TeoríA De Implicaciones
Upcoming SlideShare
Loading in...5
×
 

TeoríA De Implicaciones

on

  • 3,233 reproducciones

implicaciones y bibliografia final del curso

implicaciones y bibliografia final del curso

Statistics

reproducciones

Total Views
3,233
Views on SlideShare
3,223
Embed Views
10

Actions

Likes
0
Downloads
22
Comments
0

1 insertado 10

http://www.slideshare.net 10

Accesibilidad

Categorias

Detalles de carga

Uploaded via as Microsoft Word

Derechos de uso

© Todos los derechos reservados

Report content

Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Tu mensaje aparecerá aquí
    Processing...
Publicar comentario
Edite su comentario

    TeoríA De Implicaciones TeoríA De Implicaciones Presentation Transcript

    • IMPLICACIONES NOTABLES 1. Modus Ponens (MP) Ej: Demostrar la Absorción: • Aplique el MDN Bibliografía de Lógica: [(p→q)∧p]→q [p∧(q∨p)]↔p 1) CAMACHO, Luis. (2003) Lógica 2. Modus Tollens (MT) I. 1. (p∨q)→r XI.1.p→(q∨r) Simbólica Básica. México: Limusa. 2) CHÁVEZ, Alejandro. (2000) [(p→q)∧∼q]→∼p Recordemos la def. del ↔: 2. p∧s //∴p∧r 2. ∼q∧∼r 3. s→∼p //∴ p→s Introducción a la lógica. 3. Silogismo Disyuntivo (SD) {[p∧(q∨p)]→p} ∧ {p→[p∧(q∨p)]} 3) COPI, I. & C. COHEN. (2001) [(p∨q)∧∼p]→q Ahora desarrollemos ambos II. 1. r→∼s Introducción a la Lógica. 2. ∼p XII. 1. p∨q [(p∨q)∧∼q]→p razonamientos 4) DEAÑO, Alfredo. (2001) 3. q∨r 2. ∼q∧s 4. Simplificación (S) [p∧(q∨p)]→p p→[p∧(q∨p)] 3. p→r //∴ ∼q∧r Introducción a la Lógica Formal. 1. p∧(q∨p) // ∴ p 1. p // ∴ p∧(q∨p) 4. q↔p //∴∼s 5) GAMUT, L. T. F. (2006) (p∧q)→p 2. p 1S 2. p∨q 1A Introducción a la Lógica. (p∧q)→q 3. q∨p 2Conm III.1.(∼p∧∼q)↔∼r XIII. 1. p→∼q 6) GARCÍA, Óscar. (2007) Lógica. 5. Adición (A) 4. p∧(q∨p) 1,3 Adj 2. r 2. ∼q→∼s 7) LLANOS, Marino. (2003) Lógica p→(p∨q) 3. ∼p // ∴ q 3. (p→∼s) → ∼t Jurídica. Lima: Logos. 6. Adjunción (Adj.) Recomendaciones 4. r→t //∴∼r 8) MIRO QUESADA, F. (1969) Iniciación Lógica. [(p)∧(q)]→(p∧q) 1. Plantea estrategia. Pregúntate 9) PISCOYA, Luis. (1997) Lógica. 7. Silogismo Hipótetico (SH) ¿qué tendrías qué tener para IV. 1. p∨(q∧r) XIV. 1. p→q 10) PRIEST, G. (2006) Una brevísima 2. p→s 2. r→p introducción a la lógica. [(p→q)∧(q→r)]→(p→r) deducir la conclusión? ¿Cómo 3. ∼q //∴ ∼r 3. s→r //∴r 11) REA RAVELLO, Bernardo. (2003) 8. Dilema Constructivo Simple (DCS) obtengo eso que me falta? Introducción a la Lógica. [(p→q)∧(r→q)∧(p∨r)] → q 2. Si veo p∧q∧r pienso en XV. 1. ∼(∼p∧∼q) V. 1. p∨q 12) ROSALES, D. (1994) 9.Dilema Constructivo Complejo (DCC) separarlos con S. 2. ∼(p∨r) //∴q 2. p∨r Introducción a la Lógica. Lima: [(p→q)∧(r→s)∧(p∨r)] → (q∨s) 3. Si veo una ∨ debo buscar la ∼ 3. q→∼r //∴p Amaru. 10. Dilema Destructivo Simple (DDS) de una de sus proposiciones 13) TRELLES, O. & D. ROSALES. [(p→q)∧(p→r)∧(∼q∨∼r)] → ∼p VI. 1. q∧∼s XVI. 1. ∼p→q (2002) Introducción a la Lógica. 11. Dilema Destructivo Complejo (DDC) componentes para aplicar SD. 4. Si veo → debo buscar la 2.p→(r∧s) //∴∼p 2. s→∼p Bibliografía de Filosofía: [(p→q)∧(r→s)∧(∼q∨∼s)]→ (∼p∨∼r) afirmación del antecedente para 3. ∼q∧∼r //∴∼s 1) GAARDER, Jostein. (2001) El mundo de Sofía. Barcelona: Siruela. Método de Deducción Natural aplicar MP. VII. 1. (p∧q)→ r 2) GARCÍA, M. (1993) Historia de la (MDN) 5. Si veo → debo buscar la ∼ del 2. p∧s XVII. 1. p→q Filosofía. México: Alhambra 1. Simbolizar premisas, separadas, consecuente para aplicar MT 3) GUTHRIE, W. K. C. (1981) Historia 3. q //∴r 2. p∧r // ∴q usando la barra ( ). 6. Si debemos concluir una ∨ de la Filosofía Griega. 1er. Caso: Cuando la conc. está: recordar que si hallamos una de 4) KATAYAMA, O (2003) Introducción VIII. 1. p∧∼q XVIII.1. r∨s a. Se aumentan pasos bajo la barra a la Filosofía. Lima: URC. señalando los números y las sus componentes, su ∨ con la 2. p→∼r 2. s→p 3. ∼r //∴p 5) MUÑOZ, F. & R. BOBBIO (1997) equivalencias e implicaciones otra se deduce por A. 3.q∨∼s//∴∼(r∨s) Filosofía. Lima: UNMSM. notables usadas. 7. Si debemos concluir una → 6) OBANDO, & SOLIS. (2004) IX.1.p→∼(q→r) XIX. 1. ∼(r∨t) b. El último paso debe coincidir con la recordar que si tenemos la ∼ del Filosofía: Inicio y Camino, una visión crítica. conclusión buscada. 2. s∨q→r 2. s→r //∴ ∼s 7) PEÑALOZA RAMELLA, W. (1967) primero podemos deducir su ∨ 2do. Caso: Cuando la conc. no está 3. s //∴∼p Introducción a la Filosofía y Lógica. con la afirm. del segundo por A. a. Usando todas las premisas se 8) PISCOYA, Luis. (1999) Filosofía. intenta derivar libremente una de las 8. Si debemos concluir una → X.1.(p∨q)→(r∧s) XX. 1. q↔r 9) REALE, G. & D. ANTISERI. (1988) alternativas de la pregunta recordar que si tenemos la afirm. 2. ∼p→(t→∼t) 2. q∧p //∴r Historia del Pensamiento filosófico y científico. b. Notemos que todos los pasos del segundo podemos deducir su 3. ∼r // ∴ ∼t 10) SALAZAR BONDY, A. (1968) debajo de la barra, en tanto ∨ con la ∼ del primero por A. Introducción a la Filosofía. justificados, son conclusiones del 11) SANZ, Julio. (1987) Introducción argumento. a la Ciencia. Lima: Amaru.
    • IMPLICACIONES NOTABLES 12) GARCIA S. & D.ROSALES (1984) Filosofía y Lógica. Lima: Amaru