SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
Geometrical Theorems about
         Parabola
Geometrical Theorems about
(1) Focal Chords
                 Parabola
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                  Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
     a  p  q  , apq
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
                                      y  a       pq  1
Geometrical Theorems about
 (1) Focal Chords
                  Parabola
e.g. Prove that the tangents drawn from the extremities of a focal chord
     intersect at right angles on the directrix.
 1 Prove pq  1

 2 Show that the slope of the tangent at P is p, and the slope of the
   tangent at Q is q.
                             pq  1
                Tangents are perpendicular to each other
 3 Show that the point of intersection,T , of the tangents is
   a  p  q  , apq                 y  apq
                                      y  a      pq  1
                                Tangents meet on the directrix
(2) Reflection Property
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
                                              K is 0,ap 2 
(2) Reflection Property
Any line parallel to the axis of the parabola is reflected towards the
focus.
Any line from the focus parallel to the axis of the parabola is reflected
parallel to the axis.
Thus a line and its reflection are equally inclined to the normal, as well
as to the tangent.
                                         Prove: SPK  CPB
                                (angle of incidence = angle of reflection)
                                         Data: CP || y axis

                                    1 Show tangent at P is y  px  ap 2

                                    2 tangent meets y axis when x = 0
                                              K is 0,ap 2 
                                               d SK  a  ap 2
2ap  0  ap  a 
                             2
d PS 
                 2      2
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles             two = sides 
2ap  0  ap  a 
                                  2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles             two = sides 
     SPK  SKP (base 's isosceles  )
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
    SPK  CPB
2ap  0  ap  a 
                                      2
d PS 
                      2       2


     4a 2 p 2  a 2 p 4  2a 2 p 2  a 2
     a p4  2 p2  1

          p        1
                          2
    a         2



     a  p 2  1  d SK
    SPK is isosceles                 two = sides 
     SPK  SKP (base 's isosceles  )
     SKP  CPB                  (corresponding 's  , SK || CP)
    SPK  CPB


                    Exercise 9I; 1, 2, 4, 7, 11, 12, 17, 18, 21

Más contenido relacionado

Similar a 11X1 T12 08 geometrical theorems (2011)

11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theoremsNigel Simmons
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)Nigel Simmons
 
Two_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfTwo_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfIbrahimHabib26
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteTanuj Parikh
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonFrancesca Giordano
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew linesTarun Gehlot
 
class 10 circles
class 10 circlesclass 10 circles
class 10 circlesAadhiSXA
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionSuresh Kumar
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensidessybudiyanti
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Permuting Polygons
Permuting PolygonsPermuting Polygons
Permuting Polygonsmathpunk
 
Planar projective geometry
Planar projective geometryPlanar projective geometry
Planar projective geometryWangdo Kim
 
Parabola
ParabolaParabola
Parabolaitutor
 

Similar a 11X1 T12 08 geometrical theorems (2011) (20)

11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)
 
Two_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdfTwo_variations_on_the_periscope_theorem.pdf
Two_variations_on_the_periscope_theorem.pdf
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evolute
 
F Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for KaonF Giordano Collins Fragmentation for Kaon
F Giordano Collins Fragmentation for Kaon
 
COORDINATE GEOMETRY II
COORDINATE GEOMETRY IICOORDINATE GEOMETRY II
COORDINATE GEOMETRY II
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew lines
 
class 10 circles
class 10 circlesclass 10 circles
class 10 circles
 
Inmo 2013 test_paper_solution
Inmo 2013 test_paper_solutionInmo 2013 test_paper_solution
Inmo 2013 test_paper_solution
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 
Analisis Korespondensi
Analisis KorespondensiAnalisis Korespondensi
Analisis Korespondensi
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Curves part two
Curves part twoCurves part two
Curves part two
 
Parabola
ParabolaParabola
Parabola
 
Permuting Polygons
Permuting PolygonsPermuting Polygons
Permuting Polygons
 
Planar projective geometry
Planar projective geometryPlanar projective geometry
Planar projective geometry
 
Hybridization
HybridizationHybridization
Hybridization
 
Parabola
ParabolaParabola
Parabola
 

Más de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 

Último (20)

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 

11X1 T12 08 geometrical theorems (2011)

  • 2. Geometrical Theorems about (1) Focal Chords Parabola
  • 3. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix.
  • 4. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1
  • 5. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q.
  • 6. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1
  • 7. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other
  • 8. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq
  • 9. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq
  • 10. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq  y  a  pq  1
  • 11. Geometrical Theorems about (1) Focal Chords Parabola e.g. Prove that the tangents drawn from the extremities of a focal chord intersect at right angles on the directrix. 1 Prove pq  1 2 Show that the slope of the tangent at P is p, and the slope of the tangent at Q is q. pq  1 Tangents are perpendicular to each other 3 Show that the point of intersection,T , of the tangents is a  p  q  , apq y  apq  y  a  pq  1 Tangents meet on the directrix
  • 13. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent.
  • 14. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent.
  • 15. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB
  • 16. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection)
  • 17. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis
  • 18. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2
  • 19. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0
  • 20. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0  K is 0,ap 2 
  • 21. (2) Reflection Property Any line parallel to the axis of the parabola is reflected towards the focus. Any line from the focus parallel to the axis of the parabola is reflected parallel to the axis. Thus a line and its reflection are equally inclined to the normal, as well as to the tangent. Prove: SPK  CPB (angle of incidence = angle of reflection) Data: CP || y axis 1 Show tangent at P is y  px  ap 2 2 tangent meets y axis when x = 0  K is 0,ap 2  d SK  a  ap 2
  • 22. 2ap  0  ap  a  2 d PS  2 2
  • 23. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1
  • 24. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK
  • 25. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides 
  • 26. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  )
  • 27. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)
  • 28. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)  SPK  CPB
  • 29. 2ap  0  ap  a  2 d PS  2 2  4a 2 p 2  a 2 p 4  2a 2 p 2  a 2  a p4  2 p2  1 p  1 2 a 2  a  p 2  1  d SK SPK is isosceles  two = sides  SPK  SKP (base 's isosceles  ) SKP  CPB (corresponding 's  , SK || CP)  SPK  CPB Exercise 9I; 1, 2, 4, 7, 11, 12, 17, 18, 21