SlideShare una empresa de Scribd logo
1 de 105
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
ThinBlinDe: Blind deconvolution for confocal
microscopy
Praveen Pankajakshan, Laure Blanc-Féraud, Josiane
Zerubia.
Ariana joint research group,
INRIA/CNRS/UNS,
Sophia Antipolis, France.
This research work was partially funded by
P2R Franco-Israeli project and ANR DIAMOND project. Access to
the Applied optics paper is here.
October 2010
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 1 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Road map of presentation
1 Introduction
Optical sectioning fluorescence microscopy
Limitations of imaging
2 ThinBlinDe software for deconvolution
Breaking the limit-computationally
Blind deconvolution
3 Results
Phantom data
Microspheres
Plant samples
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 2 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Holy grail of biological imaging
The holy grail for most cell
biologists
E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Holy grail of biological imaging
The holy grail for most cell
biologists
◮ dynamically image living cells
noninvasively,
E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Holy grail of biological imaging
The holy grail for most cell
biologists
◮ dynamically image living cells
noninvasively,
◮ to see at the level of an
individual protein molecule,
and
E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Holy grail of biological imaging
The holy grail for most cell
biologists
◮ dynamically image living cells
noninvasively,
◮ to see at the level of an
individual protein molecule,
and
◮ to see how these molecules
interact in a cell.
E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Holy grail of biological imaging
The holy grail for most cell
biologists
◮ dynamically image living cells
noninvasively,
◮ to see at the level of an
individual protein molecule,
and
◮ to see how these molecules
interact in a cell.
Eric Betzig (2006) says, “(...) It’s many years away,
but you can dream about it.”
E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Confocal laser scanning microscope
Figure 1: Schematic of a confocal laser
scanning microscope (Minsky (1988)).
A- Laser
B- Beam expander
C- Dichroic mirror
D- Objective
E- In-focus plane
F- Confocal pinhole
G- Photomultiplier tube
(PMT)
Minsky (1988) ‘Memoir on Inventing the Confocal Scanning Microscope’. Scanning (10): 128 − 138.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 4 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
3D imaging by optical sectioning
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 5 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Point-spread function
Figure 2: Experimental PSF
determination by imaging point sources.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 6 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Point-spread function
Figure 2: Experimental PSF
determination by imaging point sources.
Figure 3: 2D Airy disk function.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 6 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Illustration: Diffraction effect
Figure 4: Single GFP if imaged using a widefield microscope. (NA = 1.4,
λex = 500nm)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 7 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Illustration: Effect of circular pinhole
Airy Unit (AU); 1AU= 1.22λex/NA
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Illustration: Effect of circular pinhole
1AU
Airy Unit (AU); 1AU= 1.22λex/NA
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Illustration: Effect of circular pinhole
1AU 3AU
Airy Unit (AU); 1AU= 1.22λex/NA
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Illustration: Effect of circular pinhole
1AU 3AU Fully open
Figure 5: Effect of changing confocal pinhole size on the out-of-focus fluorescence,
contrast and SNR.
Airy Unit (AU); 1AU= 1.22λex/NA
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
"The triangle of trade-off"
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 9 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Illustration: Spherical aberration
Figure 6: Schematic of spherical aberration. θi is the azimuthal angle in the lens
immersion medium, θs is the angle in the specimen and d (NFP) is the depth
under the cover slip and into the specimen. The refractive index of the cover slip is
assumed to be either equal to the index of the lens ni or the specimen ns.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 10 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Illustration: Spherical aberration
Figure 7: Spherical aberration causing different focus for paraxial and non-paraxial
rays.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 11 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
The eternal question
Figure 8: How to get the best of your microscope?
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 12 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Problem statement
Images from fluorescent optical sectioning microscopes (OSM)
are affected by
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Problem statement
Images from fluorescent optical sectioning microscopes (OSM)
are affected by
◮ blurring, due to diffraction limits and aberrations,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Problem statement
Images from fluorescent optical sectioning microscopes (OSM)
are affected by
◮ blurring, due to diffraction limits and aberrations,
◮ when pinhole size is 1 airy units (AU), 30% of photons
collected are from out-of-focus sections.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Problem statement
Images from fluorescent optical sectioning microscopes (OSM)
are affected by
◮ blurring, due to diffraction limits and aberrations,
◮ when pinhole size is 1 airy units (AU), 30% of photons
collected are from out-of-focus sections.
◮ shot noise, occurring as detectable statistical fluctuations,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Problem statement
Images from fluorescent optical sectioning microscopes (OSM)
are affected by
◮ blurring, due to diffraction limits and aberrations,
◮ when pinhole size is 1 airy units (AU), 30% of photons
collected are from out-of-focus sections.
◮ shot noise, occurring as detectable statistical fluctuations,
◮ spherical aberrations due to mismatch in medium,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Problem statement
Images from fluorescent optical sectioning microscopes (OSM)
are affected by
◮ blurring, due to diffraction limits and aberrations,
◮ when pinhole size is 1 airy units (AU), 30% of photons
collected are from out-of-focus sections.
◮ shot noise, occurring as detectable statistical fluctuations,
◮ spherical aberrations due to mismatch in medium,
◮ exact point-spread function (PSF) is unknown and varies
with experiment.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Problem statement
Images from fluorescent optical sectioning microscopes (OSM)
are affected by
◮ blurring, due to diffraction limits and aberrations,
◮ when pinhole size is 1 airy units (AU), 30% of photons
collected are from out-of-focus sections.
◮ shot noise, occurring as detectable statistical fluctuations,
◮ spherical aberrations due to mismatch in medium,
◮ exact point-spread function (PSF) is unknown and varies
with experiment.
Often only a single observation of the object is given (to avoid
photobleaching) for restoration!
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Breaking the diffraction barrier
Ernst Karl Abbe [1840-1905]
S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission:
stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782.
M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy
(STORM)’. NM 3 (10): 793 − 796.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Breaking the diffraction barrier
Ernst Karl Abbe [1840-1905]
Abbe’s diffraction limit
approximation:
d = λex
2×no×sinθmax
S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission:
stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782.
M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy
(STORM)’. NM 3 (10): 793 − 796.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Breaking the diffraction barrier
Ernst Karl Abbe [1840-1905]
Abbe’s diffraction limit
approximation:
d = λex
2×no×sinθmax
◮ Recent fluorescence light
microscopy techniques are aimed at
surpassing the Abbe resolution
limit (Hell, et al.(1994), Betzig, et
al. (2006), Rust, et al.(2006)).
S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission:
stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782.
M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy
(STORM)’. NM 3 (10): 793 − 796.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Breaking the diffraction barrier
Ernst Karl Abbe [1840-1905]
Abbe’s diffraction limit
approximation:
d = λex
2×no×sinθmax
◮ Recent fluorescence light
microscopy techniques are aimed at
surpassing the Abbe resolution
limit (Hell, et al.(1994), Betzig, et
al. (2006), Rust, et al.(2006)).
◮ Resulting images are quite similar
and differences in the operational
details can make these techniques
more or less suitable for specific
types of biological studies.
S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission:
stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782.
M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy
(STORM)’. NM 3 (10): 793 − 796.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Imaging Model
Image formation statistics is Poissonian, and
γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs
◮ where ∗ denotes 3D deconvolution,
◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}),
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Imaging Model
Image formation statistics is Poissonian, and
γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs
◮ where ∗ denotes 3D deconvolution,
◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}),
◮ h : Ωs → R models the PSF,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Imaging Model
Image formation statistics is Poissonian, and
γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs
◮ where ∗ denotes 3D deconvolution,
◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}),
◮ h : Ωs → R models the PSF,
◮ b is the low frequency background fluorescence signal,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Imaging Model
Image formation statistics is Poissonian, and
γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs
◮ where ∗ denotes 3D deconvolution,
◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}),
◮ h : Ωs → R models the PSF,
◮ b is the low frequency background fluorescence signal,
◮ 1/γ is the photon conversion factor, and γi(x) is the
observed photon at the detector.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Trends: Deconvolution and CLSM
Jan 2004 Jun 2006 Jan 2009
10
20
30
40
50
60
70
80
90
100
Time
Normalizednumberofsearches
Confocal Microscopy
Deconvolution
Figure 9: Annual search trends for
CLSM and deconvolution between
2004-2009 (Source: Google).
0 20 40 60 80 100
10
20
30
40
50
60
70
80
90
Relative number of searches for "confocal microscopy"
Relativenumberofsearchesfor"deconvolution"
Figure 10: Scatter plot between the
keyword hits “deconvolution” and
“confocal microscopy” (Source:
Google). Dotted line is the line of LS
fit.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 16 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Trends: scientific interest
1970 1975 1980 1985 1990 1995 2000 2005
0
1
2
3
4
5
6
7
8
9
10
Year
NormalizedReferenceVolume
Deconvolution
Blind Deconvolution
Figure 11: Recent scientific trends on deconvolution and blind deconvolution (Data
source: ISI web of knowledge).
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 17 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Breaking the limitations-ThinBlinDe software
Figure 12: Observed volume section of a convallaria and restoration using the
ThinBlinDe software. c INRA Ariana-INRIA/CNRS/UNS
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 18 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
Pr(i|o) is the likelihood, Pr(o) is the belief of the object.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
Pr(i|o) is the likelihood, Pr(o) is the belief of the object.
◮ The equivalent energy function is
J (o|i)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
Pr(i|o) is the likelihood, Pr(o) is the belief of the object.
◮ The equivalent energy function is
J (o|i) = −log(Pr(o|i))
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
Pr(i|o) is the likelihood, Pr(o) is the belief of the object.
◮ The equivalent energy function is
J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
Pr(i|o) is the likelihood, Pr(o) is the belief of the object.
◮ The equivalent energy function is
J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o)
◮ Maximum a posteriori (MAP) estimate is obtained by
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
Pr(i|o) is the likelihood, Pr(o) is the belief of the object.
◮ The equivalent energy function is
J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o)
◮ Maximum a posteriori (MAP) estimate is obtained by
ˆo(x) = arg max
o(x)≥0
Pr(o|i)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution as Bayesian inference
◮ From the Bayes’ theorem, the posterior probability is
Pr(o|i) ∝ Pr(i|o)Pr(o)
Pr(i|o) is the likelihood, Pr(o) is the belief of the object.
◮ The equivalent energy function is
J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o)
◮ Maximum a posteriori (MAP) estimate is obtained by
ˆo(x) = arg max
o(x)≥0
Pr(o|i) = arg min
o(x)≥0
(−log(Pr(o|i)))
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
State of the art: deconvolution
Assumption Method References
No Noise Nearest neighbors [Agard 84],
Inverse filter [Erhardt et al. 85]
Additive Gaussian Reg. lin. least square [Preza et al. 92],
white noise Wiener filter [Tommasi et al. 93],
JVC [Agard 84,
Carrington et al. 90],
APEX [Carasso 99],
MAP estimate [Levin et al. 09]
Poisson noise ML estimate [Holmes 88],
MAP estimate [Verveer et al. 99,
Dey et al. 06,
Pankajakshan et al. 08]
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 20 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Maximum likelihood object estimation
◮ Likelihood of the observation, i(x), knowing the specimen
o(x) is given as
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Maximum likelihood object estimation
◮ Likelihood of the observation, i(x), knowing the specimen
o(x) is given as
Pr(i|o) ∼
(h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x))
i(x)!
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Maximum likelihood object estimation
◮ Likelihood of the observation, i(x), knowing the specimen
o(x) is given as
Pr(i|o) ∼
(h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x))
i(x)!
◮ Find ˆo(x) such that
ˆo(x) = arg max
o(x)≥0
Pr(i|o)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Maximum likelihood object estimation
◮ Likelihood of the observation, i(x), knowing the specimen
o(x) is given as
Pr(i|o) ∼
(h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x))
i(x)!
◮ Find ˆo(x) such that
ˆo(x) = arg max
o(x)≥0
Pr(i|o)
• Approach: Maximum likelihood expectation maximization
(MLEM) algorithm [Richardson 72, Lucy 74, Dempster 77,
Celeux 85].
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Maximum likelihood object estimation
◮ Likelihood of the observation, i(x), knowing the specimen
o(x) is given as
Pr(i|o) ∼
(h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x))
i(x)!
◮ Find ˆo(x) such that
ˆo(x) = arg max
o(x)≥0
Pr(i|o)
• Approach: Maximum likelihood expectation maximization
(MLEM) algorithm [Richardson 72, Lucy 74, Dempster 77,
Celeux 85].
• Assumption: h(x) is available!
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Prior as statistical information
Gibbsian distribution with total variation (TV) fuction is used as
prior on the object [Demoment 1989]
Figure 13: Markov random field
over a six member neighborhood
ηx for a voxel site x ∈ Ωs.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Prior as statistical information
Gibbsian distribution with total variation (TV) fuction is used as
prior on the object [Demoment 1989]
Figure 13: Markov random field
over a six member neighborhood
ηx for a voxel site x ∈ Ωs.
Pr(o) = Z−1
λo
exp(−λo
x∈Ωs
|∇o(x)|),
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Prior as statistical information
Gibbsian distribution with total variation (TV) fuction is used as
prior on the object [Demoment 1989]
Figure 13: Markov random field
over a six member neighborhood
ηx for a voxel site x ∈ Ωs.
Pr(o) = Z−1
λo
exp(−λo
x∈Ωs
|∇o(x)|),
◮ Zλo =
o∈O(Ωs)
exp(−λo
x∈Ωs
|∇o(x)|) is
the partition function,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Prior as statistical information
Gibbsian distribution with total variation (TV) fuction is used as
prior on the object [Demoment 1989]
Figure 13: Markov random field
over a six member neighborhood
ηx for a voxel site x ∈ Ωs.
Pr(o) = Z−1
λo
exp(−λo
x∈Ωs
|∇o(x)|),
◮ Zλo =
o∈O(Ωs)
exp(−λo
x∈Ωs
|∇o(x)|) is
the partition function,
◮ with λo ≥ 0.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Maximum a posteriori object estimate
◮ Combining the likelihood and the prior terms
Pr(o,h|i) ∝ Pr(i|o,h)Pr(o)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 23 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Maximum a posteriori object estimate
◮ Combining the likelihood and the prior terms
Pr(o,h|i) ∝ Pr(i|o,h)Pr(o)
◮ this posterior probability can be written as
Pr(o,h|i) ∝
x∈Ωs
((h ∗o +b)(x))i(x) exp(−(h ∗o)(x))
i(x)!
×
exp(−λo
x∈Ωs
|∇o(x)|)
o
exp(−λo
x∈Ωs
|∇o(x)|)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 23 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Gradient vector field
X
Y
50
100
150
200
250
Lateral direction
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 24 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Gradient vector field
X
Y
50
100
150
200
250
X
Z
50
100
150
200
250
Lateral direction Axial direction
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 24 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Gradient vector field
X
Y
50
100
150
200
250
X
Z
50
100
150
200
250
Lateral direction Axial direction
Figure 14: The gradient vector field is overlapped over a synthetic object. The
field flow is more prominent along the borders and less along the homogeneous
interiors. The effect of the noise is negligible. c Ariana-INRIA/CNRS/UNS.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 24 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Object prior implications
−150 −100 −50 0 50 100 150
−25
−20
−15
−10
−5
0
Gradient ∇xi(x)
log2probabilitymassfunction
1AU pinhole
2 AU pinhole
5 AU pinhole
10 AU pinhole
Figure 15: Distribution of the gradient for an observed Arabidopsis Thaliana plant
under different pinhole sizes. As the pinhole size decreases from 10AU to 1AU, the
gradient distribution has a longer tail.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 25 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Incoherent scalar PSF model
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Incoherent scalar PSF model
◮ For the case when the acquisition parameters of the
experiments are exactly known, deconvolution can be
achieved by using theoretically calculated PSFs.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Incoherent scalar PSF model
◮ For the case when the acquisition parameters of the
experiments are exactly known, deconvolution can be
achieved by using theoretically calculated PSFs.
◮ Computation of the incoherent PSF can be reduced to 2Nz
2D Fourier transform of the pupil function
hTh(x;λex,λem) = C|hA(x;λex )|×|AR(x,y)∗hA(x,y,z;λem )|
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Incoherent scalar PSF model
◮ For the case when the acquisition parameters of the
experiments are exactly known, deconvolution can be
achieved by using theoretically calculated PSFs.
◮ Computation of the incoherent PSF can be reduced to 2Nz
2D Fourier transform of the pupil function
hTh(x;λex,λem) = C|hA(x;λex )|×|AR(x,y)∗hA(x,y,z;λem )|
◮ If P(kx,ky,z) is the 2D complex pupil function and λ is the
wavelength, the amplitude PSF is
hA(x,y,z;λ) =
kx ky
P(kx,ky,z)exp(j(kx x +kyy))dkydkx
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Numerically computed PSF
Figure 16: Numerically calculated PSF for a C-Apochromat water immersion
objective. NA 1.2, 63× magnification. c Ariana-INRIA/CNRS/UNS.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 27 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
State of the art: Blind deconvolution
Method References
A priori PSF [Boutet de Monvel 2001],
identification
Marginalization [Jalobeanu 2007,
Levin et al. 2009],
Joint maximum likelihood [Holmes 1992,
Michailovich & Adam 2007],
Parametric blind deconvolution [Markham
& Conchello 1999].
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 28 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by alternate minimization
◮ When the imaging parameters are not known, it is
necessary to estimate o(x) and h(x) from i(x)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 29 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by alternate minimization
◮ When the imaging parameters are not known, it is
necessary to estimate o(x) and h(x) from i(x)
◮ Minimizing the cost function w.r.t o(x)
ˆo(x) = arg min
o(x)≥0
J (o(x)|λo,h(x))
= arg min
o(x)≥0
Jobs(i(x)|o(x),h(x))+Jreg(o(x)|λo)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 29 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by alternate minimization
◮ When the imaging parameters are not known, it is
necessary to estimate o(x) and h(x) from i(x)
◮ Minimizing the cost function w.r.t o(x)
ˆo(x) = arg min
o(x)≥0
J (o(x)|λo,h(x))
= arg min
o(x)≥0
Jobs(i(x)|o(x),h(x))+Jreg(o(x)|λo)
◮ Minimizing the cost function w.r.t h(x)
ˆh(x) = arg min
h(x)≥0
J (h(x)|λo,o)
= arg min
h(x)≥0
Jobs(i(x)|o,h(x))+Jreg(h(x))
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 29 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ The estimation of the complete PSF from the observation
is a difficult problem as the number of unknowns are large.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ The estimation of the complete PSF from the observation
is a difficult problem as the number of unknowns are large.
◮ Since the CLSM PSF is theoretically the Bessel function
raised to the fourth power, an approximation in the spatial
domain is a 3D Gaussian approximation,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ The estimation of the complete PSF from the observation
is a difficult problem as the number of unknowns are large.
◮ Since the CLSM PSF is theoretically the Bessel function
raised to the fourth power, an approximation in the spatial
domain is a 3D Gaussian approximation,
◮ Diffraction-limited PSF in the LSQ sense (up to 3AU
pinhole diameter)
h(x;ωh) = (2π)− 3
2 |Σ|− 1
2 exp(−
1
2
(x−µ)T
Σ−1
(x−µ))
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ The estimation of the complete PSF from the observation
is a difficult problem as the number of unknowns are large.
◮ Since the CLSM PSF is theoretically the Bessel function
raised to the fourth power, an approximation in the spatial
domain is a 3D Gaussian approximation,
◮ Diffraction-limited PSF in the LSQ sense (up to 3AU
pinhole diameter)
h(x;ωh) = (2π)− 3
2 |Σ|− 1
2 exp(−
1
2
(x−µ)T
Σ−1
(x−µ))
◮ BD is reduced to estimation of spatial parameters,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ The estimation of the complete PSF from the observation
is a difficult problem as the number of unknowns are large.
◮ Since the CLSM PSF is theoretically the Bessel function
raised to the fourth power, an approximation in the spatial
domain is a 3D Gaussian approximation,
◮ Diffraction-limited PSF in the LSQ sense (up to 3AU
pinhole diameter)
h(x;ωh) = (2π)− 3
2 |Σ|− 1
2 exp(−
1
2
(x−µ)T
Σ−1
(x−µ))
◮ BD is reduced to estimation of spatial parameters,
◮ advantages: few parameters and no DFT necessary.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Why 3D Gaussian?
◮ Properties of the PSF
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Why 3D Gaussian?
◮ Properties of the PSF
• positivity:
h(x) ≥ 0, ∀x ∈ Ωs
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Why 3D Gaussian?
◮ Properties of the PSF
• positivity:
h(x) ≥ 0, ∀x ∈ Ωs
• circular symmetry:
h(x,y,z) = h(−x,−y,z)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Why 3D Gaussian?
◮ Properties of the PSF
• positivity:
h(x) ≥ 0, ∀x ∈ Ωs
• circular symmetry:
h(x,y,z) = h(−x,−y,z)
• normalization:
x∈Ωs
h(x) = 1
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Why 3D Gaussian?
◮ Properties of the PSF
• positivity:
h(x) ≥ 0, ∀x ∈ Ωs
• circular symmetry:
h(x,y,z) = h(−x,−y,z)
• normalization:
x∈Ωs
h(x) = 1
◮ CLSM PSF is theoretically the Bessel
function raised to the fourth power.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Why 3D Gaussian?
◮ Properties of the PSF
• positivity:
h(x) ≥ 0, ∀x ∈ Ωs
• circular symmetry:
h(x,y,z) = h(−x,−y,z)
• normalization:
x∈Ωs
h(x) = 1
◮ CLSM PSF is theoretically the Bessel
function raised to the fourth power.
J
0
2
(x) J
0
4
x J0 x
x
K15 K10 K5 0 5 10 15
K0.5
0.5
1.0
Figure 17: The Bessel
function raised to the fourth
power loses its side lobes.
c Ariana-
INRIA/CNRS/UNS.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ In the presence of aberrations, spatial approximation leads
to a large number of parameters,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ In the presence of aberrations, spatial approximation leads
to a large number of parameters,
◮ a way of handling it is estimating the parameters of the
pupil function ωh = d,ni ,ns
Pa(λ;x) = Pd(λ;x)exp(jϕ(d,ni ,ns))
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Blind deconvolution by PSF parametrization
◮ In the presence of aberrations, spatial approximation leads
to a large number of parameters,
◮ a way of handling it is estimating the parameters of the
pupil function ωh = d,ni ,ns
Pa(λ;x) = Pd(λ;x)exp(jϕ(d,ni ,ns))
◮ regularization of the PSF is achieved by using a functional
form of phase from geometrical optics
ϕ(d,ni ,ns) = d(ni cosθi −ns cosθs)
≈ d∆ns secθs
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
PSF estimation
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
PSF estimation
◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh)
ωh,MAP = argmax
ωh >0
Pr(i(x)|ˆo(x),ωh)Pr(ωh)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
PSF estimation
◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh)
ωh,MAP = argmax
ωh >0
Pr(i(x)|ˆo(x),ωh)Pr(ωh)
◮ Pr(ωh) is the parameter prior. We assume the parameters
to be uniformly distributed in a set: [ωh,LB,ωh,UB],
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
PSF estimation
◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh)
ωh,MAP = argmax
ωh >0
Pr(i(x)|ˆo(x),ωh)Pr(ωh)
◮ Pr(ωh) is the parameter prior. We assume the parameters
to be uniformly distributed in a set: [ωh,LB,ωh,UB],
◮ and the cost function is
J (o,h(ωh)) =
x
i(x)log((h(ωh)∗o +b)(x))−
x
(h(ωh)∗o +b)(x)
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
PSF estimation
◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh)
ωh,MAP = argmax
ωh >0
Pr(i(x)|ˆo(x),ωh)Pr(ωh)
◮ Pr(ωh) is the parameter prior. We assume the parameters
to be uniformly distributed in a set: [ωh,LB,ωh,UB],
◮ and the cost function is
J (o,h(ωh)) =
x
i(x)log((h(ωh)∗o +b)(x))−
x
(h(ωh)∗o +b)(x)
◮ The cost function, J (o,h(ωh)), could be minimized by
using a gradient-descent type algorithm.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Simulation results
Phantom object Observation γ = 100,
∆xy = 25nm ∆z = 50nm
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 34 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Simulation results
Sans regularization (Naive MLEM) Proposed approach
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 35 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Microsphere deconvolution
Figure 18: A 15µm microsphere has a thin layer of fluorescence of thickness
500− 700nm.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 36 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Microsphere deconvolution
Observed section BD restored (535.58 nm)
Figure 19: Measured thickness of a microsphere, after using our approach, was
535.58nm, and was 260nm with the naive MLEM algorithm.
c Ariana-INRIA/CNRS/UNS.P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 37 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution on plant samples
Figure 20: Observed section of arabidopsis thaliana in water and observed with a
LSM 510 microscope and pinhole 2AU. Lateral sampling is 285.64nm and axial
sampling is 845.62nm. c INRA.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 38 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution on plant samples
Figure 21: Restoration sans regularization (Naive MLEM).
c Ariana-INRIA/CNRS/UNS.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 39 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution on plant samples
Figure 22: Restoration using the proposed approach after 10 iterations.
c Ariana-INRIA/CNRS/UNS.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 40 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Deconvolution on plant samples
Figure 23: Comparison of observed and restored lateral section of convallaria
majalis. Lateral sampling is 53.6nm and axial sampling is 129.4nm. The sample
was observed with a Zeiss LSM 510TMmicroscope, and 1.3NA oil immersion
objective. c INRA, Ariana-INRIA/CNRS/UNS.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 41 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Conclusions and discussions
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Conclusions and discussions
◮ Developed Bayesian framework for blind deconvolution for
thin specimens,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Conclusions and discussions
◮ Developed Bayesian framework for blind deconvolution for
thin specimens,
◮ experiments on simulated data, microsphere images and
real data show promising results,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Conclusions and discussions
◮ Developed Bayesian framework for blind deconvolution for
thin specimens,
◮ experiments on simulated data, microsphere images and
real data show promising results,
◮ PSF model chosen initially is a 3D separable Gaussian
function for thin specimens,
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
ThinBlinDe
P. Panka-
jakshan, L.
Blanc-
Féraud, J.
Zerubia
Road map
Introduction
OSM
Limitations
ThinBlinDe
Break the limit
Blind
deconvolution
Results
Phantom data
Microspheres
Plant samples
Conclusions and discussions
◮ Developed Bayesian framework for blind deconvolution for
thin specimens,
◮ experiments on simulated data, microsphere images and
real data show promising results,
◮ PSF model chosen initially is a 3D separable Gaussian
function for thin specimens,
◮ Total variation regularization functional sometimes leads to
loss in contrast in restoration but there are methods to
overcome this.
P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42

Más contenido relacionado

Destacado

An Image Restoration Practical Method
An Image Restoration Practical MethodAn Image Restoration Practical Method
An Image Restoration Practical MethodIDES Editor
 
Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...
Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...
Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...iosrjce
 
Digital image processing techniques
Digital image processing techniquesDigital image processing techniques
Digital image processing techniquesShab Bi
 
Spatial filtering using image processing
Spatial filtering using image processingSpatial filtering using image processing
Spatial filtering using image processingAnuj Arora
 
Digital Image Processing - Image Enhancement
Digital Image Processing  - Image EnhancementDigital Image Processing  - Image Enhancement
Digital Image Processing - Image EnhancementMathankumar S
 

Destacado (8)

An Image Restoration Practical Method
An Image Restoration Practical MethodAn Image Restoration Practical Method
An Image Restoration Practical Method
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 
Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...
Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...
Deconvolution and Interpretation of Well Test Data ‘Masked’ By Wellbore Stora...
 
Digital image processing techniques
Digital image processing techniquesDigital image processing techniques
Digital image processing techniques
 
SPATIAL FILTER
SPATIAL FILTERSPATIAL FILTER
SPATIAL FILTER
 
Spatial filtering using image processing
Spatial filtering using image processingSpatial filtering using image processing
Spatial filtering using image processing
 
Digital Image Processing - Image Enhancement
Digital Image Processing  - Image EnhancementDigital Image Processing  - Image Enhancement
Digital Image Processing - Image Enhancement
 
Spatial filtering
Spatial filteringSpatial filtering
Spatial filtering
 

Similar a Demo

Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...
Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...
Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...Paolo Cassano, MD, PhD
 
All about confocal microscope complete education
All about confocal microscope complete educationAll about confocal microscope complete education
All about confocal microscope complete educationPokhrajSahu10
 
2015 sibgrapi-contactlenses
2015 sibgrapi-contactlenses2015 sibgrapi-contactlenses
2015 sibgrapi-contactlensesDavid Menotti
 
Reduction of retinal senstivity in eyes with reticular pseudodrusen
Reduction of retinal senstivity in eyes with reticular pseudodrusenReduction of retinal senstivity in eyes with reticular pseudodrusen
Reduction of retinal senstivity in eyes with reticular pseudodrusenAbdallah Ellabban
 
Optic coherence tomography
Optic coherence tomographyOptic coherence tomography
Optic coherence tomographyNeurologyKota
 
Sumerschool DPI 2012 Uslar
Sumerschool DPI 2012 UslarSumerschool DPI 2012 Uslar
Sumerschool DPI 2012 UslarDirk Hähnel
 
Monitoring live cell viability Comparative study
Monitoring live cell viability Comparative studyMonitoring live cell viability Comparative study
Monitoring live cell viability Comparative studyWerden Keeler
 
Deep learning enables reference-free isotropic super-resolution for volumetri...
Deep learning enables reference-free isotropic super-resolution for volumetri...Deep learning enables reference-free isotropic super-resolution for volumetri...
Deep learning enables reference-free isotropic super-resolution for volumetri...PeterPark233282
 

Similar a Demo (13)

Advanced Retinal Imaging
Advanced Retinal ImagingAdvanced Retinal Imaging
Advanced Retinal Imaging
 
Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...
Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...
Transcranial Photobiomodulation Dosimetry: Integrating Human Data and Penetra...
 
All about confocal microscope complete education
All about confocal microscope complete educationAll about confocal microscope complete education
All about confocal microscope complete education
 
2015 sibgrapi-contactlenses
2015 sibgrapi-contactlenses2015 sibgrapi-contactlenses
2015 sibgrapi-contactlenses
 
Povlishock, John
Povlishock, JohnPovlishock, John
Povlishock, John
 
Night Myopia
Night MyopiaNight Myopia
Night Myopia
 
Reduction of retinal senstivity in eyes with reticular pseudodrusen
Reduction of retinal senstivity in eyes with reticular pseudodrusenReduction of retinal senstivity in eyes with reticular pseudodrusen
Reduction of retinal senstivity in eyes with reticular pseudodrusen
 
Optic coherence tomography
Optic coherence tomographyOptic coherence tomography
Optic coherence tomography
 
Eso1138
Eso1138Eso1138
Eso1138
 
Sumerschool DPI 2012 Uslar
Sumerschool DPI 2012 UslarSumerschool DPI 2012 Uslar
Sumerschool DPI 2012 Uslar
 
Monitoring live cell viability Comparative study
Monitoring live cell viability Comparative studyMonitoring live cell viability Comparative study
Monitoring live cell viability Comparative study
 
Deep learning enables reference-free isotropic super-resolution for volumetri...
Deep learning enables reference-free isotropic super-resolution for volumetri...Deep learning enables reference-free isotropic super-resolution for volumetri...
Deep learning enables reference-free isotropic super-resolution for volumetri...
 
Final Poster
Final PosterFinal Poster
Final Poster
 

Último

"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 

Último (20)

"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 

Demo

  • 1. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia ThinBlinDe: Blind deconvolution for confocal microscopy Praveen Pankajakshan, Laure Blanc-Féraud, Josiane Zerubia. Ariana joint research group, INRIA/CNRS/UNS, Sophia Antipolis, France. This research work was partially funded by P2R Franco-Israeli project and ANR DIAMOND project. Access to the Applied optics paper is here. October 2010 P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 1 of 42
  • 2. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Road map of presentation 1 Introduction Optical sectioning fluorescence microscopy Limitations of imaging 2 ThinBlinDe software for deconvolution Breaking the limit-computationally Blind deconvolution 3 Results Phantom data Microspheres Plant samples P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 2 of 42
  • 3. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Holy grail of biological imaging The holy grail for most cell biologists E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
  • 4. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Holy grail of biological imaging The holy grail for most cell biologists ◮ dynamically image living cells noninvasively, E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
  • 5. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Holy grail of biological imaging The holy grail for most cell biologists ◮ dynamically image living cells noninvasively, ◮ to see at the level of an individual protein molecule, and E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
  • 6. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Holy grail of biological imaging The holy grail for most cell biologists ◮ dynamically image living cells noninvasively, ◮ to see at the level of an individual protein molecule, and ◮ to see how these molecules interact in a cell. E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
  • 7. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Holy grail of biological imaging The holy grail for most cell biologists ◮ dynamically image living cells noninvasively, ◮ to see at the level of an individual protein molecule, and ◮ to see how these molecules interact in a cell. Eric Betzig (2006) says, “(...) It’s many years away, but you can dream about it.” E. Betzig et al. ‘Imaging intracellular fluorescent proteins at nanometer resolution,’ Sc. Exp., Aug. 2006. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 3 of 42
  • 8. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Confocal laser scanning microscope Figure 1: Schematic of a confocal laser scanning microscope (Minsky (1988)). A- Laser B- Beam expander C- Dichroic mirror D- Objective E- In-focus plane F- Confocal pinhole G- Photomultiplier tube (PMT) Minsky (1988) ‘Memoir on Inventing the Confocal Scanning Microscope’. Scanning (10): 128 − 138. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 4 of 42
  • 9. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples 3D imaging by optical sectioning P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 5 of 42
  • 10. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Point-spread function Figure 2: Experimental PSF determination by imaging point sources. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 6 of 42
  • 11. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Point-spread function Figure 2: Experimental PSF determination by imaging point sources. Figure 3: 2D Airy disk function. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 6 of 42
  • 12. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Illustration: Diffraction effect Figure 4: Single GFP if imaged using a widefield microscope. (NA = 1.4, λex = 500nm) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 7 of 42
  • 13. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Illustration: Effect of circular pinhole Airy Unit (AU); 1AU= 1.22λex/NA P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
  • 14. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Illustration: Effect of circular pinhole 1AU Airy Unit (AU); 1AU= 1.22λex/NA P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
  • 15. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Illustration: Effect of circular pinhole 1AU 3AU Airy Unit (AU); 1AU= 1.22λex/NA P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
  • 16. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Illustration: Effect of circular pinhole 1AU 3AU Fully open Figure 5: Effect of changing confocal pinhole size on the out-of-focus fluorescence, contrast and SNR. Airy Unit (AU); 1AU= 1.22λex/NA P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 8 of 42
  • 17. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples "The triangle of trade-off" P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 9 of 42
  • 18. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Illustration: Spherical aberration Figure 6: Schematic of spherical aberration. θi is the azimuthal angle in the lens immersion medium, θs is the angle in the specimen and d (NFP) is the depth under the cover slip and into the specimen. The refractive index of the cover slip is assumed to be either equal to the index of the lens ni or the specimen ns. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 10 of 42
  • 19. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Illustration: Spherical aberration Figure 7: Spherical aberration causing different focus for paraxial and non-paraxial rays. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 11 of 42
  • 20. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples The eternal question Figure 8: How to get the best of your microscope? P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 12 of 42
  • 21. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Problem statement Images from fluorescent optical sectioning microscopes (OSM) are affected by P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
  • 22. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Problem statement Images from fluorescent optical sectioning microscopes (OSM) are affected by ◮ blurring, due to diffraction limits and aberrations, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
  • 23. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Problem statement Images from fluorescent optical sectioning microscopes (OSM) are affected by ◮ blurring, due to diffraction limits and aberrations, ◮ when pinhole size is 1 airy units (AU), 30% of photons collected are from out-of-focus sections. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
  • 24. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Problem statement Images from fluorescent optical sectioning microscopes (OSM) are affected by ◮ blurring, due to diffraction limits and aberrations, ◮ when pinhole size is 1 airy units (AU), 30% of photons collected are from out-of-focus sections. ◮ shot noise, occurring as detectable statistical fluctuations, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
  • 25. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Problem statement Images from fluorescent optical sectioning microscopes (OSM) are affected by ◮ blurring, due to diffraction limits and aberrations, ◮ when pinhole size is 1 airy units (AU), 30% of photons collected are from out-of-focus sections. ◮ shot noise, occurring as detectable statistical fluctuations, ◮ spherical aberrations due to mismatch in medium, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
  • 26. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Problem statement Images from fluorescent optical sectioning microscopes (OSM) are affected by ◮ blurring, due to diffraction limits and aberrations, ◮ when pinhole size is 1 airy units (AU), 30% of photons collected are from out-of-focus sections. ◮ shot noise, occurring as detectable statistical fluctuations, ◮ spherical aberrations due to mismatch in medium, ◮ exact point-spread function (PSF) is unknown and varies with experiment. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
  • 27. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Problem statement Images from fluorescent optical sectioning microscopes (OSM) are affected by ◮ blurring, due to diffraction limits and aberrations, ◮ when pinhole size is 1 airy units (AU), 30% of photons collected are from out-of-focus sections. ◮ shot noise, occurring as detectable statistical fluctuations, ◮ spherical aberrations due to mismatch in medium, ◮ exact point-spread function (PSF) is unknown and varies with experiment. Often only a single observation of the object is given (to avoid photobleaching) for restoration! P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 13 of 42
  • 28. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Breaking the diffraction barrier Ernst Karl Abbe [1840-1905] S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782. M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)’. NM 3 (10): 793 − 796. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
  • 29. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Breaking the diffraction barrier Ernst Karl Abbe [1840-1905] Abbe’s diffraction limit approximation: d = λex 2×no×sinθmax S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782. M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)’. NM 3 (10): 793 − 796. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
  • 30. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Breaking the diffraction barrier Ernst Karl Abbe [1840-1905] Abbe’s diffraction limit approximation: d = λex 2×no×sinθmax ◮ Recent fluorescence light microscopy techniques are aimed at surpassing the Abbe resolution limit (Hell, et al.(1994), Betzig, et al. (2006), Rust, et al.(2006)). S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782. M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)’. NM 3 (10): 793 − 796. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
  • 31. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Breaking the diffraction barrier Ernst Karl Abbe [1840-1905] Abbe’s diffraction limit approximation: d = λex 2×no×sinθmax ◮ Recent fluorescence light microscopy techniques are aimed at surpassing the Abbe resolution limit (Hell, et al.(1994), Betzig, et al. (2006), Rust, et al.(2006)). ◮ Resulting images are quite similar and differences in the operational details can make these techniques more or less suitable for specific types of biological studies. S. Hell et al. (1994) ‘Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy’. OL 19 (11): 780 − 782. M. J. Rust et al. (2006) ‘Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)’. NM 3 (10): 793 − 796. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 14 of 42
  • 32. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Imaging Model Image formation statistics is Poissonian, and γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs ◮ where ∗ denotes 3D deconvolution, ◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}), P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
  • 33. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Imaging Model Image formation statistics is Poissonian, and γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs ◮ where ∗ denotes 3D deconvolution, ◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}), ◮ h : Ωs → R models the PSF, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
  • 34. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Imaging Model Image formation statistics is Poissonian, and γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs ◮ where ∗ denotes 3D deconvolution, ◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}), ◮ h : Ωs → R models the PSF, ◮ b is the low frequency background fluorescence signal, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
  • 35. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Imaging Model Image formation statistics is Poissonian, and γi(x) = P(γ(h ∗o +b)(x)),∀x ∈ Ωs ◮ where ∗ denotes 3D deconvolution, ◮ O(Ωs = {o = oxyz : Ωs ⊂ N3 → R}), ◮ h : Ωs → R models the PSF, ◮ b is the low frequency background fluorescence signal, ◮ 1/γ is the photon conversion factor, and γi(x) is the observed photon at the detector. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 15 of 42
  • 36. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Trends: Deconvolution and CLSM Jan 2004 Jun 2006 Jan 2009 10 20 30 40 50 60 70 80 90 100 Time Normalizednumberofsearches Confocal Microscopy Deconvolution Figure 9: Annual search trends for CLSM and deconvolution between 2004-2009 (Source: Google). 0 20 40 60 80 100 10 20 30 40 50 60 70 80 90 Relative number of searches for "confocal microscopy" Relativenumberofsearchesfor"deconvolution" Figure 10: Scatter plot between the keyword hits “deconvolution” and “confocal microscopy” (Source: Google). Dotted line is the line of LS fit. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 16 of 42
  • 37. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Trends: scientific interest 1970 1975 1980 1985 1990 1995 2000 2005 0 1 2 3 4 5 6 7 8 9 10 Year NormalizedReferenceVolume Deconvolution Blind Deconvolution Figure 11: Recent scientific trends on deconvolution and blind deconvolution (Data source: ISI web of knowledge). P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 17 of 42
  • 38. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Breaking the limitations-ThinBlinDe software Figure 12: Observed volume section of a convallaria and restoration using the ThinBlinDe software. c INRA Ariana-INRIA/CNRS/UNS P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 18 of 42
  • 39. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 40. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) Pr(i|o) is the likelihood, Pr(o) is the belief of the object. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 41. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) Pr(i|o) is the likelihood, Pr(o) is the belief of the object. ◮ The equivalent energy function is J (o|i) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 42. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) Pr(i|o) is the likelihood, Pr(o) is the belief of the object. ◮ The equivalent energy function is J (o|i) = −log(Pr(o|i)) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 43. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) Pr(i|o) is the likelihood, Pr(o) is the belief of the object. ◮ The equivalent energy function is J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 44. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) Pr(i|o) is the likelihood, Pr(o) is the belief of the object. ◮ The equivalent energy function is J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o) ◮ Maximum a posteriori (MAP) estimate is obtained by P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 45. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) Pr(i|o) is the likelihood, Pr(o) is the belief of the object. ◮ The equivalent energy function is J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o) ◮ Maximum a posteriori (MAP) estimate is obtained by ˆo(x) = arg max o(x)≥0 Pr(o|i) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 46. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution as Bayesian inference ◮ From the Bayes’ theorem, the posterior probability is Pr(o|i) ∝ Pr(i|o)Pr(o) Pr(i|o) is the likelihood, Pr(o) is the belief of the object. ◮ The equivalent energy function is J (o|i) = −log(Pr(o|i)) = Jobs(i|o)+Jreg(o) ◮ Maximum a posteriori (MAP) estimate is obtained by ˆo(x) = arg max o(x)≥0 Pr(o|i) = arg min o(x)≥0 (−log(Pr(o|i))) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 19 of 42
  • 47. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples State of the art: deconvolution Assumption Method References No Noise Nearest neighbors [Agard 84], Inverse filter [Erhardt et al. 85] Additive Gaussian Reg. lin. least square [Preza et al. 92], white noise Wiener filter [Tommasi et al. 93], JVC [Agard 84, Carrington et al. 90], APEX [Carasso 99], MAP estimate [Levin et al. 09] Poisson noise ML estimate [Holmes 88], MAP estimate [Verveer et al. 99, Dey et al. 06, Pankajakshan et al. 08] P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 20 of 42
  • 48. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Maximum likelihood object estimation ◮ Likelihood of the observation, i(x), knowing the specimen o(x) is given as P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
  • 49. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Maximum likelihood object estimation ◮ Likelihood of the observation, i(x), knowing the specimen o(x) is given as Pr(i|o) ∼ (h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x)) i(x)! P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
  • 50. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Maximum likelihood object estimation ◮ Likelihood of the observation, i(x), knowing the specimen o(x) is given as Pr(i|o) ∼ (h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x)) i(x)! ◮ Find ˆo(x) such that ˆo(x) = arg max o(x)≥0 Pr(i|o) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
  • 51. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Maximum likelihood object estimation ◮ Likelihood of the observation, i(x), knowing the specimen o(x) is given as Pr(i|o) ∼ (h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x)) i(x)! ◮ Find ˆo(x) such that ˆo(x) = arg max o(x)≥0 Pr(i|o) • Approach: Maximum likelihood expectation maximization (MLEM) algorithm [Richardson 72, Lucy 74, Dempster 77, Celeux 85]. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
  • 52. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Maximum likelihood object estimation ◮ Likelihood of the observation, i(x), knowing the specimen o(x) is given as Pr(i|o) ∼ (h ∗o +b)(x)i(x) exp(−(h ∗o +b)(x)) i(x)! ◮ Find ˆo(x) such that ˆo(x) = arg max o(x)≥0 Pr(i|o) • Approach: Maximum likelihood expectation maximization (MLEM) algorithm [Richardson 72, Lucy 74, Dempster 77, Celeux 85]. • Assumption: h(x) is available! P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 21 of 42
  • 53. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Prior as statistical information Gibbsian distribution with total variation (TV) fuction is used as prior on the object [Demoment 1989] Figure 13: Markov random field over a six member neighborhood ηx for a voxel site x ∈ Ωs. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
  • 54. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Prior as statistical information Gibbsian distribution with total variation (TV) fuction is used as prior on the object [Demoment 1989] Figure 13: Markov random field over a six member neighborhood ηx for a voxel site x ∈ Ωs. Pr(o) = Z−1 λo exp(−λo x∈Ωs |∇o(x)|), P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
  • 55. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Prior as statistical information Gibbsian distribution with total variation (TV) fuction is used as prior on the object [Demoment 1989] Figure 13: Markov random field over a six member neighborhood ηx for a voxel site x ∈ Ωs. Pr(o) = Z−1 λo exp(−λo x∈Ωs |∇o(x)|), ◮ Zλo = o∈O(Ωs) exp(−λo x∈Ωs |∇o(x)|) is the partition function, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
  • 56. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Prior as statistical information Gibbsian distribution with total variation (TV) fuction is used as prior on the object [Demoment 1989] Figure 13: Markov random field over a six member neighborhood ηx for a voxel site x ∈ Ωs. Pr(o) = Z−1 λo exp(−λo x∈Ωs |∇o(x)|), ◮ Zλo = o∈O(Ωs) exp(−λo x∈Ωs |∇o(x)|) is the partition function, ◮ with λo ≥ 0. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 22 of 42
  • 57. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Maximum a posteriori object estimate ◮ Combining the likelihood and the prior terms Pr(o,h|i) ∝ Pr(i|o,h)Pr(o) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 23 of 42
  • 58. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Maximum a posteriori object estimate ◮ Combining the likelihood and the prior terms Pr(o,h|i) ∝ Pr(i|o,h)Pr(o) ◮ this posterior probability can be written as Pr(o,h|i) ∝ x∈Ωs ((h ∗o +b)(x))i(x) exp(−(h ∗o)(x)) i(x)! × exp(−λo x∈Ωs |∇o(x)|) o exp(−λo x∈Ωs |∇o(x)|) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 23 of 42
  • 59. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Gradient vector field X Y 50 100 150 200 250 Lateral direction P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 24 of 42
  • 60. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Gradient vector field X Y 50 100 150 200 250 X Z 50 100 150 200 250 Lateral direction Axial direction P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 24 of 42
  • 61. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Gradient vector field X Y 50 100 150 200 250 X Z 50 100 150 200 250 Lateral direction Axial direction Figure 14: The gradient vector field is overlapped over a synthetic object. The field flow is more prominent along the borders and less along the homogeneous interiors. The effect of the noise is negligible. c Ariana-INRIA/CNRS/UNS. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 24 of 42
  • 62. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Object prior implications −150 −100 −50 0 50 100 150 −25 −20 −15 −10 −5 0 Gradient ∇xi(x) log2probabilitymassfunction 1AU pinhole 2 AU pinhole 5 AU pinhole 10 AU pinhole Figure 15: Distribution of the gradient for an observed Arabidopsis Thaliana plant under different pinhole sizes. As the pinhole size decreases from 10AU to 1AU, the gradient distribution has a longer tail. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 25 of 42
  • 63. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Incoherent scalar PSF model P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
  • 64. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Incoherent scalar PSF model ◮ For the case when the acquisition parameters of the experiments are exactly known, deconvolution can be achieved by using theoretically calculated PSFs. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
  • 65. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Incoherent scalar PSF model ◮ For the case when the acquisition parameters of the experiments are exactly known, deconvolution can be achieved by using theoretically calculated PSFs. ◮ Computation of the incoherent PSF can be reduced to 2Nz 2D Fourier transform of the pupil function hTh(x;λex,λem) = C|hA(x;λex )|×|AR(x,y)∗hA(x,y,z;λem )| P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
  • 66. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Incoherent scalar PSF model ◮ For the case when the acquisition parameters of the experiments are exactly known, deconvolution can be achieved by using theoretically calculated PSFs. ◮ Computation of the incoherent PSF can be reduced to 2Nz 2D Fourier transform of the pupil function hTh(x;λex,λem) = C|hA(x;λex )|×|AR(x,y)∗hA(x,y,z;λem )| ◮ If P(kx,ky,z) is the 2D complex pupil function and λ is the wavelength, the amplitude PSF is hA(x,y,z;λ) = kx ky P(kx,ky,z)exp(j(kx x +kyy))dkydkx P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 26 of 42
  • 67. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Numerically computed PSF Figure 16: Numerically calculated PSF for a C-Apochromat water immersion objective. NA 1.2, 63× magnification. c Ariana-INRIA/CNRS/UNS. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 27 of 42
  • 68. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples State of the art: Blind deconvolution Method References A priori PSF [Boutet de Monvel 2001], identification Marginalization [Jalobeanu 2007, Levin et al. 2009], Joint maximum likelihood [Holmes 1992, Michailovich & Adam 2007], Parametric blind deconvolution [Markham & Conchello 1999]. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 28 of 42
  • 69. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by alternate minimization ◮ When the imaging parameters are not known, it is necessary to estimate o(x) and h(x) from i(x) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 29 of 42
  • 70. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by alternate minimization ◮ When the imaging parameters are not known, it is necessary to estimate o(x) and h(x) from i(x) ◮ Minimizing the cost function w.r.t o(x) ˆo(x) = arg min o(x)≥0 J (o(x)|λo,h(x)) = arg min o(x)≥0 Jobs(i(x)|o(x),h(x))+Jreg(o(x)|λo) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 29 of 42
  • 71. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by alternate minimization ◮ When the imaging parameters are not known, it is necessary to estimate o(x) and h(x) from i(x) ◮ Minimizing the cost function w.r.t o(x) ˆo(x) = arg min o(x)≥0 J (o(x)|λo,h(x)) = arg min o(x)≥0 Jobs(i(x)|o(x),h(x))+Jreg(o(x)|λo) ◮ Minimizing the cost function w.r.t h(x) ˆh(x) = arg min h(x)≥0 J (h(x)|λo,o) = arg min h(x)≥0 Jobs(i(x)|o,h(x))+Jreg(h(x)) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 29 of 42
  • 72. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
  • 73. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ The estimation of the complete PSF from the observation is a difficult problem as the number of unknowns are large. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
  • 74. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ The estimation of the complete PSF from the observation is a difficult problem as the number of unknowns are large. ◮ Since the CLSM PSF is theoretically the Bessel function raised to the fourth power, an approximation in the spatial domain is a 3D Gaussian approximation, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
  • 75. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ The estimation of the complete PSF from the observation is a difficult problem as the number of unknowns are large. ◮ Since the CLSM PSF is theoretically the Bessel function raised to the fourth power, an approximation in the spatial domain is a 3D Gaussian approximation, ◮ Diffraction-limited PSF in the LSQ sense (up to 3AU pinhole diameter) h(x;ωh) = (2π)− 3 2 |Σ|− 1 2 exp(− 1 2 (x−µ)T Σ−1 (x−µ)) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
  • 76. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ The estimation of the complete PSF from the observation is a difficult problem as the number of unknowns are large. ◮ Since the CLSM PSF is theoretically the Bessel function raised to the fourth power, an approximation in the spatial domain is a 3D Gaussian approximation, ◮ Diffraction-limited PSF in the LSQ sense (up to 3AU pinhole diameter) h(x;ωh) = (2π)− 3 2 |Σ|− 1 2 exp(− 1 2 (x−µ)T Σ−1 (x−µ)) ◮ BD is reduced to estimation of spatial parameters, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
  • 77. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ The estimation of the complete PSF from the observation is a difficult problem as the number of unknowns are large. ◮ Since the CLSM PSF is theoretically the Bessel function raised to the fourth power, an approximation in the spatial domain is a 3D Gaussian approximation, ◮ Diffraction-limited PSF in the LSQ sense (up to 3AU pinhole diameter) h(x;ωh) = (2π)− 3 2 |Σ|− 1 2 exp(− 1 2 (x−µ)T Σ−1 (x−µ)) ◮ BD is reduced to estimation of spatial parameters, ◮ advantages: few parameters and no DFT necessary. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 30 of 42
  • 78. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Why 3D Gaussian? ◮ Properties of the PSF P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
  • 79. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Why 3D Gaussian? ◮ Properties of the PSF • positivity: h(x) ≥ 0, ∀x ∈ Ωs P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
  • 80. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Why 3D Gaussian? ◮ Properties of the PSF • positivity: h(x) ≥ 0, ∀x ∈ Ωs • circular symmetry: h(x,y,z) = h(−x,−y,z) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
  • 81. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Why 3D Gaussian? ◮ Properties of the PSF • positivity: h(x) ≥ 0, ∀x ∈ Ωs • circular symmetry: h(x,y,z) = h(−x,−y,z) • normalization: x∈Ωs h(x) = 1 P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
  • 82. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Why 3D Gaussian? ◮ Properties of the PSF • positivity: h(x) ≥ 0, ∀x ∈ Ωs • circular symmetry: h(x,y,z) = h(−x,−y,z) • normalization: x∈Ωs h(x) = 1 ◮ CLSM PSF is theoretically the Bessel function raised to the fourth power. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
  • 83. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Why 3D Gaussian? ◮ Properties of the PSF • positivity: h(x) ≥ 0, ∀x ∈ Ωs • circular symmetry: h(x,y,z) = h(−x,−y,z) • normalization: x∈Ωs h(x) = 1 ◮ CLSM PSF is theoretically the Bessel function raised to the fourth power. J 0 2 (x) J 0 4 x J0 x x K15 K10 K5 0 5 10 15 K0.5 0.5 1.0 Figure 17: The Bessel function raised to the fourth power loses its side lobes. c Ariana- INRIA/CNRS/UNS. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 31 of 42
  • 84. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
  • 85. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ In the presence of aberrations, spatial approximation leads to a large number of parameters, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
  • 86. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ In the presence of aberrations, spatial approximation leads to a large number of parameters, ◮ a way of handling it is estimating the parameters of the pupil function ωh = d,ni ,ns Pa(λ;x) = Pd(λ;x)exp(jϕ(d,ni ,ns)) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
  • 87. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Blind deconvolution by PSF parametrization ◮ In the presence of aberrations, spatial approximation leads to a large number of parameters, ◮ a way of handling it is estimating the parameters of the pupil function ωh = d,ni ,ns Pa(λ;x) = Pd(λ;x)exp(jϕ(d,ni ,ns)) ◮ regularization of the PSF is achieved by using a functional form of phase from geometrical optics ϕ(d,ni ,ns) = d(ni cosθi −ns cosθs) ≈ d∆ns secθs P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 32 of 42
  • 88. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples PSF estimation P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
  • 89. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples PSF estimation ◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh) ωh,MAP = argmax ωh >0 Pr(i(x)|ˆo(x),ωh)Pr(ωh) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
  • 90. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples PSF estimation ◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh) ωh,MAP = argmax ωh >0 Pr(i(x)|ˆo(x),ωh)Pr(ωh) ◮ Pr(ωh) is the parameter prior. We assume the parameters to be uniformly distributed in a set: [ωh,LB,ωh,UB], P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
  • 91. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples PSF estimation ◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh) ωh,MAP = argmax ωh >0 Pr(i(x)|ˆo(x),ωh)Pr(ωh) ◮ Pr(ωh) is the parameter prior. We assume the parameters to be uniformly distributed in a set: [ωh,LB,ωh,UB], ◮ and the cost function is J (o,h(ωh)) = x i(x)log((h(ωh)∗o +b)(x))− x (h(ωh)∗o +b)(x) P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
  • 92. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples PSF estimation ◮ Deconvolution requires the PSF ˆh(x) or h(x, ˆωh) ωh,MAP = argmax ωh >0 Pr(i(x)|ˆo(x),ωh)Pr(ωh) ◮ Pr(ωh) is the parameter prior. We assume the parameters to be uniformly distributed in a set: [ωh,LB,ωh,UB], ◮ and the cost function is J (o,h(ωh)) = x i(x)log((h(ωh)∗o +b)(x))− x (h(ωh)∗o +b)(x) ◮ The cost function, J (o,h(ωh)), could be minimized by using a gradient-descent type algorithm. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 33 of 42
  • 93. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Simulation results Phantom object Observation γ = 100, ∆xy = 25nm ∆z = 50nm P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 34 of 42
  • 94. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Simulation results Sans regularization (Naive MLEM) Proposed approach P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 35 of 42
  • 95. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Microsphere deconvolution Figure 18: A 15µm microsphere has a thin layer of fluorescence of thickness 500− 700nm. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 36 of 42
  • 96. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Microsphere deconvolution Observed section BD restored (535.58 nm) Figure 19: Measured thickness of a microsphere, after using our approach, was 535.58nm, and was 260nm with the naive MLEM algorithm. c Ariana-INRIA/CNRS/UNS.P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 37 of 42
  • 97. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution on plant samples Figure 20: Observed section of arabidopsis thaliana in water and observed with a LSM 510 microscope and pinhole 2AU. Lateral sampling is 285.64nm and axial sampling is 845.62nm. c INRA. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 38 of 42
  • 98. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution on plant samples Figure 21: Restoration sans regularization (Naive MLEM). c Ariana-INRIA/CNRS/UNS. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 39 of 42
  • 99. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution on plant samples Figure 22: Restoration using the proposed approach after 10 iterations. c Ariana-INRIA/CNRS/UNS. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 40 of 42
  • 100. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Deconvolution on plant samples Figure 23: Comparison of observed and restored lateral section of convallaria majalis. Lateral sampling is 53.6nm and axial sampling is 129.4nm. The sample was observed with a Zeiss LSM 510TMmicroscope, and 1.3NA oil immersion objective. c INRA, Ariana-INRIA/CNRS/UNS. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 41 of 42
  • 101. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Conclusions and discussions P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
  • 102. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Conclusions and discussions ◮ Developed Bayesian framework for blind deconvolution for thin specimens, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
  • 103. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Conclusions and discussions ◮ Developed Bayesian framework for blind deconvolution for thin specimens, ◮ experiments on simulated data, microsphere images and real data show promising results, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
  • 104. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Conclusions and discussions ◮ Developed Bayesian framework for blind deconvolution for thin specimens, ◮ experiments on simulated data, microsphere images and real data show promising results, ◮ PSF model chosen initially is a 3D separable Gaussian function for thin specimens, P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42
  • 105. ThinBlinDe P. Panka- jakshan, L. Blanc- Féraud, J. Zerubia Road map Introduction OSM Limitations ThinBlinDe Break the limit Blind deconvolution Results Phantom data Microspheres Plant samples Conclusions and discussions ◮ Developed Bayesian framework for blind deconvolution for thin specimens, ◮ experiments on simulated data, microsphere images and real data show promising results, ◮ PSF model chosen initially is a 3D separable Gaussian function for thin specimens, ◮ Total variation regularization functional sometimes leads to loss in contrast in restoration but there are methods to overcome this. P. Pankajakshan, L. Blanc-Féraud, J. Zerubia October 26, 2010 page 42 of 42