s 0 and n, r e s p e c t i v e l y . T h e r e f o r e , A! = Rg f o r t h e L two d i m e n s i o n a l c a s e . 4 i s e q u a l t o t h e modified r e f l e c t i o n c o e f f i c i e n t f o r rough s u r f a c e s a p p l i c a t i o n as d e s c r i b e d e a r l i e r . To demonstrate t h a t t h e above changes t o t h e d i f f r a c t i o n c o e f f i c i e n t s do n o t v i o l a t e c o n t i n u i t y c o n s t r a i n t s , c o n t i n u i t y t e s t s were performed. The r e s u l t s of t h e s e t e s t s p r e s e n t e d i n Appendix A show t h a t t h e m o d i f i c a t i o n s zbcxre d s n o t v i o l a t e any GTD c o n c e p t s . The f o l l o w i n g c h a p t e r w i l l p r e s e n t s a model e v a l u a t i o n by comparison w i t h measured
  • 30. I V Measured and Modeled Data Comparisions The GTD model modified f o r rough s u r f a c e s and f i n i t e c o n d u c t i v i t y h a s been used t o p r e d i c t p r o p a g a t i o n p a t h l o s s f o r a v a r i e t y o f t e r r a i n p r o f i l e s . T h i s c h a p t e r p r e s e n t s t h o s e r e s u l t s a l o n g w i t h measured d a t a f o r t e r r a i n p r o f i l e s o f d i f f e r e n t l e n g t h s and c o n t o u r s . These r e s u l t s e n a b l e a r e a l i s t i c e v a l u a t i o n o f t h e model's performance, which i n t u r n d e t e r m i n e s t h e f e a s i b i l i t y of employing t h e model i n g e n e r a l p r o p a g a t i o n p a t h l o s s p r e d i c t i o n . Yeaauzsd d a t a were o b t a i n e d from a p r o p a g a t i o n e x p e r i a e n t r e p o r t by McQuate, e t . a l . 116 J and were reduced t o d i g i t a l f 3 r m a t t o s f f o r d comparison w i t h modeled d a t a . ~h~ referenced r e p o r t c o n t a i n s t a b u l a t i o n s 0 f e l e c t r o m a g n e t i c p r o p a g a t i o n l o s s d a t a r e s u l t i n g from p r o p a g a t i o n measurements o v e r i r r e g u l a r t e r r a i n i n Colorado w i t h p a t h l e n g t h s r a n g i n g from 0 . 5 t o 120 km a t seven f r e q u e n c i e s i n t h e 230- t o 9200-MHz range. These reduced d a t a c o n s i s t p r i m a r i l y of g r a p h s showing b a s i c t r a n s m i s s i o n l o s s v s . r e c e i v i n g a n t e n n a h e i g h t d e r i v e d from t h e measurement of each p a t h . I n f o r m a t i o n a b o u t t h e p r o p a g a t i o n p a t h a r e g i v e n by photographs, a t e r r a i n p r o f i l e , and a d e s c r i p t i o n o f v e g e t a t i o n c o v e r . All t r a n s m i s s i o n s were c o n t i n u o u s wave and f r e q u e n c i e s of 230, 410, 751, 910, 1846, 4595, and 9190 MHz were used w i t h h o r i z o n t a l p o l a r i z a t i o n o n l y .
  • 31. To adopt t h e McQuatels t e r r a i n p r o f i l e as i n p u t d a t a t o t h e GTD model, t h e p r o f i l e was f i r s t approximated by p i e c e w i s e - l i n e a r segments which r e p r e s e n t t h e o r i g i n a l p a t h . I n some c a s e s , t h i s p r o c e s s c a n proceed i n a s t r a i g h t f o r w a r d manner, i f t h e predominant s l o p e s and d i f f r a c t i v e e d g e s a r e w e l l d e f i n e d . However, i n o t h e r c a s e s , t h e p r o c e s s i s n o t s o s t r a i g h t f o r w a r d , p a r t i c u l a r l y t h o s e p r o f i l e s i n v o l v i n g m u l t i p l e peaks and l a r g e i r r e g u l a r roughness. O f t e n , a p r o f i l e c a n b e r e p r e s e n t e d by more t h a n one p i e c e w i s e - l i n e a r i z e d a p p r o x i m a t i o n . Under t h i s r' - , - : : - ~ + 3 r , , - i = --- --- " - * - " , f i 2 i.r- + n =, ." t h e u s e r , based o n h i s uwn e x p e r i z n c e , ,a i a ~ e r - i n e whether an edge c o n s t i t u t e s d i f f r a c t i o n o r r e f l e c t i a n ; o r i f t h e edge i s merely a s o u r c e of l o c a l s u r f a c e roughness. Thus, t h e r e i s no well- d e f i c e d methodology e s t a b l i s h e d t o a i d i n t h e l i n e a r i z a t i o n p r o c e s s , a i t h o u g n it is known t h a t t h e number o f e d g e s d e f i n i n g t h e t e r r a i n s h o u l d b e k e p t t o a minimum due t o t h e cumulative e f f e c t of computer e r r o r s . These f a c t o r s a r e d i s c u s s e d where a p p l i c a b l e a l o n g w i t h t h e p r e s e n t a t i o n of t e r r a i n p r o f i l e and p i e c e w i s e - l i n e a r approximation. rn, ,,,.-: A, A u V V L U ~ a "vnchiiiark f o r t h e GTD model performance, modeled d a t a from t h e Longley-Rice Point-to-Point model L17 , I 81 is a l s o p l o t t e d a l o n g w i t h GTD-modeled r e s u l t s and measured d a t a . The Longley-Rice model was developed a t t h e I n s t i t u t e f o r Telecommunication S c i e n c e , and i s r e f e r r e d t o h e r e as t h e ITS model. I n p u t d a t a r e q u i r e d by b o t h t h e GTD and ITS models a r e i d e n t i c a l . S i n c e t h e i n c l u s i o n of ITS
  • 32. modeled d a t a s e r v e s o n l y as b a s e l i n e i n f o r m a t i o n , a d i s c u s s i o n of its p e r f o r m a n c e is n o t i n c l u d e d . The p r e s e n t a t i o n of d a t a are a r r a n g e d a c c o r d i n g t o t h e p a t h l e n g t h , s t a r t i n g w i t h t h e s h o r t e s t p a t h ; i n a l l , e l e v e n p a t h s a r e p r e s e n t e d . P r e c e e d i n g e a c h o f t h e p a t h s i n v e s t i g a t e d , a b r i e f d e s c r i p t i o n is o f f e r e d o n t h e s a l i e n t c h a r a c t e r i s t i c s o f t h e p a t h (e.g. w h e t h e r i t i s w i t h i n l i n e o f s i g h t o r beyond l i n e o f s i g h t ) , a s s u m p t i o n s made i n t h e l i n e a r i z a t i o n p r o c e s s , and where a p p r o p r i a t e , comments on t h e b e h a v i o r o f GTD modeled r e s u l t s . The t e r r a i n p r o f i l e i t s e l f is a redrawn from M c Q u a t e ' s r e p o r t , a l o n g w i t h t h e p i e c e w i s e l i n e a r a p p r o x i m a t i o n o f t h e p r o f i l e , r e p r e s e n t e d by d o t t e d l i n e s s u p e r i m p o s e d on t h e t e r r a i n p r o f i l e . The i n p u t d a t a f i l e s f o r t h o s e e l e v e n p r o f i l e s can b e f o u n d i n Appendix 3. A . DATA REDUCTION A l l t e r r a i n i n f o r m a t i o n and measured p r o p a g a t i o n p a t h l o s s d a t a were o b t a i n e d from a h a r d copy o f t h e McQuate r e p o r t . To r e t r i e v e t h o s e d a t a from g r a p h s i n t h e r e p o r t , a n e l e c t r o n i c d i g i t i z e r was u s e d t o f a c i l i t a t e t h e p r o c e s s . A s i n g l e d a t a p o i n t was o b t a i n e d b y moving a n o p t i c a l v i e w e r ( u s i n g t h e f r o n t p a n e l c o n t r o l s ) o v e r t h e d e s i r e d l o c a t i o n o n t h e curve and t h e n p r e s s i n g a b u t t o n on t h e d i g i t i z e r . The c o - o r d i n a t e o f t h a t p o i n t was a u t o m a t i c a l l y s c a l e d and t r a n s l a t e d i n t o t h e a p p r o p r i a t e v a l u e s as a p p e a r e d i n t h e
  • 33. r e p o r t , which was s t o r e d d i s c r e t e l y i n computer d i s k s t o r a g e . The o n l y d a t a t h a t t h e o p e r a t o r had t o e n t e r d u r i n g t h e p r o c e s s was: f o r t h e c a s e of P a t h l o s s d a t a , t h e d e c i b e l p a t h l o s s s c a l e increment on t h e Y-axis; and f o r t h e t e r r a i n p r o f i l e , t h e l e n g t h and h e i g h t of t h e p a t h . P a t h l o s s d a t a were sampled a t t h e i n t e r v a l of e v e r y 1 / 2 meter o v e r t h e e n t i r e a n t e n n a h e i g h t movement r a n g e of 13 meters. By f o l l o w i n g a p r e d e f i n e d procedure o f d i g i t i z i n g t h e p a t h l o s s d a t a , t h e s e v e n c u r v e s c o r r e s p o n d i n g t o t h e seven d i f f e r e n t f r e q u e n c i e s i n t h e McQuate's r e p o r t were o r g a n i z e d i n t o a n a t r i x f i l e . A dewlett-Packard 7225A G r a p h i c s P l o t t e r equipped v i t h a o p t i c a l viewer was employed f o r t h i s e f f o r t ( t h e optical viewer is loaded l i k e a pen f o r v i e w i n g ) . The p l o t t e r was connected i n a p a r a l l e l c o n f i g u r a t i o n w i t h an ADM-3A CRT t e r m i n a l . The computer t o which t h i s hardware was connected was a n IBX 4341 running under -$%/SP CMS t i m e s h a r e mode. To p r o v i d e p r o p e r handshaking f o r d a t a t r a n s f e r between t h e h o s t computer and p l o t t e r , a n ASSEMBLER r o u t i n e was w r i t t e n . P l o t t e r ~zsolutlon i n b o t h a x e s exceeds 0.001 i n c h , i n d i c a t i n g t h a t q u a n t i z a t i o n and t r u n c a t i o n e r r o r s can be c o n s i d e r e d i n s i g n i f i c a n t . The hard copy r e p o r t from which t h e s e d a t a were t a k e n was a Xerox copy of t h e o r i g i n a l r e p o r t . Thus, d a t a were l i k e l y contaminated by photocopy d i s t o r t i o n e r r o r s . Evidence of such e r r o r s a p p e a r as s l i g h t l y curved a x e s , non-squareness,
  • 34. and d i s t o r t i o n . To compensate f o r s u c h e r r o r s , t h e end p o i n t s of t h e a x e s were e n t e r e d , from t h e p l o t t e r , t o t h e s o f t w a r e ; t h i s i n f o r m a t i o n was t h e n u s e d t o c o r r e c t s u b s e q u e n t d a t a from t h e p l o t t e r v i a a l i n e a r i n t e r p o l a t i o n method. A l l d a t a f i l e s t h u s o b t a i n e d were c h e c k e d a g a i n s t t h e o r i g i n a l d a t a ; any e r r o r s , which were u s u a l l y o b v i o u s when t h e y e x i s t e d , were c o r r e c t e d by e d i t i n g t h e a s s o c i a t e d d a t a f i l e . i'leasured p a t h l o s s d a t a a r e p l o t t e d v e r s u s r e c e i v e r a n t e n n a h e i g h t , w i t h one p l o t f o r e a c h f r e q u e n c y . The ITS modeled and GTD modeled d a t a a r e a l s o p l o t t e d on t h e same g r a p h t o e n a b l e a d i r e c t p e r f o r m a n c e e v a l u a t i o n t o b e made; t h e s e model r e s u l t s r e p r e s e n t a b s o l u t e p a t h l o s s , r a t h e r t h a n r e l a t i v e l o s s .
  • 35. B. P r e s e n t a t i o n of d a t a 1 . P a t h R1-0.5-TI (0.5~n., f l a t , w i t h i n l i n e o f s i g h t ) T h i s t e r r a i n p r o f i l e is shown i n F i g u r e 4-1. A s c a n be s e e n , t h e p r o f i l e i s made u p o f f l a t ground s l o p i n g down t o w a r d s t h e t r a n s m i t t i n g a n t e n n a . B e c a u s e o f p r o f i l e s i m p l i c i t y , t h e l i n e a r i z a t i o n p r o c e s s was s t r a i g h t f o r w a r d , r e s u l t i n g i n a modeled p r o f i l e d e f i n e d s o l e l y b y t h e e n d p o i n t s . T h i s p r o f i l e was t h e f i r s t o n e t o b e c h o s e n i n t h e development stage o f t h e GTD model t o v e r i f y t h a t no g r o s s e r r o r s e x i s t e d . The second r e a s o n i n s e l e c t i n g t h i s p r o f i l e was t o s t u d y t h e l o c a l s u r f a c e r o u g h n e s s f a c t o r and i t s e f f e c t s o n t h e v e r t i c a l l o b e s t r u c t u r e which arises from t h e i n t e r f e r e n c e between t h e d i r e c t r a y and r e f l e c t e d r a y s . F o r a f l a t g r o u n d p l a n e , s u c h as t h e one d i s c u s s e d h e r e , t h e GTD model o p e r a t e s as a G e o m e t r i c a l O p t i c s model s i n c e t h e r e a r e no d i f f r a c t i v e edges. Thus, GTD model estimates o f p a t h l o s s are based e x c l u s i v e l y on a s i n g l y - r e f l e c t e d r a y and d i r e c t r a y F o r s u c h a c o n f i g u r a t i o n , t h e b e h a v i o r o f t h e m o d i f i e d r e f l e c t i o n c o e f f i c i e n t f o r l o c a l s u r f a c e r o u g h n e s s c a n b e s t u d y e x p l i c i t l y . Measured and Modeled d a t a f o r t h i s t e r r a i n p r o f i l e are p l o t t e d i n F i g u r e s 4-2 t h r o u g h 4-8, w i t h t h e g r o u n d e l e c t r i c
  • 36. c o n s t a n t s used as shown i n t h e f i g u r e . D u r i n g t h e i n v e s t i g a t i o n o f t h i s p r o f i l e , t h e e l e c t r i c a l c o n s t a n t s o f t h e ground p l a n e w e r e v a r i e d o v e r a wide r a n g e of v a l u e s t o d e t e r m i n e i t s e f f e c t s o n t h e r e c e i v e d f i e l d . The r e s u l t o f t h i s e x p e r i m e n t showed t h a t f i e l d s t r e n g t h d i d n o t c h a n g e a p p r e c i a b l y . T h i s is a n e x p e c t e d r e s u l t f o r h o r i z o n t a l p o l a r i z a t i o n b e c a u s e i t s p r o p e r t i e s a t low a n g l e s o f i n c i d e n c e a r e similar t o p e r f e c t l y c o n d u c t i n g ground p l a n e s . However, t h i s r e s u l t would n o t b e e x p e c t e d f o r v e r t i c a l p o l a r i z a t i o n o r f o r p a t h s i n v o l v i n g h i g h i n c i d e n c e a n g l e s . A d d i t i o n a l l y , a r a n g e o f l o c a l s u r f a c e r o u g h n e s s -,~-.F-a+I..c., s i Y 1 * 1 - 3 were i n v e s t i g a t e d t o d e t e r m i n e its e f f e c t o n t h e modeled data. G e n e r a l l y , t h e model i s s e n s i t i v e t o t h e l o c a l s u r f a c e r o u g h n e s s ; t h e l a r g e r t h e modeled s u r f a c e r o u g h n e s s , t h e s m a l l e r %he modeled l o b i n g d e p t h . The a c t u a l p r o f i l e f o r e g r o u n d c o n s i s t s of a l t e r n a t i n g s t r i p s o f plowed ground and wheat s t u b b l e ; t h e r e f o r e a r a n g e o f s u r f a c e r o u g h n e s s v a l u e s from 6-1 8 i n c h e s were u s e d , which i s r e a s o n a b l e based upon t h e d e s c r i p t i o n o f t h e p r o f i l e . Those v a l u e s p r o v i d e d good r e s u l t s i n t h e modeled d a t a , a l t h o u g h g r e a t e s t agreement b e t w e e n modeled and measured r e s u l t s were o b t a i n e d u s i n g a r o u g h n e s s v a l u e e q u a l t o 9 i n c h e s . Hence, 9 i n c h e s o f l o c a l s u r f a c e r o u g h n e s s is u s e d f o r a l l s u b s e q u e n t modeled d a t a f o r t h i s p r o f i l e . F o r t h e f i r s t t h r e e l o w e r f r e q u e n c i e s p l o t s u s i n g t h e 9 i n c h e s l o c a l s u r f a c e r o u g h n e s s f a c t o r , t h e l o b i n g e f f e c t is
  • 37. n o t p r o m i n e n t , and t h e modeled d a t a i s i n c l o s e a g r e e m e n t w i t h t h e measured d a t a . A t h i g h e r f r e q u e n c i e s , v e r t i c a l l o b i n g d o e s becoming more n o t i c e a b l e w i t h t h e s i z e and t h e d e p t h o f t h e l o b e n u l l s , and as w e l l as t h e s p a c i n g b e t w e e n t h o s e n u l l s b e i n g i n good a g r e e m e n t f o r b o t h measured and modeled d a t a . I n some i n s t a n c e s , t h e modeled l o b i n g o c c u r s a t d i f f e r e n t r e c e i v e r a n t e n n a h e i g h t s t h a n d o e s t h e measured l o b i n g , c a u s i n g a n a p p a r e n t d i v e r g e n c e between t h e measured and modeled d a t a . However, t h i s s e p a r a t i o n is c o n s i d e r e d t o b e c a u s e d b y e r r o r s i n t e r r a i n p r o f i l e d e f i n i t i o n o r a n t e n c a h e l g A t hats rstfier t:sn >"> - 3 d e l i n g e r r o r .
  • 38. 7 :&" O C 0
  • 39. 2 a Fi aJ 4 Q , a a J Q u a g 2 gffl P a m b Q , b U X H
  • 40. m G 0- ZR 0) 0) C C m 2 0 a er U a 'ti k 3 LO 4 L?-Y - 0 0 1 : I I I o-OOI- oo-ori- oo-oai- oo-osi- oo-oni- [BQI SSOl Hltfd
  • 41.
  • 42.
  • 43. '(I 0) a d 0) d Q , ' ( I a l a 0 ) m g 2 gLO P a r / ] E aJ E-r W E H
  • 44.
  • 45.
  • 46. 2 . P a t h R1-5-T6A (4.6 km., Mixed P a t h w i t h Double D i f f r a c t i v e E d g e s ) T h i s t e r r a i n p r o f i l e , shown i n F i g u r e 4-9, i s made u p o f r o l l i n g h i l l s . The p i e c e w i s e l i n e a r a p p r o x i m a t i o n p r o c e s s was s t r a i g h t f o r w a r d , r e s u l t i n g i n t h e s e v e n e d g e s r e p r e s e n t e d b y t h e d o t t e d l i n e i n t h e figure. O f p r i m a r y i n t e r e s t i n t h i s p r o f i l e is t h e d o u b l y - d i f f r a c t i v e e d g e s which h a s its shadow boundary c o r r e s p o n d i n g t o a r e c e i v i n g a n t e n n a h e i g h t of 9 meter. A t t h a t h e i g h t , t h e r e c e i v i n g a n t e n n a is i n a s t r a i g h t l i n e a l o n g t h e two d i f f r a c t i v e e d g e s ~ d i t ht h e t r a n s m i t t i n g a n t e n n a . Below t h i s h e i g h t , t h e p a t n is b l o c k e d , and is below l i n e o f s i g h t . Above t h e 9 m e t e r a n t e n n a h e i g h t , t h e p a t h i s w i t h i n l i n e of s i g h t . T h i s t y p e o f c o n f i g u r a t i o n i s of c o n s i d e r a b l e i n t e r e s t w i t h r e g a r d s t o GTD m o d e l i n g t h e o r y b e c a u s e i t i n v o l v e s c a i c u l a t i o n s of two r a p i d l y v a r y i n g f i e l d s n e a r t h e t r a n s i t i o n r e g i o n ; i f GTD h a s a r e g i o n i n which t h e t h e o r y i s n o t s t r i c t l y a p p l i c a b l e , i t would b e i n a t r a n s i t i o n r e g i o n s u c h as t h e one p r e s e n t e d i n t h i s p r o f i l e . F i g u r e s 4-10 t h r o u g h 4-1 6 p r e s e n t p l o t s o f measured and modeled r e s u l t s . R e f e r r i n g t o t h e 230 MHz p l o t i n F i g u r e 4-10, a f i e l d d i s c o n t i n u i t y o f a b o u t 5 d e c i b e l s s e e n a t t h e t r a n s i t i o n r e g i o n d i s c r i b e d above. T h i s d i s c o n t i n u i t y i s t h e l a r g e s t o b s e r v e d i n model r e s p o n s e and is n o t c o n s i d e r e d t o b e s i g n i f i c a n t l y d e t r e m e n t e l w i t h r e g a r d s t o p r o p a g a t i o n
  • 47. modeling. A s t h e f r e q u e n c y becomes h i g h e r , t h e d i s c o n t i n u i t y v a n i s h e s as is s e e n i n t h e f i g u r e . The r e a s o n f o r t h i s b e h a v i o r i s t h a t t h e a r e a of t h e t r a n s i t i o n r e g i o n d e f i n i n g t h e r a p i d l y - v a r y i n g f i e l d s d e c r e a s e s w i t h i n c r e a s i n g f r e q u e n c y . Although t h e d i s c o n t i n u i t i e s may s t i l l be p r e s e n t , t h e y a r e a p p a r e n t l y bypassed i n t h e s a m p l i n g scheme used f o r d a t a r e t r i e v a l . G e n e r a l l y good agreement is demonstrated between t h e modeled d a t a and t h e measured d a t a a l t h o u g h t h e r e i s a b i a s e r r o r t h a t t e n d s t o i n c r e a s e w i t h f r e q u e n c y . T h i s i n c r e a s i n g - . o i a a e r r o r , a c c o r d i n g t o p r e v i o u s e x p e r i e n c e 119 ) g a i n e d -l r o s ~ r o p a g a t i o nmodeling, i s l i k e l y d u e t o t r e e s w i t h i n t h e p a t h t h a t a r e n o t t a k e n i n t o a c c o u n t by t h e model, whose a b s o r p t i v e e f f e c t s i n c r e a s e w i t h f r e q u e n c y .
  • 48.
  • 49.
  • 50. 0 0 a > I +X - - - - - ! OO'OL- 00 08- 00 08- 00'
  • 51. 0 0 m )8 1P a I M 8 X l O X j a X a X 8 X I- 8 X a X a 0 8 [f Q > 8 0 8 8 I 8 X + -- '+.- A"ooqor- 00-od- 00-od- 00-oor- oo 011- oo 021- oo orr- 00-ohi- oo.0~1-- (90)S S Q ~H L ~ M
  • 52.
  • 53. 0 0 ex B# ex I T~ I I ex 8 X 8 X 1'e X 8 X I 8 X 1::0 X 8 X 8 X ee xx 1;;r-a8 X 8 X 8 X 8 8 8 0 8 i"" a X i" oo-ooi-- oo*oz;- OO.DO;-
  • 54.
  • 55. 0 L Q - a3 r n . 2 2 s 3 2 5C 0 -4 U a 0 '+I k 7 II K' ;2S 'Z
  • 56. 3. P a t h R1-5-T5A (5.0 Km., beyond L i n e o f s i g h t ) R e f e r i n g t o t h e drawing of t h e t e r r a i n p r o f i l e i n F i g u r e 4-7, i t is s e e n t h a t t h e d i r e c t p a t h is b l o c k e d f o r a l l a n t e n n a h e i g h t . The p i e c e w i s e - l i n e a r i z e d model i s approximated by 3 p l a t e s . GTD c a l c u l a t e d r e s u l t s f r o m t h i s p i e c e w i s e l i n e a r t e r r a i n model f o r t h e lower f r e q u e n c i e s a r e e x t r e m e l y c l o s e t o t h e measured d a t a as c a n b e s e e n f r o m P i g u r e s 4-18 t h r o u g h 4-23. A s f r e q u e n c y becomes h i g h e r , d i s c r e p a n c i e s between measured and modeled d a t a i n c r e a s e s . The r e a s o n may b e due t o l o s s e s caused by t r e e s o r o t h e r i n t e r v e n i n g o b j e c t s as was observed w i t h t h e p r e v i o u s p a t h .
  • 57.
  • 58.
  • 59.
  • 60.
  • 62.
  • 63.
  • 64. 4. P a t h RI -10-T2A (9.8 Km. , Beyond L i n e of S i g h t ) The t e r r a i n p r o f i l e a l o n g w i t h t h e p i e c e w i s e l i n e a r a p p r o x i m a t i o n a r e shown i n F i g u r e 4-24. The p a t h i s beyond l i n e of s i g h t , w i t h t h e d i r e c t r a y b l o c k e d b y a h i l l . A t o t a l o f 7 edges a r e used as i n p u t d a t a . The measured and modeled d a t a a r e shown i n F i g u r e s 4-25 through 4-31; c l o s e agreement between t h e two w e r e o b t a i n e d f o r a l l f r e q u e n c i e s . A l s o , t h e measured d a t a d o n o t s u f f e r t h e high-frequency e r r o r s e v i d e n t i n t h e p r e v i o u s two p r o f i l e s ; zne r e a s o n may b e d u e t o t h e a b s e n c e of t r e e s a l o n g t h e p a t h .
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73. 5. P a t h R1-10-T3 (9.6 Km., Line of S i g h t ) - .-- The t e r r a i n p r o f i l e f o r t h i s p a t h i s shown i n F i g u r e 4-32 Because t h e p i e c e w i s e - l i n e a r approximation does n o t f i t t h e a c t u a l t e r r a i n p r o f i l e as c l o s e l y as t h e p r e v i o u s p r o f i l e s , t h e l o c a l t e r r a i n roughness f a c t o r was a d j u s t e d d u r i n g t h e experiment t o i n v e s t i g a t e its e f f e c t s . I n t h i s e f f o r t , l o c a l t e r r a i n roughness v a l u e s of .2286 meter and 2 meters were used. The GTD program was r u n w i t h t h e same l i n e a r i z e d t e r r a i n p r o f i l e u s i n g t h e s e d i f f e r e n t l o c a l s u r f a c e roughness parameters. The f i r s t s e t of c a l c u l a t e d r e s u l t s u s i n g 9 i n c h e s l o c a l s u r f a c e roughness a r e shown from F i g u r e s 4-33 t h r o u g h 4-39. GTD modeled r e s u l t s a r e i n c l o s e a g r e e n e n t with t h e measured d a t a , except at 751 MHz. A t 751 LVIHZ, a n anomaly i s obvious i n t h e measured d a t a , where t h e p a t h l o s s a t 751 MHz is i n c o n s i s t e n t with t h e r e p o r t e d l o s s e s at h i g h e r o r lower f r e q u e n c i e s ; hence comments on GTD modeled performance a t t h a t frequency a r e not o f f e r e d . A t 1846 MHz, GTD over e s t i m a t e s t h e d e p t h of t h e v e r t i c a l l o b e . Secondly, t h e roughness f a c t o r w a s a d j u s t e d over a wide range of v a l u e s . I t was found t h a t by i n c r e a s i n g t h e roughness f a c t o r t o 2 m e t e r s , t h e d e p t h of t h e l o b i n g was c l o s e r t o t h e measured d a t a . The new p a t h l o s s e s t i m a t e f o r 1846 31Hz i s p l o t t e d on F i g u r e 4-44; and o t h e r f r e q u e n c i e s a r e shown i n F i g u r e s 4-40 t h r o u g h 4-46. G e n e r a l l y , t h e l o c a l t e r r a i n roughness f a c t o r d o e s n o t i n c u r a not i c e a b l e e f f e c t
  • 74. o n f r e q u e n c i e s lower t h a n 1 G H z . O t h e r v a l u e s o f t e r r a i n r o u g h n e s s f a c t o r r a n g i n g from 0.5 t o 5 m e t e r s were a t t e m p t e d , b u t b a s e d upon t h e s i z e and t h e d e p t h o f t h e l o b e , and t a k i n g i n t o c o n s i d e r a t i o n t h e v a r i a t i o n o f t h e o f t h e l i n e a r i z e d p r o f i l e with r e s p e c t t o t h e a c t u a l t e r r a i n p r o f i l e , a f i n a l v a l u e o f 2 m e t e r was s e l e c t e d .
  • 75.
  • 76.
  • 77. 0 0 .e X e 5" x e X e X e x e x e X 0 X X . a X I +.---- AXooaoL- 00 08- oo 08- o 0 - oo.oci-oo.oni-oososr-@(gal SSO-I ~ l t i d
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83. 0 0 B m 8L I 8( j I - 8 oo-0:- 00-00- 00-06- 00-001- o ~ * o ~ i -00-ozi~ oo'06i- 00-obi- (801 SSOl Hltfd
  • 84.
  • 85.
  • 86.
  • 87.
  • 88. 4 4 a a a , a a , a g : i ?ffl C l a m E a I 3 W X H
  • 89.
  • 90. 6 . P a t h R1-20-TI (27.7 Km., Beyond L i n e of s i g h t ) The t e r r a i n p r o f i l e a l o n g w i t h t h e p i e c e w i s e - l i n e a r a p p r o x i m a t i o n a r e p r e s e n t e d i n F i g u r e 4-47. The approximation o n l y t e n d s t o i n c l u d e t h e major p e a k s and s l o p e s of t h e a c t u a l t e r r a i n . The approximation c o n s i s t s of 5 e d g e s as s e e n i n t h e f i g u r e . Because of v a r i a t i o n s of t h e a c t u a l t e r r a i n w i t h r e s p e c t t o t h e l i n e a r approximation, a modeled l o c a l roughness p a r a m e t e r o f 2 meter was chosen. C a l c u l a t e d r e s u l t s from GTD modeled and measured d a t a a r e . - . a i i o % - ~i i i 4-48 t h r o u g h 4-54. A s a a s n from t h e s e figures, 223 r e s u l t s show a l a r g e r l o s s t h a n t h e measured d a t a a s t h e f r e q u e n c y i n c r e a s e s , e s p e c i a l l y t h o s e above 910 MU?., These e x c e s s i v e v a r i a t i o n s may b e caused by modeled- ---- ~ ~ i t ;rat'ri reflection from t h e c o m p a r a t i v e l y smooth segments used t o approximate t h e i r r e g u l a r t e r r a i n .
  • 91.
  • 92. C, P - a C -4 m $ 4 .rl a J L J U O C a, CJ tn k I .4 4 a, . I r ; C ? a h .-I a, rn .4 4J r n u - i c , 0 0 .4 d k h W C 5 k l d l d O h h W B
  • 93.
  • 94.
  • 95. rl d a 5 Q) a a l aO L I O E 2 5 : a r d r n E-1 s E-( W E H 0 0 X a x 0 X I . X a X a X a X a a rn X O X . X a X X .x .X .X X .X e x 8( a e x '--T-'-00-oat- 00 on- -m*mi- 00-osi- w-osi- oo*o~i- (80)SSOl Hltfd
  • 97. 0 X a X '3X O I xm xe isXb X. xe * i:"Y C W r m X . X a X a X X X X X X X i"" X X Y 1 L < -AXoo.oo:- w - o t i - 00-ozi- ooosi- oonmi- oo*osi- h * o s i - 0 0 - o ~ i - ooos~-- (001SSQl Hltld
  • 99. 7. P a t h T I - 2 0 4 4 (20.7 Km., Beyond L i n e of S i g h t ) The l i n e a r i z e d approximation and t e r r a i n p r o f i l e f o r t h i s p a t h a r e shown i n F i g u r e 4-55. The l i n e a r i z e d model c o n s i s t s of 6 edges which f o l l o w o n l y t h e m a j o r t e r r a i n f e a t u r e s ; a g a i n , a l o c a l t e r r a i n roughness f a c t o r of 2 meters was used f o r modeling. The modeled and measured d a t a f o r t h i s p r o f i l e a r e shown i n F i g u r e s 4-45 through 4-61. As can be s e e n from t h e F i g u r e s , t h e p l o t s a r e similar t o t h a t of t h e p r e v i o u s przlf lie. ,7 .n7. A t f r e q u e n c i e s below 1 GZZ? ~ T L U modeled r e s u l t s show c l o s e agreement w i t h meaanred d a t a ; vhilz above t h a t f r e q u e n c y , GTD c o n s i s t e n t l y g i v e s a h i g h e r v a l u e t h a n t h e r n e ~ q u red d a t a ,
  • 100.
  • 101.
  • 102.
  • 103.
  • 104. 0 X B X 8 X e X . i"0 X X X X X X X X X X X X X X X X X X i'" X X , Y l oo*oo:- 00-01i- 00-ozi- oo9osi- oo*mi.- 00*bi- OO-mi- 0 0 - o ~ i - (90)SSOl Hltfd
  • 105.
  • 106.
  • 107. 8 . 49.0 K m . , Beyond L i n e of S i g h t Path. The t e r r a i n p r o f i l e f o r t h i s p r o f i l e i s shown i n F i g u r e 6-62. Because of t h e c o m p l e x i t y o f t h i s p r o f i l e , two p i e c e w i s e - l i n e a r approximations were u s e d . The p u r p o s e of i n v e s t i g a t i n g b o t h a p p r o x i m a t i o n s is t o d e t e r m i n e t h e r e l a t i o n s h i p between modeled t e r r a i n v a r i a t i o n and t h e l o c a l s u r f a c e roughness parameter. The f i r s t a p p r o x i m a t i o n , c o n s i s t i n g of 17 edges, i s shown by t h e d o t t e d l i n e i n F i g u r e 4-62. T h i s model d e f i n e s more a c c u r a t e l y t h e t e r r a i n p r o f i l e , hence, a roughness p a r a m e t e r of 9 i n c h e s is used. P4eas:ired and GTD modeled d a t a f o r t h e 17 edge p r o f i l e are givan iz P i g u r e 4-63 through F i g u r e 4-69. A s s e e n i n t h e s e f i g u r e s , evidence o f e x c e s s i v e v e r t i c a l l o b i n g i s observed f o r f r e q u e n c i e s above 410 MHz. A l e s s - a c c u r a t e l y d e f i n e d l i n e a r i z e d p r o f i l e f o r t h e same p a t h i s shown i n F i g u r e 4-70. S i n c e t h i s modeled p r o f i l e h a s a g r e a t e r v a r i a t i o n w i t h r e s p e c t t o t h e a c t u a l p r o f i l e t h a n t h e 17 edge approximation, a l o c a l t e r r a i n roughness f a c t o r of 2 meter is u s e d . GTD modeled and measured d a t a f o r t h i s l i n e a r i z e d p r o f i l e are p r e s e n t e d i n F i g u r e s 4-71 through 4-77. These f i g u r e s show GTD e s t i m a t e d p a t h l o s s and v e r t i c a l l o b i n g are i n c l o s e r a g r e e m e n t s w i t h t h e measured d a t a t h a n p r e v i o u s model employing s m a l l e r s u r f a c e roughness f a c t o r , e s p e c i a l l y a t f r e q u e n c i e s o f 751 MHz and above. An important o b s e r v a t i o n is p r o v i d e d by t h e s i m p l e two-
  • 108. p r o f i l e i n v e s t i g a t i o n presented above. The accuracy o f t h e GTD model does n o t s o l e l y depend on t h e accuracy o f t h e i n p u t l i n e a r i z e d t e r r a i n p r o f i l e ; some combinations of p r o f i l e d e f i n i t i o n and l o c a l s u r f a c e roughness f a c t o r a r e necessary f o r model accuracy. The r u l e s f o r d e t e r m i n i n g what combination c o n s t i t u t e s a n optimum combination would r e q u i r e a n in-depth s t u d y which is beyond t h e scope of t h e f e a s i b i l i t y s t u d y o f f e r e d i n t h i s t h e s i s .
  • 109.
  • 110.
  • 111. u D - a E: ..I m 3 d' .r( -4 a 5' 4J U O C Q a D k I .r( rl 0) * d C m 0 X 9 X 0 X . X 0 X . X . X . X . X . X . X 0 e '--T+-00'001- 0 0 0 t r - 0 0 . 0 ~ i - 00*06i i- r n o o e i - (80) SSQl Hltfd
  • 112. '8 a rl d Q ) a Q) a Q) a 2 9 gcn C l a m B Q ) E U X H
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118. X s - . : , L - -A:!M*M:- w-oti- 00-ozi- oo-osi- oo'mi- oo-ost- oo-wi- o o * o ~ i - m*oet-- (901SSBl Hltfd
  • 120. a9) rl 2rl aJ $ % a O k O z ; x C l a m B a l E U E H
  • 121.
  • 122.
  • 123.
  • 124. 9- P a t h TI-50-TI (52.5 Km., L i n e of S i & t ) The t e r r a i n p r o f i l e , a l o n g w i t h l i n e a r i z e d model are g i v e n i n F i g u r e 4-78. As can b e s e e n , t h e p a t h is unblocked and a t o t a l o f of f i v e edges a r e u s e d i n t h e l i n e a r approximation, w i t h a modeled s u r f a c e roughness f a c t o r of 2 meters. Measured and modeled d a t a a r e shown i n F i g u r e s 4-79 through 4-84. GTD modeled r e s u l t s do n o t show t h e d e g r e e of v e r t i c a l l o b i n g as is e v i d e n t i n t h e measured d a t a . The r e a s o n may b e due t o an e x c e s s i v e l o c a l s u r f a c e roughness parameter a n d / o r improper placement of t e r r a i n p r o f i l e edges. S i n c e t h e p r o f i l e does n o t c o n s i s t d i f f r a c t i v e edge, t h e l i m i t o f GTD model's c a p a b i l i t y i n p r e d i c t i n g l o n g p a t h s cannot be determined.
  • 125.
  • 126. I $ i'" 8 X - +--y-t---oo.oo:- on-o~i- oo-oai- no-ori- &*mi- oo*osi- ^oo-wt- OOOLI- (001SSOl Hltfd
  • 127.
  • 128. 0 0 j4 tl%g 0 . C x X 8 i"" +--Ft- - i'JsooWoor- w otr- w-ozi- on*oei- OO-mi-w b * ~ ~ i -m-osi- OO*OL~- on*o~r-~ [aa) S S Q ~H L U ~
  • 129. ;s f-; 1 -i soo*w!- o o * o ~ i - oo*ozi- w*ori- oo-mi- %-mi- oo-ow- ooocr- ~ * o s r - ~ (001SSQ1 Hltfd
  • 130.
  • 131. 4J g - a 0 0 X X X T" X I X X X X 0 X X X X X 0 X x a X e X a x a X x a x a x a X i"" X - " . Y m.oor- watt- ao=ozi- oagoci- m*lai- w-mi- w-OQI- an-o~i- (801SSQl Hltfd
  • 132.
  • 133. 10. P a t h R3-80-T3 (80 Km., L i n e of S i g h t ) The t e r r a i n p r o f i l e f o r t h i s l o n g p a t h i s shown i n F i g u r e 4-86. Again, t h e p a t h is w i t h i n l i n e of s i g h t . c o n s i s t s no n a j o r d i f f r a c t i v e edges, The l i n e a r approximation f o r GTD i n p u t u s e s 12 edges as i s shown i n t h e Figure. The measured and modeled d a t a a r e o f f e r e d i n F i g u r e s 4-86 through 4-91. GTD modeled d a t a h a s a b i a s e d e r r o r on a l l f r e q u e n c i e s , perhaps due t o t r o p o s p h e r i c e f f e c t s not considered by t h e computer model; t h u s t h i s f r e e - s p a c e l o s s e s t i m a t e does n o t appear u n r e a i i s t i c . iiowever, i t shouid be noted t h a t t h i s p a t h can not c o n c l u s i v e l y determine GTD a o d e l performance l i m i t s due t o t r o p o s p h e r i c e f f e c t s n o t b e i n g t a k e n i n t o account by t h e model. A more r e p r e s e n t a t i v e e v a l u a t i o n of GTD model f o r l o n g e r ~ a t h s would be provided by a p a t h c o n t a i n i n g pronuounced d i f f r a c t i v e edges; u n f o r t u n a t e l y , such a p a t h i s n o t g i v e n i n McQuate, e t . a l .
  • 134.
  • 135.
  • 136. 0 x X X X X X X X X X X x X X X X X X X X X X X I"" X - Y 1 + ' 00-oor- 00-011- oo-ozi- oo.osi- ao-mi- w0osr- wmosi- OO*OL~- (00)SSOl Hltfd
  • 137. > a & d a, V) .rl 4J c n u u 0 8 -4 d 5C S k ,( d O k Q ' H h
  • 138.
  • 139.
  • 140.
  • 141. 1 1 . P a t h R2-120-TI ( 1 1 5 km., L i n e of S i g h t ) A s s e e n i n F i g u r e 4-92, t h i s t e r r a i n p r o f i l e is t h e l o n g e s t i n v e s t i g a t e d i n t h i s t h e s i s . Again, i t does n o t i n c l u d e any d i f f r a c t i v e edges, s o t h a t t h e p o t e n t i a l performance of GTD on l o n g p a t h s can n o t b e e v a l u a t e d . Measured and GTD modeled d a t a f o r t h i s p a t h are shown i n F i g u r e 4-93 t h r o u g h 4-95. GTD modeled d a t a shows u n r e a l i s t i c a l l y large v e r t i c a l l o b i n g , which a l t h o u g h can be decreased by r a i s i n g t h e s u r f a c e roughness f a c t o r , t h e b i a s e r r o r between measured and modeled r e s u l t s as e x i s t e d i n the p r e v i o u s model w i l l n o t d e c r e a s e . T h i s b i a s e r r o r i s a g a i n considered t o be due t o t r o p o s p h e r i c e f f e c t . Higher f r e q u e n c i e s d a t a a r e n o t a v a i l a b l e from t h e McQuatels and hence comparisons cannot be made.
  • 142.
  • 143. aal a 4 al 4 . a aJ a al a a g a a a v ) B a J B U x H
  • 144.
  • 145.
  • 146. V RECOMMENDATIONS While undergoing t h e GTD model performance e v a l u a t i o n on propagation p a t h l o s s , c e r t a i n s u g g e s t i o n s and o b s e r v a t i o n s l e d t o t h e f o l l o w i n g recommendations. 1 . The t e r r a i n l i n e a r i z a t i o n p r o c e s s s h o u l d be c a l c u l a t e d a n a l y t i c a l l y by computer a l g o r i t h m t o determine t h e a c t u a l mechanism of s c a t t e r i n g from t h e t e r r a i n edges, and hence e l i m i n a t e t h e p r e s e n t u s e r dependent f a c t o r . 2. The v a l u e of l o c a l t e r r a i n roughness f a c t o r s h o u l d b e obtained by t h e a c t u a l g a u s s i a n a v e r a g e o f t h e t e r r a i n i r r e g u l a r i t i e s i n a d d i t i o n t o t h e two v a l u e s b e i n g chosen i n t h i s t h e s i s . However, i f i r r e g u l a r i t i e s vary g r o s s l y over d i f f e r e n t p a t h segments, GTD model s h o u l d be c a p a b l e t o a s s i g n v a r i a b l e v a l u e s t o d i f f e r e n t edge segments. 3. GTD model does n o t i n c l u d e t h e e f f e c t s o f f o r e s t e d a r e a s i n p r e d i c t i n g p a t h l o s s a l t h o u g h i t h a s been demonstrated t h a t t h e s e e f f e c t s can be e s t i m a t e d a c c u r a t e l y 1191. Consequently, GTD model s h o u l d be modified t o i n c l u d e t h e known e f f e c t s of f o r e s t e d a r e a s . 4. I n t h i s s t u d y , o n l y t h e h o r i z o n t a l p o l a r i z e d f i e l d was i n v e s t i g a t e d . S i m i l i a r s t u d i e s s h o u l d b e u n d e r t a k e n f o r v e r t i c a l and c i r c u l a r p o l a r i z e d wave s o as t o expose f u r t h e r c a p a b i l i t i e s of t h e GTD model. 5. A s p r e s e n t l y c o n f i g u r e d , G T D model c a n o n l y c a l c u l a t e
  • 147. d i f f r a c t i v e edges t h a t a r e p e r p e n d i c u l a r t o t h e p r o p a g a t i o n p a t h . M o d i f i c a t i o n of GTD model t o a c c o u n t f o r d i f f r a c t i o n from obliquely-angled edges would improve p r e d i c t i o n a c c u r a c y f o r c e r t a i n p r o f i l e s . 6. E f f e c t s of t r o p o s p h e r e s u c h as: r e f r a c t i o n ( b e n d i n g ) o f wave by nonhomogeneous atmosphere; a b s o r b t i o n by oxygen and water vapor molecules, a b s o r b t i o n and s c a t t e r i n g b y p r e c i p i t a t i o n o f c l o u d s t h a t a r e n o t i n c l u d e d a t p r e s e n t s h o u l d be implemented i n f u t u r e work.
  • 148. V I C o n c l u s i o n A computer model h a s b e e n d e v e l o p e d t o e s t i m a t e e l e c t r o m a g n e t i c wave p r o p a g a t i o n o v e r i r r e g u l a r t e r r a i n u s i n g t h e G e o m e t r i c a l Theory o f D i f f r a c t i o n (GTD) m o d i f i e d t o a c c o u n t f o r f i n i t e c o n d u c t i v i t y and l o c a l g r o u n d s u r f a c e r o u g h n e s s . Based upon comparisons of GTD modeled d a t a w i t h measured d a t a , t h e f o l l o w i n g c o n c l u s i o n s a r e o f f e r e d : 1 . GTD p r o v i d e s a c c u r a t e p r e d i c t i o n c a p a b i l i t i e s f o r i r r e g u l a r t e r r a i n w i t h p a t h l e n g t h s from 0.5 t o 80 Km., a t s e v e n f r e q u e n c i e s i n t h e 230- t o 9200- MHz r a n g e ; b o t h w i t h i n and beyond l i n e of s i g h t p a t h s f o r h o r i z o n t a l l y - p o l a r i z e d wave. 2. The m o d i f i e d d i f f r a c t i o n c o e f f i c i e n t used t o a c c o u n t f o r f i n i t e c o n d u c t i v i t y and l o c a l s u r f a c e r o u g h n e s s does n o t a f f e c t f i e l d c o n t i n u i t y a t and n e a r t h e v i c i n i t y o f t h e shadow and r e f l e c t i o n b o u n d a r i e s . 3. The p r e s e n c e of d o u b l e d i f f r a c t e d e d g e s w i t h i n t h e f i e l d t r a n s i t i o n r e g i o n c a u s e d minor f i e l d d i s c o n t i n u i t i e s , a l t h o u g h t h e s e e f f e c t s are n o t c o n s i d e r e d d e t r e m e n t a l t o p r e d i c t i o n a c c u r a c y . 4. G T D a c c u r a c y depends upon on a n o p t i m i z e d c o m b i n a t i o n o f b o t h t h e l o c a l s u r f a c e r o u g h n e s s p a r a m e t e r and t h e p i e c e w i s e - l i n e a r i z e d t e r r a i n d a t a . 5. GTD a c c u r a c y d e c r e a s e s f o r l o n g e r p a t h s i n v e s t i g a t e d ,
  • 149. a p p a r e n t l y due t o t r o p o s p h e r i c a t t e n u a t i o n e f f e c t s not accounted f o r by t h e model. b . T h e v a l u e of t h e l o c a l s u r f a c e roughness f a c t o r n e c e s s a r y f o r r e a l i s t i c v e r t i c a l l o b e e s t i m a t e s t e n d s t o i n c r e a s e w i t h p a t h l e n g t h , and t h u s t h e s i z e of t h e F r e s n e l Zone.
  • 150. V I1 ACKNOWLEDGEMENTS The a u t h o r is i n d e b t e d t o h i s a d v i s o r Dr. Kent Chamberlin who g e n e r o u s l y gave h i s t i m e , e n d l e s s p a t i e n c e , a n d g u i d a n c e d u r i n g t h i s e f f o r t . S p e c i a l g r a t i t u d e is due t o Dr. R.J. Luebbers and D r . V i c h a t e Unguichian, who developed t h e b a s i c GTD model. Thanks a l s o t o Wong Sheung Shun f o r t e c h n i c a l drawings.
  • 151. VIII REFERENCE 11 1 Sommerfeld, A . "Mathematische Theorie d e r D i f f r a k t i o n , " Math. Ann., vol. 47, pp. 317-374, 1896. 121 K e l l e r , J. B., "The Geometrical Theory o f D i f f r a c t i o n , " Symposium on Microwave O p t i c s , McGill U n i v e r s i t y , Montreal, Canada; June 1953. L3J K e l l e r , J. B., " The Geometrical Theory o f D i f f r a c t i o n . " i n The C a l c u l u s of V a r i a t i o n s --and Its ~ ~ ~ l i c a t i o n s , McGraw H i l l Book cK, I n c . , New York, N.Y., 1958. 141 K e l l e r , J. B , "Geometrical Theory o f D i f f r a c t i o n , " J. Opt. Soc. Am., 52, pp.116-130, February 1962. 151 Robert C . Hansen, E d i t o r , "Geometric Theory of D i f f r a c t i o n , " IEEE P r e s s , New York, N.Y., 1981. . - , ---I ? ! "!'"a- J -------7 Pi., t'An Asymptotic S o l u t i o n of Maxwell's Zquations" published i n "The Theory o f Electromagnetic- * Naves, " a Symposium, I n t e r s c i e n c e h b l i s h e r s , I n c . , New-- +,-- 3 . 1 1 . See a l s o M. KLi2e, "Electromagnetic 2hzo.q and Geometerical O p t i c s , " p u b l i s h e d i n "Electromagnetic Waves" by L.E. Langer; U n i v e r i s t y o f i J 4n l u b v l L u ; L rm n nv,n -m P r e s s , Madison; 1962. i 7 j Weeks, W.L., "Antenna EngineeringH, McGraw-Hi 11 P u b l i s h i n g Company LTD, New York, N.Y., pp 39-40, 1968. 131 K e l l e r , J. B . , "Geometrical Theory of D i f f r a c t i o n " J . Opt. Soc. Amer., v o l . 52, pp. 116-130. 131 I b i d . , Robert C . Hansen, pp. 83-218. L101 Kouyoumjian, R. G . , "A Uniform Geometrical Theory o f D i f f r a c t i o n f o r an Edge i n a P e r f e c t l y Conducting S u r f a c e " , Proc. IEE, v o l . 62, pp. 1448-1461, Nov. 1974. Ll 11 Beckmann, P. and S p i z z i c h i n o , A . The S c a t t e r i n 6 of E l e c t r o m a g n e t i c Waves from Rough S u r f a c e s , P e r g a m z P r e s s , New York, 1963,Chapter 12. 1121 Larson, H. and Shubert. B . , P r o b a b i l i s t i c Models i n E n g i n e e r i n g S c i e n c e s , v o l 1 , John Wiley & ~ o n n c . , New York, pp 358, 1979. L13j I b i d . , Bechmann, P. and S p i z z i c h i n o , A . S e c t . 5.3. 114J Rayleigh, Lord, "On The L i g h t Dispersed from F i n e L i n e s Ruled upon R e f l e c t i n g S u r f a c e s o r Transmitted by Very Narrow S l i t s , " P h i l . Mag. 1 4 , pp. 350-359, 1907.
  • 152. 1151 Rojas-Teran, R. G . , and Burnside, W. D . , "GTD A n a l y s i s o f Airborne Antenna i n t h e Presence of Lossy D i e l e c t r i c Layers", Ohio S t a t e U n i v e r s i t y E l e c t r o - S c i e n c e Laboratory Report. 1161 McQuate, P. L. e t a l , "Tabulations of P r o p a g a t i o n Data o v e r I r r e g u l a r T e r r a i n i n t h e 230-920OMHz Fr equency Range", ESSA Report ERL-65-ITS-58, U. S. Department of Commerce, March 1968. 1171 Longley, A. G. and R i c e , P. L. " P r e d i c t i o n of Tropospheric Radio Transmission Loss Over I r r e g u l a r T e r r a i n " , ESSA Report ERL79-ITS-67, U.S. Department of Commerce, 1968. 1181 R i c e , P. L. e t a l , "Transmission Loss P r e d i c t i o n s f o r Tropospheric Communication C i r c u i t s " , Volume I , Report AD-687-820, U. S. Department of Commerce, J a n u a r y , 1967. 1131 Chamberlin, K. A . " I n v e s t i g a t i o n and Development of VHF Ground-Air Propagation Nodeling INncluding t h e A t t e n u a t i n g E f f e c t s of F o r e s t e d Areas f o r Within-Line- of-Sight Propagation Paths", Ohio U n i v e r s i t y Avionics Engineering C e n t e r , March 1982.
  • 153. X Appendix A . D i f f r a c t i o n C o e f f i c i e n t Boundaries C o n t i n u i t y Checks S e v e r a l c r i t i c a l b o u n d a r i e s c o n t i n u i t y c h e c k s f o r d i f f e r e n t r a y t y p e s have b e e n d e v i s e d t o e n s u r e t h a t t h e modified d i f f r a c t i o n c o e f f i c i e n t does not v i o l a t e t h e b a s i c t h e o r y of t h e GTD fundamentals. I n t o t a l , t h r e e s e t s of edges a r e s t u d i e d ; t h e y a r e : a t t h e shadow boundary f o r a s i n g l y - d i f f r a c t e d r a y geometry; a t t h e r e f l e c t i o n boundary f o r a d i r e c t , s i n g l y - r e f l e c t e d and s i n g l y - d i f f r a c t e d r a y ; and at t n e r e f l e c t i o n boundar~?J A d -F n r t w s c a s e s i n v o l v i n g higher-order r a y s . V e r i f i c a t i o n of f i e l d c o n t i n u i t y at t h o s e b o u n d a r i e s f o r lower-order ray t y p e s and as w e l l as h i g h e r - o r d e r r a y t y p e s a r e considered s u f f i c i e n t proof o f p r o p e r GTD o p e r a t i o n . Both t h e h o r i z o n t a l and v e r t i c a l f i e l d p o l a r i z a t i o n a r e i n v e s t i g a t e d i n t h e s e checks. I n a d d i t i o n , c o n t i n u i t y check a r e c a r r i e d o u t i n p e r f e c t c o n d u c t i v i t y f o r t h e same p r o f i l e which r e p r e s e n t t h e GTD model b e f o r e i t is modified s o as t o p r o v i d e a b a s e l i n e i n f o r m a t i o n . A a o r e d e t a i l e d e x p l a n a t i o n o f each o f t h e f i e l d c o n t i n u i t y check o p e r a t i o n a r e i n c l u d e d i n t h e i r c o r r e s p o n d i n g s e c t i o n .
  • 154. 1 . R e f l e c t i o n Boundary Check The geometry used f o r s i n g l y d i f f r a c t e d r a y c o n t i n u i t y check a t r e f l e c t i o n boundary i s shown i n F i g u r e A-1 . The p r o f i l e , which c o n s i s t s o f a t r a n s m i t t i n g a n t e n n a r a d i a t i n g o v e r t h e h o r i z o n t a l ground p l a n e i s t r u n c a t e d a t 13 meter t o c r e a t e a r e f l e c t i o n boundary. The r e c e i v i n g a n t e n n a i s allowed t o e l e v a t e from 1 meter t o 81 meter h e i g h t and i s l o c a t e d at t h e v e r t i c a l c o o r d i n a t e . Three r a y t y p e s e x i s t : d i r e c t r a y , s i n g l y r e f l e c t e d r a y and s i n g l e d i f f r a c t e d r a y ; and s i n c e by t h e s p e c i a l c o n f i g u r a t i o n of t h i s edge, o t h e r r a y t y p e s ' e x i s t e n c e is r u l e d o u t o v e r t h e e n t i r e r e c e i v i n g a n t e n n a h e i g h t range. The r e f l e G i o n -:a7=dsA7, , i s l i n e d by t h e p o i n t at which t h e r e f l e c t e d r a y v a n i s h e s , o c c u r s at 1 1 meters of t h e a n t e n n a h e i g h t f o r t h e geometry shown. The purpose of r e f l e c t i o n boundary c o n t i n u i t y check i s t o e n s u r e a p r o p e r e l e c t r i c f i e l d t r a n s i t i o n a t t h e r e f l e c t i o n boundary when t h e r e f l e c t i o n r a y v a n i s h e s . S i n c e f i e l d i n t e n s i t y d e c r e a s e s , t h e d i f f r a c t e d r a y s h o u l d r i s e i n amplitude t o compensate t h e l o s s of r e f l e c t e d r a y s o t h a t f i e l d c o n t i n u i t y would be p r e s e r v e d . The d i f f r a c t e d ray a l s o p r o v i d e s f i e l d v a l u e a t t h e shadow r e g i o n . Any a b r u p t changes at t h e boundary i n d i c a t e s t h a t a n e r r o r i n t h e d i f f r a c t e d f i e l d c a l c u l a t i o n h a s occured. 'dith t h e above f a c t s , r e f e r t o F i g u r e A-2 which is a p l o t of t h e GTD e s t i m a t e d p a t h l o s s f o r t h e geometry of F i g u r e A-1 assuming p e r f e c t c o n d u c t i v i t y . A s s e e n i n t h i s F i g u r e ,
  • 155. c a l c u l a t e d f i e l d s a r e continuous at t h e r e f l e c t ion boundary as is expected, because GTD model o p e r a t e s a c c o r d i n g t o t h e conventional GTD b e f o r e modification. The f i n i t e c o n d u c t i v i t y p a t h l o s s f o r a s i n g l y r e f l e c t e d r a y o f t h e same geometry i s p l o t t e d on F i g u r e A-3, w i t h t h e ground e l e c t r i c c o n s t a n t s i n d i c a t e d i n t h e Figure. S i n c e o n l y t h e s i n g l y r e f l e c t e d ray e x i s t s t h e f i e l d d i s a p p e a r s below t h e r e f l e c t i o n boundary a t 1 1 meter r e c e i v e r antenna h e i g h t . F i e l d c o n t r i b u t i o n below t h e r e f l e c t i o n boundary i s provided by t h e d i f f r a c t e d and d i r e c t rays. F i g u r e A-4 shows t h i s c o n t r i b u t i o n i n t h e f i n i t e c o n d u c t i v i t y c a s e . And a l s o can be seen i n t h e Figure, t h e f i e l d t r a n s i t i o n i s smooth a c r o s s t h e r e f l e c t i o n boundary. The v e r t i c a l p o l a r i z a t i o n r a y s u f f e r s a higher l o s s t h a n t h e p e r f e c t c o n d u c t i v i t y c a s e ; and t h e h o r i z o n t a l p o l a r i z a t i o n f i e l d v a l u e f o r t h e f i n i t e c o n d u c t i v i t y c a s e i s e s s e n t i a l l y unchanged from t h e p e r f e c t c o n d u c t i v i t y case of F i g u r e A-2. The smooth f i e l d t r a n s i t ion a c r o s s t h e r e f l e c t i o n boundary v e r i f i e s t h e GTD r e f l e c t i o n boundary o p e r a t i o n f o r lower o r d e r r a y s .
  • 156.
  • 157.
  • 158.
  • 159.
  • 160. 2. Shadow Boundary Check The purpose o f t h i s shadow boundary c o n t i n u i t y check is t o e n s u r e t h a t f i e l d c o n t i n u i t y i s p r e s e r v e d a t t h e shadow boundary s o t h a t GTD fundamental i s n o t v i o l a t e d . The t e s t i n g i n v o l v e s s i n g l y d i f f r a c t e d r a y and d i r e c t r a y . The p r o f i l e geometry employed is shown i n F i g u r e A-5. A s one c a n s e e from t h e f i g u r e , t h e t r a n s m i t t i n g a n t e n n a i s l o c a t e d a t t h e right-hand end of t h e two p l a t e s t h a t c o n s t i t u t e t h e p r o f i l e , whereas t h e r e c e i v i n g a n t e n n a is l o c a t e d st zne p c o o r d i n a t e as b e f o r e , b e i n g c a p a j l e o f e l e v a t e d from one meters h e i g h t through twenty-f i v e meter. S i n c e the t r m i t t i x & ~ t e n n a h e i g h t is t h e s a n e as t h e peak ~f the p r o f i l e , t h e shadow boundary becomes a s t r a i g h t h o r i z o n t a l l i n e e x t e n d i n g from t h e peak t o t h e r e c e i v i n g a n t e n n a o r d i n a t e at 15 meter. The e x i s t e n c e of o t h e r r a y t y p e s a r e n o t p o s s i b l e i n t h i s g e o m e t r i c a l c o n f i g u r a t i o n , as t h e r e f l e c t e d r a y from t h e t r a n s m i t t i n g a n t e n n a o n t h e two p l a t e s w i l l t r a v e l o u t s i d e t h e r a n g e of t h e r e c e i v i n g antenna. A s a r e s u l t , i n t e r f e r e n c e from r a y s o t h e r t h a n t h e s i n g l y d i f f r a c t e d and d i r e c t ones does not e x i s t . The c a s e f o r p e r f e c t c o n d u c t i v i t y e d g e s which r e p r e s e n t s GTD r e s u l t s b e f o r e m o d i f i c a t i o n is p r e s e n t e d f i r s t . F i g u r e A-6 is a p l o t of r e c e i v e r a n t e n n a h e i g h t v e r s u s p a t h l o s s t h e s i n g l y d i f f r a c t e d r a y . As e v i d e n t from t h e f i g u r e , f i e l d d i s c o n t i n u i t y o c c u r s f o r b o t h p o l a r i z a t i o n s at t h e shadow boundary. T h i s is caused by t h e d i s a p p e a r a n c e of t h e
  • 161. d i r e c t ray a t t h e boundary. Thus, by t h e a d d i t i o n o f t h e d i r e c t r a y s , c o n t i n u i t y i s a g a i n presvered a c r o s s t h e shadow boundary as s e e n i n t h e p l o t o f F i g u r e A-7 f o r t h e p e r f e c t l y conducting case. F i n i t e c o n d u c t i v i t y p l o t of p a t h l o s s f o r t h e geometry o f F i g u r e A-5 is shown on F i g u r e A-7. Again, as i n t h e p r e v i o u s c a s e o f p e r f e c t l y conducting edges d i f f r a c t e d r a y , d i s c o n t i n u i t y o c c u r s at t h e shadow boundary due t o t h e disapperance of t h e d i r e c t r a y . Refering t o F i g u r e A-9, which p l o t s t h e t o t a l f i e l d c o n t r i b u t i o n s o f t h e d i f f r a c t e d and a l s o t h e d i r e c t r a y , it is s e e n t h a t t h e f i e l d c o n t i n u i t y i s win p s s z n e r l z% t h e shadow, p r o v i n g t h a t t h e modified d i f f r a c t i o n c o e f f i c i e n t is performing i n a f a s h i o n c o n s i s t a n t with GTD.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167. 3. R e f l e c t i o n Boundary check f o r Higher-order r a y s The geometry used f o r t h i s t e s t i s shown on F i g u r e A-10, which c o n s i s t s of seven edges. The r e f l e c t i o n boundary f o r t h e r e f l e c t e d - d i f f r a c t e d - d i f f r a c t ed ray and r e f l e c t e d - d i f f r a c t e d - r e f l e c t e d ray i s l o c a t e d a t 1 1 meter of t h e r e c e i v i n g antenna height. The purpose of t h i s t e s t is t o check t h a t lower-order r a y s and higher-order r a y s compensate each another t o preserve f i e l d 1 c o n t i n u i t y a t r e f l e c t i o n boundary. Assuming p e r f e c t con&uc-tivity edges, F i g u r e A-l l &ws a p l o t of t h e p a t h l o s s f o r t h e r e f l e c t e d - d i f f r a c t e d - r e f l e c t e d and r e f l e c t e d - d i f f r a c t e d - d i f f r a c t e d r a y s as t h e r e c e i v i n g antenna moves from t h e shadow r e g i o n t o t h e l i t e r e g i o n . P_ f i e l d d i s c o n t i n u i t y i n excess of 18 db can be observed a t t h e r e f l e c t i o n boundary. This i s due t o t h e f a c t t h a t lower o r d e r r a y s a r e absented ( i . e . d i f f r a c t e d - r e f l e c t e d , d i f f r a c t e d , o r s i n g l y d i f f r a c t e d ) t o compensate t h e higher- o r d e r r e f l e c t e d ray l o s s e s at t h e boundary. T o t a l path l o s s f o r t h e geometry of F i g u r e A-10 i s p l o t t e d i n F i g u r e A-12 f o r t h e p e r f e c t c o n d u c t i v i t y c a s e ; and as expected, f i e l d i s again continuous w i t h t h e a d d i t i o n of lower-ordered ray t y p e s although t h e i n t e n s i t y is rapidly-varying due t o t h e number of r a y s i n t e r a c t i n g i n t h e v i n c i n i t y o f t h e boundary and t h e i r r e l a t i v e l y s t r o n g l e v e l because o f p e r f e c t conductivity.
  • 168. P a t h l o s s v e r s u s r e c e i v i n g a n t e n n a h e i g h t f o r t h e f i n i t e l y c o n d u c t i n g edges f o r t h e r e f l e c t e d - d i f f r a c t ed- r e f l e c t e d r a y and t h e r e f l e c t e d - d i f f r a c t e d d i f f r a c t e d r a y i s p l o t t e d on F i g u r e A-13. Again, more t h a n 2 3 db of f i e l d d i s c o n t i n u i t i e s can be observed a t t h e r e f l e c t ion boundary a t 11 meters. The r e a s o n t h a t t h i s f i g u r e is h i g h e r t h a n t h e 18 db i n t h e p e r f e c t l y conducting edges is because f i e l d s are f u r t h e r a t t e n u a t e d by f i n i t e c o n d u c t i v i t y edges. T o t a l p a t h l o s s e s with t h e c o n t r i b u t i o n s of a l l e x i s t i n g r a y t y p e s is shown i n F i g u r e A-14, assuming t h e same ground e l e c t r i c a l p r o p e r t i e s as b e f o r e . Once a g a i n , t h e f i e i d c o n t i n u i t y i s p r e s e r v e d a t t h e r e f l e c t i o n boundary a t 1 1 meter, which s u f f i c i e n t l y i n d i c a t e s t h a t t h e modified GTD t h e o r y i n t h e higher and lower ray t y p e s combinations is k e p t .
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174. B. Modeled P a t h P r o f i l e A l l t h e t e r r a i n p r o f i l e s i n p u t d a t a i n v e s t i g a t e d i n t h i s t h e s i s a r e g i v e n i n t h i s s e c t i o n . These d a t a a r e i n t h e o r i g i n a l form b e i n g read i n by t h e GTD model t o g e n e r a t e t h e c a l c u l a t e d p a t h l o s s i n d e c i b e l s , which were s u b s e q u e n t l y p l o t t e d v e r s u s r e c e i v i n g a n t e n n a h e i g h t . F i r s t , a n e x p l a i n a t i o n of t h e i n p u t d a t a format and its f u n c t i o n t o t h e GTD model is given. It is t h e n followed by t h e t e r r a i n p r o f i l e f i l e s . A t y p i c a l i n p u t d a t a f i l e w i l l l o o k l i k e t h e f o l l o w i n g : NE, ICON, YMIN, YMAX, EPSIR, SIGMA, DELTAG XN YN ZN FREQ1 --> RAY-TYPE CONTRGL PARAMZTERS
  • 175. Where H E , ( 1 5 ) I C O N , ( 1 5 ) ICON = 1 ICON = 0 YMIN, ( F I O . 5 ) YMAX, ( F 1 0 . 5 ) E P S I R , ( F 1 0 . 5 ) SIGMA, ( F 1 0 . 5 ) DELTAG, ( F 1 0 . 5 ) number of edges i n f o r m a t i o n o u t p u t c o n t r o l d e t a i l e d p r i n t o u t b r i e f o u t p u t summary min db v a l u e of p l o t a x i s max db v a l u e of p l o t a x i s r e l a t i v e p e r m i t t i v i t y o f ground ground c o n d u c t i v i t y i n MHO/METER s u r f a c e roughness f a c t o r i n meter Second r e c o r d t o t h e n-th record: X , Y , Z c o o r d i n a t e of t h e edge i n 32'10.5 format, where n is equal t o N E (no. o f e d g e s ) , i n t h e p r e v i o u s r e c o r d . Ray-type c o n t r o l parameters (Format = 1 3 1 1 ) J D I R DIRECT RAY J R E F SINGLY REFLECTED RAY J R R REFLECTED-REFLECTED RAY J R D REFLECTED-D IFFRACTED RAY J R R D REFLECTED-REFLECTED-DIFFRACTED RAY J R D R REFLECTED-D IFFRACTED-REFLECTED RAY J D I R SINGLY DIFFRACTED RAY J D R DIFFRACTED-REFLECTED RAY JDRD DIFFRACTED-REFLECTED-D IFFRACTED RAY J D D DOUBLY-D IFFRACT ED RAY
  • 176. J D D R DIFFRACTED-D IFFRACTED-REFLECTED RAY JDRR DIFFRACTED-REFLECTED-REFLECT ED RAY J R D D REFLECTED-D IFFRACTED-DIFFRACTED RAY If any of t h e above parameter is b e i n g s e t t o 1 , t h a t s p e c i f i c r a y t y p e is ignored d u r i n g t h e computations. Other v a l u e s simply implied t h a t r a y t y p e is i n c l u d e d . Frequencies i n megahertz s h o u l d be e n t e r e d i n F10.3 format. 2. L i s t i n g s of Path P r o f i l e Data 1. Path R1-0.5-T1
  • 177. 2. Path R 1 - 5 - T ~ A 3. Path R1-5-T5A
  • 178. 5. Path R1-10-T3 6. Path R1-20-TI 7. Path R1-20-T4 6 0-2 10.OOOOO -90 .00000 15.OOOOO 0.01200 2.00000 0.0 00.ooo 1589.320 0.0 8197.234 1500.574 0.0 10636.652 1542.418 0.0 13536.961 1~~3.03-j 0.0 18889.855 1566.680 0.0 20740.242 1551.000 230.0 0000000000000000 410.0 751.0 910.0 1846.0 4595.0 9190.0
  • 180. 11. Path R2-120-T1 11. 0-210.00000 -go.ooooo 15.00000 0.01200 0.22860 I? .? 9.0 2556.481