Lenguaje Algebraico
En el mundo hay una amplia variedad de
idiomas, tales como el castellano, inglés y
portugués. También ...
• El lenguaje algebraico el lenguaje del Álgebra
y ésta es una rama de la matemática que
estudia el concepto de cantidad
c...
Hoy en día, el uso del lenguaje algebraico es
imprescindible, puesto que la mayoría de las
actividades del hombre, ya sean...
El lenguaje algebraico nos permite expresar,
mediante números, letras y operaciones, una
información dada.
Ejemplos:
El ár...
Al utilizar el lenguaje algebraico, normalmente no
escribimos los signos de multiplicación ( • , ×) o
división (÷ , :) en ...
Escribe las siguientes expresiones sin utilizar los signos de
multiplicación y división.
¡ AHORA TE TOCA A TI !
(b – 3) : ...
Revisemos tus respuestas:
(b – 3) : 4
(n + m ) ÷ p
5 • m • n
4a • 4a
5 • 7a
5mn 35a
16a2m + n
p
b - 3
4
¿Cómo se escriben, en lenguaje algebraico, los
siguientes enunciados?
La diferencia entre el
doble de x y su mitad.
2x –
D...
Es importante tener en cuenta que las operaciones usadas en
álgebra siguen las mismas reglas que las usadas en aritmética....
Determina la o las expresiones equivalentes a :
Son equivalentes. Propiedad
conmutativa.
a + 2
5(n + 2)
5n + 2
(n + 2) • 5...
Observemos ahora los siguientes ejemplos aritméticos:
2 + 2 + 2 = 3 • 2
6 + 6 + 6 + 6 + 6 =2 • 6 + 3 • 6 = 5 • 6
9 + 9 + 9...
Aplicaremos las mismas propiedades que en aritmética:
x + x + x = 3 • x
2x + 3x = 5x
y + y + y + y + y = 5 • y
5x - 2x = 3...
Practiquemos:
a + a =
5y – 2y =
x + x –x =
4x + 6x =
x + 3x + 5 =
Son términos semejantes.1a + 1a = 2a
1x + 1x – 1x = 1x =...
Ecuaciones
Una Ecuación es una igualdad con una o más
cantidades desconocidas llamadas incógnitas.
Resolver una ecuación e...
Una ecuación puede ser representada por una
balanza que se encuentra en equilibrio.
Lo que está en el platillo de la izqui...
•Al sumar o restar un mismo número a ambos
miembros de una igualdad, esta se mantiene.
•Si se multiplican o dividen por un...
Próxima SlideShare
Cargando en…5
×

Ecuaciones

654 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
654
En SlideShare
0
De insertados
0
Número de insertados
318
Acciones
Compartido
0
Descargas
5
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Ecuaciones

  1. 1. Lenguaje Algebraico En el mundo hay una amplia variedad de idiomas, tales como el castellano, inglés y portugués. También hay lenguajes propios de los oficios que se realizan; por ejemplo, una pauta de música para una músico.
  2. 2. • El lenguaje algebraico el lenguaje del Álgebra y ésta es una rama de la matemática que estudia el concepto de cantidad considerándolo del modo más general posible. • El concepto de Álgebra es mucho más amplio que el de aritmética, ya que en ésta las cantidades se representan por números, los que expresan valores determinados, mientras que en el Álgebra las cantidades se representan por medio de letras, lo que permite lograr una generalización.
  3. 3. Hoy en día, el uso del lenguaje algebraico es imprescindible, puesto que la mayoría de las actividades del hombre, ya sean científicas, económicas o tecnológicas, requieren de él. Fórmulas como: Son universales y seguramente te resultan muy familiares.
  4. 4. El lenguaje algebraico nos permite expresar, mediante números, letras y operaciones, una información dada. Ejemplos: El área del rectángulo está dada por: El perímetro del cuadrado está dado por: a cm b cm A = a • b cm2 x cm x cm P = 4 • x cm Si un auto recorre 50 km en t minutos, la velocidad promedio del auto está dada por: V= 50 t km/h
  5. 5. Al utilizar el lenguaje algebraico, normalmente no escribimos los signos de multiplicación ( • , ×) o división (÷ , :) en las expresiones. Así, 3 • 2x Se escribe 6x 1 • n o n • 1 Se escribe n p • q o q • p Se escribe pq b • (x + 3) Se escribe b(x + 3) (a + b) ÷ c Se escribe a + b c 3 • a Se escribe 3a n • n Se escribe n2 Usualmente se escriben las letras en orden alfabético. Usualmente se escriben primero los números. Se lee “n al cuadrado”.
  6. 6. Escribe las siguientes expresiones sin utilizar los signos de multiplicación y división. ¡ AHORA TE TOCA A TI ! (b – 3) : 4 (n + m ) ÷ p 5 • m • n 4a • 4a 5 • 7a
  7. 7. Revisemos tus respuestas: (b – 3) : 4 (n + m ) ÷ p 5 • m • n 4a • 4a 5 • 7a 5mn 35a 16a2m + n p b - 3 4
  8. 8. ¿Cómo se escriben, en lenguaje algebraico, los siguientes enunciados? La diferencia entre el doble de x y su mitad. 2x – Dos veces el producto de m y n. 2mn Un tercio de x. Tres veces la suma de f y g. 3(f + g) El triple de a. 3a Lenguaje algebraico 1. 2. 3. 4. 5. x 2 x 3
  9. 9. Es importante tener en cuenta que las operaciones usadas en álgebra siguen las mismas reglas que las usadas en aritmética. Ejemplos: a + ( b + c) = (a + b) + c a(bc) = (ab)c ÁLGEBRA 2 + 7 = 7 + 2 a + b = b + a a • b = b • a ó ab = ba ARITMÉTICA 4 • 5 = 5 • 4 1 + ( 4 + 3) = (1 + 4) + 3 2 • (4 • 5) = (2 • 4) • 5 Propiedad conmutativa. Propiedad asociativa.
  10. 10. Determina la o las expresiones equivalentes a : Son equivalentes. Propiedad conmutativa. a + 2 5(n + 2) 5n + 2 (n + 2) • 5 5(2 + n) 2 + a 2a a2 Son equivalentes. Propiedad conmutativa.
  11. 11. Observemos ahora los siguientes ejemplos aritméticos: 2 + 2 + 2 = 3 • 2 6 + 6 + 6 + 6 + 6 =2 • 6 + 3 • 6 = 5 • 6 9 + 9 + 9 + 9 + 9 = 5 • 9 5 • 4 – 2 • 4 = 3 • 44 + 4 + 4 + 4 + 4 – (4 + 4) = ¿Qué pasará con expresiones algebraicas del tipo x + x + x ?
  12. 12. Aplicaremos las mismas propiedades que en aritmética: x + x + x = 3 • x 2x + 3x = 5x y + y + y + y + y = 5 • y 5x - 2x = 3x Este proceso se llama “reducción de términos semejantes” y lo estudiarás detalladamente más adelante, por ahora nos permitirá resolver algunas ecuaciones. 6a y 5a son términos semejantes. IMPORTANTE 6ab y 5a no son términos semejantes. Tienen distintas letras.
  13. 13. Practiquemos: a + a = 5y – 2y = x + x –x = 4x + 6x = x + 3x + 5 = Son términos semejantes.1a + 1a = 2a 1x + 1x – 1x = 1x = x Son términos semejantes. 4x + 6x = 10x Son términos semejantes. 5y – 2y = 3y 1x + 3x + 5 = Son términos semejantes. Son términos semejantes solo x y 3x. 4x + 5
  14. 14. Ecuaciones Una Ecuación es una igualdad con una o más cantidades desconocidas llamadas incógnitas. Resolver una ecuación es encontrar el valor de la o las incógnitas que hacen verdadera la igualdad. Ejemplos: • x + 17 = 23 • 3 x = 6 • x + y = 2 + 4y
  15. 15. Una ecuación puede ser representada por una balanza que se encuentra en equilibrio. Lo que está en el platillo de la izquierda pesa lo mismo que el platillo de la derecha. x + 4 = 8 + 4
  16. 16. •Al sumar o restar un mismo número a ambos miembros de una igualdad, esta se mantiene. •Si se multiplican o dividen por un mismo número ambos miembros de la igualdad, esta se mantiene. •Las ecuaciones de las formas a + x = b (ecuaciones aditivas) y a · x = b (ecuaciones multiplicativas) Se denominan de Primer Grado, porque el exponente máximo de la incógnita es 1. •Para comprobar, sustituimos el valor de x en la ecuación original.

×