SlideShare una empresa de Scribd logo
1 de 55
Descargar para leer sin conexión
Inverse Functions
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
The range of y  f  x  is the domain of y  f 1  x 
Testing For Inverse Functions
Testing For Inverse Functions
(1) Use a horizontal line test
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3   y



                           x                          x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3    y



                           x                                  x


   Only has an inverse relation            Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x                                             y3 x
    NOT UNIQUE                                        UNIQUE
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x   AND       f  f 1  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1      2 y 1
y          x
     3  2x     3 2y
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1           2 y 1
y          x
     3  2x          3 2y
       3  2 y x  2 y  1
         3 x  2 xy  2 y  1
        2 x  2  y  3 x  1
                       3x  1
                   y
                       2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND         f  f 1  x   x

e.g.            2x 1                          2x 1  
        f x                               3         1
                3  2x                          3  2x 
                            f 1  f  x   
                                               2x 1 
   2x 1            2 y 1                   2        2
y         x                                 3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1
      3 x  2 xy  2 y  1
     2 x  2  y  3 x  1
                    3x  1
                y
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND          f  f 1  x   x

e.g.            2x 1                           2x 1  
        f x                                3         1
                3  2x                           3  2x 
                            f 1  f  x   
                                                2x 1 
   2x 1            2 y 1                    2        2
y         x                                  3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND          f  f 1  x   x

e.g.            2x 1                           2x 1                         3x  1  
        f x                                3         1                   2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                          2x  2 
                            f 1  f  x   
                                                2x 1                             3x  1 
   2x 1            2 y 1                    2         2                  3  2         
y         x                                  3  2x                            2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND           f  f 1  x   x

e.g.            2x 1                           2x 1                          3x  1  
        f x                                3         1                    2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                           2x  2 
                            f 1  f  x   
                                                2x 1                              3x  1 
   2x 1            2 y 1                    2         2                   3  2         
y         x                                  3  2x                             2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x                 6x  2  2x  2
                                                                          
      3 x  2 xy  2 y  1                    4x  2  6  4x                 6x  6  6x  2
     2 x  2  y  3 x  1                 
                                              8x
                                                                           
                                                                             8x
                    3x  1                     8                              8
                y                          x                             x
                    2x  2
Restricting The Domain
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
                                                            y  x3

                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y
                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
                                                   1
     y  x     3
                                             yx   3

       Domain: all real x
       Range: all real y
y  ex
ii  y  e x
                y

                1

                        x
y  ex
ii  y  e x
                         y
    Domain: all real x
   Range: y > 0          1
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x                y  log x
         Range: y > 0          1
                                   1       x
    1
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
iii  y  x 2   y  x2   y



                              x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
                                      x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                        x
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2                 1
                                        y
    Domain: all real x                          yx   2


    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                   y  x2                              1
                                               y
    Domain: all real x                                         yx   2


    Range: y  0
    NO INVERSE                                             x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0                         Book 2
                         Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19
   Range: y  0

Más contenido relacionado

La actualidad más candente (13)

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
4 5 inverse functions
4 5 inverse functions4 5 inverse functions
4 5 inverse functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Inverse functions and relations
Inverse functions and relationsInverse functions and relations
Inverse functions and relations
 
4.1 inverse functions
4.1 inverse functions4.1 inverse functions
4.1 inverse functions
 
7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions7.7 one to_one_functions_-_inverse_functions
7.7 one to_one_functions_-_inverse_functions
 
Calc 5.3
Calc 5.3Calc 5.3
Calc 5.3
 
Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Ch07
Ch07Ch07
Ch07
 

Similar a 12 x1 t05 01 inverse functions (2012)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)
Nigel Simmons
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)
Nigel Simmons
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
Nigel Simmons
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
hisema01
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
RyanWatt
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
Nigel Simmons
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Nigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
Nigel Simmons
 
4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions
dicosmo178
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)
Nigel Simmons
 

Similar a 12 x1 t05 01 inverse functions (2012) (20)

11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)11 x1 t02 08 inverse functions (2012)
11 x1 t02 08 inverse functions (2012)
 
11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)11X1 T02 08 inverse functions (2011)
11X1 T02 08 inverse functions (2011)
 
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2013)
 
7.4 inverse functions
7.4 inverse functions7.4 inverse functions
7.4 inverse functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
4.1 Inverse Functions
4.1 Inverse Functions4.1 Inverse Functions
4.1 Inverse Functions
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
Jan. 6 Inverse Functions
Jan. 6 Inverse FunctionsJan. 6 Inverse Functions
Jan. 6 Inverse Functions
 
Analytic Geometry
Analytic GeometryAnalytic Geometry
Analytic Geometry
 
Module 3 exponential and logarithmic functions
Module 3   exponential and logarithmic functionsModule 3   exponential and logarithmic functions
Module 3 exponential and logarithmic functions
 
1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt1.9 Inverse Functions.ppt
1.9 Inverse Functions.ppt
 
Lesson 51
Lesson 51Lesson 51
Lesson 51
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions4.3 derivatives of inv erse trig. functions
4.3 derivatives of inv erse trig. functions
 
11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)11 x1 t02 06 relations & functions (2013)
11 x1 t02 06 relations & functions (2013)
 

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Último (20)

How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 

12 x1 t05 01 inverse functions (2012)

  • 2. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value.
  • 3. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y)
  • 4. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y
  • 5. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x 
  • 6. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x.
  • 7. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
  • 8. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x 
  • 9. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x  The range of y  f  x  is the domain of y  f 1  x 
  • 10. Testing For Inverse Functions
  • 11. Testing For Inverse Functions (1) Use a horizontal line test
  • 12. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x
  • 13. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x Only has an inverse relation
  • 14. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation
  • 15. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 16. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 17. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2
  • 18. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2 y x NOT UNIQUE
  • 19. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x NOT UNIQUE
  • 20. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x y3 x NOT UNIQUE UNIQUE
  • 21. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then;
  • 22. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x
  • 23. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x
  • 24. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x
  • 25. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y
  • 26. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 27. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 28. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 29. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 30. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x 6x  2  2x  2   3 x  2 xy  2 y  1 4x  2  6  4x 6x  6  6x  2 2 x  2  y  3 x  1  8x  8x 3x  1 8 8 y x x 2x  2
  • 32. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function.
  • 33. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible.
  • 34. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y y  x3 x
  • 35. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y x
  • 36. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3
  • 37. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 38. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 39. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 1 y  x 3 yx 3 Domain: all real x Range: all real y
  • 40. y  ex ii  y  e x y 1 x
  • 41. y  ex ii  y  e x y Domain: all real x Range: y > 0 1
  • 42. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x
  • 43. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 44. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 45. y  ex ii  y  e x y Domain: all real x y  log x Range: y > 0 1 1 x 1 f :xe y  y  log x Domain: x > 0 Range: all real y
  • 46. iii  y  x 2 y  x2 y x
  • 47. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 x
  • 48. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x
  • 49. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0
  • 50. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0
  • 51. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2
  • 52. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 53. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 54. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 55. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Book 2 Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19 Range: y  0