SlideShare una empresa de Scribd logo
1 de 61
Descargar para leer sin conexión
VIT
U N I V E R S I T Y
VELLORE – 632 014
SCHOOL OF MECHANICAL AND BUILDING
SCIENCES
CHEMICAL ENGINEERING DIVISION
DESIGN PROJECT
ON
ADIPIC ACID
By:-
SHIVIKA AGRAWAL(10BCH0053)
NIKHIL NEVATIA(10BCH0038)
SATISH M. PILLAI(10BCH0072)
VI Semester
B. Tech. Mechanical Engg. Spec. in Chemical Processes
Design Project Record
2013
2
VIT
U N I V E R S I T Y
VELLORE – 632 014
SCHOOL OF MECHANICAL AND BUILDING SCIENCES
CHEMICAL ENGINEERING DIVISION
Certified that this is the bonafide record of work done by
1.SHIVIKA AGRAWAL(10BCH0053)
2.NIKHIL NEVATIA(10BCH0038)
3.SATISH M. PILLAI(10BCH0072)
Of Sixth Semester students of B.Tech Mechanical Engineering with Specialization
in
Chemical Processes during the year 2012.
Project guide
Prof. Pandurangan K.
3
ACKNOWLEDGEMENT
We would like to express our deep gratitude to all those who gave us the
opportunity towork on this design project. We want to thank the Department of
Chemical Engineering of VIT University, Vellore for helping us. We have
furthermore to thank the faculties Prof. David K Daniel, Prof. Chitra D., Prof.
Anand Gurumoorthy, Prof. Aslam Abdullah and Prof. Nirmala G.S. who reviewed
us periodically and encouraged us to go ahead with the work.
We are deeply indebted to our guide Prof. Pandurangan K. who helped us in
stimulating suggestions and supported us with all the valuable guidance.
4
PREFACE
This design project includes various aspects of a chemical product development
right fromthe market condition evaluation to the estimation of cost of the plant
setup.
Chapter 1 deals with the introduction to the product (adipic acid) – its properties
both physical and chemical. It also provides the application of adipic acid in
various other areas.
Chapter 2 contains a study of adipic acid in the global as well as Indian market.
The gap between demand and supply is studied and used to set a bar for the
production rate for the plant.
Chapter 3 has a brief explanation of various available processes for the
manufacture of the adipic acid. A comparison is also done between the chosen
process and the other available processes. The detailed process description is also
given for the selected process.
Chapter 4 includes material balance over all the equipments used in the plant for a
production of 100 TPD of adipic acid. Both component-wise and overall mass flow
rate has been provided. The mol%, and wt.% is also provided for each component
and the molar flow rate of each is included too.
Chapter 5 contains enthalpy balance for all the streams in and out of each
equipment in the plant. The utilities requirement are also calculated, stating the
amount of cooling water and steam required for daily running of the plant.
Chapter 6 contains the mechanical design of a heat exchanger using Kern’s
method.
Chapter 7 provides cost estimation for the Heat exchanger.
Chapter 8 provides MSDS for adipic acid.
5
CONTENTS
Certificate 2
Acknowledgement 3
Preface 4
1. Introduction 6
2. Market Analysis 8
3. Process Selection 13
4. Material Balance 21
5. Energy Balance 29
6. Equipment Design 42
7. Cost Estimation 52
8. MSDS for Adipic Acid 54
Reference
Process Flow Sheet 21
6
CHAPTER 1
INTRODUCTION
Adipic acid is the organic compound with the formula (CH2)4(COOH)2. From the
industrial perspective, it is the most important dicarboxylic acid. About 2.5 billion
kilograms of this white crystalline powder are produced annually, mainly as a
precursor for the production of nylon. Adipic acid otherwise rarely occurs in
nature.
Molecular formula C6H10O4
Molar mass 146.14 g mol−1
Appearance White crystals (monoclinic)
Density 1.36 g/cm3
Melting point 152.1 °C, 425 K, 306 °F
Boiling point 337.5 °C, 611 K, 640 °F
Solubility in water fairly soluble
Acidity (pKa) 4.43, 5.41
USES
• Adipic acid is used in nylon 6,6 fibres and resins, which account for nearly
65% of output.
• Used to produce polyurethanes.
7
• As a food ingredient in gelatins, desserts and other foods that require
acidulation.
• Incorporated into controlled-release formulation matrix tablets to obtain pH-
independent release for both weakly basic and weakly acidic drugs.
APPLICATIONS
• In manufacturing plasticizers and lubricants,in making polyester polyols for
polyurethane systems.
• Adipic acid derivatives, acyl halides, anhydrides, esters, amides and nitriles,
are used in making target products such as flavoring agents, internal
plasticizers, pesticides, dyes, textile treatment agents, fungicides, and
pharmaceuticals.
• Nylon 6, 6 fiber is used in apparel, especially ladies' hosiery, sleepwear, and
underwear, carpets, and home furnishings. Other nylon 6,6 fiber uses include
tire cord, fishing line, brush bristles, and in tough fabrics for parachutes,
backpacks, luggage, and business cases.
8
CHAPTER 2
MARKET ANALYSIS
DEMAND
Global adipic acid (ADA) demand is estimated at 3.3 million metric tons in
2012 and is growing at 3–5% per year.China is the world’s largest importer
of adipic acid. Europe stands tall as the largest worldwide market for adipic
acid. Asia-Pacific, led by rapid advancements from China is slated to be the
fastest growing market for Adipic Acid. In 2008, global demand for adipic
acid was about 2.5-mt, which rose to about 2.57-mt by 2009.In W. Europe,
consumption of adipic acid for nylon 66 fibres, nylon 66 engineering resins
and polyester polyols have grown at an average rate of approximately 2%
per year during 2005-2010.In Japan, consumption for nylon 66 fibres have
grown at an average rate of 5.9% per year during 2005-2010.Consumption
for production of polyester polyols, which are used in hot-melt adhesives for
shoe soles and other products, has grown swiftly in Asia. Asia is becoming a
potential market for adipic acid due to its increasing demand for
polyurethane and polyamide. Overall demand increased to 6 % per year till
2010.
9
INDIAN SCENARIO
A new single-step process for adipic acid production was developed by a
consortium of the Indian Institute of Petroleum (IIP) and Adarsh Chemicals &
Fertilizers Ltd. The process involved oxidation of cyclohexane using a modified,
recyclable cobalt catalyst and was said to be environmentally friendly since no
nitric acid or nitrous oxide is involved. Currently, India has negligible production
of adipic acid, and almost the entire requirement is met through imports. Imports of
adipic acid in 2008-09 are estimated at about 9,685-tons.
10
PRODUCTION CAPACITY AND SUPPLY
In the present scenario, there are about 23 adipic acid production units worldwide,
with majority existing in the developed western countries or developing markets.
In 2010, the global Adipic acid production level was recorded at over 2,800 kt,
with the United States making up the largest share at over 30% of the global
output. Other producing countries include Brazil, Canada, China, France,
Germany, Italy, Japan, Korea, Singapore, Ukraine, and United Kingdom. Most of
these countries have only one adipic acid plant. By-product nitric acid is used
primarily to make synthetic commercial fertiliser. The production technology of
11
adipic acid for long has been controlled in the hands of multinationals such as
DuPont. In 2004, total installed capacity for adipic acid in the world was 2.74-
mtpa.DuPont alone accounted for a capacity of 1.1-mtpa,
accounting for 40% of the world total. Solutia (USA) and Rhodia(France) were
other dominant producers.The three, together, accounted for close to 70% of world
total. Producers in other regions of the world included Asahi Chemical (Japan),
Bayer and BASF (both in Germany).
12
FUTURE SCENARIO
Development of newer applications of Adipic Acid is poised to increase global
production levels. In the US, adipic acid demand for nylon 66 fibre, nylon 66
engineering resin and polyester polyols is expected to increase by 1.7-3.2% per
year, while demand in adipate-based plasticizers will remain flat. In W. Europe,
consumption of adipic acid for nylon 66 fibres, nylon 66 engineering resins and
polyesterpolyols will grow at an averagerate of approximately 2%per year during
2005-2010.In Japan, consumption for nylon 66 fibres will grow at an average rate
of 5.9% per year during 2005-2010. Consumption for nylon 66 resins will grow at
2.5% per year, while use for polyester polyols will decrease by 1% per year, and
demand for plasticizers will decrease by 1.2% per year. China is expected to
exhibit the fastest growth in the world. Consumption for production of polyester
polyols, which are used in hot-melt adhesives for shoe soles and other products,
has grown swiftly. PetroChina Liaoyang Petrochemical’s second adipic acid plant
came on stream in 2004. The global market for Adipic Acid is projected to reach
over 6 billion pounds by the year 2017. Growth in the market is chiefly driven by
an increase in demand from end-use segments, particularly in emerging markets of
Asia-Pacific and Middle East.
13
CHAPTER 3
PROCESS SELECTION
Adipic acid can be manufactured by one of the following routes:
 From cyclohexane via cyclohexanone and cyclohexanol (KA oil) by
oxidation(the conventional process);
 From benzene via cyclohexanol by partial hydrogenation and
hydration(Asahi Chemical process);
 From phenol; and
 From butadiene by carboalkoxylation(a process not yet commercialized).
Adipic acid has historically been manufactured from either cyclohexane or phenol,
but shifts in hydrocarbon markets have nearly resulted in theelimination of phenol
as a feedstock in the U.S. This has resulted in experimentation with alternative
feedstock, which may have commercial ramifications. The cyclohexane-based
process accounts for about 93% of production capacity, and the other two for 4%
and 3%, respectively. Cyclohexane is expected to retain its dominant position as
the feedstock of choice for adipic acid manufacture in the coming decade, although
the butadiene-based production via carboalkoxylation may be competitive in
production cost, depending on by-product credits taken for butadiene use as fuel.
While virtually all process technologies are based on oxidation on KA with nitric
acid, there are many variations on this theme. In addition to these established
approaches, there have been many attempts over the years to improve adipic acid
production technologies by eliminating the need for nitric acid by using air, oxygen
or hydrogen peroxide, as the oxidant. Recently, researchers at Nagoya University
developed a new method, which substitutes 30% aqueous hydrogen Peroxide for
nitric acid, producing adipic acid in over 90% yield and eliminating N2O as a by-
product. However, commercial application of this process will depend on finding
cheaper ways to produce hydrogen peroxide.
14
PROCESS TECHNOLOGIES
• LABORATORY SCALE PROCEDURES
I. High peroxide process
Oxidation of cyclohexane to produce cyclohexanone (a ketone, K)
and cyclohexanol (an alcohol, A).This ketone-alcohol (KA) mixture is
converted in the second step to adipic acid by oxidation with H2O2 .
ADVANTAGES
 Over 90% yield
 N2O as a by-product eliminated
 Reduced temperatures and pressures.
DISADVANTAGES
 Not cost effective, commercial application of this process will depend
on finding cheaper ways to produce hydrogen peroxide.
II. Biosynthesis using E. coli as a host(Draths-Frost syntheses)
Non toxic Glucose is substrate which is converted into cis,cis muconic
acid using a single genetically modified microbe such as E.Coli.Later this
cis,cis muconic acid is hydrogenated to yield adipic acid.
ADVANTAGES
 Generation of toxic intermediates and evironment - damaging by
products is avoided.
 Renewable feedstock is used.
 Water is used as a primary solvent.
DISADVANTAGES
 Still in conception.
15
 Large scale incorporation requires research(e.g. specialised
equipments, utilities etc.)
 Expensive
III. Adipic acid production via butadiene carbonylation
Hydroxycarbonylation of butadiene to primarily 3-pentenoic acid
using a palladium/ crotyl chloride catalyst system has shown a 3-
pentenoic acid selectivity of 92 mole percent.
Further conversion of pentenoic acids by reaction with carbon
monoxide and methanol by the use of a palladium, ferrocene,
phosphorous ligand catalyst system has demonstrated selectivity to
dimethyl adipate of 85 mole percent. The dimethyl adipate is then
readily hydrolyzed to adipic acid.
ADVANTAGES
 Cheap raw materials
DISADVANTAGES
 Multi-reaction steps, and thus large investment requirements.
16
• COMMERCIAL TECHNOLOGY
I. The KA process(from cyclohexane) using nitric acid
 The main commercial route for the production of KA is the
oxidation of cyclohexane ,employed by producers like Du
Pont, BASF, and Stamicarbon.
 Oxidation of cyclohexane to produce cyclohexanone (a
ketone, K) and cyclohexanol (an alcohol, A)
 This ketone-alcohol (KA) mixture is converted in the second
step to adipic acid by oxidation with 40-45% nitric acid in the
prescence of copper and vanadium catalysts.
17
 The wet adipic acid crystals are separated from water and nitric
acid.The product is dried and cooled before packaging and
shipping.

ADVANTAGES
 By product nitric acid is recycled in the process itself and can also be
shipped
 High yield as well as cost effective.
DISADVANTAGES
 Gaseous NOx effluents are released that are harmful to the
enviroment.
II. Adipic Acid production via benzene partial
hydrogenation/cyclohexene hydration to cyclohexanol
 Also named as Asahi Chemical process, licensed to China
Shenma.
 Partial hydrogenation of benzene to cyclohexene over a
complex ruthenium catalyst under high pressure
 The cyclohexene is subsequently hydrated under moderate
conditions in the presence of a slurry catalyst, consisting mainly
of zeolites, to give cyclohexanol.
 And the subsequent oxidation by nitric acid/ boric acid yields
adipic acid.
ADVANTAGES
 Have a potential advantage of recycling hazardous halogenate
compounds.
18
DISADVANTAGES
 Deactivation of the catalyst
 Partial dehydrogenation of cyclohexane or dehydrohalogenation of
cyclohexyl halides
III. Adipic acid production via Butadiene Carbonylation
 Two-step carbomethoxylation of butadiene with CO and MeOH using
Homogeneous Co catalyst. Used by BASF
 Two-step dihydrocarboxylation of butadiene using catalyst Pd, Rh and
Ir. Used by Du Pont.
ADVANTAGES
 Suppression of lower carboxylic acids
DISADVANTAGES
 Catalyst recovery and recycle
 Very high pressures
 Costly extraction procedure
IV. The Alphox process
 Solutia (formerly Monsanto), developed a one-step process (AlphOx),
to manufacture phenol from benzene, using nitrous oxide for the
oxidation step.
 Thus, by coupling phenol production and adipic acid production,
Solutia has developed a process with no net production of nitrous
oxide
ADVANTAGES
 Very good production economics for both phenol and adipic acid.
 This route closes the nitrogen loop at adipic acid plants by recycling
and reusing the nitrous oxide off-gas to create phenol,rather than
destroying it.
19
DISADVANTAGES
 A relatively small phenol plant requires a world-scale adipic acid
plant for its N2O supply.

V. Aerial oxidation of cyclohexane (solvent-free clean technology
route)
 Used by BASF only
 One-step process, 100-130o
C, 1.5 MPa, air and the catalyst is solid
FeAlPO-31.
ADVANTAGES
 Molecular O2 (air) as oxidant
 No green house gas (N2O)
 No corrosive solvents or promoters
 Ease of catalyst recycle and recovery
 Low processing costs
DISADVANTAGES
 Long reaction time (24 h)
20
The process selected by us is the KA(from cyclohexane)
using nitric acid. We chose this one as it was not patented
and it is a very convenient and economical process, used for
the production of adipic acid by almost all the companies
like Du Pont, BASF, Asahi etc.
FIG: PROCESS FLOW SHEET
21
CHAPTER 4
MATERIAL BALANCE
Now we will perform mass balance on above given process flow sheet taking basis
as 100 tons/day. There is only one Adipic acid plant in India, that is Adarsh
Chemicals, Surat, Gujarat.It produces meagre amount of adipic acid due to which
we have to import most of it. Hence we aimed to set up a plant to reduce the
imports of the acid.
BASIS: 100 tons/day
Performing material balance on reactor 1
Stoichometric requirement
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
Cyclohexanone 14.25573651 1399.200538
Cyclohexanol 14.25573651 1427.854569
Nitric acid 21.38360476 1347.1671
Actual input
Considering 95% conversion ( from literature)
Actual input of cyclohexane and cyclohexanol is 14.255/.95 & 14.255/.95 kmol/hr
respectively.
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
Cyclohexanone 15.00603843 1472.842672
Cyclohexanol 15.00603843 1503.004809
hno3(60%) taken 6:1
with ka oil
102.6413029 6466.40208
h2o along with hno3 68.46174901 1232.311482
ONOHADIPICACIDHNOONECYCLOHEXAN 223 75.075.05.1 
22
TOTAL INPUT
Molar flow rate= 15.0060+15.0060+102.6413+68.4617 =201.1151287 kmol/hr
Mass flow rate = 1472.84+1503.004+6466.40+1232.311= 10674.56104 kg/hr
Output
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
adipic acid 14.25573651 2083.333333
unreacted ka 15.75634035 1576.646943
hno3 81.2576981 5119.23498
h2o 79.15355139 1424.763925
n2o 10.69180238 470.4393048
TOTAL OUTPUT
Molar flow rate = 14.255+15.756+81.257+79.153+10.691 = 201.1151287
kmol/hr
Mass flow rate = 2088.33+1576.64+5119.23+1424.76+470.43 = 10674.41849
kg/hr.
Performing material balance on reactor 2
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
adipic acid 14.25573651 2083.333333
unreacted ka 15.75634035 1576.646943
hno3 81.2576981 5119.23498
h2o 79.15355139 1424.763925
n2o 10.69180238 470.4393048
Total molar flow rate= 14.255+15.756+81.257+79.153+10.691= 201.1151287
kmol/hr
OHONADIPICACIDHNOOLCYCLOHEXAN 223 22 
23
Total mass flow rate= 2083.33+1576.646+5119.234+1424.763+470.439=
10674.41849 kg/hr
Output
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
adipic acid 28.51147302 4166.666667
h2o 107.6650244 1937.970439
n2o 24.94753889 1097.691711
unreacted ka 1.500603843 148.7923741
hno3 52.74622508 3323.01218
Total molar flow rate= 28.511+107.665+24.9475+1.500+52.74= 215.3708652
kmol/hr
Total mass flow rate= 4166.667+1937.970+1097.691+148.792+3323.012=
10674.13337kg/hr
Performing material balance on NOX bleacher
Assuming 10% excess oxygen to be used and air contains 79% nitrogen and 21%
oxygen by mole %
Input
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
h20 entering 107.6650244 1937.970439
adipic acid entering 28.51147302 4166.666667
n2o entering 24.94753889 1097.691711
oxygen entering 41.16343917 1317.230053
n2 entering 154.8529378 4335.882259
hno3 entering 52.74622508 3323.01218
unreacted ka 1.500603843 148.7923741
222 25.1 NOOON 
24
Total molar flow rate= 107.665+28.511+24.947+41.163+154.852+52.74+1.500=
411.3872422 kmol/hr
Total mass flow rate=
1937.970+4166.666+1097.691+1317.230+4335.8822+3323.012+148.792=16327.
24568kg/hr
Output
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
h2o exiting 107.6650244 1937.970439
adipic acid exiting 28.51147302 4166.666667
no2 exitng 49.89507778 2295.173578
o2 exiting 3.742130833 119.7481867
n2 exiting 154.8529378 4335.882259
hno3 exiting 52.74622508 3323.01218
unreacted ka 1.500603843 148.7923741
Total molar flow
rate=107.665+28.511+49.89+3.74+154.85+52.74+1.500=398.9134728kmol/hr
Total mass flow
rate=1937.97+4166.66+2295.17+119.74+4335.88+3323.012+148.79=16327.2456
8kg/hr
Performing material balance on NOX Absorber
Input
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
no2 entering 49.89507778 2295.173578
water required 16.63169259 299.3704667
Total molar flow rate= 49.895+16.631= 66.52677037kmol/hr
NOHNOOHNO  322 23
25
Total mass flow rate= 2295.173+299.370=2594.544045 kg/hr
Output
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
hno3 formed 33.26504836 2095.698046
no formed 16.6150609 498.451827
Total molar flow rate= 33.265+16.615=49.88010926 kmol/hr
Total mass flow rate= 2095.698+498.451= 2594.149873 kg/hr
Performing material balance on crystallizer
Feed stream is containing 43.5% by weight adipic acid which is to be cooled from
60 C to 20 C.
26
The solubility chart for adipic acid is as shown below:
Input
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
adipic acid 28.51147302 4166.666667
h2o 107.6650244 1937.970439
unreacted ka 1.500603843 148.7923741
hno3 52.74622508 3323.01218
Total molar flow rate = 28.511+107.665+1.500+52.746= 190.4233263 kmol/hr
Total mass flow rate= 4166.66+1937.97+148.79+3323.01= 9576.44166 kg/hr
27
Output
Let mass of adipic acid crystals formed be x kg/hr
Mass of adipic acid in mother liquor = (9576.441-x)*(4/104) kg/hr
Therefore applying material balance on crystallizer ,we get
Solubility at 20 C(from graph) = 4g adipic acid/100 g water
4166.667 = x + (9576.441-x)*(4/104)
x = 3950.275667 kg/hr
therefore mass of adipic acid in mother liquor = (9576.441-3950.275)*(4/104) =
216.390 kg/hr
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
adipic acid crystals 27.03076274 3950.275667
h2o 107.6650244 1937.970439
unreacted ka 1.500603843 148.7923741
hno3 52.74622508 3323.01218
adipic acid in mother
liquor
1.480710276 216.3909997
Total molar flow rate = 27.030+107.665+1.500+52.746+1.480 = 190.4233263
kmol/hr
Total mass flow rate = 3950.275+1937.970+148.792+3323.012+216.390 =
9576.44166 kg/hr
Performing material balance on Concentrator
We need 60% HNO3 in our process, so we need to concentrate 44.6% HNO3 in
input stream to 60% HNO3 by evaporating excess water.
28
Input
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
h2o 107.6650244 1937.970439
unreacted ka 1.500603843 148.7923741
hno3 86.01127344 3323.01218
adipic acid in mother
liquor
1.480710276 216.3909997
Total mass flow rate = 1937.970+148.7923+3323.0121+216.390 = 5626.165993
kg/hr
Output
SPECIES MOLAR FLOW
RATE(kmol/hr)
MASS FLOW
RATE(kg/hr)
h2o evaporated 50.32417545 905.8351581
recycle stream - 4720.330835
Total mass flow rate = 905.835+4720.33 = 5626.165993 kg/hr
29
CHAPTER 5
ENERGY BALANCE
After the mass balance is performed, we go for energy balance on the same flow
sheet.
REACTOR 1
Enthalpy Balance on Streams in and out of the Reactor 1:
Feed in (at a temperature of 30o
C):
Calculating Cp mix for the inlet stream:
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K) AT
30 o
C
(2)
MOLE
FRACTIONS
Cyclohexanol 2.099 0.074614
Cyclohexanone 1.926 0.074614
Nitric acid 1.745 0.510361
Water 4.181 0.340411
Total Cp mix = (2.099*0.074614)+( 1.926*0.074614)+( 1.745*0.510361)+(
4.181*0.340411)
= 2.614159134
Mass of the feed stream= 10674.56104 Kg/hr
Temperature=303 K
TOTAL INPUT HEAT= 2.614159134*303*10674.56104
= 8455215.38 kJ/hr
Feed out (at a temperature of 70o
C):
30
Calculating Cp mix for the outlet stream:
Total Cp mix =
(2.392*0.070883)+(2.284*0.0037)+(2.033*0.0746)+(1.738*0.404036)+(4.187*0.3
93573)+(0.922*0.053163)
= 2.745174797 kJ/Kg.K
Mass of the feed stream=10674.56104Kg/hr
Temperature=343 K
TOTAL OUTPUT HEAT= 2.745174797 *343*10674.56104
=10051112.83kJ/hr
The reaction taking place in the reactor 1:
Cyclohexanone AA ΔHR= - 172 Kcal/mol
=-719957.6kJ/mol
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 70 o
C
(2)
MOLE FRACTIONS
Adipic Acid 2.392 0.070883
Cyclohexanol 2.284 0.074614
Cyclohexanone 2.033 0.0037
Nitric acid 1.738 0.404036
Water 4.187 0.393573
Nitrous Oxide 0.922 0.053163
ONOHADIPICACIDHNOONECYCLOHEXAN 223 75.075.05.1 
31
=-719957.6*14.25573651*0.95kJ/hr
HEAT OF REACTION =-9750349.551kJ/hr
Where 0.95 is the percentage conversion
Heat of condensing steam from the steam table at 100o
C=2258
Mass of steam required= (10051112.83+9750349.551-8455215.38)/2258
= 5024.910098Kg/hr
Mass of steam required= 5024.910098Kg/hr
REACTOR2
Enthalpy Balance on Streams in and out of the Reactor 2:
Feed in (at a temperature of 70o
C):
Input heat of the reactor 2 will be same as the output heat of the reactor 1.
Hence
TOTAL INPUT HEAT= 2.745174797 *343*10674.56104
=10051112.83kJ/hr
Feed out (at a temperature of 90o
C):
Calculating Cp mix for the outlet stream:
COMPONENTS IN (1)
32
THE STREAM SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 90 o
C
(2)
MOLE FRACTIONS
Adipic acid 2.42 0.1324
Cyclohexanol 2.346 0.0037
Cyclohexanone 2.086 0.0037
Nitric acid 1.737 0.2449
Water 4.207 0.4999
Nitrous oxide 0.939 0.1158
Total Cp mix =
(2.42*0.1324)+(2.346*0.0037)+(2.086*0.0037)+(1.737*0.2449)+(4.207*0.4999)+
(0.939*0.1158)
= 2.882666807kJ/Kg.K
Mass of the feed stream=10674.13337Kg/hr
Temperature=363 K
TOTAL OUTPUT HEAT= 2. 882666807 *363*10674.13337
=11169499.1kJ/hr
The reaction taking place in the reactor 2:
Therefore
ΔHR= - 215 Kcal/mol
=-899947kJ/mol
OHONADIPICACIDHNOOLCYCLOHEXAN 223 22 
33
=-899947*14.25573651*0.95kJ/hr
HEAT OF REACTION =- 12187936.94kJ/hr
Where 0.95 is the percentage conversion
Heat of condensing steam from the steam table at 100o
C=2257
Mass of steam required= (11169499.1+12187936.94-10051112.83)/2257
= 5892.968647Kg/hr
Mass of steam required= 5892.968647Kg/hr
NOX BLEACHER
Assuming 100% conversion
Assuming that the air enters the bleacher at 90 o
C.
Enthalpy Balance on Streams in and out of the Bleacher:
Feed in (at a temperature of 90o
C):
Calculating Cp mix for the inlet stream:
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 90 o
C
(2)
MOLE FRACTIONS
Water 4.207 0.261712
Adipic Acid 2.42 0.069306
Nitrous oxide 0.939 0.060642
Oxygen 0.930 0.10006
Nitrogen 1.042 0.376416
Nitric acid 1.737 0.128216
Cyclohexanol 2.346 0.0037
Cyclohexanone 2.086 0.0037
34
Total Cp mix = (4.207*0.261712)+(2.42*0.069306)+( 0.939*0.060642)+(
0.930*0.10006)+(1.042*0.376416)+(1.737*0.128216)+(2.346*0.0037)+(2.086*0.0
037)
= 2.041758073
Mass of the feed stream= 16327.24568Kg/hr
Temperature=363 K
TOTAL INPUT HEAT=2.041758073*363*16327.24568
=12101071.7 kJ/hr
Feed out (at a temperature of 90o
C):
Calculating Cp mix for the outlet stream:
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 90 o
C
(2)
MOLE FRACTIONS
Water 4.207 0.269896
Adipic Acid 2.42 0.071473
Nitrogen dioxide 0.848 0.125077
Oxygen 0.930 0.009381
Nitrogen 1.042 0.388187
Nitric acid 1.737 0.132225
Cyclohexanol 2.346 0.0037
Cyclohexanone 2.086 0.0037
Total Cp mix =
(4.207*0.269896)+(2.42*0.071473)+(0.848*0.125077)+(0.930*0.009381)+(1.737
*0.132225)+(1.042*0.388187)+(2.346*0.0037) +(2.086*0.0037)
= 2.065700182kJ/Kg.K
35
Mass of the feed stream=16327.24568Kg/hr
Temperature=363 K
TOTAL OUTPUT HEAT= 2.065700182*363*16327.24568
=12242971.56kJ/hr
The reaction taking place in the bleacher:
Heat of reaction =20754.21* 24.94753889KJ/hr
= 517766.4611 KJ/hr
HEAT OF REACTION =-517766.4611 kJ/hr
Since the conversion is 100%.
Water enters at 30o
C and leaves at 40o
C.
Specific heat of water at 90o
C=4.207
Mass of cooling water required to maintain the temperature= (12101071.7 -
12242971.56-517766.4611 )/(4.207*10)
= 15680.20726Kg/hr
Mass of cooling water required= 15680.20726Kg/hr
NOX ABSORBER
Enthalpy Balance on Streams in and out of the Absorber:
Feed in (at a temperature of 90o
C):
222 25.1 NOOON  kmolKJHR /21.20754
36
Calculating Cp mix for the inlet stream:
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 90 o
C
(2)
MOLE FRACTIONS
Nitrogen Dioxide 0.848 0.75
Water 4.207 0.25
Total Cp mix = (0.848*0.75)+(4.207*025)
= 1.6877kJ/kg.K
Mass of the feed stream= 2594.544045Kg/hr
Temperature=363 K
TOTAL INPUT HEAT=1.6877*363* 2594.544045
= 1589555.841 kJ/hr
Feed out (at a temperature of 90o
C):
Calculating Cp mix for the outlet stream:
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 90 o
C
(2)
MOLE FRACTIONS
Nitric acid 1.737 0.6669
Nitric oxide 0.995 0.3331
Total Cp mix = (1.737*0.6669)+(0.995*0.3331)
= 1.489839852kJ/kg.K
Mass of the feed stream= 2594.149873Kg/hr
37
Temperature=363 K
TOTAL OUTPUT HEAT=1.489839852*363* 2594.149873
= 1402947.034 kJ/hr
The reaction taking place in the Absorber:
Heat of reaction =-(34868.64* 49.89507778)/3KJ/hr
= -579924.5016KJ/hr
HEAT OF REACTION =- 579924.5016kJ/hr
Since the conversion is 100%.
Water enters at 30o
C and leaves at 40o
C.
Specific heat of water at 90o
C=4.207
Mass of cooling water required to maintain the temperature= (1589555.841 -
1402947.034 -579924.5016 )/(4.207*10)
= 9349.077606Kg/hr
Mass of cooling water required= 9349.077606Kg/hr
HEAT EXCHANGER
Enthalpy Balance on Streams in and out of the Exchanger:
Feed in (at a temperature of 90o
C):
Calculating Cp mix for the inlet stream:
NOHNOOHNO  322 23 kmolKJHR /64.34868
38
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 90 o
C
(2)
MOLE FRACTIONS
Adipic Acid 2.42 0.071473
Water 4.207 0.269896
Cyclohexanol 2.346 0.0037
Cyclohexanone 2.086 0.0037
Nitric acid 1.737 0.132225
Total Cp mix = (2.42*0.071473)+(4.207*0.269896)+(2.346*0.0037)+
(2.086*0.0037)+(1.737*0.132225)
= 3.239609009kJ/kg.K
Mass of the feed stream= 9576.44166Kg/hr
Temperature=363 K
TOTAL INPUT HEAT=3.239609009*363*9576.44166
= 11261685.38kJ/hr
Feed out (at a temperature of 60o
C):
Calculating Cp mix for the outlet stream:
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 60 o
C
(2)
MOLE FRACTIONS
Adipic Acid 2.378 0.071473
Water 4.18 0.269896
Cyclohexanol 2.223 0.0037
Cyclohexanone 2.006 0.0037
Nitric acid 1.739 0.132225
39
Total Cp mix = (2.378*0.071473)+(4.18*0.269896)+(2.223*0.0037)+
(2.006*0.0037)+(1.739*0.132225)
= 3.217808719kJ/kg.K
Mass of the feed stream= 9576.44166Kg/hr
Temperature=333 K
TOTAL OUTPUT HEAT= 3.217808719*333*9576.44166
=10261447.44kJ/hr
Water enters at 30o
C and leaves at 40o
C.
Average specific heat of water at 90o
C and 60o
C =(4.207+4.18)/2=4.1935
Mass of cooling water required = (11261685.38-10261447.44)/(4.1935*10)
=23852.10315Kg/hr
Mass of cooling water required= 23852.10315Kg/hr
CRYSTALLIZER
Enthalpy Balance on Streams in and out of the Crystallizer:
Feed in (at a temperature of 60o
C):
Input heat of the crystallizer will be same as the output heat of the exchanger.
Hence
TOTAL INPUT HEAT=10261447.44kJ/hr
Feed out (at a temperature of 20o
C):
Calculating Cp mix for the outlet stream:
40
Total Cp mix = (2.323*0.141951)+(4.19*0.565398)+(2.058*0.0037)+
(1.9*0.0037)+(1.748*0276995)+(2.323*0.007776)
= 3.21662068kJ/kg.K
Mass of the feed stream= 9576.44166Kg/hr
Temperature=293 K
TOTAL OUTPUT HEAT= 3.21662068*293*9576.44166
=9025507.622kJ/hr
Assuming, that there is no water evaporation.
HEAT OF CRYSTALLIZATION=-213.6 kJ/kg
=-213.6*3950.275667kJ/hr
=-843778.8825 kJ/hr
Water enters at 30o
C and leaves at 40o
C.
Average specific heat of water at 60o
C and 20o
C =(4.18+4.19)/2=4.185
Mass of cooling water required = (10261447.44-9025507.622kJ -
843778.8825)/(4.185*10)
=9370.631611Kg/hr
COMPONENTS IN
THE STREAM
(1)
SPECIFIC HEAT
CAPACITY(kJ/Kg. K)
AT 20 o
C
(2)
MOLE FRACTIONS
Adipic Acid crystals 2.323 0.141951
Water 4.19 0.565398
Cyclohexanol 2.058 0.0037
Cyclohexanone 1.9 0.0037
Nitric acid 1.748 0.276995
Adipic Acid in mother
liquor
2.323 0.007776
41
Mass of cooling water required= 9370.631611Kg/hr
CONCENTRATOR
Enthalpy Balance on Streams in and out of the Concentrator:
Feed in (at a temperature of 20o
C):
Assuming that the steam enters at 120o
C.
Assuming that the evaporator is operated at 1 atm.
Assuming no BPR.
Enthalpy of liquid feed from steam table at 20o
C is 83.9kJ/kg.
HEAT OF FEED=83.9*5626.165993
=472035.3268kJ/hr
Enthalpy of mother liquor from steam table at 100o
C is 419.04kJ/kg.
HEAT OF THE RECYCLE STREAM=419.04*4720.330835
=1978007.433kJ/hr
Enthalpy of vapor from steam table at 100o
C is 2676.1kJ/kg.
HEAT CARRIED AWAY BY THE VAPOR=2676.1*905.8351581
= 2424105.467kJ/hr
Enthalpy of steam from steam table at 120o
C is 2202kJ/kg.
Mass of cooling water required = (2424105.467+1978007.433-472035.3268)/2202
=1784.776373Kg/hr
Mass of steam required=1784.776373Kg/hr
Hence we get the amount of utilities at each stage of production.
42
CHAPTER 6
EQUIPMENT DESIGN
DESIGN OF HEAT EXCHANGER
An exchanger to cool mixture of adipic acid, nitric acid, water and unreacted KA
oil from 90 °C to 60°C. Flow-rate of mixture 9576.44166 kg/hr. Brackish water
will be used as the coolant, with a temperature rise from 30° to 40°C.
Coolant is corrosive, so assign to tube-side.
As brackish water is more corrosive it is preferred on tube side.
Heat load: mc(∆T)= (9576.44/3600)*3.23*30= 257.76 kW
Mass flow rate of water = 257.76/(4.2*(40-30))= 6.13 kg/s
∆Tln= 39.15 C
True temperature difference = 31*Ft= 39.15*0.95= 37.5 C
U = 400 W/m² C
Provisional area= Q/U*∆Tln = 17.184 m²
Tube dimensions:
5/8 inch to 2 inch tubes are most often used.
5/8 to 1 inch is preferred as they have small diameter, more compact and therefore
cheaper exchangers
But for highly fouling fluid larger tubes are preferred
Take a tube of 5/8 inch ID, and OD of 20 mm
43
44
Preferred lengths of tubes for heat exchangers are:
6ft, 8ft, 12ft,16feet.
Therefore take L= 16 feet = 4.83 m
Area of one tube= π*do*L= 0.303 m²
Number of tubes = provisional area/surf. Area of tube = 17.184/0.1515 = 58
As shell side fluid is non-corrosive, take a triangular pitch
Pt=1.25 (od of tube)
Calculation of bundle diameter
= 236.4 mm
45
Bundle diameter clearance:
46
Shell diameter = Ds= 236.4+88.6 mm = 325mm
Tube side coefficient:
Mean water temperature: 35C
Properties of water at that temperature,
Viscosity= 0.715 *10ˉ³ . kf = 0.61 W/mC
Density = 992.4 kg/m³
tubes per pass= 58/2=29
Total flow area= 29* C.S area= 29*(π/4*0.016²) = 0.00582784 m²
Mass flux or water mass velocity = 6.13/0.00582784 = 1051.84 kg/s-m²
reynolds number: 23537.67
prandtl number : 4.92
L/di = 301.875
Correlated eqn. for Nu is :
47
From figure,
Therefore hi = 5920.88 W/m² C
Shell side coefficient :
baffle spacing lb = Ds/5= 325/5 = 65 mm
Tube pitch = 1.25*20 = 25 mm
Cross-flow area = (25-20)/25 *0.325*0.065= 0.004225 m²
Mass velocity, Gs = 9576.441/3600*(1/0.004225) = 629.6147 kg/s m²
Equivalent diameter = 14.4 mm
Mean shell side temperature = (90+60)/2 = 75 C
Density of mixture = 1093.70 kg/m³
Viscocity = 0.074 mNs/m², Kf = 0.48 W/mC, Cp= 3.07 KJ/kgC
48
Reynolds number = Gs*De/µ = 122519.6173, Prandtl number = 4.73
Assuming 25% baffle cut
jh= 2 *10ˉ³
hs = 13640.13 W/m²C
Overall heat transfer coefficient:
49
U = 832.016 W/m² C
Well above assumed value (400W/m2
C)
Pressure drop:
On tube side: jf= 3.9*10-3
s
50
= 13.04 kPa
Low value, could consider increasing no. of passes.
On shell side:
jf = 0.05
∆Ps = 89.75 kPa (acceptable)
51
DIMENSIONS OF HEAT EXCHANGER :
No. of tubes = 58
Tube internal diameter = 16mm
Tube outer diameter = 20mm
Tube length = 4.83 m
No. of tube passes = 2
No. of shell passes = 1
Shell diameter = 325 mm
Baffle Spacing = 65 mm
Baffle cut = 25 %
Bundle diameter = 236.4 mm
52
CHAPTER 7
COSTING OF HEAT EXCHANGER
Estimation of cost of shell and tube heat exchange equipment is done as shown
below:
CE = 1.218* CB* FD* FMC* FP
where
CE = exchanger cost
CB = base cost of a carbon steel, floating-heads exchanger, 4 bar design
pressure
FD = design-type cost factor if different from that in CB
FMC = material of construction cost factor
FP =design pressure cost factor
Heat exchanger area A = 17.184 m2
Base cost
= exp [8.821 - .30683ln(17.184) + .0681(ln17.184)2
=
$ 4910.786
FD = 1 (Using floating head type)
FP = 1 ( Pressure is below 4 bar)
53
FMC = g1 + g2*lnA
For carbon steel
FMC = 1
Therefore exchanger cost in year 1986 is CE = 1.218* CB* FD* FMC* FP
= 1.218*4910*1*1*1
= $ 5980.38
Using cost indexes for year 1986 and 2011
Exchanger cost in year 2011 is
CE in 2011 = CE IN 1986 *(C I OF 2011/C I OF 1986)^0.68
= 5980*(585.7/325)
= $ 8926.21
CE in 2011 = Rs 482,015.50
The cost of heat exchanger of area 17.184 m2
is Rs 4,82,015.50
54
CHAPTER 8
MATERIAL SAFETY DATA SHEET
ADIPIC ACID
SECTION 1 – Chemical Product and Company
Identification
MSDS Name: ADIPIC ACID
Synonyms: Hexanedioic acid; 1,4-Butane Dicarboxylic Acid
CAS#: 124-04-9
Formula: HOOC(CH2)4COOH
Molecular Wt: 146.1412
SECTION 2 – Hazards Identification
Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of
eye contact (irritant), of ingestion, of inhalation.
Potential Chronic Health Effects:
Slightly hazardous in case of inhalation (lung sensitizer).
CARCINOGENIC EFFECTS: Not available.
MUTAGENIC EFFECTS:Not available.
TERATOGENIC EFFECTS: Not available.
DEVELOPMENTAL TOXICITY: Not available.
The substance may be toxic to the nervous system, gastrointestinal tract. Repeated
or prolonged exposure to the substance can produce target organs damage.
55
SECTION 3 – First Aid Measures
Eye Contact: Check for and remove any contact lenses. In case of contact,
immediately flush eyes with plenty of water for at least 15 minutes. Cold water
may be used. Get medical attention.
Skin Contact:
In case of contact, immediately flush skin with plenty of water. Cover the irritated
skin with an emollient. Remove contaminated clothing and shoes. Cold water may
be used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get
medical attention.
Serious Skin Contact:
Wash with a disinfectant soap and cover the contaminated skin with an anti-
bacterial cream. Seek medical attention.
Inhalation:
If inhaled, remove to fresh air. If not breathing, give artificial respiration. If
breathing is difficult, give oxygen. Get medical attention.
Serious Inhalation: Not available.
Ingestion: Do NOT induce vomiting unless directed to do so by medical
personnel. Never give anything by mouth to an unconscious person. Loosen tight
clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms
appear.
Serious Ingestion: Not available.
SECTION 4 – Fire Fighting Measures
Flammability of the Product: May be combustible at high temperature.
Auto-Ignition Temperature: 420°C (788°F).
56
Flash Points: CLOSED CUP: 196°C (384.8°F).
Flammable Limits: Not available.
Products of Combustion: These products are carbon oxides (CO, CO2).
Fire Hazards in Presence of Various Substances: Slightly flammable to
flammable in presence of heat. Non-flammable in presence of shocks.
Explosion Hazards in Presence of Various Substances:Risks of explosion of the
product in presence of mechanical impact: Not available. Slightly explosive in
presence of open flames and sparks, of heat.
Fire Fighting Media and Instructions:SMALL FIRE: Use DRY chemical
powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.
Special Remarks on Fire Hazards: Not available.
Special Remarks on Explosion Hazards: Dust generation can form an explosive
mixture if dispersed in a sufficient quantity of air.
SECTION 5 – Accidental Release Measures
Small Spill:Use appropriate tools to put the spilled solid in a convenient waste
disposal container. Finish cleaning by spreading water on the contaminated surface
and dispose of according to local and regional authority requirements.
Large Spill:Use a shovel to put the material into a convenient waste disposal
container. Be careful that the product is not present at a concentration level above
TLV. Check TLV on the MSDS and with local authorities.
57
SECTION 6 – Handling and Storage
Precautions:Keep away from heat. Keep away from sources of ignition. Empty
containers pose a fire risk, evaporate the residue under a fume hood. Ground all
equipment containing material. Do not ingest. Do not breathe dust. Wear suitable
protective clothing. In case of insufficient ventilation, wear suitable respiratory
equipment. If ingested, seek medical advice immediately and show the container or
the label. Avoid contact with skin and eyes. Keep away from incompatibles such as
oxidizing agents.
Storage: Keep container tightly closed. Keep container in a cool, well-ventilated
area. Do not store above 25°C (77°F).
Section 7: Exposure Controls/Personal Protection
Engineering Controls:
Use process enclosures, local exhaust ventilation, or other engineering controls to
keep airborne levels below recommended exposure limits. If user operations
generate dust, fume or mist, use ventilation to keep exposure to airborne
contaminants below the exposure limit.
Personal Protection:Splash goggles. Lab coat. Dust respirator. Be sure to use an
approved/certified respirator or equivalent. Gloves.
Personal Protection in Case of a Large Spill:Splash goggles. Full suit. Dust
respirator. Boots. Gloves. A self contained breathing apparatus should be used to
avoid inhalation of the product. Suggested protective clothing might not be
sufficient; consult a specialist BEFORE handling this product.
Exposure Limits:TWA: 5 (mg/m3) from ACGIH (TLV) [United States]
Inhalation Consult local authorities for acceptable exposure limits.
58
Section 8: Physical and Chemical Properties
Physical state and appearance: Solid. (crystalline powder.)
Odor: Odorless.
Taste: Tart
Molecular Weight: 146.14 g/mole
Color: White.
pH (1% soln/water): Not available.
Boiling Point: 337.5°C (639.5°F)
Melting Point: 152°C (305.6°F)
Critical Temperature: Not available.
Specific Gravity: 1.36 (Water = 1)
Vapor Pressure: Not applicable.
Vapor Density: 5.04 (Air = 1)
Volatility: Not available.
Odor Threshold: Not available.
Water/Oil Dist. Coeff: The product is equally soluble in oil and water;
log(oil/water) = 0.1
Ionicity (in Water): Not available.
Dispersion Properties: See solubility in water, methanol, acetone.
59
Solubility:Easily soluble in methanol. Soluble in hot water, acetone. Partially
soluble in cold water. Insoluble in Acetic acid, Petroleum Benzin, Benzene,
Petroleum Ether. Slightly soluble in Cyclohexane. Freely soluble in Ethanol.
Section 9: Stability and Reactivity Data
Stability: The product is stable.
Instability Temperature: Not available.
Conditions of Instability: Excess heat, excess dust generation, ignition sources,
incompatible materials
Incompatibility with various substances: Reactive with oxidizing agents.
Corrosivity: Not available.
Special Remarks on Reactivity: Not available.
Special Remarks on Corrosivity: Aqueous solutions of Adipic acid are corrosive
Polymerization: Will not occur.
Section 10: Toxicological Information
Routes of Entry: Inhalation. Ingestion.
Toxicity to Animals: Acute oral toxicity (LD50): 1900 mg/kg [Mouse].
Chronic Effects on Humans: May cause damage to the following organs: the
nervous system, gastrointestinal tract.
Other Toxic Effects on Humans: Hazardous in case of skin contact (irritant), of
ingestion, of inhalation.
Special Remarks on Toxicity to Animals: Not available.
Special Remarks on Chronic Effects on Humans: Not available.
60
Special Remarks on other Toxic Effects on Humans:Acute Potential Health
Effects: May cause skin irritation. Eyes: May cause eye irritation. Inhalation:
Expected to be a low hazard for usual industrial handling. May cause respiratory
tract. Symptoms may include coughing, sneezing, and blood tinged mucous.
Ingestion: Expected to be a low ingestion hazard if small amounts (less than a
mouthful) are ingested.Ingestion of large amounts may cause gastrointestinal tract
irritation with hyper motility, and diarrhea. May also affect behavior(somnolence,
convulsions), and metabolism, and may cause hemorrhaging. Chronic Potential
Health Effects: Inhalation: Repeated or prolonged contact by inhalation may cause
asthma.
Section 11: Ecological Information
Eco toxicity: Not available.
BOD5 and COD: Not available.
Products of Biodegradation: Possibly hazardous short term degradation products
are not likely. However, long term degradation products may arise.
Toxicity of the Products of Biodegradation: The product itself and its products
of degradation are not toxic.
Special Remarks on the Products of Biodegradation: Not available.
Section 12: Disposal Considerations
Waste Disposal: Waste must be disposed of in accordance with federal, state and
local environmental control regulations.
61
CONCLUSIONS
From this project, we learnt a lot about plant set up. Most interesting part was
performing mass and energy balance on each equipment through out the plant. I t
was not only a knowledgeable experience but also challenged all that we have
learnt in chemical engineering. We learnt to calculate the amount of utilities
required at each stage.
We acquired a deep knowledge about the safety protocols for our compound.
REFERENCES
 www.chemicalweekly.com
 www.wikipedia.com
 Physprops
 Coulson and Richardson 4th
edition
 Research paper by G. Hoffman on crystallization
 Perry’s handbook
 www.patentgenius.com

Más contenido relacionado

La actualidad más candente

MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...
MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...
MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...Ankush Gupta
 
Pinch analysis a tool for efficient use of energy
Pinch analysis a tool for efficient use of energyPinch analysis a tool for efficient use of energy
Pinch analysis a tool for efficient use of energyArvind Kumar
 
Chemical reaction engineering
Chemical reaction engineeringChemical reaction engineering
Chemical reaction engineeringNurul Ain
 
Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Nazrul Amin Muhammad
 
Design of Heat Exchanger in HCL in production
Design of Heat Exchanger in HCL in production Design of Heat Exchanger in HCL in production
Design of Heat Exchanger in HCL in production RankhambShubham
 
Soda ash manufacturing and process flow diagram
Soda ash manufacturing and process flow diagramSoda ash manufacturing and process flow diagram
Soda ash manufacturing and process flow diagramUsama Pervaiz
 
Project paper on Chlor-Alkali process
Project paper on Chlor-Alkali processProject paper on Chlor-Alkali process
Project paper on Chlor-Alkali processJ. S. M. Mahedi
 
Ammonia mass-balance
Ammonia mass-balanceAmmonia mass-balance
Ammonia mass-balancebalas1943
 
Process Intensification
Process IntensificationProcess Intensification
Process IntensificationRohit Shinde
 
B E Project - Manufacturing of Phosphoric Acid
B E Project - Manufacturing of Phosphoric AcidB E Project - Manufacturing of Phosphoric Acid
B E Project - Manufacturing of Phosphoric AcidAniket Mali
 
Episode 47 : CONCEPTUAL DESIGN OF CHEMICAL PROCESSES
Episode 47 :  CONCEPTUAL DESIGN OF CHEMICAL PROCESSESEpisode 47 :  CONCEPTUAL DESIGN OF CHEMICAL PROCESSES
Episode 47 : CONCEPTUAL DESIGN OF CHEMICAL PROCESSESSAJJAD KHUDHUR ABBAS
 
BE Chemical Engineering Design Project Production Of Propylene Oxide
BE Chemical Engineering Design Project   Production Of Propylene OxideBE Chemical Engineering Design Project   Production Of Propylene Oxide
BE Chemical Engineering Design Project Production Of Propylene Oxidepatrickconneran
 

La actualidad más candente (20)

MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...
MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...
MANUFACTURE OF CHLORINE - CAUSTIC SODA USING ELECTROLYSIS PROCESS (MEMBRANE C...
 
Pinch analysis a tool for efficient use of energy
Pinch analysis a tool for efficient use of energyPinch analysis a tool for efficient use of energy
Pinch analysis a tool for efficient use of energy
 
Chemical reaction engineering
Chemical reaction engineeringChemical reaction engineering
Chemical reaction engineering
 
Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218
 
Design of Heat Exchanger in HCL in production
Design of Heat Exchanger in HCL in production Design of Heat Exchanger in HCL in production
Design of Heat Exchanger in HCL in production
 
Soda ash manufacturing and process flow diagram
Soda ash manufacturing and process flow diagramSoda ash manufacturing and process flow diagram
Soda ash manufacturing and process flow diagram
 
Project paper on Chlor-Alkali process
Project paper on Chlor-Alkali processProject paper on Chlor-Alkali process
Project paper on Chlor-Alkali process
 
FYDP Sem 2
FYDP Sem 2FYDP Sem 2
FYDP Sem 2
 
Chlor alkali
Chlor alkaliChlor alkali
Chlor alkali
 
Ammonia mass-balance
Ammonia mass-balanceAmmonia mass-balance
Ammonia mass-balance
 
Acetic Acid Process Plant Design
Acetic Acid Process Plant DesignAcetic Acid Process Plant Design
Acetic Acid Process Plant Design
 
Fischer tropsch
Fischer tropschFischer tropsch
Fischer tropsch
 
Process Intensification
Process IntensificationProcess Intensification
Process Intensification
 
Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)
 
B E Project - Manufacturing of Phosphoric Acid
B E Project - Manufacturing of Phosphoric AcidB E Project - Manufacturing of Phosphoric Acid
B E Project - Manufacturing of Phosphoric Acid
 
Episode 47 : CONCEPTUAL DESIGN OF CHEMICAL PROCESSES
Episode 47 :  CONCEPTUAL DESIGN OF CHEMICAL PROCESSESEpisode 47 :  CONCEPTUAL DESIGN OF CHEMICAL PROCESSES
Episode 47 : CONCEPTUAL DESIGN OF CHEMICAL PROCESSES
 
experiment Cstr 40l
experiment Cstr 40lexperiment Cstr 40l
experiment Cstr 40l
 
Production Caustic soda (NaOH)
Production Caustic soda (NaOH)Production Caustic soda (NaOH)
Production Caustic soda (NaOH)
 
Naphtha cracking
Naphtha crackingNaphtha cracking
Naphtha cracking
 
BE Chemical Engineering Design Project Production Of Propylene Oxide
BE Chemical Engineering Design Project   Production Of Propylene OxideBE Chemical Engineering Design Project   Production Of Propylene Oxide
BE Chemical Engineering Design Project Production Of Propylene Oxide
 

Destacado

applications of the principles of heat transfer to design of heat exchangers
 applications of the principles of heat transfer to design of heat exchangers applications of the principles of heat transfer to design of heat exchangers
applications of the principles of heat transfer to design of heat exchangersKathiresan Nadar
 
Synthesis of adipdic acid organic lab
Synthesis of adipdic acid organic labSynthesis of adipdic acid organic lab
Synthesis of adipdic acid organic labDr Robert Craig PhD
 
Manufacturing of chlorine using diaphragm cell, membrane cell
Manufacturing of chlorine using diaphragm cell, membrane cellManufacturing of chlorine using diaphragm cell, membrane cell
Manufacturing of chlorine using diaphragm cell, membrane cellrita martin
 
project on enhancement of LPG recovery, GAIL
project on enhancement of LPG recovery, GAILproject on enhancement of LPG recovery, GAIL
project on enhancement of LPG recovery, GAILKumar Sanu Mahato
 
Hydrochloric acid uses, hazards and industrial applications
Hydrochloric acid uses, hazards and industrial applicationsHydrochloric acid uses, hazards and industrial applications
Hydrochloric acid uses, hazards and industrial applicationsrita martin
 
10 industrial applications of hcl
10 industrial applications of hcl10 industrial applications of hcl
10 industrial applications of hclrita martin
 
Major industrial applications of sodium carbonate
Major industrial applications of sodium carbonateMajor industrial applications of sodium carbonate
Major industrial applications of sodium carbonaterita martin
 
3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methods3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methodsrita martin
 
Green chemistry science
Green chemistry scienceGreen chemistry science
Green chemistry sciencefaik anware
 
Manufacture of sodium hydroxide
Manufacture of sodium hydroxideManufacture of sodium hydroxide
Manufacture of sodium hydroxideyenwen
 
Industrial chemistry
Industrial chemistryIndustrial chemistry
Industrial chemistrylcyh000
 
Manufacture of caustic soda and chlorine using electrolysis process ...
Manufacture of caustic soda and chlorine using electrolysis process          ...Manufacture of caustic soda and chlorine using electrolysis process          ...
Manufacture of caustic soda and chlorine using electrolysis process ...Ankush Gupta
 

Destacado (16)

applications of the principles of heat transfer to design of heat exchangers
 applications of the principles of heat transfer to design of heat exchangers applications of the principles of heat transfer to design of heat exchangers
applications of the principles of heat transfer to design of heat exchangers
 
Synthesis of adipdic acid organic lab
Synthesis of adipdic acid organic labSynthesis of adipdic acid organic lab
Synthesis of adipdic acid organic lab
 
Manufacturing of chlorine using diaphragm cell, membrane cell
Manufacturing of chlorine using diaphragm cell, membrane cellManufacturing of chlorine using diaphragm cell, membrane cell
Manufacturing of chlorine using diaphragm cell, membrane cell
 
01 kern's method.
01 kern's method.01 kern's method.
01 kern's method.
 
project on enhancement of LPG recovery, GAIL
project on enhancement of LPG recovery, GAILproject on enhancement of LPG recovery, GAIL
project on enhancement of LPG recovery, GAIL
 
Hydrochloric acid uses, hazards and industrial applications
Hydrochloric acid uses, hazards and industrial applicationsHydrochloric acid uses, hazards and industrial applications
Hydrochloric acid uses, hazards and industrial applications
 
10 industrial applications of hcl
10 industrial applications of hcl10 industrial applications of hcl
10 industrial applications of hcl
 
Major industrial applications of sodium carbonate
Major industrial applications of sodium carbonateMajor industrial applications of sodium carbonate
Major industrial applications of sodium carbonate
 
3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methods3 modren sodium hydroxide manufacturing methods
3 modren sodium hydroxide manufacturing methods
 
Green chemistry science
Green chemistry scienceGreen chemistry science
Green chemistry science
 
Manufacture of sodium hydroxide
Manufacture of sodium hydroxideManufacture of sodium hydroxide
Manufacture of sodium hydroxide
 
Phenols
PhenolsPhenols
Phenols
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Industrial chemistry
Industrial chemistryIndustrial chemistry
Industrial chemistry
 
DESIGN PROJECT 2013
DESIGN PROJECT 2013DESIGN PROJECT 2013
DESIGN PROJECT 2013
 
Manufacture of caustic soda and chlorine using electrolysis process ...
Manufacture of caustic soda and chlorine using electrolysis process          ...Manufacture of caustic soda and chlorine using electrolysis process          ...
Manufacture of caustic soda and chlorine using electrolysis process ...
 

Similar a Finalreport10bch0053

Economics of Adipic Acid Production Processes
Economics of Adipic Acid Production ProcessesEconomics of Adipic Acid Production Processes
Economics of Adipic Acid Production ProcessesIntratec Solutions
 
2012 deep research report on global and china biodiesel industry
2012 deep research report on global and china biodiesel industry2012 deep research report on global and china biodiesel industry
2012 deep research report on global and china biodiesel industrysmarter2011
 
Risilica. Presentation for APEC
Risilica. Presentation for APECRisilica. Presentation for APEC
Risilica. Presentation for APECSergey Pissarenko
 
Integration of Refining and Petrochem Industry
Integration of Refining and Petrochem IndustryIntegration of Refining and Petrochem Industry
Integration of Refining and Petrochem Industrybhartisharma0
 
2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...
2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...
2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...Janet
 
Grrenco cii lca presentation_airndom chakraborty_june 21 2017
Grrenco  cii  lca presentation_airndom chakraborty_june 21 2017Grrenco  cii  lca presentation_airndom chakraborty_june 21 2017
Grrenco cii lca presentation_airndom chakraborty_june 21 2017Arindom Chakraborty
 
IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...
IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...
IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...IRJET Journal
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...
Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...
Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...ReportsnReports
 
Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...
Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...
Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...Ajjay Kumar Gupta
 
EA Production
EA ProductionEA Production
EA Productiontareeen
 
IRJET- Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
IRJET-  	  Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...IRJET-  	  Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
IRJET- Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...IRJET Journal
 
Implementable Recommendation of Cleaner Production Progress in Pakistan
Implementable Recommendation of Cleaner Production Progress in PakistanImplementable Recommendation of Cleaner Production Progress in Pakistan
Implementable Recommendation of Cleaner Production Progress in PakistanUmay Habiba
 
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy PalicherluGREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy PalicherluNarasimha Reddy Palicherlu
 
IGE Presentation to Foyson Shareholders
IGE Presentation to Foyson ShareholdersIGE Presentation to Foyson Shareholders
IGE Presentation to Foyson ShareholdersFoyson Resources
 
IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...
IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...
IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...IRJET Journal
 
Bio ethanol production from sugarcane trash
Bio ethanol production from sugarcane trashBio ethanol production from sugarcane trash
Bio ethanol production from sugarcane trashUrvish Radadiya
 
Palmoil2
Palmoil2Palmoil2
Palmoil2ekagiri
 
IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)
IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)
IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)IRJET Journal
 
OPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA TOOL
OPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA   TOOLOPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA   TOOL
OPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA TOOLIJARIIE JOURNAL
 

Similar a Finalreport10bch0053 (20)

Economics of Adipic Acid Production Processes
Economics of Adipic Acid Production ProcessesEconomics of Adipic Acid Production Processes
Economics of Adipic Acid Production Processes
 
2012 deep research report on global and china biodiesel industry
2012 deep research report on global and china biodiesel industry2012 deep research report on global and china biodiesel industry
2012 deep research report on global and china biodiesel industry
 
Risilica. Presentation for APEC
Risilica. Presentation for APECRisilica. Presentation for APEC
Risilica. Presentation for APEC
 
Integration of Refining and Petrochem Industry
Integration of Refining and Petrochem IndustryIntegration of Refining and Petrochem Industry
Integration of Refining and Petrochem Industry
 
2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...
2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...
2015 deep research report on global cocoamido propyl hydroxy sulfo betaine (c...
 
Grrenco cii lca presentation_airndom chakraborty_june 21 2017
Grrenco  cii  lca presentation_airndom chakraborty_june 21 2017Grrenco  cii  lca presentation_airndom chakraborty_june 21 2017
Grrenco cii lca presentation_airndom chakraborty_june 21 2017
 
IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...
IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...
IRJET-Influence of Advanced Settling Zone on COD Removal Efficiency of UASB R...
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...
Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...
Chlor-Alkali Market, By Products (Caustic Soda/Sodium Hydroxide, Chlorine, So...
 
Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...
Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...
Petroleum Products: Refining and Distillation (Lubricants, Waxes and Petroche...
 
EA Production
EA ProductionEA Production
EA Production
 
IRJET- Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
IRJET-  	  Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...IRJET-  	  Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
IRJET- Treatment of Sugar Industry Wastewater by Upflow Anaerobic Sludge ...
 
Implementable Recommendation of Cleaner Production Progress in Pakistan
Implementable Recommendation of Cleaner Production Progress in PakistanImplementable Recommendation of Cleaner Production Progress in Pakistan
Implementable Recommendation of Cleaner Production Progress in Pakistan
 
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy PalicherluGREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
GREEN GENES- A PROMISING FUEL SOURCE FOR FUTURE Narasimha Reddy Palicherlu
 
IGE Presentation to Foyson Shareholders
IGE Presentation to Foyson ShareholdersIGE Presentation to Foyson Shareholders
IGE Presentation to Foyson Shareholders
 
IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...
IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...
IRJET- Experimental Analysis of Emission Performance Characteristics on Diese...
 
Bio ethanol production from sugarcane trash
Bio ethanol production from sugarcane trashBio ethanol production from sugarcane trash
Bio ethanol production from sugarcane trash
 
Palmoil2
Palmoil2Palmoil2
Palmoil2
 
IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)
IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)
IRJET- Production of Biofuel using Water Lettuces (Pistia Stratiots)
 
OPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA TOOL
OPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA   TOOLOPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA   TOOL
OPTIMIZATION OF SODA ASH ENVIRONMENTAL IMPACT USING LCA TOOL
 

Finalreport10bch0053

  • 1. VIT U N I V E R S I T Y VELLORE – 632 014 SCHOOL OF MECHANICAL AND BUILDING SCIENCES CHEMICAL ENGINEERING DIVISION DESIGN PROJECT ON ADIPIC ACID By:- SHIVIKA AGRAWAL(10BCH0053) NIKHIL NEVATIA(10BCH0038) SATISH M. PILLAI(10BCH0072) VI Semester B. Tech. Mechanical Engg. Spec. in Chemical Processes Design Project Record 2013
  • 2. 2 VIT U N I V E R S I T Y VELLORE – 632 014 SCHOOL OF MECHANICAL AND BUILDING SCIENCES CHEMICAL ENGINEERING DIVISION Certified that this is the bonafide record of work done by 1.SHIVIKA AGRAWAL(10BCH0053) 2.NIKHIL NEVATIA(10BCH0038) 3.SATISH M. PILLAI(10BCH0072) Of Sixth Semester students of B.Tech Mechanical Engineering with Specialization in Chemical Processes during the year 2012. Project guide Prof. Pandurangan K.
  • 3. 3 ACKNOWLEDGEMENT We would like to express our deep gratitude to all those who gave us the opportunity towork on this design project. We want to thank the Department of Chemical Engineering of VIT University, Vellore for helping us. We have furthermore to thank the faculties Prof. David K Daniel, Prof. Chitra D., Prof. Anand Gurumoorthy, Prof. Aslam Abdullah and Prof. Nirmala G.S. who reviewed us periodically and encouraged us to go ahead with the work. We are deeply indebted to our guide Prof. Pandurangan K. who helped us in stimulating suggestions and supported us with all the valuable guidance.
  • 4. 4 PREFACE This design project includes various aspects of a chemical product development right fromthe market condition evaluation to the estimation of cost of the plant setup. Chapter 1 deals with the introduction to the product (adipic acid) – its properties both physical and chemical. It also provides the application of adipic acid in various other areas. Chapter 2 contains a study of adipic acid in the global as well as Indian market. The gap between demand and supply is studied and used to set a bar for the production rate for the plant. Chapter 3 has a brief explanation of various available processes for the manufacture of the adipic acid. A comparison is also done between the chosen process and the other available processes. The detailed process description is also given for the selected process. Chapter 4 includes material balance over all the equipments used in the plant for a production of 100 TPD of adipic acid. Both component-wise and overall mass flow rate has been provided. The mol%, and wt.% is also provided for each component and the molar flow rate of each is included too. Chapter 5 contains enthalpy balance for all the streams in and out of each equipment in the plant. The utilities requirement are also calculated, stating the amount of cooling water and steam required for daily running of the plant. Chapter 6 contains the mechanical design of a heat exchanger using Kern’s method. Chapter 7 provides cost estimation for the Heat exchanger. Chapter 8 provides MSDS for adipic acid.
  • 5. 5 CONTENTS Certificate 2 Acknowledgement 3 Preface 4 1. Introduction 6 2. Market Analysis 8 3. Process Selection 13 4. Material Balance 21 5. Energy Balance 29 6. Equipment Design 42 7. Cost Estimation 52 8. MSDS for Adipic Acid 54 Reference Process Flow Sheet 21
  • 6. 6 CHAPTER 1 INTRODUCTION Adipic acid is the organic compound with the formula (CH2)4(COOH)2. From the industrial perspective, it is the most important dicarboxylic acid. About 2.5 billion kilograms of this white crystalline powder are produced annually, mainly as a precursor for the production of nylon. Adipic acid otherwise rarely occurs in nature. Molecular formula C6H10O4 Molar mass 146.14 g mol−1 Appearance White crystals (monoclinic) Density 1.36 g/cm3 Melting point 152.1 °C, 425 K, 306 °F Boiling point 337.5 °C, 611 K, 640 °F Solubility in water fairly soluble Acidity (pKa) 4.43, 5.41 USES • Adipic acid is used in nylon 6,6 fibres and resins, which account for nearly 65% of output. • Used to produce polyurethanes.
  • 7. 7 • As a food ingredient in gelatins, desserts and other foods that require acidulation. • Incorporated into controlled-release formulation matrix tablets to obtain pH- independent release for both weakly basic and weakly acidic drugs. APPLICATIONS • In manufacturing plasticizers and lubricants,in making polyester polyols for polyurethane systems. • Adipic acid derivatives, acyl halides, anhydrides, esters, amides and nitriles, are used in making target products such as flavoring agents, internal plasticizers, pesticides, dyes, textile treatment agents, fungicides, and pharmaceuticals. • Nylon 6, 6 fiber is used in apparel, especially ladies' hosiery, sleepwear, and underwear, carpets, and home furnishings. Other nylon 6,6 fiber uses include tire cord, fishing line, brush bristles, and in tough fabrics for parachutes, backpacks, luggage, and business cases.
  • 8. 8 CHAPTER 2 MARKET ANALYSIS DEMAND Global adipic acid (ADA) demand is estimated at 3.3 million metric tons in 2012 and is growing at 3–5% per year.China is the world’s largest importer of adipic acid. Europe stands tall as the largest worldwide market for adipic acid. Asia-Pacific, led by rapid advancements from China is slated to be the fastest growing market for Adipic Acid. In 2008, global demand for adipic acid was about 2.5-mt, which rose to about 2.57-mt by 2009.In W. Europe, consumption of adipic acid for nylon 66 fibres, nylon 66 engineering resins and polyester polyols have grown at an average rate of approximately 2% per year during 2005-2010.In Japan, consumption for nylon 66 fibres have grown at an average rate of 5.9% per year during 2005-2010.Consumption for production of polyester polyols, which are used in hot-melt adhesives for shoe soles and other products, has grown swiftly in Asia. Asia is becoming a potential market for adipic acid due to its increasing demand for polyurethane and polyamide. Overall demand increased to 6 % per year till 2010.
  • 9. 9 INDIAN SCENARIO A new single-step process for adipic acid production was developed by a consortium of the Indian Institute of Petroleum (IIP) and Adarsh Chemicals & Fertilizers Ltd. The process involved oxidation of cyclohexane using a modified, recyclable cobalt catalyst and was said to be environmentally friendly since no nitric acid or nitrous oxide is involved. Currently, India has negligible production of adipic acid, and almost the entire requirement is met through imports. Imports of adipic acid in 2008-09 are estimated at about 9,685-tons.
  • 10. 10 PRODUCTION CAPACITY AND SUPPLY In the present scenario, there are about 23 adipic acid production units worldwide, with majority existing in the developed western countries or developing markets. In 2010, the global Adipic acid production level was recorded at over 2,800 kt, with the United States making up the largest share at over 30% of the global output. Other producing countries include Brazil, Canada, China, France, Germany, Italy, Japan, Korea, Singapore, Ukraine, and United Kingdom. Most of these countries have only one adipic acid plant. By-product nitric acid is used primarily to make synthetic commercial fertiliser. The production technology of
  • 11. 11 adipic acid for long has been controlled in the hands of multinationals such as DuPont. In 2004, total installed capacity for adipic acid in the world was 2.74- mtpa.DuPont alone accounted for a capacity of 1.1-mtpa, accounting for 40% of the world total. Solutia (USA) and Rhodia(France) were other dominant producers.The three, together, accounted for close to 70% of world total. Producers in other regions of the world included Asahi Chemical (Japan), Bayer and BASF (both in Germany).
  • 12. 12 FUTURE SCENARIO Development of newer applications of Adipic Acid is poised to increase global production levels. In the US, adipic acid demand for nylon 66 fibre, nylon 66 engineering resin and polyester polyols is expected to increase by 1.7-3.2% per year, while demand in adipate-based plasticizers will remain flat. In W. Europe, consumption of adipic acid for nylon 66 fibres, nylon 66 engineering resins and polyesterpolyols will grow at an averagerate of approximately 2%per year during 2005-2010.In Japan, consumption for nylon 66 fibres will grow at an average rate of 5.9% per year during 2005-2010. Consumption for nylon 66 resins will grow at 2.5% per year, while use for polyester polyols will decrease by 1% per year, and demand for plasticizers will decrease by 1.2% per year. China is expected to exhibit the fastest growth in the world. Consumption for production of polyester polyols, which are used in hot-melt adhesives for shoe soles and other products, has grown swiftly. PetroChina Liaoyang Petrochemical’s second adipic acid plant came on stream in 2004. The global market for Adipic Acid is projected to reach over 6 billion pounds by the year 2017. Growth in the market is chiefly driven by an increase in demand from end-use segments, particularly in emerging markets of Asia-Pacific and Middle East.
  • 13. 13 CHAPTER 3 PROCESS SELECTION Adipic acid can be manufactured by one of the following routes:  From cyclohexane via cyclohexanone and cyclohexanol (KA oil) by oxidation(the conventional process);  From benzene via cyclohexanol by partial hydrogenation and hydration(Asahi Chemical process);  From phenol; and  From butadiene by carboalkoxylation(a process not yet commercialized). Adipic acid has historically been manufactured from either cyclohexane or phenol, but shifts in hydrocarbon markets have nearly resulted in theelimination of phenol as a feedstock in the U.S. This has resulted in experimentation with alternative feedstock, which may have commercial ramifications. The cyclohexane-based process accounts for about 93% of production capacity, and the other two for 4% and 3%, respectively. Cyclohexane is expected to retain its dominant position as the feedstock of choice for adipic acid manufacture in the coming decade, although the butadiene-based production via carboalkoxylation may be competitive in production cost, depending on by-product credits taken for butadiene use as fuel. While virtually all process technologies are based on oxidation on KA with nitric acid, there are many variations on this theme. In addition to these established approaches, there have been many attempts over the years to improve adipic acid production technologies by eliminating the need for nitric acid by using air, oxygen or hydrogen peroxide, as the oxidant. Recently, researchers at Nagoya University developed a new method, which substitutes 30% aqueous hydrogen Peroxide for nitric acid, producing adipic acid in over 90% yield and eliminating N2O as a by- product. However, commercial application of this process will depend on finding cheaper ways to produce hydrogen peroxide.
  • 14. 14 PROCESS TECHNOLOGIES • LABORATORY SCALE PROCEDURES I. High peroxide process Oxidation of cyclohexane to produce cyclohexanone (a ketone, K) and cyclohexanol (an alcohol, A).This ketone-alcohol (KA) mixture is converted in the second step to adipic acid by oxidation with H2O2 . ADVANTAGES  Over 90% yield  N2O as a by-product eliminated  Reduced temperatures and pressures. DISADVANTAGES  Not cost effective, commercial application of this process will depend on finding cheaper ways to produce hydrogen peroxide. II. Biosynthesis using E. coli as a host(Draths-Frost syntheses) Non toxic Glucose is substrate which is converted into cis,cis muconic acid using a single genetically modified microbe such as E.Coli.Later this cis,cis muconic acid is hydrogenated to yield adipic acid. ADVANTAGES  Generation of toxic intermediates and evironment - damaging by products is avoided.  Renewable feedstock is used.  Water is used as a primary solvent. DISADVANTAGES  Still in conception.
  • 15. 15  Large scale incorporation requires research(e.g. specialised equipments, utilities etc.)  Expensive III. Adipic acid production via butadiene carbonylation Hydroxycarbonylation of butadiene to primarily 3-pentenoic acid using a palladium/ crotyl chloride catalyst system has shown a 3- pentenoic acid selectivity of 92 mole percent. Further conversion of pentenoic acids by reaction with carbon monoxide and methanol by the use of a palladium, ferrocene, phosphorous ligand catalyst system has demonstrated selectivity to dimethyl adipate of 85 mole percent. The dimethyl adipate is then readily hydrolyzed to adipic acid. ADVANTAGES  Cheap raw materials DISADVANTAGES  Multi-reaction steps, and thus large investment requirements.
  • 16. 16 • COMMERCIAL TECHNOLOGY I. The KA process(from cyclohexane) using nitric acid  The main commercial route for the production of KA is the oxidation of cyclohexane ,employed by producers like Du Pont, BASF, and Stamicarbon.  Oxidation of cyclohexane to produce cyclohexanone (a ketone, K) and cyclohexanol (an alcohol, A)  This ketone-alcohol (KA) mixture is converted in the second step to adipic acid by oxidation with 40-45% nitric acid in the prescence of copper and vanadium catalysts.
  • 17. 17  The wet adipic acid crystals are separated from water and nitric acid.The product is dried and cooled before packaging and shipping.  ADVANTAGES  By product nitric acid is recycled in the process itself and can also be shipped  High yield as well as cost effective. DISADVANTAGES  Gaseous NOx effluents are released that are harmful to the enviroment. II. Adipic Acid production via benzene partial hydrogenation/cyclohexene hydration to cyclohexanol  Also named as Asahi Chemical process, licensed to China Shenma.  Partial hydrogenation of benzene to cyclohexene over a complex ruthenium catalyst under high pressure  The cyclohexene is subsequently hydrated under moderate conditions in the presence of a slurry catalyst, consisting mainly of zeolites, to give cyclohexanol.  And the subsequent oxidation by nitric acid/ boric acid yields adipic acid. ADVANTAGES  Have a potential advantage of recycling hazardous halogenate compounds.
  • 18. 18 DISADVANTAGES  Deactivation of the catalyst  Partial dehydrogenation of cyclohexane or dehydrohalogenation of cyclohexyl halides III. Adipic acid production via Butadiene Carbonylation  Two-step carbomethoxylation of butadiene with CO and MeOH using Homogeneous Co catalyst. Used by BASF  Two-step dihydrocarboxylation of butadiene using catalyst Pd, Rh and Ir. Used by Du Pont. ADVANTAGES  Suppression of lower carboxylic acids DISADVANTAGES  Catalyst recovery and recycle  Very high pressures  Costly extraction procedure IV. The Alphox process  Solutia (formerly Monsanto), developed a one-step process (AlphOx), to manufacture phenol from benzene, using nitrous oxide for the oxidation step.  Thus, by coupling phenol production and adipic acid production, Solutia has developed a process with no net production of nitrous oxide ADVANTAGES  Very good production economics for both phenol and adipic acid.  This route closes the nitrogen loop at adipic acid plants by recycling and reusing the nitrous oxide off-gas to create phenol,rather than destroying it.
  • 19. 19 DISADVANTAGES  A relatively small phenol plant requires a world-scale adipic acid plant for its N2O supply.  V. Aerial oxidation of cyclohexane (solvent-free clean technology route)  Used by BASF only  One-step process, 100-130o C, 1.5 MPa, air and the catalyst is solid FeAlPO-31. ADVANTAGES  Molecular O2 (air) as oxidant  No green house gas (N2O)  No corrosive solvents or promoters  Ease of catalyst recycle and recovery  Low processing costs DISADVANTAGES  Long reaction time (24 h)
  • 20. 20 The process selected by us is the KA(from cyclohexane) using nitric acid. We chose this one as it was not patented and it is a very convenient and economical process, used for the production of adipic acid by almost all the companies like Du Pont, BASF, Asahi etc. FIG: PROCESS FLOW SHEET
  • 21. 21 CHAPTER 4 MATERIAL BALANCE Now we will perform mass balance on above given process flow sheet taking basis as 100 tons/day. There is only one Adipic acid plant in India, that is Adarsh Chemicals, Surat, Gujarat.It produces meagre amount of adipic acid due to which we have to import most of it. Hence we aimed to set up a plant to reduce the imports of the acid. BASIS: 100 tons/day Performing material balance on reactor 1 Stoichometric requirement SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) Cyclohexanone 14.25573651 1399.200538 Cyclohexanol 14.25573651 1427.854569 Nitric acid 21.38360476 1347.1671 Actual input Considering 95% conversion ( from literature) Actual input of cyclohexane and cyclohexanol is 14.255/.95 & 14.255/.95 kmol/hr respectively. SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) Cyclohexanone 15.00603843 1472.842672 Cyclohexanol 15.00603843 1503.004809 hno3(60%) taken 6:1 with ka oil 102.6413029 6466.40208 h2o along with hno3 68.46174901 1232.311482 ONOHADIPICACIDHNOONECYCLOHEXAN 223 75.075.05.1 
  • 22. 22 TOTAL INPUT Molar flow rate= 15.0060+15.0060+102.6413+68.4617 =201.1151287 kmol/hr Mass flow rate = 1472.84+1503.004+6466.40+1232.311= 10674.56104 kg/hr Output SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) adipic acid 14.25573651 2083.333333 unreacted ka 15.75634035 1576.646943 hno3 81.2576981 5119.23498 h2o 79.15355139 1424.763925 n2o 10.69180238 470.4393048 TOTAL OUTPUT Molar flow rate = 14.255+15.756+81.257+79.153+10.691 = 201.1151287 kmol/hr Mass flow rate = 2088.33+1576.64+5119.23+1424.76+470.43 = 10674.41849 kg/hr. Performing material balance on reactor 2 SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) adipic acid 14.25573651 2083.333333 unreacted ka 15.75634035 1576.646943 hno3 81.2576981 5119.23498 h2o 79.15355139 1424.763925 n2o 10.69180238 470.4393048 Total molar flow rate= 14.255+15.756+81.257+79.153+10.691= 201.1151287 kmol/hr OHONADIPICACIDHNOOLCYCLOHEXAN 223 22 
  • 23. 23 Total mass flow rate= 2083.33+1576.646+5119.234+1424.763+470.439= 10674.41849 kg/hr Output SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) adipic acid 28.51147302 4166.666667 h2o 107.6650244 1937.970439 n2o 24.94753889 1097.691711 unreacted ka 1.500603843 148.7923741 hno3 52.74622508 3323.01218 Total molar flow rate= 28.511+107.665+24.9475+1.500+52.74= 215.3708652 kmol/hr Total mass flow rate= 4166.667+1937.970+1097.691+148.792+3323.012= 10674.13337kg/hr Performing material balance on NOX bleacher Assuming 10% excess oxygen to be used and air contains 79% nitrogen and 21% oxygen by mole % Input SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) h20 entering 107.6650244 1937.970439 adipic acid entering 28.51147302 4166.666667 n2o entering 24.94753889 1097.691711 oxygen entering 41.16343917 1317.230053 n2 entering 154.8529378 4335.882259 hno3 entering 52.74622508 3323.01218 unreacted ka 1.500603843 148.7923741 222 25.1 NOOON 
  • 24. 24 Total molar flow rate= 107.665+28.511+24.947+41.163+154.852+52.74+1.500= 411.3872422 kmol/hr Total mass flow rate= 1937.970+4166.666+1097.691+1317.230+4335.8822+3323.012+148.792=16327. 24568kg/hr Output SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) h2o exiting 107.6650244 1937.970439 adipic acid exiting 28.51147302 4166.666667 no2 exitng 49.89507778 2295.173578 o2 exiting 3.742130833 119.7481867 n2 exiting 154.8529378 4335.882259 hno3 exiting 52.74622508 3323.01218 unreacted ka 1.500603843 148.7923741 Total molar flow rate=107.665+28.511+49.89+3.74+154.85+52.74+1.500=398.9134728kmol/hr Total mass flow rate=1937.97+4166.66+2295.17+119.74+4335.88+3323.012+148.79=16327.2456 8kg/hr Performing material balance on NOX Absorber Input SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) no2 entering 49.89507778 2295.173578 water required 16.63169259 299.3704667 Total molar flow rate= 49.895+16.631= 66.52677037kmol/hr NOHNOOHNO  322 23
  • 25. 25 Total mass flow rate= 2295.173+299.370=2594.544045 kg/hr Output SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) hno3 formed 33.26504836 2095.698046 no formed 16.6150609 498.451827 Total molar flow rate= 33.265+16.615=49.88010926 kmol/hr Total mass flow rate= 2095.698+498.451= 2594.149873 kg/hr Performing material balance on crystallizer Feed stream is containing 43.5% by weight adipic acid which is to be cooled from 60 C to 20 C.
  • 26. 26 The solubility chart for adipic acid is as shown below: Input SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) adipic acid 28.51147302 4166.666667 h2o 107.6650244 1937.970439 unreacted ka 1.500603843 148.7923741 hno3 52.74622508 3323.01218 Total molar flow rate = 28.511+107.665+1.500+52.746= 190.4233263 kmol/hr Total mass flow rate= 4166.66+1937.97+148.79+3323.01= 9576.44166 kg/hr
  • 27. 27 Output Let mass of adipic acid crystals formed be x kg/hr Mass of adipic acid in mother liquor = (9576.441-x)*(4/104) kg/hr Therefore applying material balance on crystallizer ,we get Solubility at 20 C(from graph) = 4g adipic acid/100 g water 4166.667 = x + (9576.441-x)*(4/104) x = 3950.275667 kg/hr therefore mass of adipic acid in mother liquor = (9576.441-3950.275)*(4/104) = 216.390 kg/hr SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) adipic acid crystals 27.03076274 3950.275667 h2o 107.6650244 1937.970439 unreacted ka 1.500603843 148.7923741 hno3 52.74622508 3323.01218 adipic acid in mother liquor 1.480710276 216.3909997 Total molar flow rate = 27.030+107.665+1.500+52.746+1.480 = 190.4233263 kmol/hr Total mass flow rate = 3950.275+1937.970+148.792+3323.012+216.390 = 9576.44166 kg/hr Performing material balance on Concentrator We need 60% HNO3 in our process, so we need to concentrate 44.6% HNO3 in input stream to 60% HNO3 by evaporating excess water.
  • 28. 28 Input SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) h2o 107.6650244 1937.970439 unreacted ka 1.500603843 148.7923741 hno3 86.01127344 3323.01218 adipic acid in mother liquor 1.480710276 216.3909997 Total mass flow rate = 1937.970+148.7923+3323.0121+216.390 = 5626.165993 kg/hr Output SPECIES MOLAR FLOW RATE(kmol/hr) MASS FLOW RATE(kg/hr) h2o evaporated 50.32417545 905.8351581 recycle stream - 4720.330835 Total mass flow rate = 905.835+4720.33 = 5626.165993 kg/hr
  • 29. 29 CHAPTER 5 ENERGY BALANCE After the mass balance is performed, we go for energy balance on the same flow sheet. REACTOR 1 Enthalpy Balance on Streams in and out of the Reactor 1: Feed in (at a temperature of 30o C): Calculating Cp mix for the inlet stream: COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 30 o C (2) MOLE FRACTIONS Cyclohexanol 2.099 0.074614 Cyclohexanone 1.926 0.074614 Nitric acid 1.745 0.510361 Water 4.181 0.340411 Total Cp mix = (2.099*0.074614)+( 1.926*0.074614)+( 1.745*0.510361)+( 4.181*0.340411) = 2.614159134 Mass of the feed stream= 10674.56104 Kg/hr Temperature=303 K TOTAL INPUT HEAT= 2.614159134*303*10674.56104 = 8455215.38 kJ/hr Feed out (at a temperature of 70o C):
  • 30. 30 Calculating Cp mix for the outlet stream: Total Cp mix = (2.392*0.070883)+(2.284*0.0037)+(2.033*0.0746)+(1.738*0.404036)+(4.187*0.3 93573)+(0.922*0.053163) = 2.745174797 kJ/Kg.K Mass of the feed stream=10674.56104Kg/hr Temperature=343 K TOTAL OUTPUT HEAT= 2.745174797 *343*10674.56104 =10051112.83kJ/hr The reaction taking place in the reactor 1: Cyclohexanone AA ΔHR= - 172 Kcal/mol =-719957.6kJ/mol COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 70 o C (2) MOLE FRACTIONS Adipic Acid 2.392 0.070883 Cyclohexanol 2.284 0.074614 Cyclohexanone 2.033 0.0037 Nitric acid 1.738 0.404036 Water 4.187 0.393573 Nitrous Oxide 0.922 0.053163 ONOHADIPICACIDHNOONECYCLOHEXAN 223 75.075.05.1 
  • 31. 31 =-719957.6*14.25573651*0.95kJ/hr HEAT OF REACTION =-9750349.551kJ/hr Where 0.95 is the percentage conversion Heat of condensing steam from the steam table at 100o C=2258 Mass of steam required= (10051112.83+9750349.551-8455215.38)/2258 = 5024.910098Kg/hr Mass of steam required= 5024.910098Kg/hr REACTOR2 Enthalpy Balance on Streams in and out of the Reactor 2: Feed in (at a temperature of 70o C): Input heat of the reactor 2 will be same as the output heat of the reactor 1. Hence TOTAL INPUT HEAT= 2.745174797 *343*10674.56104 =10051112.83kJ/hr Feed out (at a temperature of 90o C): Calculating Cp mix for the outlet stream: COMPONENTS IN (1)
  • 32. 32 THE STREAM SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 90 o C (2) MOLE FRACTIONS Adipic acid 2.42 0.1324 Cyclohexanol 2.346 0.0037 Cyclohexanone 2.086 0.0037 Nitric acid 1.737 0.2449 Water 4.207 0.4999 Nitrous oxide 0.939 0.1158 Total Cp mix = (2.42*0.1324)+(2.346*0.0037)+(2.086*0.0037)+(1.737*0.2449)+(4.207*0.4999)+ (0.939*0.1158) = 2.882666807kJ/Kg.K Mass of the feed stream=10674.13337Kg/hr Temperature=363 K TOTAL OUTPUT HEAT= 2. 882666807 *363*10674.13337 =11169499.1kJ/hr The reaction taking place in the reactor 2: Therefore ΔHR= - 215 Kcal/mol =-899947kJ/mol OHONADIPICACIDHNOOLCYCLOHEXAN 223 22 
  • 33. 33 =-899947*14.25573651*0.95kJ/hr HEAT OF REACTION =- 12187936.94kJ/hr Where 0.95 is the percentage conversion Heat of condensing steam from the steam table at 100o C=2257 Mass of steam required= (11169499.1+12187936.94-10051112.83)/2257 = 5892.968647Kg/hr Mass of steam required= 5892.968647Kg/hr NOX BLEACHER Assuming 100% conversion Assuming that the air enters the bleacher at 90 o C. Enthalpy Balance on Streams in and out of the Bleacher: Feed in (at a temperature of 90o C): Calculating Cp mix for the inlet stream: COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 90 o C (2) MOLE FRACTIONS Water 4.207 0.261712 Adipic Acid 2.42 0.069306 Nitrous oxide 0.939 0.060642 Oxygen 0.930 0.10006 Nitrogen 1.042 0.376416 Nitric acid 1.737 0.128216 Cyclohexanol 2.346 0.0037 Cyclohexanone 2.086 0.0037
  • 34. 34 Total Cp mix = (4.207*0.261712)+(2.42*0.069306)+( 0.939*0.060642)+( 0.930*0.10006)+(1.042*0.376416)+(1.737*0.128216)+(2.346*0.0037)+(2.086*0.0 037) = 2.041758073 Mass of the feed stream= 16327.24568Kg/hr Temperature=363 K TOTAL INPUT HEAT=2.041758073*363*16327.24568 =12101071.7 kJ/hr Feed out (at a temperature of 90o C): Calculating Cp mix for the outlet stream: COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 90 o C (2) MOLE FRACTIONS Water 4.207 0.269896 Adipic Acid 2.42 0.071473 Nitrogen dioxide 0.848 0.125077 Oxygen 0.930 0.009381 Nitrogen 1.042 0.388187 Nitric acid 1.737 0.132225 Cyclohexanol 2.346 0.0037 Cyclohexanone 2.086 0.0037 Total Cp mix = (4.207*0.269896)+(2.42*0.071473)+(0.848*0.125077)+(0.930*0.009381)+(1.737 *0.132225)+(1.042*0.388187)+(2.346*0.0037) +(2.086*0.0037) = 2.065700182kJ/Kg.K
  • 35. 35 Mass of the feed stream=16327.24568Kg/hr Temperature=363 K TOTAL OUTPUT HEAT= 2.065700182*363*16327.24568 =12242971.56kJ/hr The reaction taking place in the bleacher: Heat of reaction =20754.21* 24.94753889KJ/hr = 517766.4611 KJ/hr HEAT OF REACTION =-517766.4611 kJ/hr Since the conversion is 100%. Water enters at 30o C and leaves at 40o C. Specific heat of water at 90o C=4.207 Mass of cooling water required to maintain the temperature= (12101071.7 - 12242971.56-517766.4611 )/(4.207*10) = 15680.20726Kg/hr Mass of cooling water required= 15680.20726Kg/hr NOX ABSORBER Enthalpy Balance on Streams in and out of the Absorber: Feed in (at a temperature of 90o C): 222 25.1 NOOON  kmolKJHR /21.20754
  • 36. 36 Calculating Cp mix for the inlet stream: COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 90 o C (2) MOLE FRACTIONS Nitrogen Dioxide 0.848 0.75 Water 4.207 0.25 Total Cp mix = (0.848*0.75)+(4.207*025) = 1.6877kJ/kg.K Mass of the feed stream= 2594.544045Kg/hr Temperature=363 K TOTAL INPUT HEAT=1.6877*363* 2594.544045 = 1589555.841 kJ/hr Feed out (at a temperature of 90o C): Calculating Cp mix for the outlet stream: COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 90 o C (2) MOLE FRACTIONS Nitric acid 1.737 0.6669 Nitric oxide 0.995 0.3331 Total Cp mix = (1.737*0.6669)+(0.995*0.3331) = 1.489839852kJ/kg.K Mass of the feed stream= 2594.149873Kg/hr
  • 37. 37 Temperature=363 K TOTAL OUTPUT HEAT=1.489839852*363* 2594.149873 = 1402947.034 kJ/hr The reaction taking place in the Absorber: Heat of reaction =-(34868.64* 49.89507778)/3KJ/hr = -579924.5016KJ/hr HEAT OF REACTION =- 579924.5016kJ/hr Since the conversion is 100%. Water enters at 30o C and leaves at 40o C. Specific heat of water at 90o C=4.207 Mass of cooling water required to maintain the temperature= (1589555.841 - 1402947.034 -579924.5016 )/(4.207*10) = 9349.077606Kg/hr Mass of cooling water required= 9349.077606Kg/hr HEAT EXCHANGER Enthalpy Balance on Streams in and out of the Exchanger: Feed in (at a temperature of 90o C): Calculating Cp mix for the inlet stream: NOHNOOHNO  322 23 kmolKJHR /64.34868
  • 38. 38 COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 90 o C (2) MOLE FRACTIONS Adipic Acid 2.42 0.071473 Water 4.207 0.269896 Cyclohexanol 2.346 0.0037 Cyclohexanone 2.086 0.0037 Nitric acid 1.737 0.132225 Total Cp mix = (2.42*0.071473)+(4.207*0.269896)+(2.346*0.0037)+ (2.086*0.0037)+(1.737*0.132225) = 3.239609009kJ/kg.K Mass of the feed stream= 9576.44166Kg/hr Temperature=363 K TOTAL INPUT HEAT=3.239609009*363*9576.44166 = 11261685.38kJ/hr Feed out (at a temperature of 60o C): Calculating Cp mix for the outlet stream: COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 60 o C (2) MOLE FRACTIONS Adipic Acid 2.378 0.071473 Water 4.18 0.269896 Cyclohexanol 2.223 0.0037 Cyclohexanone 2.006 0.0037 Nitric acid 1.739 0.132225
  • 39. 39 Total Cp mix = (2.378*0.071473)+(4.18*0.269896)+(2.223*0.0037)+ (2.006*0.0037)+(1.739*0.132225) = 3.217808719kJ/kg.K Mass of the feed stream= 9576.44166Kg/hr Temperature=333 K TOTAL OUTPUT HEAT= 3.217808719*333*9576.44166 =10261447.44kJ/hr Water enters at 30o C and leaves at 40o C. Average specific heat of water at 90o C and 60o C =(4.207+4.18)/2=4.1935 Mass of cooling water required = (11261685.38-10261447.44)/(4.1935*10) =23852.10315Kg/hr Mass of cooling water required= 23852.10315Kg/hr CRYSTALLIZER Enthalpy Balance on Streams in and out of the Crystallizer: Feed in (at a temperature of 60o C): Input heat of the crystallizer will be same as the output heat of the exchanger. Hence TOTAL INPUT HEAT=10261447.44kJ/hr Feed out (at a temperature of 20o C): Calculating Cp mix for the outlet stream:
  • 40. 40 Total Cp mix = (2.323*0.141951)+(4.19*0.565398)+(2.058*0.0037)+ (1.9*0.0037)+(1.748*0276995)+(2.323*0.007776) = 3.21662068kJ/kg.K Mass of the feed stream= 9576.44166Kg/hr Temperature=293 K TOTAL OUTPUT HEAT= 3.21662068*293*9576.44166 =9025507.622kJ/hr Assuming, that there is no water evaporation. HEAT OF CRYSTALLIZATION=-213.6 kJ/kg =-213.6*3950.275667kJ/hr =-843778.8825 kJ/hr Water enters at 30o C and leaves at 40o C. Average specific heat of water at 60o C and 20o C =(4.18+4.19)/2=4.185 Mass of cooling water required = (10261447.44-9025507.622kJ - 843778.8825)/(4.185*10) =9370.631611Kg/hr COMPONENTS IN THE STREAM (1) SPECIFIC HEAT CAPACITY(kJ/Kg. K) AT 20 o C (2) MOLE FRACTIONS Adipic Acid crystals 2.323 0.141951 Water 4.19 0.565398 Cyclohexanol 2.058 0.0037 Cyclohexanone 1.9 0.0037 Nitric acid 1.748 0.276995 Adipic Acid in mother liquor 2.323 0.007776
  • 41. 41 Mass of cooling water required= 9370.631611Kg/hr CONCENTRATOR Enthalpy Balance on Streams in and out of the Concentrator: Feed in (at a temperature of 20o C): Assuming that the steam enters at 120o C. Assuming that the evaporator is operated at 1 atm. Assuming no BPR. Enthalpy of liquid feed from steam table at 20o C is 83.9kJ/kg. HEAT OF FEED=83.9*5626.165993 =472035.3268kJ/hr Enthalpy of mother liquor from steam table at 100o C is 419.04kJ/kg. HEAT OF THE RECYCLE STREAM=419.04*4720.330835 =1978007.433kJ/hr Enthalpy of vapor from steam table at 100o C is 2676.1kJ/kg. HEAT CARRIED AWAY BY THE VAPOR=2676.1*905.8351581 = 2424105.467kJ/hr Enthalpy of steam from steam table at 120o C is 2202kJ/kg. Mass of cooling water required = (2424105.467+1978007.433-472035.3268)/2202 =1784.776373Kg/hr Mass of steam required=1784.776373Kg/hr Hence we get the amount of utilities at each stage of production.
  • 42. 42 CHAPTER 6 EQUIPMENT DESIGN DESIGN OF HEAT EXCHANGER An exchanger to cool mixture of adipic acid, nitric acid, water and unreacted KA oil from 90 °C to 60°C. Flow-rate of mixture 9576.44166 kg/hr. Brackish water will be used as the coolant, with a temperature rise from 30° to 40°C. Coolant is corrosive, so assign to tube-side. As brackish water is more corrosive it is preferred on tube side. Heat load: mc(∆T)= (9576.44/3600)*3.23*30= 257.76 kW Mass flow rate of water = 257.76/(4.2*(40-30))= 6.13 kg/s ∆Tln= 39.15 C True temperature difference = 31*Ft= 39.15*0.95= 37.5 C U = 400 W/m² C Provisional area= Q/U*∆Tln = 17.184 m² Tube dimensions: 5/8 inch to 2 inch tubes are most often used. 5/8 to 1 inch is preferred as they have small diameter, more compact and therefore cheaper exchangers But for highly fouling fluid larger tubes are preferred Take a tube of 5/8 inch ID, and OD of 20 mm
  • 43. 43
  • 44. 44 Preferred lengths of tubes for heat exchangers are: 6ft, 8ft, 12ft,16feet. Therefore take L= 16 feet = 4.83 m Area of one tube= π*do*L= 0.303 m² Number of tubes = provisional area/surf. Area of tube = 17.184/0.1515 = 58 As shell side fluid is non-corrosive, take a triangular pitch Pt=1.25 (od of tube) Calculation of bundle diameter = 236.4 mm
  • 46. 46 Shell diameter = Ds= 236.4+88.6 mm = 325mm Tube side coefficient: Mean water temperature: 35C Properties of water at that temperature, Viscosity= 0.715 *10ˉ³ . kf = 0.61 W/mC Density = 992.4 kg/m³ tubes per pass= 58/2=29 Total flow area= 29* C.S area= 29*(π/4*0.016²) = 0.00582784 m² Mass flux or water mass velocity = 6.13/0.00582784 = 1051.84 kg/s-m² reynolds number: 23537.67 prandtl number : 4.92 L/di = 301.875 Correlated eqn. for Nu is :
  • 47. 47 From figure, Therefore hi = 5920.88 W/m² C Shell side coefficient : baffle spacing lb = Ds/5= 325/5 = 65 mm Tube pitch = 1.25*20 = 25 mm Cross-flow area = (25-20)/25 *0.325*0.065= 0.004225 m² Mass velocity, Gs = 9576.441/3600*(1/0.004225) = 629.6147 kg/s m² Equivalent diameter = 14.4 mm Mean shell side temperature = (90+60)/2 = 75 C Density of mixture = 1093.70 kg/m³ Viscocity = 0.074 mNs/m², Kf = 0.48 W/mC, Cp= 3.07 KJ/kgC
  • 48. 48 Reynolds number = Gs*De/µ = 122519.6173, Prandtl number = 4.73 Assuming 25% baffle cut jh= 2 *10ˉ³ hs = 13640.13 W/m²C Overall heat transfer coefficient:
  • 49. 49 U = 832.016 W/m² C Well above assumed value (400W/m2 C) Pressure drop: On tube side: jf= 3.9*10-3 s
  • 50. 50 = 13.04 kPa Low value, could consider increasing no. of passes. On shell side: jf = 0.05 ∆Ps = 89.75 kPa (acceptable)
  • 51. 51 DIMENSIONS OF HEAT EXCHANGER : No. of tubes = 58 Tube internal diameter = 16mm Tube outer diameter = 20mm Tube length = 4.83 m No. of tube passes = 2 No. of shell passes = 1 Shell diameter = 325 mm Baffle Spacing = 65 mm Baffle cut = 25 % Bundle diameter = 236.4 mm
  • 52. 52 CHAPTER 7 COSTING OF HEAT EXCHANGER Estimation of cost of shell and tube heat exchange equipment is done as shown below: CE = 1.218* CB* FD* FMC* FP where CE = exchanger cost CB = base cost of a carbon steel, floating-heads exchanger, 4 bar design pressure FD = design-type cost factor if different from that in CB FMC = material of construction cost factor FP =design pressure cost factor Heat exchanger area A = 17.184 m2 Base cost = exp [8.821 - .30683ln(17.184) + .0681(ln17.184)2 = $ 4910.786 FD = 1 (Using floating head type) FP = 1 ( Pressure is below 4 bar)
  • 53. 53 FMC = g1 + g2*lnA For carbon steel FMC = 1 Therefore exchanger cost in year 1986 is CE = 1.218* CB* FD* FMC* FP = 1.218*4910*1*1*1 = $ 5980.38 Using cost indexes for year 1986 and 2011 Exchanger cost in year 2011 is CE in 2011 = CE IN 1986 *(C I OF 2011/C I OF 1986)^0.68 = 5980*(585.7/325) = $ 8926.21 CE in 2011 = Rs 482,015.50 The cost of heat exchanger of area 17.184 m2 is Rs 4,82,015.50
  • 54. 54 CHAPTER 8 MATERIAL SAFETY DATA SHEET ADIPIC ACID SECTION 1 – Chemical Product and Company Identification MSDS Name: ADIPIC ACID Synonyms: Hexanedioic acid; 1,4-Butane Dicarboxylic Acid CAS#: 124-04-9 Formula: HOOC(CH2)4COOH Molecular Wt: 146.1412 SECTION 2 – Hazards Identification Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Potential Chronic Health Effects: Slightly hazardous in case of inhalation (lung sensitizer). CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS:Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to the nervous system, gastrointestinal tract. Repeated or prolonged exposure to the substance can produce target organs damage.
  • 55. 55 SECTION 3 – First Aid Measures Eye Contact: Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention. Skin Contact: In case of contact, immediately flush skin with plenty of water. Cover the irritated skin with an emollient. Remove contaminated clothing and shoes. Cold water may be used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention. Serious Skin Contact: Wash with a disinfectant soap and cover the contaminated skin with an anti- bacterial cream. Seek medical attention. Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention. Serious Inhalation: Not available. Ingestion: Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear. Serious Ingestion: Not available. SECTION 4 – Fire Fighting Measures Flammability of the Product: May be combustible at high temperature. Auto-Ignition Temperature: 420°C (788°F).
  • 56. 56 Flash Points: CLOSED CUP: 196°C (384.8°F). Flammable Limits: Not available. Products of Combustion: These products are carbon oxides (CO, CO2). Fire Hazards in Presence of Various Substances: Slightly flammable to flammable in presence of heat. Non-flammable in presence of shocks. Explosion Hazards in Presence of Various Substances:Risks of explosion of the product in presence of mechanical impact: Not available. Slightly explosive in presence of open flames and sparks, of heat. Fire Fighting Media and Instructions:SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet. Special Remarks on Fire Hazards: Not available. Special Remarks on Explosion Hazards: Dust generation can form an explosive mixture if dispersed in a sufficient quantity of air. SECTION 5 – Accidental Release Measures Small Spill:Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements. Large Spill:Use a shovel to put the material into a convenient waste disposal container. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.
  • 57. 57 SECTION 6 – Handling and Storage Precautions:Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe dust. Wear suitable protective clothing. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep away from incompatibles such as oxidizing agents. Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area. Do not store above 25°C (77°F). Section 7: Exposure Controls/Personal Protection Engineering Controls: Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit. Personal Protection:Splash goggles. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gloves. Personal Protection in Case of a Large Spill:Splash goggles. Full suit. Dust respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product. Exposure Limits:TWA: 5 (mg/m3) from ACGIH (TLV) [United States] Inhalation Consult local authorities for acceptable exposure limits.
  • 58. 58 Section 8: Physical and Chemical Properties Physical state and appearance: Solid. (crystalline powder.) Odor: Odorless. Taste: Tart Molecular Weight: 146.14 g/mole Color: White. pH (1% soln/water): Not available. Boiling Point: 337.5°C (639.5°F) Melting Point: 152°C (305.6°F) Critical Temperature: Not available. Specific Gravity: 1.36 (Water = 1) Vapor Pressure: Not applicable. Vapor Density: 5.04 (Air = 1) Volatility: Not available. Odor Threshold: Not available. Water/Oil Dist. Coeff: The product is equally soluble in oil and water; log(oil/water) = 0.1 Ionicity (in Water): Not available. Dispersion Properties: See solubility in water, methanol, acetone.
  • 59. 59 Solubility:Easily soluble in methanol. Soluble in hot water, acetone. Partially soluble in cold water. Insoluble in Acetic acid, Petroleum Benzin, Benzene, Petroleum Ether. Slightly soluble in Cyclohexane. Freely soluble in Ethanol. Section 9: Stability and Reactivity Data Stability: The product is stable. Instability Temperature: Not available. Conditions of Instability: Excess heat, excess dust generation, ignition sources, incompatible materials Incompatibility with various substances: Reactive with oxidizing agents. Corrosivity: Not available. Special Remarks on Reactivity: Not available. Special Remarks on Corrosivity: Aqueous solutions of Adipic acid are corrosive Polymerization: Will not occur. Section 10: Toxicological Information Routes of Entry: Inhalation. Ingestion. Toxicity to Animals: Acute oral toxicity (LD50): 1900 mg/kg [Mouse]. Chronic Effects on Humans: May cause damage to the following organs: the nervous system, gastrointestinal tract. Other Toxic Effects on Humans: Hazardous in case of skin contact (irritant), of ingestion, of inhalation. Special Remarks on Toxicity to Animals: Not available. Special Remarks on Chronic Effects on Humans: Not available.
  • 60. 60 Special Remarks on other Toxic Effects on Humans:Acute Potential Health Effects: May cause skin irritation. Eyes: May cause eye irritation. Inhalation: Expected to be a low hazard for usual industrial handling. May cause respiratory tract. Symptoms may include coughing, sneezing, and blood tinged mucous. Ingestion: Expected to be a low ingestion hazard if small amounts (less than a mouthful) are ingested.Ingestion of large amounts may cause gastrointestinal tract irritation with hyper motility, and diarrhea. May also affect behavior(somnolence, convulsions), and metabolism, and may cause hemorrhaging. Chronic Potential Health Effects: Inhalation: Repeated or prolonged contact by inhalation may cause asthma. Section 11: Ecological Information Eco toxicity: Not available. BOD5 and COD: Not available. Products of Biodegradation: Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise. Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic. Special Remarks on the Products of Biodegradation: Not available. Section 12: Disposal Considerations Waste Disposal: Waste must be disposed of in accordance with federal, state and local environmental control regulations.
  • 61. 61 CONCLUSIONS From this project, we learnt a lot about plant set up. Most interesting part was performing mass and energy balance on each equipment through out the plant. I t was not only a knowledgeable experience but also challenged all that we have learnt in chemical engineering. We learnt to calculate the amount of utilities required at each stage. We acquired a deep knowledge about the safety protocols for our compound. REFERENCES  www.chemicalweekly.com  www.wikipedia.com  Physprops  Coulson and Richardson 4th edition  Research paper by G. Hoffman on crystallization  Perry’s handbook  www.patentgenius.com