SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
Geometrical Theorems about
         Parabola
Geometrical Theorems about
(1) Focal Chords
                 Parabola
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                  Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
     a  p  q  , apq
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
                                      y  a       pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
                                      y  a      pq  1
                                Tangents meet on the directrix
(2) Reflection Property
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
                                              K is 0,ap 2 
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
                                              K is 0,ap 2 
                                               d SK  a  ap 2
2ap  0  ap  a 
                             2
d PS 
                 2      2
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles             two = sides 
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles             two = sides 
     SPK  SKP (base 's isosceles  )
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
    SPK  CPB
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
    SPK  CPB


                    Exercise 9I; 1, 2, 4, 7, 11, 12, 17, 18, 21

Más contenido relacionado

Destacado

11X1 T16 03 polynomial division
11X1 T16 03 polynomial division11X1 T16 03 polynomial division
11X1 T16 03 polynomial divisionNigel Simmons
 
11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)Nigel Simmons
 
11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gp11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gpNigel Simmons
 
X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)Nigel Simmons
 
X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)Nigel Simmons
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)Nigel Simmons
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)Nigel Simmons
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)Nigel Simmons
 
11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)Nigel Simmons
 

Destacado (9)

11X1 T16 03 polynomial division
11X1 T16 03 polynomial division11X1 T16 03 polynomial division
11X1 T16 03 polynomial division
 
11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)11X1 T06 04 probability and counting techniques (2010)
11X1 T06 04 probability and counting techniques (2010)
 
11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gp11X1 T15 01 applications of ap & gp
11X1 T15 01 applications of ap & gp
 
X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)X1 T4 2 angles of any magnitude (2010)
X1 T4 2 angles of any magnitude (2010)
 
X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
 
11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)11X1 T13 01 definitions & chord theorems (2010)
11X1 T13 01 definitions & chord theorems (2010)
 

Similar a 11X1 T11 08 geometrical theorems (2010)

11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theoremsNigel Simmons
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)Nigel Simmons
 
Two_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfTwo_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfIbrahimHabib26
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteTanuj Parikh
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonFrancesca Giordano
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew linesTarun Gehlot
 
class 10 circles
class 10 circlesclass 10 circles
class 10 circlesAadhiSXA
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionSuresh Kumar
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensidessybudiyanti
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Permuting Polygons
Permuting PolygonsPermuting Polygons
Permuting Polygonsmathpunk
 
Planar projective geometry
Planar projective geometryPlanar projective geometry
Planar projective geometryWangdo Kim
 
Parabola
ParabolaParabola
Parabolaitutor
 

Similar a 11X1 T11 08 geometrical theorems (2010) (20)

11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)
 
Two_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfTwo_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdf
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evolute
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for Kaon
 
COORDINATE GEOMETRY II
COORDINATE GEOMETRY IICOORDINATE GEOMETRY II
COORDINATE GEOMETRY II
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew lines
 
class 10 circles
class 10 circlesclass 10 circles
class 10 circles
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solution
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Curves part two
Curves part twoCurves part two
Curves part two
 
Parabola
ParabolaParabola
Parabola
 
Permuting Polygons
Permuting PolygonsPermuting Polygons
Permuting Polygons
 
Planar projective geometry
Planar projective geometryPlanar projective geometry
Planar projective geometry
 
Hybridization
HybridizationHybridization
Hybridization
 
Parabola
ParabolaParabola
Parabola
 

Más de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 

Último (20)

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 

11X1 T11 08 geometrical theorems (2010)

  • 2. Geometrical Theorems about (1) Focal Chords Parabola
  • 3. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix.
  • 4. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1
  • 5. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q.
  • 6. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1
  • 7. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other
  • 8. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq
  • 9. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq
  • 10. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq  y  a  pq  1
  • 11. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq  y  a  pq  1 Tangents meet on the directrix
  • 13. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent.
  • 14. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent.
  • 15. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB
  • 16. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection)
  • 17. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis
  • 18. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2
  • 19. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0
  • 20. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0  K is 0,ap 2 
  • 21. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0  K is 0,ap 2  d SK  a  ap 2
  • 22. 2ap  0  ap  a  2 d PS  2 2
  • 23. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1
  • 24. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK
  • 25. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides 
  • 26. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  )
  • 27. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)
  • 28. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)  SPK  CPB
  • 29. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)  SPK  CPB Exercise 9I; 1, 2, 4, 7, 11, 12, 17, 18, 21