SlideShare a Scribd company logo
1 of 17
Download to read offline
Introduction to
                         Computer Graphics

                                           - Introduction -

                                            Marcus Magnor




Computer Graphics WS05/06 - Introduction




Overview
 • Today

        – Administrative stuff

        – Overview of computer graphics

        – Fundamentals of image formation


 • Next time

        – Ray tracing fundamentals




Computer Graphics WS05/06 - Introduction




                                                              1
General Information
 • Blockveranstaltung
        – 3+1
        – Tue, Wed, Th 11.30-13.00 h
        – Room M160
 • Assignments
        – Weekly
              • Th – Tue next week
        – practical assignments
              • Program your own ray tracer
 • Provisional web page
    – http://www.mpi-
      inf.mpg.de/departments/irg3/ws0506/cg/index.html
        – Lecture slides (PDF), assignments, other information



Computer Graphics WS05/06 - Introduction




People
 • Lecturer
        – Prof. Marcus Magnor
              • Room G29
              • E-mail: magnor@mpi-sb.mpg.de
 • Assistant
        – Andrei Lintu
              • At MPII
              • Tel. 0681/9325-527
              • E-mail: lintu@mpi-sb.mpg.de
 • Secretary
        – Dr. Marion Zeiz
              • Room G28
              • Tel. 391-2102




Computer Graphics WS05/06 - Introduction




                                                                 2
Weekly Assignments
 • Weekly assignments (Th to Tue)
        – Programming assignments
        – Submit your solution by following Tuesday
              • E-mail program code to Andrei Lintu
        – Feedback
              • Correct program code provided on web page
              • Discussion, Q&A via e-mail (chat ?)




Computer Graphics WS05/06 - Introduction




Programming Assignments
 • On computers in student pool
        – Standard ANSI C/C++
        – Must compile on any Linux system
 • Send in compile-alone source code
        – Standard libraries, library paths
        – Provide Makefile
        – Must compile and run on any Linux box
 • Basis for ray tracing competition




Computer Graphics WS05/06 - Introduction




                                                            3
Ray Tracing Competition
 At the end of semester
 • Technical part: implement additional techniques
        – Points for each implemented technique
              •   Bump mapping
              •   Shadow mapping
              •   Motion blur
              •   …
 • Artistic part: create your own ray-traced work of art
        – Picture must reflect all additionally implemented techniques
        – Awards for best pictures
        – Virtual exhibition on our web pages




Computer Graphics WS05/06 - Introduction




To pass the course
 • Programming assignments
        – Minimum of 30% per assignment sheet
        – Average of >50% of all assignments
 • Ray Tracing competition
        – Submit a picture created with your enhanced ray tracer
        – Create accompanying web page explaining your techniques etc.
        – Implement minimum number of technical points




Computer Graphics WS05/06 - Introduction




                                                                         4
Literature
        – Frank Nielsen, "Visual Computing", Charles River Media, 2005,
          EUR 55,90
        – Peter Shirley, "Realistic Ray-Tracing", AK Peters, 2003, EUR 40,00
        – Alan Watt, Mark Watt, "Advanced Animation and Rendering
          Techniques,“ Addison-Wesley, 1992, EUR 55,50

        – Peter Shirley et al., "Fundamentals of Computer Graphics", AK
          Peters, 2005, EUR 81,50
        – James Foley, Andries Van Dam, et al., "Computer Graphics:
          Principles and Practice", 2. Edition, Addison-Wesley, 1995, EUR
          81,50




Computer Graphics WS05/06 - Introduction




Course Syllabus
 • Fundamentals
        – light transport
 • Ray Tracing
        –   Basics
        –   Transformations and projections
        –   Acceleration strategies
        –   Signal processing, antialiasing
 • Advanced Topics
        – Human visual system
        – Perception
        – Global illumination




Computer Graphics WS05/06 - Introduction




                                                                               5
What is Computer Graphics ?
                                           Engineering
Photography                                                     Psychology
                                           CAD/CAM/CAE
               Rendering                                     Perception


                                            Graphics


            Simulation                                      Inverse Rendering
                                             Geometric
  Physics                                     Modeling              Vision
                                           Mathematics
Computer Graphics WS05/06 - Introduction




  Image Perception - Image Formation

                                        Scene Geometry
                                             Motion
  Models                              Surface Reflectance           Physics
                                       Scene Illumination
                                            Camera


                 Analysis                                   Synthesis



                                              Image


Computer Graphics WS05/06 - Introduction




                                                                                6
Historical Perspective
       • A short history of graphics:
             –   1950: MIT Whirlwind (CRT)
             –   1955: Sage, Radar with CRT and light pen
             –   1958: Willy Higinbotham “Tennis”
             –   1960: MIT „Spacewar“ on DEC PDP-1
             –   1963: Ivan Sutherland‘s „Sketchpad“ (CAD)
             –   1969: ACM Siggraph founded
             –   1968: Tektronix storage tube ($5-10.000)
             –   1968: Evans&Sutherland (flight simulators) founded
             –   1968: Douglas Engelbart: computer mouse
             –   1970: Xerox: GUI
             –   1971: Gourand shading
             –   1974: Z-buffer
             –   1975: Phong model
             –   1979: Eurographics founded
             –   1980: Whitted: Ray tracing
Computer Graphics WS05/06 - Introduction




Historical Perspective
       • A short history of graphics (Cont.):
             –   1981: Apollo Workstation, IBM PC
             –   1982: Silicon Graphics (SGI) founded
             –   1984: X Window System
             –   1984: First Silicon Graphics Workstations (IRIS GL)
             –   Until mid/end of 1990s: Dominance of SGI in the high end
                   • HW: RealityEngine, InfiniteReality, RealityMonster, ...
                   • SW: OpenGL, OpenInventor, Performer, Digital Media Libs, ...
             – End of 1990s:
               Low- to mid range taken over by „PCs“ (Nvidia, ATI, ...)
                   • HW: Fast development cycles, Graphics-on-a-chip, ...
                   • SW: Direct 3D & OpenGL, computer games
             – Today
                   • Programmable graphics hardware, Cg


Computer Graphics WS05/06 - Introduction




                                                                                    7
Visual Entertainment
                                                              1995 1996 1997 1998 1999 2000 2001 2002


(1) No. released Movies                                       280           287          286              287        327          373       338   321
(Germany)

(2) Movie Theater Revenue                                     605           672          750              818        808          824       987
(Germany, in Mio. Euro)

(3) No. released Computer                                     1107 1039 823                               696        849          932       949   1211
Games (Germany)

(4) Game Industry Revenue                                                                                 1479 1572 1617 1527
(Germany , in Mio. Euro)



(1) Quelle: SPIO, Spitzenorganisation der Filmwirtschaft, Wiesbaden
(2) Quelle: FFA, Filmförderanstalt, Berlin
(3) Quelle: Titelprüfung der USK für Computerspiele (aller Systeme), entspricht rd. 95% aller auf dem dt. Markt publizierten Produktionen
(4) Quelle: Gfk, Gesellschaft für Konsumforschung; zitiert nach VUD, Verband Unterhaltssoftware Dtld. e.V.


 Computer Graphics WS05/06 - Introduction




  Siggraph Publications 2001-2005
                                                                      Siggraph 2001-2005




                             300




                             250




                             200




                                        271
              # publications 150




                             100




                               50

                                                                                                                11        10           7
                                                    27         26          26          22          16
                                0
                                      USA       Germany      Canada       China     France       Israel     Japan       Suisse       UK




 Computer Graphics WS05/06 - Introduction




                                                                                                                                                         8
Computer Graphics Industry
  •   Graphics hardware                      •   Interactive entertainment
        – NVidia (USA)                            – Electronic Arts (USA)
        – ATI (Canada)                                 • HEADQUARTERS: Redwood
                                                         City, California
  •   Software research
                                                       • REVENUES: $3.1 billion for
        – Microsoft (USA, UK, China)
                                                         fiscal 2005
  •   Animation software                               • EMPLOYEES: 6,100
        – Alias (Canada)                                 worldwide
        – Avid/SoftImage (USA/Canada)             – Sony, Nintendo, Sega (Japan)
        – Autodesk (USA)                          – Ubi Soft (France)
                                             •   F/X
                                                  – Industrial Light & Magic (USA)
                                                  – Digital Domain (USA)
                                                  – Pixar (USA)




Computer Graphics WS05/06 - Introduction




Industrial CG Jobs in Germany
 • CAD, VR
        – Airbus (Hamburg)
        – Automotive industry
 Small- & mid-cap companies
 • Animation
        – http://www.rendering.de/nano.cms/Lightwave/Jobangebote
 • Game development
        – Bundesverband der interaktiven Unterhaltungssoftware
        – http://www.game-verband.de/
              • Ubi Soft (Düsseldorf)
              • Radon Labs, Zeroscale, SEK (Berlin)
              • Crytek (Coburg)
 • CG Research
        – “Mental Images”, “Mercury” (Berlin)
        – “Alias”, “Scanline” (Munich)


Computer Graphics WS05/06 - Introduction




                                                                                      9
Summary
 • Computer Graphics
        – Rendering, modeling, visualization, animation, imaging, …
 • Young, dynamic area
        – Progress driven by research & technology
 • Big industry
        – >> interactive entertainment, special effects
 • Interdisciplinary field
        – Mathematics, physics, engineering, psychology, art, entertainment,
          …




Computer Graphics WS05/06 - Introduction




                           Introduction to
                         Computer Graphics

                                  - Image Formation -

                                           Marcus Magnor




Computer Graphics WS05/06 - Introduction




                                                                               10
Motivation
              Photography                              Computer Graphics




           • Easy acquisition                     • Time-consuming scene modeling
           • Fast display                         • Computation-intensive rendering
           • Natural impression                   • Artifical appearance

Computer Graphics WS05/06 - Introduction




Image Formation


                                              Sensor        Transfer/
                                                            Storage

                       Light propagation


                                           Imaging optics
Light/Object interaction




Computer Graphics WS05/06 - Introduction




                                                                                      11
Perception of Light
                                                                                       dΩ
                            r dΩ'                                                                    dA




                 f                                        l
photons / second = flux = energy / time = power                                  Φ              rod detects flux
angular extend of rod = resolution (≈ 1 arc minute^2)                                           dΩ
projected rod size = area                                                                       dA ≈ l 2 ⋅ dΩ
Angular extend of pupil aperture (r ≤ 4 mm) = solid angle                                       dΩ ' ≈ π ⋅ r 2 / l 2

flux proportional to area and solid angle                                                       Φ ∝ dΩ'⋅dA
                                                                                                        Φ
radiance = flux per unit area per unit solid angle                                              L=
                                                                                                      dΩ'⋅dA
                                         The eye detects radiance
 Computer Graphics WS05/06 - Introduction




 Radiance in Space
                                   dΩ2                                         dΩ1
                       L1                                                                  L2

                                                          l
                             dA1                                                     dA2

        Flux leaving surface 1 must be equal to flux arriving on surface 2
                                            L1 ⋅ dΩ1 ⋅ dA1 = L2 ⋅ dΩ 2 ⋅ dA2
                                                    dA2          dA1
From geometry follows                       dΩ1 =             dΩ 2 =
                                                     l2           l2
                                                                     dA ⋅ dA
Ray throughput                        T = dΩ1 ⋅ dA1 = dΩ 2 ⋅ dA2 = 1 2 2
                                                                       l
                                                      L1 = L2

                       The radiance in the direction of a light ray
                     remains constant as it propagates along the ray

 Computer Graphics WS05/06 - Introduction




                                                                                                                       12
Brightness Perception
                                                                            dΩ
                        r dΩ'                                                         dA
                                                                                      dA'


                f                             l
                                                                         r2
                        As l increases:    Φ 0 ∝ dA ⋅ dΩ' = l 2 dΩ ⋅ π      = const
                                                                         l2

                      • dA’ > dA : photon flux per rod stays constant
                      • dA’ < dA : photon flux per rod decreases

Where does the Sun turn into a star ?
− Depends on apparent Sun disc size on retina
    Photon flux per rod stays the same on Mercury, Earth or Neptune
    Photon flux per rod decreases when dΩ’ < 1 arc minute (beyond Neptune)
Computer Graphics WS05/06 - Introduction




Light – Object Interaction




                        Light/Object interaction




Computer Graphics WS05/06 - Introduction




                                                                                            13
Reflectance
 •     Reflectance may vary with
        –   Illumination angle
        –   Viewing angle
        –   Wavelength
        –   (Polarization)
 •     Variations due to
        –   Absorption                                                          




                                                                    Aluminium; =2.0 m       ¡




        –   Surface micro-geometry
        –   Index of refraction / dielectric constant
        –   Scattering

                                                                                    




                                                                    Aluminium; =0.5 m           ¡




                                                                                        




                                                                    Magnesium; =0.5 m               ¡




Computer Graphics WS05/06 - Introduction




Surface Radiance
 • Visible surface radiance                         L ( x, ω o )          ωo
        – Surface position                          x
                                                                                                        ωi
        – Outgoing direction                        ωo                                     θi
        – Incoming illumination                     ωi
          direction
                                                    Le ( x, ω o )
                                                                                       x
 • Self-emission
 • Reflected light                           Li ( x, ω i )
        – Incoming radiance from all directions
        – Direction-dependent reflectance f r ( x, ω i → ω o )




     Lo ( x, ω o ) = Le ( x, ω o ) + f r ( x, ω i → ω o ) Li ( x, ω i ) cos θ i d ω i
                                           Ω
Computer Graphics WS05/06 - Introduction




                                                                                                             14
Bidirectional Reflectance Distribution Function

   •       BRDF describes surface reflection for light incident from
           direction ( , ) observed from direction ( i, i)
                             ¤£ ¢ 
                            ¡ ¡                                       £
   •       Bidirectional
           – depends on two directions (4-D function)
   •       Distribution function
   •       Unit [1/sr]




                            Lo (ω o )
       f r (ω o , ω i ) =
                            dEi (ω i )
                                  Lo (ω o )
                      =
                            Li (ω i ) cos θ i d ω i



Computer Graphics WS05/06 - Introduction




BRDF Properties
       •    Helmholtz reciprocity principle
             – BRDF remains unchanged if incident and reflected directions are
               interchanged


            ρ bd (θ o , ϕ o ,θ , ϕ ) = ρ bd (θ , ϕ ,θ o , ϕ o )

       •    Smooth surface: isotropic BRDF
             – reflectivity independent of rotation around surface normal
             – BRDF has only 3 instead of 4 degrees of freedom




                             ρ bd (θ o ,θ , ϕ o − ϕ )




Computer Graphics WS05/06 - Introduction




                                                                                 15
BRDF Properties
 •    Characteristics
        – BRDF units [sr--1]
              • not intuitive
        – Range of values:
              • from 0 (absorption) to
              • ∞ (reflection, -function)
                                   




        – Energy conservation law
              • No self-emission
              • Possible absorption

                         ρ bd (θ o , φo ,θ , ϕ ) cos θ o dω o ≤ 1 ∀ θ , ϕ
                     Ω
        – Reflection only at the point of entry (xi = xo)
              • No subsurface scattering




Computer Graphics WS05/06 - Introduction




BRDF Measurement
 • Gonio-Reflectometer
 • BRDF measurement
        – point light source position (θ,ϕ)
        – light detector position (θo ,ϕo)
 • 4 degrees of freedom
 • BRDF representation
        – m incident direction samples (θ,ϕ)
        – n outgoing direction samples (θo ,ϕo)
        – m*n reflectance values




                                                                            Stanford light gantry

Computer Graphics WS05/06 - Introduction




                                                                                                    16
Wrap-Up
     • What you perceive is radiance
     • Different objects reflect light differently:
       Bidirectional Reflectance Distribution Function (BRDF)
     • Light can be absorbed, scattered, bent, …




Computer Graphics WS05/06 - Introduction




                                                                17

More Related Content

Similar to Vg

How to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIMHow to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIMSafe Software
 
Lecture 1 computer vision introduction
Lecture 1 computer vision introductionLecture 1 computer vision introduction
Lecture 1 computer vision introductioncairo university
 
unit1_updated.pptx
unit1_updated.pptxunit1_updated.pptx
unit1_updated.pptxRYZEN14
 
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro..."High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...Edge AI and Vision Alliance
 
Itcs 4120 introduction (c)
Itcs 4120 introduction (c)Itcs 4120 introduction (c)
Itcs 4120 introduction (c)yaminigoyal
 
Advanced Computer Aided Design ACAD
Advanced Computer Aided Design ACADAdvanced Computer Aided Design ACAD
Advanced Computer Aided Design ACADJordi Torner
 
10cs65-cgnotes
10cs65-cgnotes10cs65-cgnotes
10cs65-cgnotesmushtaqdm
 
Lec-1 Computer Graphics.ppt
Lec-1 Computer Graphics.pptLec-1 Computer Graphics.ppt
Lec-1 Computer Graphics.pptMNSUAM
 
Graphics1 introduction
Graphics1 introductionGraphics1 introduction
Graphics1 introductionlokesh503
 
Computer graphics Applications and System Overview
Computer graphics Applications and System OverviewComputer graphics Applications and System Overview
Computer graphics Applications and System OverviewRAJARATNAS
 
Fcv core szeliski_zisserman
Fcv core szeliski_zissermanFcv core szeliski_zisserman
Fcv core szeliski_zissermanzukun
 
BEC007 -Digital image processing.pdf
BEC007  -Digital image processing.pdfBEC007  -Digital image processing.pdf
BEC007 -Digital image processing.pdfgopikahari7
 

Similar to Vg (20)

unit-1-intro
 unit-1-intro unit-1-intro
unit-1-intro
 
lecture1 introduction to computer graphics(Computer graphics tutorials)
lecture1 introduction to computer graphics(Computer graphics tutorials)lecture1 introduction to computer graphics(Computer graphics tutorials)
lecture1 introduction to computer graphics(Computer graphics tutorials)
 
How to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIMHow to Create 3D Mashups by Integrating GIS, CAD, and BIM
How to Create 3D Mashups by Integrating GIS, CAD, and BIM
 
azw
azwazw
azw
 
AJ-ch01.intro Zeid.ppt
AJ-ch01.intro Zeid.pptAJ-ch01.intro Zeid.ppt
AJ-ch01.intro Zeid.ppt
 
Introduction
IntroductionIntroduction
Introduction
 
Lecture 1 computer vision introduction
Lecture 1 computer vision introductionLecture 1 computer vision introduction
Lecture 1 computer vision introduction
 
unit1_updated.pptx
unit1_updated.pptxunit1_updated.pptx
unit1_updated.pptx
 
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro..."High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
 
Itcs 4120 introduction (c)
Itcs 4120 introduction (c)Itcs 4120 introduction (c)
Itcs 4120 introduction (c)
 
Advanced Computer Aided Design ACAD
Advanced Computer Aided Design ACADAdvanced Computer Aided Design ACAD
Advanced Computer Aided Design ACAD
 
10cs65-cgnotes
10cs65-cgnotes10cs65-cgnotes
10cs65-cgnotes
 
Lec-1 Computer Graphics.ppt
Lec-1 Computer Graphics.pptLec-1 Computer Graphics.ppt
Lec-1 Computer Graphics.ppt
 
Lectures1 2
Lectures1 2Lectures1 2
Lectures1 2
 
Graphics1 introduction
Graphics1 introductionGraphics1 introduction
Graphics1 introduction
 
Computer graphics Applications and System Overview
Computer graphics Applications and System OverviewComputer graphics Applications and System Overview
Computer graphics Applications and System Overview
 
Fcv core szeliski_zisserman
Fcv core szeliski_zissermanFcv core szeliski_zisserman
Fcv core szeliski_zisserman
 
PPT_1.pptx
PPT_1.pptxPPT_1.pptx
PPT_1.pptx
 
BEC007 -Digital image processing.pdf
BEC007  -Digital image processing.pdfBEC007  -Digital image processing.pdf
BEC007 -Digital image processing.pdf
 
Computer graphics by bahadar sher
Computer graphics by bahadar sherComputer graphics by bahadar sher
Computer graphics by bahadar sher
 

Vg

  • 1. Introduction to Computer Graphics - Introduction - Marcus Magnor Computer Graphics WS05/06 - Introduction Overview • Today – Administrative stuff – Overview of computer graphics – Fundamentals of image formation • Next time – Ray tracing fundamentals Computer Graphics WS05/06 - Introduction 1
  • 2. General Information • Blockveranstaltung – 3+1 – Tue, Wed, Th 11.30-13.00 h – Room M160 • Assignments – Weekly • Th – Tue next week – practical assignments • Program your own ray tracer • Provisional web page – http://www.mpi- inf.mpg.de/departments/irg3/ws0506/cg/index.html – Lecture slides (PDF), assignments, other information Computer Graphics WS05/06 - Introduction People • Lecturer – Prof. Marcus Magnor • Room G29 • E-mail: magnor@mpi-sb.mpg.de • Assistant – Andrei Lintu • At MPII • Tel. 0681/9325-527 • E-mail: lintu@mpi-sb.mpg.de • Secretary – Dr. Marion Zeiz • Room G28 • Tel. 391-2102 Computer Graphics WS05/06 - Introduction 2
  • 3. Weekly Assignments • Weekly assignments (Th to Tue) – Programming assignments – Submit your solution by following Tuesday • E-mail program code to Andrei Lintu – Feedback • Correct program code provided on web page • Discussion, Q&A via e-mail (chat ?) Computer Graphics WS05/06 - Introduction Programming Assignments • On computers in student pool – Standard ANSI C/C++ – Must compile on any Linux system • Send in compile-alone source code – Standard libraries, library paths – Provide Makefile – Must compile and run on any Linux box • Basis for ray tracing competition Computer Graphics WS05/06 - Introduction 3
  • 4. Ray Tracing Competition At the end of semester • Technical part: implement additional techniques – Points for each implemented technique • Bump mapping • Shadow mapping • Motion blur • … • Artistic part: create your own ray-traced work of art – Picture must reflect all additionally implemented techniques – Awards for best pictures – Virtual exhibition on our web pages Computer Graphics WS05/06 - Introduction To pass the course • Programming assignments – Minimum of 30% per assignment sheet – Average of >50% of all assignments • Ray Tracing competition – Submit a picture created with your enhanced ray tracer – Create accompanying web page explaining your techniques etc. – Implement minimum number of technical points Computer Graphics WS05/06 - Introduction 4
  • 5. Literature – Frank Nielsen, "Visual Computing", Charles River Media, 2005, EUR 55,90 – Peter Shirley, "Realistic Ray-Tracing", AK Peters, 2003, EUR 40,00 – Alan Watt, Mark Watt, "Advanced Animation and Rendering Techniques,“ Addison-Wesley, 1992, EUR 55,50 – Peter Shirley et al., "Fundamentals of Computer Graphics", AK Peters, 2005, EUR 81,50 – James Foley, Andries Van Dam, et al., "Computer Graphics: Principles and Practice", 2. Edition, Addison-Wesley, 1995, EUR 81,50 Computer Graphics WS05/06 - Introduction Course Syllabus • Fundamentals – light transport • Ray Tracing – Basics – Transformations and projections – Acceleration strategies – Signal processing, antialiasing • Advanced Topics – Human visual system – Perception – Global illumination Computer Graphics WS05/06 - Introduction 5
  • 6. What is Computer Graphics ? Engineering Photography Psychology CAD/CAM/CAE Rendering Perception Graphics Simulation Inverse Rendering Geometric Physics Modeling Vision Mathematics Computer Graphics WS05/06 - Introduction Image Perception - Image Formation Scene Geometry Motion Models Surface Reflectance Physics Scene Illumination Camera Analysis Synthesis Image Computer Graphics WS05/06 - Introduction 6
  • 7. Historical Perspective • A short history of graphics: – 1950: MIT Whirlwind (CRT) – 1955: Sage, Radar with CRT and light pen – 1958: Willy Higinbotham “Tennis” – 1960: MIT „Spacewar“ on DEC PDP-1 – 1963: Ivan Sutherland‘s „Sketchpad“ (CAD) – 1969: ACM Siggraph founded – 1968: Tektronix storage tube ($5-10.000) – 1968: Evans&Sutherland (flight simulators) founded – 1968: Douglas Engelbart: computer mouse – 1970: Xerox: GUI – 1971: Gourand shading – 1974: Z-buffer – 1975: Phong model – 1979: Eurographics founded – 1980: Whitted: Ray tracing Computer Graphics WS05/06 - Introduction Historical Perspective • A short history of graphics (Cont.): – 1981: Apollo Workstation, IBM PC – 1982: Silicon Graphics (SGI) founded – 1984: X Window System – 1984: First Silicon Graphics Workstations (IRIS GL) – Until mid/end of 1990s: Dominance of SGI in the high end • HW: RealityEngine, InfiniteReality, RealityMonster, ... • SW: OpenGL, OpenInventor, Performer, Digital Media Libs, ... – End of 1990s: Low- to mid range taken over by „PCs“ (Nvidia, ATI, ...) • HW: Fast development cycles, Graphics-on-a-chip, ... • SW: Direct 3D & OpenGL, computer games – Today • Programmable graphics hardware, Cg Computer Graphics WS05/06 - Introduction 7
  • 8. Visual Entertainment 1995 1996 1997 1998 1999 2000 2001 2002 (1) No. released Movies 280 287 286 287 327 373 338 321 (Germany) (2) Movie Theater Revenue 605 672 750 818 808 824 987 (Germany, in Mio. Euro) (3) No. released Computer 1107 1039 823 696 849 932 949 1211 Games (Germany) (4) Game Industry Revenue 1479 1572 1617 1527 (Germany , in Mio. Euro) (1) Quelle: SPIO, Spitzenorganisation der Filmwirtschaft, Wiesbaden (2) Quelle: FFA, Filmförderanstalt, Berlin (3) Quelle: Titelprüfung der USK für Computerspiele (aller Systeme), entspricht rd. 95% aller auf dem dt. Markt publizierten Produktionen (4) Quelle: Gfk, Gesellschaft für Konsumforschung; zitiert nach VUD, Verband Unterhaltssoftware Dtld. e.V. Computer Graphics WS05/06 - Introduction Siggraph Publications 2001-2005 Siggraph 2001-2005 300 250 200 271 # publications 150 100 50 11 10 7 27 26 26 22 16 0 USA Germany Canada China France Israel Japan Suisse UK Computer Graphics WS05/06 - Introduction 8
  • 9. Computer Graphics Industry • Graphics hardware • Interactive entertainment – NVidia (USA) – Electronic Arts (USA) – ATI (Canada) • HEADQUARTERS: Redwood City, California • Software research • REVENUES: $3.1 billion for – Microsoft (USA, UK, China) fiscal 2005 • Animation software • EMPLOYEES: 6,100 – Alias (Canada) worldwide – Avid/SoftImage (USA/Canada) – Sony, Nintendo, Sega (Japan) – Autodesk (USA) – Ubi Soft (France) • F/X – Industrial Light & Magic (USA) – Digital Domain (USA) – Pixar (USA) Computer Graphics WS05/06 - Introduction Industrial CG Jobs in Germany • CAD, VR – Airbus (Hamburg) – Automotive industry Small- & mid-cap companies • Animation – http://www.rendering.de/nano.cms/Lightwave/Jobangebote • Game development – Bundesverband der interaktiven Unterhaltungssoftware – http://www.game-verband.de/ • Ubi Soft (Düsseldorf) • Radon Labs, Zeroscale, SEK (Berlin) • Crytek (Coburg) • CG Research – “Mental Images”, “Mercury” (Berlin) – “Alias”, “Scanline” (Munich) Computer Graphics WS05/06 - Introduction 9
  • 10. Summary • Computer Graphics – Rendering, modeling, visualization, animation, imaging, … • Young, dynamic area – Progress driven by research & technology • Big industry – >> interactive entertainment, special effects • Interdisciplinary field – Mathematics, physics, engineering, psychology, art, entertainment, … Computer Graphics WS05/06 - Introduction Introduction to Computer Graphics - Image Formation - Marcus Magnor Computer Graphics WS05/06 - Introduction 10
  • 11. Motivation Photography Computer Graphics • Easy acquisition • Time-consuming scene modeling • Fast display • Computation-intensive rendering • Natural impression • Artifical appearance Computer Graphics WS05/06 - Introduction Image Formation Sensor Transfer/ Storage Light propagation Imaging optics Light/Object interaction Computer Graphics WS05/06 - Introduction 11
  • 12. Perception of Light dΩ r dΩ' dA f l photons / second = flux = energy / time = power Φ rod detects flux angular extend of rod = resolution (≈ 1 arc minute^2) dΩ projected rod size = area dA ≈ l 2 ⋅ dΩ Angular extend of pupil aperture (r ≤ 4 mm) = solid angle dΩ ' ≈ π ⋅ r 2 / l 2 flux proportional to area and solid angle Φ ∝ dΩ'⋅dA Φ radiance = flux per unit area per unit solid angle L= dΩ'⋅dA The eye detects radiance Computer Graphics WS05/06 - Introduction Radiance in Space dΩ2 dΩ1 L1 L2 l dA1 dA2 Flux leaving surface 1 must be equal to flux arriving on surface 2 L1 ⋅ dΩ1 ⋅ dA1 = L2 ⋅ dΩ 2 ⋅ dA2 dA2 dA1 From geometry follows dΩ1 = dΩ 2 = l2 l2 dA ⋅ dA Ray throughput T = dΩ1 ⋅ dA1 = dΩ 2 ⋅ dA2 = 1 2 2 l L1 = L2 The radiance in the direction of a light ray remains constant as it propagates along the ray Computer Graphics WS05/06 - Introduction 12
  • 13. Brightness Perception dΩ r dΩ' dA dA' f l r2 As l increases: Φ 0 ∝ dA ⋅ dΩ' = l 2 dΩ ⋅ π = const l2 • dA’ > dA : photon flux per rod stays constant • dA’ < dA : photon flux per rod decreases Where does the Sun turn into a star ? − Depends on apparent Sun disc size on retina Photon flux per rod stays the same on Mercury, Earth or Neptune Photon flux per rod decreases when dΩ’ < 1 arc minute (beyond Neptune) Computer Graphics WS05/06 - Introduction Light – Object Interaction Light/Object interaction Computer Graphics WS05/06 - Introduction 13
  • 14. Reflectance • Reflectance may vary with – Illumination angle – Viewing angle – Wavelength – (Polarization) • Variations due to – Absorption   Aluminium; =2.0 m ¡ – Surface micro-geometry – Index of refraction / dielectric constant – Scattering   Aluminium; =0.5 m ¡   Magnesium; =0.5 m ¡ Computer Graphics WS05/06 - Introduction Surface Radiance • Visible surface radiance L ( x, ω o ) ωo – Surface position x ωi – Outgoing direction ωo θi – Incoming illumination ωi direction Le ( x, ω o ) x • Self-emission • Reflected light Li ( x, ω i ) – Incoming radiance from all directions – Direction-dependent reflectance f r ( x, ω i → ω o ) Lo ( x, ω o ) = Le ( x, ω o ) + f r ( x, ω i → ω o ) Li ( x, ω i ) cos θ i d ω i Ω Computer Graphics WS05/06 - Introduction 14
  • 15. Bidirectional Reflectance Distribution Function • BRDF describes surface reflection for light incident from direction ( , ) observed from direction ( i, i) ¤£ ¢  ¡ ¡   £ • Bidirectional – depends on two directions (4-D function) • Distribution function • Unit [1/sr] Lo (ω o ) f r (ω o , ω i ) = dEi (ω i ) Lo (ω o ) = Li (ω i ) cos θ i d ω i Computer Graphics WS05/06 - Introduction BRDF Properties • Helmholtz reciprocity principle – BRDF remains unchanged if incident and reflected directions are interchanged ρ bd (θ o , ϕ o ,θ , ϕ ) = ρ bd (θ , ϕ ,θ o , ϕ o ) • Smooth surface: isotropic BRDF – reflectivity independent of rotation around surface normal – BRDF has only 3 instead of 4 degrees of freedom ρ bd (θ o ,θ , ϕ o − ϕ ) Computer Graphics WS05/06 - Introduction 15
  • 16. BRDF Properties • Characteristics – BRDF units [sr--1] • not intuitive – Range of values: • from 0 (absorption) to • ∞ (reflection, -function)   – Energy conservation law • No self-emission • Possible absorption ρ bd (θ o , φo ,θ , ϕ ) cos θ o dω o ≤ 1 ∀ θ , ϕ Ω – Reflection only at the point of entry (xi = xo) • No subsurface scattering Computer Graphics WS05/06 - Introduction BRDF Measurement • Gonio-Reflectometer • BRDF measurement – point light source position (θ,ϕ) – light detector position (θo ,ϕo) • 4 degrees of freedom • BRDF representation – m incident direction samples (θ,ϕ) – n outgoing direction samples (θo ,ϕo) – m*n reflectance values Stanford light gantry Computer Graphics WS05/06 - Introduction 16
  • 17. Wrap-Up • What you perceive is radiance • Different objects reflect light differently: Bidirectional Reflectance Distribution Function (BRDF) • Light can be absorbed, scattered, bent, … Computer Graphics WS05/06 - Introduction 17