SlideShare una empresa de Scribd logo
1 de 54
Descargar para leer sin conexión
Conics
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola


   e>1           hyperbola
Ellipse (e < 1)
     y

     b
A’        A
-a        a   x
     -b
Ellipse (e < 1)
     y

     b
A’            A
-a        S   a   Z x
     -b
Ellipse (e < 1)
           y

            b
  A’                   A
  -a             S     a      Z x
           -b

SA = eAZ   and   SA’ = eA’Z
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S    a      Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S    a      Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
            = e(AA’)
            = e(2a)
            = 2ae
b
             A’                     A
             -a                 S   a   Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)
              SA’ = a(1 + e)
b
             A’                        A
             -a                 S      a     Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
              SA’ = a(1 + e)                  SA = a(1 - e)
b
              A’                        A
              -a                 S      a     Z x
                          -b

 (1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
               SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
b
                A’                        A
                -a                 S      a     Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA             SA  eAZ 
   = ae                                       e
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA           SA  eAZ 
   = ae                                       e
                                        ae a1  e 
 S  ae,0                           
                                         e      e                     a
                                        a          directrices x  
                                                                     e
                                        e
S ae,0 
                  b        P
P  x, y 
                                   N
             A’                A
  a , y    -a        S       a   Z x
N      
 e              -b
S ae,0 
                        b        P
P  x, y 
                                         N
                 A’                  A
  a , y        -a          S       a   Z x
N      
 e                    -b
             SP  ePN
S ae,0 
                                         b             P
P  x, y 
                                                               N
                        A’                                 A
  a , y               -a                         S       a   Z x
N      
 e                                     -b
                  SP  ePN
                                     2

 x  ae 2   y  02  e  x     y  y 2
                                 a
                                  
                               e
                                   2
                        2    a
       x  ae   y  e  x  
                2   2

                             e
S ae,0 
                                                     b        P
   P  x, y 
                                                                      N
                                 A’                               A
    a , y                      -a                       S       a   Z x
  N      
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 
S ae,0 
                                                     b        P
   P  x, y 
                                                                      N
                                 A’                               A
    a , y                      -a                       S       a   Z x
  N      
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 

                 x2     y2
                     2       1
                 a a 1  e 
                  2        2
b2
when x  0, y  b                  1
                         a 1  e 
                     i.e. 2      2


                               b 2  a 2 1  e 2 
b2
when x  0, y  b                      1
                             a 1  e 
                         i.e. 2      2


                                     b 2  a 2 1  e 2 

 Ellipse: (a > b)              x2 y2
                                2
                                   2 1
                               a b

 where; b 2  a 2 1  e 2 
           focus :  ae,0 
                              a
           directrices : x  
                              e
            e is the eccentricity
                     a 2  b2
         note: e 2 
                        a2
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
          e is the eccentricity
                    a 2  b2
        note: e 2 
                       a2
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
          e is the eccentricity
                    a 2  b2                                 Area  ab
        note: e 2 
                       a2
 major semi-axis = a units
 minor semi-axis = b units
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1
      9 5

       a2  9
        a3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2                 a 2  b2
           1         e2 
      9 5                      a2
                            95
       a2  9          e2 
                               9
        a3
                            4
                          
                            9
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2                 a 2  b2
           1         e2 
      9 5                      a2
                            95
       a2  9          e2 
                               9                             2
        a3                                  eccentricity 
                            4                                3
                          
                            9                  foci :  2,0 
                                                                    3
                                             directrices : x  3 
                                                                    2
                                                                9
                                                          x
                                                                2
y

         Auxiliary circle




-3                 3        x
b    5
     y                      a  3 
                                  
         Auxiliary circle




-3                 3             x
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
                y                          a  3 
                                                 
                        Auxiliary circle
                    5




-3   S’(-2,0)            S(2,0)   3             x



             5
b    5
                    y                             a  3 
                                                        
                            Auxiliary circle
                        5




    -3   S’(-2,0)            S(2,0)   3                x



                 5
    9                                             9
x                                            x
    2                                             2
b    5
                        y                                 a  3 
                                                                
                                Auxiliary circle
                            5




       -3   S’(-2,0)             S(2,0)   3                    x



                        5
     9                                                9
 x                                               x
     2                                                2
Major axis = 6 units             Minor axis  2 5 units
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
      b2  9
       b3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
                                  b2  a 2
      centre : (1,2)        e2 
                                     b2
      b2  9                      94
                             e2 
       b3                          9
                                   5
                             e
                                  3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
                                  b2  a 2
      centre : (1,2)        e2 
                                     b2
      b2  9                      94
                             e2 
       b3                          9
                                   5
                             e
                                  3
  foci :  1,2  5 
                                                    9
                            directrices : y  2 
                                                     5
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22                       Exercise 6A; 1, 2, 3, 5, 7,
                           1
         4           9                              8, 9, 11, 13, 15
                                  b2  a 2
      centre : (1,2)        e2 
                                     b2
      b2  9                      94
                             e2 
       b3                          9
                                   5
                             e
                                  3
  foci :  1,2  5 
                                                    9
                            directrices : y  2 
                                                     5

Más contenido relacionado

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Último

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 

Último (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 

X2 t03 01 ellipse (2013)

  • 2. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 3. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 4. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle
  • 5. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse
  • 6. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola
  • 7. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola e>1 hyperbola
  • 8. Ellipse (e < 1) y b A’ A -a a x -b
  • 9. Ellipse (e < 1) y b A’ A -a S a Z x -b
  • 10. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z
  • 11. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ)
  • 12. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ) = e(AA’) = e(2a) = 2ae
  • 13. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) SA’ = a(1 + e)
  • 14. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)
  • 15. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA
  • 16. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA = a – a(1 – e) = ae  S  ae,0 
  • 17. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ = a – a(1 – e) = ae  S  ae,0 
  • 18. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e  S  ae,0 
  • 19. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e ae a1  e   S  ae,0    e e a a  directrices x    e e
  • 20. S ae,0  b P P  x, y  N A’ A  a , y -a S a Z x N  e  -b
  • 21. S ae,0  b P P  x, y  N A’ A  a , y -a S a Z x N  e  -b SP  ePN
  • 22. S ae,0  b P P  x, y  N A’ A  a , y -a S a Z x N  e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e
  • 23. S ae,0  b P P  x, y  N A’ A  a , y -a S a Z x N  e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2 
  • 24. S ae,0  b P P  x, y  N A’ A  a , y -a S a Z x N  e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2  x2 y2  2 1 a a 1  e  2 2
  • 25. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2 
  • 26. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 2  2 1 a b where; b 2  a 2 1  e 2  focus :  ae,0  a directrices : x   e e is the eccentricity a 2  b2 note: e 2  a2 major semi-axis = a units minor semi-axis = b units
  • 27. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity a 2  b2 note: e 2  a2 major semi-axis = a units minor semi-axis = b units
  • 28. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity a 2  b2 Area  ab note: e 2  a2 major semi-axis = a units minor semi-axis = b units
  • 29. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features.
  • 30. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 9 5 a2  9 a3
  • 31. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2 a 2  b2  1 e2  9 5 a2 95 a2  9 e2  9 a3 4  9
  • 32. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2 a 2  b2  1 e2  9 5 a2 95 a2  9 e2  9 2 a3  eccentricity  4 3  9 foci :  2,0  3 directrices : x  3  2 9 x 2
  • 33. y Auxiliary circle -3 3 x
  • 34. b 5 y a  3    Auxiliary circle -3 3 x
  • 35. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 36. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 37. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 38. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 39. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 40. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 41. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 42. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5
  • 43. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2
  • 44. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2 Major axis = 6 units Minor axis  2 5 units
  • 45. (ii) 9 x 2  4 y 2  18 x  16 y  11  0
  • 46. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36
  • 47. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9
  • 48. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9
  • 49. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2)
  • 50. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2)
  • 51. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 b3
  • 52. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 b2  a 2 centre : (1,2) e2  b2 b2  9 94 e2  b3 9 5 e 3
  • 53. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 b2  a 2 centre : (1,2) e2  b2 b2  9 94 e2  b3 9 5 e 3 foci :  1,2  5  9 directrices : y  2  5
  • 54. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22 Exercise 6A; 1, 2, 3, 5, 7,  1 4 9 8, 9, 11, 13, 15 b2  a 2 centre : (1,2) e2  b2 b2  9 94 e2  b3 9 5 e 3 foci :  1,2  5  9 directrices : y  2  5