SlideShare a Scribd company logo
1 of 35
Download to read offline
Pythagorean Trig Identities
Pythagorean Trig Identities
   y

       1
           y
       
       x       x
Pythagorean Trig Identities
   y
                   x2  y 2  1
       1
           y
       
       x       x
Pythagorean Trig Identities
   y
                           x2  y 2  1
                           y
       1           sin  
           y               1
                      y  sin 
       x       x
Pythagorean Trig Identities
   y
                           x2  y 2  1
                           y                      x
       1           sin                  cos  
           y               1                      1
                      y  sin               x  cos 
       x       x
Pythagorean Trig Identities
   y
                           x2  y 2  1
                           y                      x
       1           sin                  cos  
           y               1                      1
                      y  sin               x  cos 
       x       x
                             sin 2   cos 2   1
Pythagorean Trig Identities
      y
                               x2  y 2  1
                               y                      x
          1            sin                  cos  
               y               1                      1
                          y  sin               x  cos 
           x       x
                                 sin 2   cos 2   1



 Divide by sin 2 
Pythagorean Trig Identities
      y
                               x2  y 2  1
                               y                      x
          1            sin                  cos  
               y               1                      1
                          y  sin               x  cos 
           x       x
                                 sin 2   cos 2   1



 Divide by sin 2 
 sin 2  cos 2    1
                 2
 sin  sin  sin 
     2      2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2 
 sin 2  cos 2         1
                    2
 sin  sin  sin 
     2         2


        1  cot 2   cosec 2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1
                    2
 sin  sin  sin 
     2         2


        1  cot 2   cosec 2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1                  sin 2  cos 2    1
                    2                                   
 sin  sin  sin 
     2         2
                                           cos  cos  cos 2 
                                               2       2


        1  cot 2   cosec 2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1                  sin 2  cos 2         1
                    2                                      
 sin  sin  sin 
     2         2
                                           cos  cos  cos 2 
                                               2          2


        1  cot 2   cosec 2                    tan 2   1  sec2
Pythagorean Trig Identities
      y
                                         x2  y 2  1
                                         y                      x
           1                     sin                  cos  
                y                        1                      1
                                    y  sin               x  cos 
            x       x
                                           sin 2   cos 2   1



 Divide by sin 2                          Divide by cos 2
 sin 2  cos 2         1                  sin 2  cos 2         1
                    2                                      
 sin  sin  sin 
     2         2
                                           cos  cos  cos 2 
                                               2          2


        1  cot 2   cosec 2                    tan 2   1  sec2
sin 2   cos 2   1
1  tan 2   sec2
1  cot 2   cosec 2
sin 2   cos 2   1
               1  tan 2   sec2
               1  cot 2   cosec 2

In addition:
                  sin 
                         tan 
                  cos 
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
   3    4
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
   3    4

         7
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
                                4th quadrant
    3 4

         7
sin 2   cos 2   1
                             1  tan 2   sec2
                             1  cot 2   cosec 2

              In addition:
                                sin 
                                       tan 
                                cos 
                    3
e.g. (i ) If cos   and tan  is negative, find sin 
                    4
                                4th quadrant
    3 4
                                           7
                                sin   
           7                              4
(ii) Simplify;
a ) 1  cos 2 
(ii) Simplify;
a ) 1  cos 2 
     1  1  sin 2  
(ii) Simplify;
a ) 1  cos 2 
     1  1  sin 2  
     1  1  sin 2 
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A
     1  1  sin 2  
     1  1  sin 2 
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A
     1  1  sin 2         1  tan 2 A  tan 2 A
     1  1  sin 2          1
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A         c) tan  cos 
     1  1  sin 2         1  tan 2 A  tan 2 A
     1  1  sin 2          1
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A   c) tan  cos 
                                                       sin  cos 
     1  1  sin 2         1  tan A  tan A
                                       2       2            
                                                       cos      1
     1  1  sin 2          1                    sin 
     sin 2 
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A   c) tan  cos 
                                                       sin  cos 
     1  1  sin 2         1  tan A  tan A
                                       2       2            
                                                       cos      1
     1  1  sin 2          1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
(ii) Simplify;
a ) 1  cos 2             b) sec 2 A  tan 2 A   c) tan  cos 
                                                       sin  cos 
     1  1  sin 2         1  tan A  tan A
                                       2       2            
                                                       cos      1
     1  1  sin 2          1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec 2   2
     4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan                  4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan               4 tan 
                      2  2 tan 2   2
                    
                          4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan                4 tan 
                      2  2 tan 2   2
                    
                           4 tan 
                      2 tan 2 
                    
                       4 tan 
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove             
                4 tan       2
   2sec   2
         2
                        2 1  tan 2    2
              
     4 tan                4 tan 
                      2  2 tan 2   2
                    
                           4 tan 
                      2 tan 2 
                    
                       4 tan 
                      tan 
                    
                         2
(ii) Simplify;
a ) 1  cos 2                b) sec 2 A  tan 2 A     c) tan  cos 
                                                            sin  cos 
     1  1  sin 2              1  tan A  tan A
                                            2       2            
                                                            cos      1
     1  1  sin 2               1                    sin 
     sin 2 
              2sec 2   2 tan 
 iii  Prove                                    when proving trig identities
                4 tan       2                              you can;
   2sec   2
         2
                        2 1  tan 2    2   1. start with LHS and prove RHS
                                              2. start with RHS and prove LHS
     4 tan                4 tan 
                                                  3. work on LHS and RHS
                      2  2 tan 2   2
                                                  independently and show they
                           4 tan                      equal the same thing
                      2 tan 2 
                    
                       4 tan                        NEVER SOLVE LIKE AN
                      tan                                 EQUATION
                    
                         2
Exercise 4E; 1a, 2b, 3ac, 4bd, 5, 7, 9*


Exercise 4F; 3a, 4b, 5c, 6ac, 7bd, 8ac, 10ad,
   11acegi, 12bdfhj, 13ac, 14bd, 15ac,
              16acegik, 17*a

More Related Content

Viewers also liked

11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)
Nigel Simmons
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)
Nigel Simmons
 
11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)
Nigel Simmons
 
11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)
Nigel Simmons
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)
Nigel Simmons
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)
Nigel Simmons
 
11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)
Nigel Simmons
 
12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)
Nigel Simmons
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)
Nigel Simmons
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
Nigel Simmons
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)
Nigel Simmons
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
Nigel Simmons
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
Nigel Simmons
 
X2 T04 03 t results (2011)
X2 T04 03 t results (2011)X2 T04 03 t results (2011)
X2 T04 03 t results (2011)
Nigel Simmons
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
Nigel Simmons
 
11X1 T11 08 quadratic identities
11X1 T11 08 quadratic identities11X1 T11 08 quadratic identities
11X1 T11 08 quadratic identities
Nigel Simmons
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
Nigel Simmons
 
X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)
Nigel Simmons
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
Nigel Simmons
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)
Nigel Simmons
 

Viewers also liked (20)

11X1 T14 03 arithmetic & geometric means (2011)
11X1 T14 03 arithmetic &  geometric means (2011)11X1 T14 03 arithmetic &  geometric means (2011)
11X1 T14 03 arithmetic & geometric means (2011)
 
11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)11X1 T15 01 polynomial definitions (2011)
11X1 T15 01 polynomial definitions (2011)
 
11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)11X1 T05 03 equation of lines (2011)
11X1 T05 03 equation of lines (2011)
 
11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)11X1 T14 06 sum of a geometric series (2011)
11X1 T14 06 sum of a geometric series (2011)
 
11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)11X1 T02 09 shifting curves I (2011)
11X1 T02 09 shifting curves I (2011)
 
11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)11X1 T03 06 asymptotes (2011)
11X1 T03 06 asymptotes (2011)
 
11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)11X1 T01 04 algebraic fractions (2011)
11X1 T01 04 algebraic fractions (2011)
 
12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)12X1 T07 01 projectile motion (2011)
12X1 T07 01 projectile motion (2011)
 
11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)11X1 T01 07 quadratic equations (2011)
11X1 T01 07 quadratic equations (2011)
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
 
11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)11X1 T13 05 tangent theorems 1 (2011)
11X1 T13 05 tangent theorems 1 (2011)
 
11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)11X1 T14 08 mathematical induction 1 (2011)
11X1 T14 08 mathematical induction 1 (2011)
 
11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)11X1 T02 06 relations & functions (2011)
11X1 T02 06 relations & functions (2011)
 
X2 T04 03 t results (2011)
X2 T04 03 t results (2011)X2 T04 03 t results (2011)
X2 T04 03 t results (2011)
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
 
11X1 T11 08 quadratic identities
11X1 T11 08 quadratic identities11X1 T11 08 quadratic identities
11X1 T11 08 quadratic identities
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
 
X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)X2 T04 07 quadratic denominators (2011)
X2 T04 07 quadratic denominators (2011)
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

11X1 T04 03 pythagorean trig identities (2011)

  • 3. Pythagorean Trig Identities y x2  y 2  1 1 y  x x
  • 4. Pythagorean Trig Identities y x2  y 2  1 y 1 sin   y 1  y  sin  x x
  • 5. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x
  • 6. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1
  • 7. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2 
  • 8. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  sin 2  cos 2  1   2 sin  sin  sin  2 2
  • 9. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  sin 2  cos 2  1   2 sin  sin  sin  2 2 1  cot 2   cosec 2
  • 10. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1   2 sin  sin  sin  2 2 1  cot 2   cosec 2
  • 11. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1 sin 2  cos 2  1   2   sin  sin  sin  2 2 cos  cos  cos 2  2 2 1  cot 2   cosec 2
  • 12. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1 sin 2  cos 2  1   2   sin  sin  sin  2 2 cos  cos  cos 2  2 2 1  cot 2   cosec 2 tan 2   1  sec2
  • 13. Pythagorean Trig Identities y x2  y 2  1 y x 1 sin   cos   y 1 1  y  sin  x  cos  x x  sin 2   cos 2   1 Divide by sin 2  Divide by cos 2 sin 2  cos 2  1 sin 2  cos 2  1   2   sin  sin  sin  2 2 cos  cos  cos 2  2 2 1  cot 2   cosec 2 tan 2   1  sec2
  • 14. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2
  • 15. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos 
  • 16. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4
  • 17. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 3 4
  • 18. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 3 4 7
  • 19. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 4th quadrant 3 4 7
  • 20. sin 2   cos 2   1 1  tan 2   sec2 1  cot 2   cosec 2 In addition: sin   tan  cos  3 e.g. (i ) If cos   and tan  is negative, find sin  4 4th quadrant 3 4 7 sin    7 4
  • 21. (ii) Simplify; a ) 1  cos 2 
  • 22. (ii) Simplify; a ) 1  cos 2   1  1  sin 2  
  • 23. (ii) Simplify; a ) 1  cos 2   1  1  sin 2    1  1  sin 2   sin 2 
  • 24. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A  1  1  sin 2    1  1  sin 2   sin 2 
  • 25. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A  1  1  sin 2    1  tan 2 A  tan 2 A  1  1  sin 2  1  sin 2 
  • 26. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos   1  1  sin 2    1  tan 2 A  tan 2 A  1  1  sin 2  1  sin 2 
  • 27. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2 
  • 28. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2
  • 29. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec 2   2 4 tan 
  • 30. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan 
  • 31. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan  2  2 tan 2   2  4 tan 
  • 32. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan  2  2 tan 2   2  4 tan  2 tan 2   4 tan 
  • 33. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  4 tan  2 2sec   2 2 2 1  tan 2    2  4 tan  4 tan  2  2 tan 2   2  4 tan  2 tan 2   4 tan  tan   2
  • 34. (ii) Simplify; a ) 1  cos 2  b) sec 2 A  tan 2 A c) tan  cos  sin  cos   1  1  sin 2    1  tan A  tan A 2 2   cos  1  1  1  sin 2  1  sin   sin 2  2sec 2   2 tan   iii  Prove  when proving trig identities 4 tan  2 you can; 2sec   2 2 2 1  tan 2    2 1. start with LHS and prove RHS  2. start with RHS and prove LHS 4 tan  4 tan  3. work on LHS and RHS 2  2 tan 2   2  independently and show they 4 tan  equal the same thing 2 tan 2   4 tan  NEVER SOLVE LIKE AN tan  EQUATION  2
  • 35. Exercise 4E; 1a, 2b, 3ac, 4bd, 5, 7, 9* Exercise 4F; 3a, 4b, 5c, 6ac, 7bd, 8ac, 10ad, 11acegi, 12bdfhj, 13ac, 14bd, 15ac, 16acegik, 17*a