SlideShare una empresa de Scribd logo
1 de 70
Equations of the form asinx + bcosx = c
Method 1: Using the t results
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2      0 ≤ θ ≤ 360
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2      0 ≤ θ ≤ 360
                   θ
       let t = tan
                   2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                 0 ≤ θ ≤ 360
                   θ                                           θ
                            1 − t 2   2t 
       let t = tan                    + 4        =2      0≤     ≤ 180
                         3                    2
                                   2
                   2       1+ t  1+ t                      2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                 0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                     2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                             8 ± 84
                                         t=
                                                 10
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
  Q2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =
                    5
           α = 639′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =
                    5
           α = 639′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =                   Q1
                    5
           α = 639′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                              5
           α = 639′                     α = 59 47′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                              5
           α = 639′                     α = 59 47′
                                          θ
           θ
                                             = 59 47′
                       ′
              = 173 21
                    

                                          2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                               5
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =                    3cos180 + 4sin180
                    5                               5
                                                                  = −4 ≠ 2
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =                    3cos180 + 4sin180
                    5                               5
                                                                  = −4 ≠ 2
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2                                              ∴θ = 11933′,346 42′
                                          θ = 11933′
           θ = 346 42′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360


          3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ

          3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ

          3cos θ + 4sin θ = 2
                                                α
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                                         3
          3cos θ + 4sin θ = 2
                                                        α


                                              sin corresponds to 3, so
                                               3 goes on the opposite
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                    3
          3cos θ + 4sin θ = 2
                                                α
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                                         3
          3cos θ + 4sin θ = 2
                                                        α
                                                             4

                                              cos corresponds to 4, so
                                               4 goes on the adjacent
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                        5
                                                                  3
          3cos θ + 4sin θ = 2
                                                    α
                                                         4

                                              by Pythagoras the
                                               hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
                                                 by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
               5sin ( α + θ ) = 2                by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
               5sin ( α + θ ) = 2                by Pythagoras the
                                                  hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                            3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                 3652′ + θ = 2335′,156 25′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                 3652′ + θ = 2335′,156 25′
                          θ = −1317′,11933′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                         5
                                                                       3
            3cos θ + 4sin θ = 2
                                                     α
         3 cos θ + 4 sin θ  = 2
     5×                                                  4
                            
                           
          5         5                                         3
                                                      tan α =
               5sin ( α + θ ) = 2                             4
                                 2
                 sin ( α + θ ) =                          α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                                                ∴θ = 11933′,346 43′
                 36 52′ + θ = 23 35′,156 25′
                                       


                          θ = −1317′,11933′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360


           3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                  α
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                          α
                                                               3

                                                cos corresponds to 3, so
                                                 3 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                  α
                                                      3
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ
                                                                           4
           3cos θ + 4sin θ = 2
                                                          α
                                                               3


                                                cos corresponds to 4, so
                                                 4 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ
                                                          5
                                                                    4
           3cos θ + 4sin θ = 2
                                                      α
                                                              3

                                                by Pythagoras the
                                                 hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
                                                  by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
               5cos ( θ − α ) = 2                 by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
               5cos ( θ − α ) = 2                 by Pythagoras the
                                                   hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                              4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
                   θ − 538′ = 66 25′, 29335′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
                   θ − 538′ = 66 25′, 29335′
                        ∴θ = 11933′,346 43′
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )

      3sin 3t − cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )
       3sin 3t − cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                     2   1
       3sin 3t − cos3t
                                                          α
                                                              3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                     2   1
       3sin 3t − cos3t = 2sin ( 3t − α )
                                                          α
                                                              3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                                                          α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )

       sin x − cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )
        sin x − cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )
        sin x − cos x = − ( cos x − sin x )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                    2        1
        sin x − cos x = − ( cos x − sin x )
                                                        α
                                                             1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                                                              1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                                                               1
                                                           tan α = 1
                                                            α = 45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                         = − 2 cos ( x − 45 )                 1
                                                           tan α = 1
                                                            α = 45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
          ( sin 3t cos α − cos3t sin α )                      2         1
        3sin 3t − cos3t = 2sin ( 3t − α )
                           = 2sin ( 3t − 30 )            α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                 Exercise 2E;
                                                                α = 30
   6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                         = − 2 cos ( x − 45 )                 1
                                                           tan α = 1
                                                             α = 45

Más contenido relacionado

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

11 X1 T04 13 Asinx + Bcosx = C

  • 1. Equations of the form asinx + bcosx = c Method 1: Using the t results
  • 2. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 3. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ let t = tan 2
  • 4. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2
  • 5. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2
  • 6. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0
  • 7. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10
  • 8. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5
  • 9. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 Q2
  • 10. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = 5 α = 639′
  • 11. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = 5 α = 639′ θ = 173 21′ 2 θ = 346 42′
  • 12. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = Q1 5 α = 639′ θ = 173 21′ 2 θ = 346 42′
  • 13. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ = 173 21′ 2 θ = 346 42′
  • 14. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 15. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 16. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 3cos180 + 4sin180 5 5 = −4 ≠ 2 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 17. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 3cos180 + 4sin180 5 5 = −4 ≠ 2 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 ∴θ = 11933′,346 42′ θ = 11933′ θ = 346 42′
  • 18. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 19. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 3cos θ + 4sin θ = 2
  • 20. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3cos θ + 4sin θ = 2
  • 21. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3cos θ + 4sin θ = 2 α
  • 22. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α sin corresponds to 3, so 3 goes on the opposite side
  • 23. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α
  • 24. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α 4 cos corresponds to 4, so 4 goes on the adjacent side
  • 25. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α 4 by Pythagoras the hypotenuse is 5
  • 26. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 by Pythagoras the hypotenuse is 5
  • 27. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 5sin ( α + θ ) = 2 by Pythagoras the hypotenuse is 5
  • 28. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 5sin ( α + θ ) = 2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 29. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = 5
  • 30. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5
  • 31. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2
  • 32. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5
  • 33. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′
  • 34. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ 3652′ + θ = 2335′,156 25′
  • 35. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ 3652′ + θ = 2335′,156 25′ θ = −1317′,11933′
  • 36. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ ∴θ = 11933′,346 43′ 36 52′ + θ = 23 35′,156 25′    θ = −1317′,11933′
  • 37. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 38. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 3cos θ + 4sin θ = 2
  • 39. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2
  • 40. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α
  • 41. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α 3 cos corresponds to 3, so 3 goes on the adjacent side
  • 42. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α 3
  • 43. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 4 3cos θ + 4sin θ = 2 α 3 cos corresponds to 4, so 4 goes on the adjacent side
  • 44. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α 3 by Pythagoras the hypotenuse is 5
  • 45. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 by Pythagoras the hypotenuse is 5
  • 46. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 5cos ( θ − α ) = 2 by Pythagoras the hypotenuse is 5
  • 47. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 5cos ( θ − α ) = 2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 48. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = 5
  • 49. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5
  • 50. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4
  • 51. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5
  • 52. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′
  • 53. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′ θ − 538′ = 66 25′, 29335′
  • 54. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′ θ − 538′ = 66 25′, 29335′ ∴θ = 11933′,346 43′
  • 55. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
  • 56. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) 3sin 3t − cos3t
  • 57. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 3sin 3t − cos3t
  • 58. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t α 3
  • 59. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) α 3
  • 60. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) α 3 1 tan α = 3 α = 30
  • 61. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30
  • 62. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α )
  • 63. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) sin x − cos x
  • 64. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) sin x − cos x
  • 65. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) sin x − cos x = − ( cos x − sin x )
  • 66. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α 1
  • 67. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) 1
  • 68. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) 1 tan α = 1 α = 45
  • 69. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) = − 2 cos ( x − 45 ) 1 tan α = 1 α = 45
  • 70. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 Exercise 2E; α = 30 6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) = − 2 cos ( x − 45 ) 1 tan α = 1 α = 45