SlideShare una empresa de Scribd logo
1 de 24
CHAPTER
                        16

Thermodynamics of
High-Speed Gas Flow
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 16-1
Steady flow of a fluid
through an adiabatic
duct.




16-1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 16-3
The actual state, actual
stagnation state, and
isentropic stagnation
state of a fluid on an h-s
diagram.




16-2
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-4
The properties of a
high-speed fluid
change significantly
during an adiabatic
stagnation process
(values from Example
16–1).




16-3
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-5




16-4
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-7
Propagation of a small pressure
wave along a duct.




16-5
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-8
Control volume
moving with the small
pressure wave along a
duct.




16-6
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-9
The velocity of
sound changes with
temperature.




16-7
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-10
The Mach number can be
different at different
temperatures even if the
velocity is the same.




16-8
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-14
The cross section of a
nozzle at the smallest
flow area is called the
throat.




16-9
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-15
Derivation of the
differential form of the
energy equation for steady
isentropic flow.




16-10
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-16
We cannot obtain
supersonic velocities
by attaching a
converging section
to a converging
nozzle. Doing so will
only move the sonic
cross section farther
downstream.




16-11
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 16-17
Variation of flow
properties in subsonic
and supersonic nozzles
and diffusers.




16-12
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 16-18
When Mt = 1, the
properties at
the nozzle throat
become the
critical properties.




16-13
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-20
The effect of back
pressure on the
pressure distribution
along a converging
nozzle.




16-14
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 16-21
The effect of back
pressure Pb on the
mass flow rate m and
the exit pressure Pe
of a converging
nozzle.




16-15
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-22
The variation of
the mass flow
rate through a
nozzle with inlet
stagnation
properties.




16-16
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 16-26
The effects of
back pressure on
the flow through
a converging–
diverging nozzle.




16-17
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-28
Control volume
for flow across a
shock wave.




16-18
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-29
The h-s diagram
for flow across a
normal shock.




16-19
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-31
Entropy change
across the
normal shock.




16-20
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 16-33
Isentropic and
actual
(irreversible)
flow in a nozzle
between the same
inlet state and
the exit pressure.




16-21
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



FIGURE 16-35
Schematic and h-s
diagram for the
definition of the
diffuser efficiency.




16-22
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 16-37
The h-s diagram
for the isentropic
expansion of
steam in a nozzle.




16-23

Más contenido relacionado

La actualidad más candente

La actualidad más candente (7)

Cengel ch09
Cengel ch09Cengel ch09
Cengel ch09
 
Cengel ch14
Cengel ch14Cengel ch14
Cengel ch14
 
Cengel ch06
Cengel ch06Cengel ch06
Cengel ch06
 
Cengel ch04
Cengel ch04Cengel ch04
Cengel ch04
 
Cengel ch01
Cengel ch01Cengel ch01
Cengel ch01
 
Cengel ch03
Cengel ch03Cengel ch03
Cengel ch03
 
Cengel appendix
Cengel appendixCengel appendix
Cengel appendix
 

Destacado

Bab 2 Thermodynamic of Engineering Approach
Bab 2 Thermodynamic of Engineering ApproachBab 2 Thermodynamic of Engineering Approach
Bab 2 Thermodynamic of Engineering ApproachIbnu Hasan
 
2. psychrometric chart
2. psychrometric chart2. psychrometric chart
2. psychrometric chartManoj Pj
 
Psychrometry and air conditioning
Psychrometry and air conditioningPsychrometry and air conditioning
Psychrometry and air conditioningnitin184shukla
 
01 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-0101 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-01gunabalan sellan
 
02 part3 work heat transfer first law
02 part3 work heat transfer first law02 part3 work heat transfer first law
02 part3 work heat transfer first lawgunabalan sellan
 
02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth lawgunabalan sellan
 
02 part2 thermo laws first law
02 part2 thermo laws first law02 part2 thermo laws first law
02 part2 thermo laws first lawgunabalan sellan
 
01 part1 02 parts of a lathe
01 part1 02 parts of a lathe01 part1 02 parts of a lathe
01 part1 02 parts of a lathegunabalan sellan
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law probgunabalan sellan
 
Principles of temperature measurement
Principles of temperature measurementPrinciples of temperature measurement
Principles of temperature measurementUniversity of Potsdam
 
SSL3 Heat Transfer
SSL3   Heat TransferSSL3   Heat Transfer
SSL3 Heat TransferKeith Vaugh
 

Destacado (20)

Bab 2 Thermodynamic of Engineering Approach
Bab 2 Thermodynamic of Engineering ApproachBab 2 Thermodynamic of Engineering Approach
Bab 2 Thermodynamic of Engineering Approach
 
2. psychrometric chart
2. psychrometric chart2. psychrometric chart
2. psychrometric chart
 
Psychrometry and air conditioning
Psychrometry and air conditioningPsychrometry and air conditioning
Psychrometry and air conditioning
 
Fisica
FisicaFisica
Fisica
 
01 part3-real-gases
01 part3-real-gases01 part3-real-gases
01 part3-real-gases
 
00 part1-thremodynamics
00 part1-thremodynamics00 part1-thremodynamics
00 part1-thremodynamics
 
01 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-0101 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-01
 
W8
W8W8
W8
 
02 part3 work heat transfer first law
02 part3 work heat transfer first law02 part3 work heat transfer first law
02 part3 work heat transfer first law
 
Denco chart
Denco chartDenco chart
Denco chart
 
02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law
 
02 part2 thermo laws first law
02 part2 thermo laws first law02 part2 thermo laws first law
02 part2 thermo laws first law
 
01 part1 02 parts of a lathe
01 part1 02 parts of a lathe01 part1 02 parts of a lathe
01 part1 02 parts of a lathe
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob
 
02 part5 energy balance
02 part5 energy balance02 part5 energy balance
02 part5 energy balance
 
01 part1-ideal-gas
01 part1-ideal-gas01 part1-ideal-gas
01 part1-ideal-gas
 
Principles of temperature measurement
Principles of temperature measurementPrinciples of temperature measurement
Principles of temperature measurement
 
Presentation
PresentationPresentation
Presentation
 
Hvac psychrometry and concepts
Hvac psychrometry and conceptsHvac psychrometry and concepts
Hvac psychrometry and concepts
 
SSL3 Heat Transfer
SSL3   Heat TransferSSL3   Heat Transfer
SSL3 Heat Transfer
 

Más de Mete Cantekin

Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)Mete Cantekin
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Mete Cantekin
 
Insansız hava araçları
Insansız hava araçlarıInsansız hava araçları
Insansız hava araçlarıMete Cantekin
 
Havacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlarHavacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlarMete Cantekin
 
Gaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılmasıGaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılmasıMete Cantekin
 
Dikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçlarıDikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçlarıMete Cantekin
 
Uçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödeviUçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödeviMete Cantekin
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Mete Cantekin
 

Más de Mete Cantekin (9)

Cengel ch11
Cengel ch11Cengel ch11
Cengel ch11
 
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410
 
Insansız hava araçları
Insansız hava araçlarıInsansız hava araçları
Insansız hava araçları
 
Havacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlarHavacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlar
 
Gaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılmasıGaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılması
 
Dikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçlarıDikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçları
 
Uçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödeviUçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödevi
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410
 

Thermodynamics Gas Flow

  • 1. CHAPTER 16 Thermodynamics of High-Speed Gas Flow
  • 2. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-1 Steady flow of a fluid through an adiabatic duct. 16-1
  • 3. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-3 The actual state, actual stagnation state, and isentropic stagnation state of a fluid on an h-s diagram. 16-2
  • 4. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-4 The properties of a high-speed fluid change significantly during an adiabatic stagnation process (values from Example 16–1). 16-3
  • 5. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-5 16-4
  • 6. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-7 Propagation of a small pressure wave along a duct. 16-5
  • 7. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-8 Control volume moving with the small pressure wave along a duct. 16-6
  • 8. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-9 The velocity of sound changes with temperature. 16-7
  • 9. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-10 The Mach number can be different at different temperatures even if the velocity is the same. 16-8
  • 10. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-14 The cross section of a nozzle at the smallest flow area is called the throat. 16-9
  • 11. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-15 Derivation of the differential form of the energy equation for steady isentropic flow. 16-10
  • 12. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-16 We cannot obtain supersonic velocities by attaching a converging section to a converging nozzle. Doing so will only move the sonic cross section farther downstream. 16-11
  • 13. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-17 Variation of flow properties in subsonic and supersonic nozzles and diffusers. 16-12
  • 14. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-18 When Mt = 1, the properties at the nozzle throat become the critical properties. 16-13
  • 15. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-20 The effect of back pressure on the pressure distribution along a converging nozzle. 16-14
  • 16. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-21 The effect of back pressure Pb on the mass flow rate m and the exit pressure Pe of a converging nozzle. 16-15
  • 17. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-22 The variation of the mass flow rate through a nozzle with inlet stagnation properties. 16-16
  • 18. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-26 The effects of back pressure on the flow through a converging– diverging nozzle. 16-17
  • 19. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-28 Control volume for flow across a shock wave. 16-18
  • 20. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-29 The h-s diagram for flow across a normal shock. 16-19
  • 21. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-31 Entropy change across the normal shock. 16-20
  • 22. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-33 Isentropic and actual (irreversible) flow in a nozzle between the same inlet state and the exit pressure. 16-21
  • 23. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-35 Schematic and h-s diagram for the definition of the diffuser efficiency. 16-22
  • 24. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 16-37 The h-s diagram for the isentropic expansion of steam in a nozzle. 16-23