SlideShare a Scribd company logo
1 of 116
Download to read offline
Miscellaneous Dynamics
         Questions
e.g. (i) (1992) – variable angular velocity
                            The diagram shows a model train T that is
                            moving around a circular track, centre O
                            and radius a metres.
                            The train is travelling at a constant speed of
                            u m/s. The point N is in the same plane as
                            the track and is x metres from the nearest
                            point on the track. The line NO produced
                            meets the track at S.
Let TNS   and TOS   as in the diagram
dθ
a) Express      in terms of a and u
             dt
dθ
a) Express      in terms of a and u   l  a
             dt
dθ
a) Express      in terms of a and u    l  a
             dt                       dl     d
                                         a
                                      dt     dt
dθ
a) Express      in terms of a and u     l  a
             dt                        dl     d
                                          a
                                       dt     dt
                                              d
                                        ua
                                               dt
                                      d u
                                          
                                      dt a
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO    
       NTO    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                        (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
                                           a sin      a  x  sin 
                          a sin      a  x  sin   0
differentiate with respect to t
              d  d   a  x  cos  d  0
a cos                           
              dt dt                     dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
                                   d            u cos   
                                      
                                   dt a cos     a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt
   when NT is a tangent;
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
     90
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90
     
  dt a cos 90  a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos       0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90                                  d
                                                            0
  dt a cos 90  a  x  cos                             dt
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
             
  when  
             2
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T



      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
          2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T

          5a        a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
                           
                     cos    
                         
                                1
N
           2a
                    O    2       5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                     cos    
                         
                                1
N
           2a
                    O    2       5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                      cos    
                                   1
                                                   1 
N
           2a
                    O    2        5              u 
                                                     5
                                                1   2a  2 
                                             a    
                                                5         5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                      cos    
                                   1
                                                   1 
N
           2a
                    O    2        5              u 
                                                     5
                                                1   2a  2 
                                              a    
                                                5         5
                                               u
                                            
                                              5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
                                                 5         5
                                                u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
          5 u
        
          3 5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
              
   when  
                                                             
              2
                    T                                 u cos    
                               2           d              2    
                      cos                   
                                5          dt              
        5a          a                            a cos     2a cos 
                                                      2     
                            
                      cos    
                                     1
                                                       1 
N
         2a
                    O     2         5                u 
                                                         5
  when   0                                        1   2a  2 
                                                 a    
  d         u cos 0                                5         5
     
   dt a cos 0  2a cos 0                          u
         u                                     
                                                 5a
        3a                                                     3
                         Thus the angular velocity when   is times
        5 u                                                   2 5
       
        3 5a             the angular velocity when   0
(ii) (2000)          A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                          ds
                     position of P. Let s denote the arc length AP, v       ,
                                                                          dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
    ds
 v
     dt
    d
 l
    dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v
      dt
     d
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt                    dv v
                              
                            d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                       dv d
      dt                     
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                                          1 dv d 1
      dt                   dv d               v2        
                                            l d dv  2 
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                                          1 dv d 1
      dt                   dv d               v2        
                                            l d dv  2 
     d                    d dt
  l                                          1 d 1 2 
      dt                   dv v                    v 
                                            l d  2 
                           d l
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T

            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                   s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
                                          1 d 1 2 
                                                v    g sin 
                                          l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
     d 1 2 
        v    gl sin 
    d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
           v    g sin 
   l d  2 
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                when   0, v  V
   1 d 1 2 
           v    g sin                      V 2  2 gl  c
   l d  2 
                                                c  V 2  2 gl
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                     m   mg sin 
                                                            s
                 
              mg                                              g sin 
                                                           s
                              mg sin 
                                                1 d 1 2 
                                                      v    g sin 
                                                l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                    when   0, v  V
   1 d 1 2 
           v    g sin                         V 2  2 gl  c
   l d  2 
                                                    c  V 2  2 gl
     d 1 2 
         v    gl sin                     v 2  2 gl cos  V 2  2 gl
    d  2 
     1 2                                      V 2  v 2  2 gl  2 gl cos
        v  gl cos  c
      2                                       V 2  v 2  2 gl 1  cos 
        v 2  2 gl cos  c
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos              m  T  mg cos
                                  x
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l                                     1.911radians
     mg cos  m g  2 g cos 
    3mg cos   mg
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
               1 2
  T  mg cos  mv
               l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
(iii) (2003)
     A particle of mass m is thrown from the top, O, of a very tall building
     with an initial velocity u at an angle of  to the horizontal. The
     particle experiences the effect of gravity, and a resistance
     proportional to its velocity in both directions.
                         The equations of motion in the horizontal and
                         vertical directions are given respectively by
                                    kx and    ky  g
                                 x               y      
                          where k is a constant and the acceleration due
                          to gravity is g.
                               (You are NOT required to show these)
a) Derive the result x  ue  kt cos 
                     
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt         x
              
         1       dx
    t 
         k u cos x
                  
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                                      x 
                                         t   log
                                              1        
   dx                                                     
         kx
                                             k    u cos  
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                                                    x 
                                                t   log
                                                       1             
   dx                                                                   
         kx
                                                      k         u cos  
   dt          x
               
          1       dx                                       x  
    t                                     kt  log               
          k u cos x                                       u cos  
          1                                 x
                                            
    t   log x u cos                           e  kt
                      x
                      
                   
          k                              u cos 
          1
    t   log x  logu cos  
                                              x  ue  kt cos 
                                                
          k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
   dy
         ky  g
            
   dt
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                      e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
            k
a) Derive the result x  ue  kt cos 
                                                                        x 
                                                   t   log
                                                           1             
   dx                                                                       
         kx                                             k         u cos  
   dt             x
                  
          1           dx                                      x   
    t                                        kt  log                
          k u cos x                                           u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                        
   dt         y                                        ky  g 
                                                                
                      dy                  kt  log                     
     t                                               ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                        e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
                                                     y  ku sin   g e  kt  g 
                                                           1
            k                                        
                                                           k
c) Find the value of t when the particle reaches its maximum height
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                             
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                              
       1
  t   logky  g u sin 
                      0
              
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
       1
  t   logky  g u sin 
                       0
               
       k
       1
  t   log g   logku sin   g 
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
        1
  t   logky  g u sin 
                       0
               
        k
        1
  t   log g   logku sin   g 
        k
      1  ku sin   g 
   t  log                 
      k           g        
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
    x  ue  kt cos 
    
   dx
       ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0

   dx
         ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0
                                                               t
   dx                            x  lim u cos   e  kt 
                                                     1
         ue cos 
              kt
                                                  k         0
   dt                                 t                   
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                                t
   dx                            x  lim u cos   e  kt 
                                                      1
         ue cos 
              kt
                                                    k        0
   dt                                 t                    
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                                t
   dx                            x  lim u cos   e  kt 
                                                      1
         ue cos 
              kt
                                                    k        0
   dt                                 t                    
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
                                      u cos 
                                 x
                                          k
Exercise 9E; 1 to 4, 7

Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25

More Related Content

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 

Recently uploaded (20)

YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 

X2 T06 07 miscellaneous dynamics questions (2011)

  • 1. Miscellaneous Dynamics Questions e.g. (i) (1992) – variable angular velocity The diagram shows a model train T that is moving around a circular track, centre O and radius a metres. The train is travelling at a constant speed of u m/s. The point N is in the same plane as the track and is x metres from the nearest point on the track. The line NO produced meets the track at S. Let TNS   and TOS   as in the diagram
  • 2. dθ a) Express in terms of a and u dt
  • 3. dθ a) Express in terms of a and u l  a dt
  • 4. dθ a) Express in terms of a and u l  a dt dl d a dt dt
  • 5. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a
  • 6. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos   
  • 7. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN )
  • 8. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     NTO    
  • 9. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin    
  • 10. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin     a sin      a  x  sin  a sin      a  x  sin   0
  • 11. differentiate with respect to t  d  d   a  x  cos  d  0 a cos       dt dt  dt
  • 12. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt
  • 13. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a
  • 14. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos 
  • 15. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt when NT is a tangent;
  • 16. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T N O
  • 17. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; N O
  • 18. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O
  • 19. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90
  • 20. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90  dt a cos 90  a  x  cos 
  • 21. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90 d   0 dt a cos 90  a  x  cos  dt
  • 22. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5
  • 23. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2
  • 24. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T  N O
  • 25. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O
  • 26. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O 2a
  • 27. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 5a a  N O 2a
  • 28. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a  N O 2a
  • 29. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a   cos       1 N 2a O 2  5
  • 30. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2    cos       1 N 2a O 2  5
  • 31. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5  1   2a  2  a      5  5
  • 32. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5  1   2a  2  a      5  5 u  5a
  • 33. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a      5  5 u  5a
  • 34. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u  5a
  • 35. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a
  • 36. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a 5 u   3 5a
  • 37. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a  3 Thus the angular velocity when   is times 5 u 2 5   3 5a the angular velocity when   0
  • 38. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle.
  • 39. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2 
  • 40. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l
  • 41. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l ds v dt d l dt
  • 42. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dt d l dt
  • 43. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt
  • 44. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt dv v   d l
  • 45. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v dv d dt   d d dt l dt dv v   d l
  • 46. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v 1 dv d 1 dt dv d     v2      l d dv  2  d d dt l dt dv v   d l
  • 47. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v 1 dv d 1 dt dv d     v2      l d dv  2  d d dt l 1 d 1 2  dt dv v   v    l d  2  d l
  • 48. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 49. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 50. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T
  • 51. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T mg
  • 52. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg
  • 53. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg mg sin 
  • 54. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s  mg mg sin 
  • 55. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg mg sin 
  • 56. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin 
  • 57. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2 
  • 58. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos 
  • 59. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2 
  • 60. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2 
  • 61. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 62. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 63. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  v 2  2 gl cos  V 2  2 gl d  2  1 2 V 2  v 2  2 gl  2 gl cos v  gl cos  c 2 V 2  v 2  2 gl 1  cos  v 2  2 gl cos  c
  • 64. 1 2 d) Explain why T-mg cos θ  mv l
  • 65. 1 2 d) Explain why T-mg cos θ  mv l
  • 66. 1 2 d) Explain why T-mg cos θ  mv l T
  • 67. 1 2 d) Explain why T-mg cos θ  mv l T mg cos
  • 68. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m x
  • 69. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x
  • 70. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force.
  • 71. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l
  • 72. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0
  • 73. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l
  • 74. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l
  • 75. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos 
  • 76. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos  3mg cos   mg
  • 77. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l  mg cos  m g  2 g cos  3mg cos   mg
  • 78. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l   1.911radians  mg cos  m g  2 g cos  3mg cos   mg
  • 79. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero.
  • 80. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude;
  • 81. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l
  • 82. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l
  • 83. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 84. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 85. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 86. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 87. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 88. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 89. (iii) (2003) A particle of mass m is thrown from the top, O, of a very tall building with an initial velocity u at an angle of  to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both directions. The equations of motion in the horizontal and vertical directions are given respectively by    kx and    ky  g x  y  where k is a constant and the acceleration due to gravity is g. (You are NOT required to show these)
  • 90. a) Derive the result x  ue  kt cos  
  • 91. a) Derive the result x  ue  kt cos   dx    kx  dt
  • 92. a) Derive the result x  ue  kt cos   dx    kx  dt x  1 dx t  k u cos x 
  • 93. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k
  • 94. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 95. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 96. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx   x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k
  • 97. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition
  • 98. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt
  • 99. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g 
  • 100. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 101. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 102. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  1 t   logky  g u sin  y   k
  • 103. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g k
  • 104. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g   dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g y  ku sin   g e  kt  g  1 k  k
  • 105. c) Find the value of t when the particle reaches its maximum height
  • 106. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0 
  • 107. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k
  • 108. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k
  • 109. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g 
  • 110. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle?
  • 111. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle? x  ue  kt cos   dx  ue  kt cos  dt
  • 112. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 dx  ue  kt cos  dt
  • 113. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t   
  • 114. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t    u cos  x  lim  e kt  1 t  k
  • 115. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t    u cos  x  lim  e kt  1 t  k u cos  x k
  • 116. Exercise 9E; 1 to 4, 7 Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25