SlideShare una empresa de Scribd logo
1 de 66
Descargar para leer sin conexión
Reduction Formula
Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
Reduction Formula
   Reduction (or recurrence) formulae expresses a given integral as
   the sum of a function and a known integral.
   Integration by parts often used to find the formula.


e.g. (i) (1987)       

                                                     n  1
    Given that I n   cos n xdx, prove that I n  
                      2

                                                          I n2
                     0                              n 
                                                         
                                                         2
    where n is an integer and n  2, hence evaluate  cos 5 xdx
                                                         0

     2
I n   cos n xdx
     0

     2
I n   cos n xdx
     0
     
     2
    cos n 1 x cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                      u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx   du  n  1 cos n  2 x sin xdx dv  cos xdx
     0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0

     2
I n   cos n xdx
     0
     
     2                                  u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx               du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                       
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                   2
                        2

                                   0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                         2
   
             2     2
                                     
                                                
                                                 0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

     2
I n   cos n xdx
     0
     
     2                                   u  cos n 1 x                  v  sin x
    cos n 1 x cos xdx                du  n  1 cos n  2 x sin xdx dv  cos xdx
                                   
     0
                          
    cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx
                                    2
                        2

                                    0                     

    cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx
                                                          2
   
             2     2
                                     
                                                
                                                 0
                                        
             2                           2
    n  1 cos   n2
                          xdx  n  1 cos n xdx
             0                           0

    n  1I n  2  n  1I n
    nI n  n  1I n  2

      In   n  1I
                    n2
             n 

2


0
  cos 5 xdx  I 5

2


0
  cos 5 xdx  I 5
             4
             I3
             5

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
              8
             sin x 0
                      2
             15

2


0
  cos 5 xdx  I 5
             4
             I3
             5
             4 2
              I1
             5 3
                    

              8 2
              cos xdx
             15 0
                      
               8
             sin x 0
                      2
              15
               8 
              sin  sin 0 
                            
              15   2       
               8
            
              15
ii  Given that I n   cot n xdx, find I 6
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x
                                                      du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx
ii  Given that I n   cot n xdx, find I 6
    I n   cot n xdx
         cot n  2 x cot 2 xdx
         cot n  2 xcosec 2 x  1dx
         cot n  2 xcosec 2 xdx   cot n  2 xdx    u  cot x

         u   n2
                      du  I n  2                    du  cosec 2 xdx

            1 n 1
             u  I n2
          n 1
            1
             cot n 1 x  I n  2
          n 1
 cot 6 xdx  I 6
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
 cot 6 xdx  I 6
                 1 5
              cot x  I 4
                 5
                 1       1
              cot 5 x  cot 3 x  I 2
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  I 0
                 5       3
                 1 5     1 3
              cot x  cot x  cot x   dx
                 5       3
                 1 5     1 3
              cot x  cot x  cot x  x  c
                 5       3
(iii) (2004 Question 8b)
                 
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                4 tan n x sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0

                                                         when x  0, u  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                1
a ) Show that I n  I n2   
                              n 1
                                
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0              0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
                                                               x       ,u  1
                                                                    4
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
(iii) (2004 Question 8b)
                  
      Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2,
                                                 n
                 0
                                        1
a ) Show that I n  I n2           
                                      n 1
                                       
   I n  I n2   4 tan n dx   4 tan n2 dx
                 0                     0
                  
                4 tan n x 1  tan 2 x  dx
                 0
                  
                                                               u  tan x
                4 tan n x sec 2 xdx                         du  sec 2 xdx
                 0
                     1
                u n du                                 when x  0, u  0
                  0
                                                                    
               u       n 1   1
                                                               x       ,u  1
                                                                  4
                n  1 0
                      
                  1                       1
                    0               
                n 1                    n 1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                               2n  1
 1
                                       n

b) Deduce that J n  J n1                for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1
 1
                                        n

b) Deduce that J n  J n1                 for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                      n             n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n
 1
                                          n

b) Deduce that J n  J n1                   for n  1
                                 2n  1
   J n  J n1   1 I 2 n   1 I 2 n2
                      n             n 1




                1 I 2 n   1 I 2 n2
                       n              n



                 1  I 2 n  I 2 n2 
                       n



                    1
                           n

               
                   2n  1
 1
                                        n
                         m
c) Show that J m        
                     4   n 1   2n  1
 1
                                               n
                               m
c) Show that J m             
                          4     n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
 1
                                                n
                                 m
c) Show that J m             
                          4      n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m             m 1

                                       J m2
          2m  1         2m  3
           1          1                 1
                  m             m 1                    1

                                                        J0
          2m  1         2m  3                     1
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1           
                         n
           m
                             4 dx
          n 1   2n  1          0
 1
                                                     n
                                      m
c) Show that J m                
                             4        n 1   2n  1
           1
                  m

   Jm                 J m1
          2m  1
           1          1
                  m                  m 1

                                            J m2
          2m  1             2m  3
           1          1                      1
                  m                  m 1                    1

                                                             J0
          2m  1             2m  3                      1
                  1            
                         n
           m
                             4 dx
          n 1   2n  1          0


                  1
                         n
           m                          
                             x 04
          n 1   2n  1
                  1
                         n
           m
                                 
                           
          n 1   2n  1          4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
                                                                    du
                                                             dx 
                                                                  1 u2
                                                  when x  0, u  0
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                               4
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                           1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                         n 1
1  un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                  when x  0, u  0
   In  
         0 1 u2
                                                                
                                                           x       ,u  1
                                                              4
                             1
e) Deduce that 0  I n           and conclude that J n  0 as n  
                           n 1
    un
           0, for all u  0
   1 u 2
1   un
d ) Use the substitution u  tan x to show that I n          du
                                                       0 1 u2
          
   I n   4 tan n xdx
         0                                        u  tan x  x  tan 1 u
         1        du                                                du
   In   un                                                dx 
         0       1 u2                                            1 u2
         1 u n du                                 when x  0, u  0
   In  
         0 1 u2
                                                               
                                                          x       ,u  1
                                                            4
                              1
e) Deduce that 0  I n         and conclude that J n  0 as n  
                            n 1
    un
            0, for all u  0
   1 u 2

              n
          1 u
 In           du  0, for all u  0
         0 1 u2
1
I n  I n 2   
                 n 1
1
I n  I n 2   
                 n 1
       1
In        I n 2
     n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
                   1
 0  In 
                 n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In 
          n 1
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n
1
  I n  I n 2   
                   n 1
        1
 In        I n 2
      n 1
         1
 In       , as I n2  0
       n 1
            1
 0  In                                  Exercise 2D; 1, 2, 3, 6, 8,
          n 1                                   9, 10, 12, 14
              1
  as n  ,      0
            n 1
                  In  0

                  J n   1 I 2 n  0
                              n

Más contenido relacionado

Similar a X2 t04 04 reduction formula (2012)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
derry92
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
Nigel Simmons
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circle
Dewi Setiyani Putri
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
Namit Kotiya
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p pt
gregcross22
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Sanyam Singh
 

Similar a X2 t04 04 reduction formula (2012) (6)

Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circle
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Precalc review for calc p pt
Precalc review for calc p ptPrecalc review for calc p pt
Precalc review for calc p pt
 
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Último (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

X2 t04 04 reduction formula (2012)

  • 2. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula.
  • 3. Reduction Formula Reduction (or recurrence) formulae expresses a given integral as the sum of a function and a known integral. Integration by parts often used to find the formula. e.g. (i) (1987)  n  1 Given that I n   cos n xdx, prove that I n   2   I n2 0  n   2 where n is an integer and n  2, hence evaluate  cos 5 xdx 0
  • 4. 2 I n   cos n xdx 0
  • 5. 2 I n   cos n xdx 0  2   cos n 1 x cos xdx 0
  • 6. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx 0
  • 7. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0
  • 8. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0
  • 9. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0
  • 10. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n
  • 11. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2
  • 12. 2 I n   cos n xdx 0  2 u  cos n 1 x v  sin x   cos n 1 x cos xdx du  n  1 cos n  2 x sin xdx dv  cos xdx  0   cos n 1 x sin x 0  n  1 cos n  2 x sin 2 xdx 2 2 0  cos n 1  sin  cos n 1 0 sin 0  n  1 cos n  2 x1  cos 2 x dx 2   2 2     0   2 2  n  1 cos n2 xdx  n  1 cos n xdx 0 0  n  1I n  2  n  1I n  nI n  n  1I n  2 In   n  1I  n2  n 
  • 13.  2  0 cos 5 xdx  I 5
  • 14.  2  0 cos 5 xdx  I 5 4  I3 5
  • 15.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3
  • 16.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0
  • 17.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15
  • 18.  2  0 cos 5 xdx  I 5 4  I3 5 4 2   I1 5 3  8 2   cos xdx 15 0  8  sin x 0 2 15 8    sin  sin 0   15  2  8  15
  • 19. ii  Given that I n   cot n xdx, find I 6
  • 20. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx
  • 21. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx
  • 22. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx
  • 23. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x du  cosec 2 xdx
  • 24. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx
  • 25. ii  Given that I n   cot n xdx, find I 6 I n   cot n xdx   cot n  2 x cot 2 xdx   cot n  2 xcosec 2 x  1dx   cot n  2 xcosec 2 xdx   cot n  2 xdx u  cot x   u n2 du  I n  2 du  cosec 2 xdx 1 n 1  u  I n2 n 1 1  cot n 1 x  I n  2 n 1
  • 26.  cot 6 xdx  I 6
  • 27.  cot 6 xdx  I 6 1 5   cot x  I 4 5
  • 28.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3
  • 29.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3
  • 30.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3
  • 31.  cot 6 xdx  I 6 1 5   cot x  I 4 5 1 1   cot 5 x  cot 3 x  I 2 5 3 1 5 1 3   cot x  cot x  cot x  I 0 5 3 1 5 1 3   cot x  cot x  cot x   dx 5 3 1 5 1 3   cot x  cot x  cot x  x  c 5 3
  • 32. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1
  • 33. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0
  • 34. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0    4 tan n x sec 2 xdx 0
  • 35. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0
  • 36. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 when x  0, u  0  x ,u  1 4
  • 37. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  x ,u  1 4
  • 38. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0 
  • 39. (iii) (2004 Question 8b)  Let I n   4 tan n xdx and let J n   1 I 2 n for n  0,1, 2, n 0 1 a ) Show that I n  I n2  n 1   I n  I n2   4 tan n dx   4 tan n2 dx 0 0    4 tan n x 1  tan 2 x  dx 0  u  tan x   4 tan n x sec 2 xdx du  sec 2 xdx 0 1   u n du when x  0, u  0 0  u  n 1 1 x ,u  1  4  n  1 0  1 1  0  n 1 n 1
  • 40.  1 n b) Deduce that J n  J n1  for n  1 2n  1
  • 41.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1
  • 42.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n
  • 43.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n
  • 44.  1 n b) Deduce that J n  J n1  for n  1 2n  1 J n  J n1   1 I 2 n   1 I 2 n2 n n 1   1 I 2 n   1 I 2 n2 n n   1  I 2 n  I 2 n2  n  1 n  2n  1
  • 45.  1 n  m c) Show that J m   4 n 1 2n  1
  • 46.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1
  • 47.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3
  • 48.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1
  • 49.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0
  • 50.  1 n  m c) Show that J m   4 n 1 2n  1  1 m Jm   J m1 2m  1  1  1 m m 1    J m2 2m  1 2m  3  1  1  1 m m 1 1      J0 2m  1 2m  3 1  1  n m    4 dx n 1 2n  1 0  1 n m     x 04 n 1 2n  1  1 n m    n 1 2n  1 4
  • 51. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2
  • 52. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0
  • 53. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2
  • 54. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u du dx  1 u2 when x  0, u  0  x ,u  1 4
  • 55. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4
  • 56. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1
  • 57. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2
  • 58. 1 un d ) Use the substitution u  tan x to show that I n   du 0 1 u2  I n   4 tan n xdx 0 u  tan x  x  tan 1 u 1 du du In   un  dx  0 1 u2 1 u2 1 u n du when x  0, u  0 In   0 1 u2  x ,u  1 4 1 e) Deduce that 0  I n  and conclude that J n  0 as n   n 1 un  0, for all u  0 1 u 2 n 1 u  In   du  0, for all u  0 0 1 u2
  • 59. 1 I n  I n 2  n 1
  • 60. 1 I n  I n 2  n 1 1 In   I n 2 n 1
  • 61. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1
  • 62. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1
  • 63. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1
  • 64. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0
  • 65. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  n 1 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n
  • 66. 1 I n  I n 2  n 1 1 In   I n 2 n 1 1  In  , as I n2  0 n 1 1  0  In  Exercise 2D; 1, 2, 3, 6, 8, n 1 9, 10, 12, 14 1 as n  , 0 n 1  In  0  J n   1 I 2 n  0 n