UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
UNIVERSIDAD NACIONAL DE CHIMBORAZO
Facultad de Ciencias de la Educación Humanas y Tecnologías
ESCUELA DE INFORMÁTICA EDUCA...
Próxima SlideShare
Cargando en…5
×

01 sistemas de numeraciòn y codificacion de datos

541 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
541
En SlideShare
0
De insertados
0
Número de insertados
13
Acciones
Compartido
0
Descargas
0
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

01 sistemas de numeraciòn y codificacion de datos

  1. 1. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. 1. Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender y usar datos que están en este formato binario, o sea, de dos estados. Los unos y los ceros se usan para representar los dos estados posibles de un componente electrónico de un computador. Se denominan dígitos binarios o bits. Los 1 representan el estado ENCENDIDO, y los 0 representan el estado APAGADO.El Código Americano Normalizado Para El Intercambio De Información (ASCII) es el código que se usa más a menudo para representar los datos alfanuméricos de un computador. ASCII usa dígitos binarios para representar los símbolos que se escriben con el teclado. Cuando los computadores envían estados de ENCENDIDO/APAGADO a través de una red, se usan ondas eléctricas, de luz o de radio para representar los unos y los ceros. Observe que cada carácter tiene un patrón exclusivo de ocho dígitos binarios (1 BYTE) asignados para representar al carácter. Para los computadores, que solo entienden ENCENDIDO ó APAGADO, los dígitos y los números binarios les resultan naturales. Los seres humanos usan el sistema numérico decimal, que es relativamente simple en comparación con las largas series de unos y ceros que usan los computadores. De modo que los números binarios del computador se deben convertir en números decimales. A veces, los números binarios se deben convertir en números Hexadecimales (hex), lo que reduce una larga cadena de dígitos binarios a unos pocos caracteres hexadecimales. Esto hace que sea más fácil recordar y trabajar con los números. American Standard Code for Information Interchange (ASCII) Publicado originalmente en 1963, se basa en ASCII de 7 bits para representar los caracteres Inglés y después de una serie de revisiones ahora es compatible con ASCII 95 caracteres imprimibles y 33 caracteres de control (un total de 2 7 = 128). ASCII es el vsersion americanizado de que se define por el CCITT en la norma ISO 646 y es conocido como el alfabeto internacional 5 (IA5). Los primeros 32 caracteres son caracteres de control y están representados por los códigos de 7 bits 000 0000 (carácter nulo) hasta 001 1111 (separador de unidades). El carácter de control 128a es "eliminar" representada por 111 1111. El resto de los personajes se pueden imprimir y la codificación ofrece servicios a las letras mayúsculas y minúsculas Inglés, por ejemplo 'd' de la carta está representada por 110 0100, mientras que su equivalente en mayúsculas está representada por 100 0100. A continuación la tabla del código ASCII estándar. Caracter Dec Bin Oct Hex 1 1 1 1 ☻ 2 10 2 2 ♥ 3 11 3 3 ♦ 4 100 4 4 ♣ 5 101 5 5 ♠ 6 110 6 6 • 7 111 7 7 ◘ 8 1000 10 8 ○ 9 1001 11 9
  2. 2. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. ◙ 10 1010 12 A ♂ 11 1011 13 B ♀ 12 1100 14 C ♪ 13 1101 15 D ♫ 14 1110 16 E 15 1111 17 F 16 10000 20 10 17 10001 21 11 18 10010 22 12 19 10011 23 13 20 10100 24 14 21 10101 25 15 22 10110 26 16 23 10111 27 17 24 11000 30 18 25 11001 31 19 26 11010 32 1A 27 11011 33 1B 28 11100 34 1C 29 11101 35 1D - 30 11110 36 1E 31 11111 37 1F 32 100000 40 20 ! 33 100001 41 21 " 34 100010 42 22 # 35 100011 43 23 $ 36 100100 44 24 % 37 100101 45 25 & 38 100110 46 26 ' 39 100111 47 27 ( 40 101000 50 28 ) 41 101001 51 29 * 42 101010 52 2A + 43 101011 53 2B , 44 101100 54 2C - 45 101101 55 2D . 46 101110 56 2E
  3. 3. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. / 47 101111 57 2F 0 48 110000 60 30 1 49 110001 61 31 2 50 110010 62 32 3 51 110011 63 33 4 52 110100 64 34 5 53 110101 65 35 6 54 110110 66 36 7 55 110111 67 37 8 56 111000 70 38 9 57 111001 71 39 : 58 111010 72 3A ; 59 111011 73 3B < 60 111100 74 3C = 61 111101 75 3D > 62 111110 76 3E ? 63 111111 77 3F @ 64 1000000 100 40 A 65 1000001 101 41 B 66 1000010 102 42 C 67 1000011 103 43 D 68 1000100 104 44 E 69 1000101 105 45 F 70 1000110 106 46 G 71 1000111 107 47 H 72 1001000 110 48 I 73 1001001 111 49 J 74 1001010 112 4A K 75 1001011 113 4B L 76 1001100 114 4C M 77 1001101 115 4D N 78 1001110 116 4E O 79 1001111 117 4F P 80 1010000 120 50 Q 81 1010001 121 51 R 82 1010010 122 52 S 83 1010011 123 53
  4. 4. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. T 84 1010100 124 54 U 85 1010101 125 55 V 86 1010110 126 56 W 87 1010111 127 57 X 88 1011000 130 58 Y 89 1011001 131 59 Z 90 1011010 132 5A [ 91 1011011 133 5B 92 1011100 134 5C ] 93 1011101 135 5D ^ 94 1011110 136 5E _ 95 1011111 137 5F ` 96 1100000 140 60 a 97 1100001 141 61 b 98 1100010 142 62 c 99 1100011 143 63 d 100 1100100 144 64 e 101 1100101 145 65 f 102 1100110 146 66 g 103 1100111 147 67 h 104 1101000 150 68 i 105 1101001 151 69 j 106 1101010 152 6A k 107 1101011 153 6B l 108 1101100 154 6C m 109 1101101 155 6D n 110 1101110 156 6E o 111 1101111 157 6F p 112 1110000 160 70 q 113 1110001 161 71 r 114 1110010 162 72 s 115 1110011 163 73 t 116 1110100 164 74 u 117 1110101 165 75 v 118 1110110 166 76 w 119 1110111 167 77 x 120 1111000 170 78
  5. 5. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. y 121 1111001 171 79 z 122 1111010 172 7A { 123 1111011 173 7B | 124 1111100 174 7C } 125 1111101 175 7D ~ 126 1111110 176 7E • 127 1111111 177 7F € 128 10000000 200 80 • 129 10000001 201 81 ‚ 130 10000010 202 82 ƒ 131 10000011 203 83 „ 132 10000100 204 84 … 133 10000101 205 85 † 134 10000110 206 86 ‡ 135 10000111 207 87 ˆ 136 10001000 210 88 ‰ 137 10001001 211 89 Š 138 10001010 212 8A ‹ 139 10001011 213 8B Œ 140 10001100 214 8C • 141 10001101 215 8D Ž 142 10001110 216 8E • 143 10001111 217 8F • 144 10010000 220 90 ‘ 145 10010001 221 91 ’ 146 10010010 222 92 “ 147 10010011 223 93 ” 148 10010100 224 94 • 149 10010101 225 95 – 150 10010110 226 96 — 151 10010111 227 97 ˜ 152 10011000 230 98 ™ 153 10011001 231 99 š 154 10011010 232 9A › 155 10011011 233 9B œ 156 10011100 234 9C • 157 10011101 235 9D
  6. 6. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. ž 158 10011110 236 9E Ÿ 159 10011111 237 9F 160 10100000 240 A0 ¡ 161 10100001 241 A1 ¢ 162 10100010 242 A2 £ 163 10100011 243 A3 ¤ 164 10100100 244 A4 ¥ 165 10100101 245 A5 ¦ 166 10100110 246 A6 § 167 10100111 247 A7 ¨ 168 10101000 250 A8 © 169 10101001 251 A9 ª 170 10101010 252 AA « 171 10101011 253 AB ¬ 172 10101100 254 AC 173 10101101 255 AD ® 174 10101110 256 AE ¯ 175 10101111 257 AF ° 176 10110000 260 B0 ± 177 10110001 261 B1 ² 178 10110010 262 B2 ³ 179 10110011 263 B3 ´ 180 10110100 264 B4 µ 181 10110101 265 B5 ¶ 182 10110110 266 B6 · 183 10110111 267 B7 ¸ 184 10111000 270 B8 ¹ 185 10111001 271 B9 º 186 10111010 272 BA » 187 10111011 273 BB ¼ 188 10111100 274 BC ½ 189 10111101 275 BD ¾ 190 10111110 276 BE ¿ 191 10111111 277 BF À 192 11000000 300 C0 Á 193 11000001 301 C1 Â 194 11000010 302 C2
  7. 7. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Ã 195 11000011 303 C3 Ä 196 11000100 304 C4 Å 197 11000101 305 C5 Æ 198 11000110 306 C6 Ç 199 11000111 307 C7 È 200 11001000 310 C8 É 201 11001001 311 C9 Ê 202 11001010 312 CA Ë 203 11001011 313 CB Ì 204 11001100 314 CC Í 205 11001101 315 CD Î 206 11001110 316 CE Ï 207 11001111 317 CF Ð 208 11010000 320 D0 Ñ 209 11010001 321 D1 Ò 210 11010010 322 D2 Ó 211 11010011 323 D3 Ô 212 11010100 324 D4 Õ 213 11010101 325 D5 Ö 214 11010110 326 D6 × 215 11010111 327 D7 Ø 216 11011000 330 D8 Ù 217 11011001 331 D9 Ú 218 11011010 332 DA Û 219 11011011 333 DB Ü 220 11011100 334 DC Ý 221 11011101 335 DD Þ 222 11011110 336 DE ß 223 11011111 337 DF à 224 11100000 340 E0 á 225 11100001 341 E1 â 226 11100010 342 E2 ã 227 11100011 343 E3 ä 228 11100100 344 E4 å 229 11100101 345 E5 æ 230 11100110 346 E6 ç 231 11100111 347 E7
  8. 8. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. è 232 11101000 350 E8 é 233 11101001 351 E9 ê 234 11101010 352 EA ë 235 11101011 353 EB ì 236 11101100 354 EC í 237 11101101 355 ED î 238 11101110 356 EE ï 239 11101111 357 EF ð 240 11110000 360 F0 ñ 241 11110001 361 F1 ò 242 11110010 362 F2 ó 243 11110011 363 F3 ô 244 11110100 364 F4 õ 245 11110101 365 F5 ö 246 11110110 366 F6 ÷ 247 11110111 367 F7 ø 248 11111000 370 F8 ù 249 11111001 371 F9 ú 250 11111010 372 FA û 251 11111011 373 FB ü 252 11111100 374 FC ý 253 11111101 375 FD þ 254 11111110 376 FE ÿ 255 11111111 377 FF Como se puede observar existen 255 caracteres expresables en ASCII,bien, para determinar cuántos bits necesito para representar esta cantidad de caracteres se utiliza la fórmula , fórmula en la cual al reemplazar el # de caracteres que en este caso es 255, tenemos: Y resolviendo la inecuación tenemos que n = 8. De aquí se desprende que el código ASCII utiliza 8 bits (1 byte) para representar cada caracter. 2. Bits y bytes Un número binario 0 puede estar representado por 0 voltios de electricidad (0 = 0 voltios). Un número binario 1 puede estar representado por +5 voltios de electricidad (1 = +5 voltios). caracteresden #2 2552n
  9. 9. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Los computadores están diseñados para usar agrupaciones de ocho bits. Esta agrupación de ocho bits se denomina byte. En un computador, un byte representa una sola ubicación de almacenamiento direccionable. Estas ubicaciones de almacenamiento representan un valor o un solo carácter de datos como, por ejemplo, un código ASCII. La cantidad total de combinaciones de los ocho interruptores que se encienden y se apagan es de 256. El intervalo de valores de un byte es de 0 a 255. De modo que un byte es un concepto importante que se debe entender si uno trabaja con computadores y redes. 3. Sistema numérico de Base 10 Los sistemas numéricos están compuestos por símbolos y por las normas utilizadas para interpretar estos símbolos. El sistema numérico que se usa más a menudo es el sistema numérico decimal, o de Base 10. El sistema numérico de Base 10 usa diez símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Estos símbolos se pueden combinar para representar todos los valores numéricos posibles.
  10. 10. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. El sistema numérico decimal se basa en potencias de 10. Cada posición de columna de un valor, pasando de derecha a izquierda, se multiplica por el número 10, que es el número de base, elevado a una potencia, que es el exponente. La potencia a la que se eleva ese 10 depende de su posición a la izquierda de la coma decimal. Cuando un número decimal se lee de derecha a izquierda, el primer número o el número que se ubica más a la derecha representa 100 (1), mientras que la segunda posición representa 101 (10 x 1= 10) La tercera posición representa 102 (10 x 10 =100). La séptima posición a la izquierda representa 106 (10 x 10 x 10 x 10 x 10 x 10 =1.000.000). Esto siempre funciona, sin importar la cantidad de columnas que tenga el número. Ejemplo: 2134 = (2x103) + (1x102) + (3x101) + (4x100) Hay un 4 en la posición correspondiente a las unidades, un 3 en la posición de las decenas, un 1 en la posición de las centenas y un 2 en la posición de los miles. Este ejemplo parece obvio cuando se usa el sistema numérico decimal. Es importante saber exactamente cómo funciona el sistema decimal, ya que este conocimiento permite entender los otros dos sistemas numéricos, el sistema numérico de Base 2 y el sistema numérico hexadecimal de Base 16. Estos sistemas usan los mismos métodos que el sistema decimal. 1.2.4 Sistema numérico de Base 2 Los computadores reconocen y procesan datos utilizando el sistema numérico binario, o de Base 2. El sistema numérico binario usa sólo dos símbolos, 0 y 1, en lugar de los diez símbolos que se utilizan en el sistema numérico decimal. La posición, o el lugar, que ocupa cada dígito de derecha a izquierda en el sistema numérico binario representa 2, el número de base, elevado a una potencia o exponente, comenzando desde 0. Estos valores posicionales son, de derecha a izquierda, 20, 21, 22, 23, 24, 25, 26 y 27, osea, 1, 2, 4, 8, 16, 32, 64 y 128, respectivamente.
  11. 11. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Ejemplo: 101102 = (1 x 24 = 16) + (0 x 23 = 0) + (1 x 22 = 4) + (1 x 21 = 2) + (0 x 20 = 0) = 22 (16 + 0 + 4 + 2 + 0) Al leer el número binario (101102) de izquierda a derecha, se nota que hay un 1 en la posición del 16, un 0 en la posición del 8, un 1 en la posición del 4, un 1 en la posición del 2 y un 0 en la posición del 1, que sumados dan el número decimal 22. 4. Conversión de números decimales en números binarios de 8 bits Existen varios métodos para convertir números decimales en números binarios. El diagrama de flujo que se muestra en la Figura describe uno de los métodos. El proceso intenta descubrir cuáles de los valores de la potencia de 2 se suman para obtener el número decimal que se desea convertir en un número binario. Este es uno de varios métodos que se pueden usar. Es mejor seleccionar un método y practicarlo hasta obtener siempre la respuesta correcta. Ejercicio de conversión Utilice el ejemplo siguiente para convertir el número decimal 168 en un número binario. • 128 entra en 168. De modo que el bit que se ubica más a la izquierda del número binario es un 1. 168 - 128 es igual a 40. • 64 no entra en 40. De modo que el segundo bit desde la izquierda es un 0. • 32 entra en 40. De modo que el tercer bit desde la izquierda es un 1. 40 - 32 es igual a 8. • 16 no entra en 8, de modo que el cuarto bit desde la izquierda es un 0. • 8 entra en 8. De modo que el quinto bit desde la izquierda es un 1. 8 - 8 es igual a 0. De modo que, los bits restantes hacia la derecha son todos ceros.
  12. 12. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Resultado: Decimal 168 = 10101000 Para adquirir más práctica, trate de convertir el decimal 255 en un número binario. La respuesta correcta es 11111111. 5. Conversión de números binarios de 8 bits en números decimales Existen dos formas básicas para convertir números binarios en decimales. El diagrama de flujo que se muestra en la Figura describe uno de estos métodos. También se pueden convertir los números binarios en decimales multiplicando los dígitos binarios por el número base del sistema, que es de Base 2, y elevados al exponente de su posición. Ejemplo: Convierta el número binario 01110000 en decimal. NOTA: La operación debe realizarse de derecha a izquierda. Recuerde que cualquier número elevado a la potencia 0 es igual a 1. Por lo tanto, 20 = 1 0 x 20 = 0 0 x 21 = 0 0 x 22 = 0 0 x 23 = 0 1 x 24 = 16 1 x 25 = 32 1 x 26 = 64 0 x 27= 0 =112 NOTA: La suma de las potencias de 2 que tienen un 1 en su posición 6. Representación en notación decimal separada por puntos de cuatro octetos de números binarios de 32 bits Actualmente, las direcciones que se asignan a los computadores en Internet son números binarios de 32 bits. Para facilitar el trabajo con estas direcciones, el número binario de 32 bits se divide en una serie de números decimales. Para hacer esto, se divide el número binario en cuatro grupos de ocho dígitos binarios. Luego, se convierte cada grupo de ocho bits, también denominados octetos, en su equivalente decimal. Haga esta conversión exactamente como se indica en la explicación de conversión de binario a decimal.
  13. 13. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Una vez que está escrito, el número binario completo se representa como cuatro grupos de dígitos decimales separados por puntos. Esto se denomina notación decimal separada por puntos y ofrece una manera compacta y fácil de recordar para referirse a las direcciones de 32 bits. Esta representación se usará frecuentemente con posterioridad durante este curso, de modo que es necesario comprenderla bien. Al realizar la conversión de binario a decimal separado por puntos, recuerde que cada grupo, que está formado por uno a tres dígitos decimales, representa un grupo de ocho dígitos binarios. Si el número decimal que se está convirtiendo es menor que 128, será necesario agregar ceros a la izquierda del número binario equivalente hasta que se alcance un total de ocho bits. 7. Hexadecimal El sistema numérico hexadecimal (hex) se usa frecuentemente cuando se trabaja con computadores porque se puede usar para representar números binarios de manera más legible. El computador ejecuta cálculos en números binarios, pero hay varios casos en los que el resultado del computador en números binarios se expresa en números hexadecimales para facilitar su lectura. La conversión de un número hexadecimal en binario, y de un número binario en hexadecimal, es una tarea común cuando se trabaja con el registro de configuración de los routers. Por ejemplo los routers de Cisco poseen un registro de configuración de 16 bits de longitud. El número binario de 16 bits se puede representar como un número hexadecimal de cuatro dígitos. Por ejemplo, 0010000100000010 en números Al igual que los sistemas binario y decimal, el sistema hexadecimal se basa en el uso de símbolos, potencias y posiciones. Los símbolos que se usan en hexadecimal son los números 0 - 9 y las letras A, B, C, D, E y F. Observe que todas las combinaciones posibles de cuatro dígitos binarios tienen sólo un símbolo hexadecimal, mientras que en el sistema decimal se utilizan dos. La razón por la que se utiliza el sistema hexadecimal es que dos dígitos hexadecimales, al contrario de lo que ocurre en el sistema decimal que requiere hasta cuatro dígitos, pueden representar eficientemente cualquier combinación de ocho dígitos binarios. Al permitir que se usen dos dígitos decimales para representar cuatro bits, el uso de decimales también puede provocar confusiones en la lectura de un valor. Por ejemplo, el número binario de ocho bits 01110011 sería 115 si se convirtiera en dígitos decimales. ¿Eso significa 11-5 ó 1-15? Si se usa 11-5, el número binario sería 10110101, que no es el número que se convirtió originalmente. Al usar hexadecimales, la conversión da como resultado 1F, que siempre se vuelve a convertir en 00011111. El sistema hexadecimal reduce un número de ocho bits a sólo dos dígitos hexadecimales. Esto reduce la confusión que se puede generar al leer largas cadenas de números binarios y la cantidad de espacio que exige la escritura de números binarios. Recuerde que "hexadecimal" a veces se abrevia como 0x, de modo que hexadecimal 5D también puede aparece escrito como "0x5D". Para realizar la conversión de números hexadecimales a binarios, simplemente se expande cada dígito hexadecimal a su equivalente binario de cuatro bits.
  14. 14. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y.
  15. 15. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. 8. Lógica booleana o binaria La lógica booleana se basa en circuitos digitales que aceptan uno o dos voltajes entrantes. Basándose en los voltajes de entrada, se genera el voltaje de salida. Para los fines de los computadores, la diferencia de voltaje se asocia con dos estados, activado (encendido) o desactivado (apagado). Estos dos estados, a su vez, se asocian como un 1 o un 0, que son los dos dígitos del sistema numérico binario. La lógica booleana es una lógica binaria que permite que se realice una comparación entre dos números y que se genere una elección en base a esos dos números. Estas elecciones son las operaciones lógicas AND, OR y NOT. Con la excepción de NOT, las operaciones booleanas tienen la misma función. Aceptan dos números, que pueden ser 1 ó 0, y generan un resultado basado en la regla de lógica. La operación NOT toma cualquier valor que se le presente, 0 ó 1, y lo invierte. El uno se transforma en cero, y el cero se transforma en uno. Recuerde que las compuertas lógicas son dispositivos electrónicos creados específicamente con este propósito. La regla de lógica que siguen es que cualquiera sea la entrada, el resultado será lo opuesto. La operación AND toma dos valores de entrada. Si ambos valores son 1, la compuerta lógica genera un resultado de 1. De lo contrario, genera un 0 como resultado. Hay cuatro combinaciones de valores de entrada. Tres de estas combinaciones generan un 0, y sólo una combinación genera un 1.
  16. 16. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. La operación OR también toma dos valores de entrada. Si por lo menos uno de los valores de entrada es 1, el valor del resultado es 1. Nuevamente, hay cuatro combinaciones de valores de entrada. Esta vez tres combinaciones generan un resultado de 1 y la cuarta genera un resultado de 0. Las dos operaciones de networking que utilizan la lógica booleana son las máscaras wildcard y de subred. Las operaciones de máscara brindan una manera de filtrar direcciones. Las direcciones identifican a los dispositivos de la red y permiten que las direcciones se agrupen o sean controladas por otras operaciones de red. 9. Codificación de datos Tanto la información analógica como la digital pueden ser codificadas mediante señales analógicas o digitales. La elección de un tipo particular de codificación dependerá de loo requisitos exigidos, del medio de transmisión, así como de los recursos disponibles para la telecomunicación. A) DATOS DIGITALES, SEÑALES DIGITALES: la forma más sencilla de codificar digitalmente datos digitales es asignar un nivel de tensión al uno binario y otro distinto para el cero. Para mejorar las prestaciones es posible utilizar otros códigos distintos al anterior, alternado el espectro dela señal y proporcionando capacidad de sincronización. Para el transporte de los bits digitales de datos a través de ondas digitales portadoras existen varias técnicas, el problema de estas técnicas ha sido siempre la sincronía de la señal, pero yendo desde la más deficiente hasta la más eficiente en este tema, las más comunes son: Tipos de Codificación • Existen varios tipos de codificaciones, entre ellas: – Non Return to Zero (NRZ) • NRZ ó NRZL. • NRZI. – Binario multinivel • Bipolar AMI. • Pseudoternario. – Códigos bifase • Manchester. • Manchester diferencial. – Técnicas de “Scrambling” • B8ZS. • HDB3. Ahora detallaremos las más comunes: NRZL: Utiliza dos voltajes. Ej.: (0,5V) y (0V) Cada número uno binario se codifica con un voltaje (0,5V) Cada cero binario se codifica con el otro voltaje (0V).
  17. 17. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. NRZ-I: Utiliza dos voltajes. Ej.: (0,5V) y (0V) Cada uno binario se codifica mediante el cambio de voltaje al inicio del bit. Si el bit a codificar es un cero, no existe cambio de voltaje al inicio del bit. Bipolar AMI: utiliza tres voltajes. Ej.: (0,5V), (0V) y (-0,5V) Cada uno binario se codifica tomando los valores polares es decir 0,5V y -0,5V de manera alternada. El cero binario se lo codifica con un voltaje de 0V. Pseudoternario: utiliza tres voltajes. Ej.: (0,5V), (0V) y (-0,5V): Cada cero binario se codifica tomando los valores polares es decir 0,5V y -0,5V de manera alternada. El uno binario se lo codifica con un voltaje de 0V. Manchester: La transición sirve como procedimiento de sincronización y de transmisión de datos, Es la técnica utilizada por IEEE 802.3 (LAN Ethernet con bus CSMA/CD). 1: Transición de bajo a alto en mitad del intervalo 0: Transición de alto a bajo en mitad del intervalo
  18. 18. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Manchester Diferencial: Es un esquema de codificación diferencial en el cual la transmisión a mitad del intervalo se utiliza tan sólo para proporcionar sincronización (siempre existe esta transición): 0: Transición al principio del intervalo del bit 1: Ausencia de transición al principio del intervalo del bit
  19. 19. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Ejemplo codificaciones
  20. 20. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. B) DATOS DIGITALES, SEÑALES ANALOGICAS: los módems convierten los datos digitales en señales analógicas de tal manera que se puedan transmitir a través de líneas analógicas (como las de la telefonía convencional), las técnicas básicas son el desplazamiento de amplitud (ASK, Amplitude Shift Keying), desplazamiento de frecuencia (FSK Frecuency Shift Keying), y desplazamiento de fase (PSK Phase Shift Keying). En todas ellas, para representar los datos digitales se modificaran uno o más parámetros característicos de la señal portadora. Para lo expuesto existen varias técnicas, en este curso se tratarán 3 de ellas: FSK, ASK y PSK, mismas que se describen a continuación: FSK - Desplazamiento de frecuencia FSK (Frequency-shift keying), es una modulación de frecuencia donde la señal moduladora (datos) es digital. Los dos valores binarios se representan con dos frecuencias diferentes (f1 y f2) próximas a la frecuencia de la señal portadora fp. Generalmente f1 y f2 corresponden a desplazamientos de igual magnitud pero en sentidos opuestos de la frecuencia de la señal portadora. El índice de modulación tiene gran incidencia en la señal modulada y determina los dos tipos fundamentales de FSK.
  21. 21. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. FSK de banda reducida o banda angosta Si el índice de modulación es pequeño, (esto significa que la variación de frecuencia de la señal modulada produce una diferencia de fase menor que ), se tiene modulación de frecuencia en banda angosta y su espectro de frecuencias es similar al de ASK. La única diferencia es que en este caso, la amplitud de las armónicas se ve afectada por la frecuencia o sea, se tiene una pequeña modulación de amplitud, superpuesta a la FSK. El ancho de banda necesario para FSK de banda angosta es igual al necesario para ASK. FSK de banda ancha Las ventajas de FSK sobre ASK se hacen notables cuando el índice de modulación es grande es decir: Con esta condición se aumenta la protección contra el ruido y las interferencias, obteniendo un comportamiento más eficiente respecto a ASK, puesto que en este caso la pequeña modulación de amplitud mencionada en el caso de FSK de banda angosta, se hace despreciable. La desventaja es que es necesario un mayor ancho de banda, debido a la mayor cantidad de bandas laterales (un par por cada armónica). ASK - Desplazamiento de amplitud ASK (Amplitudes-shift keying), es una modulación de amplitud donde la señal moduladora (datos) es digital. Los dos valores binarios (cero y uno) se representan con dos amplitudes diferentes y es usual que una de las dos amplitudes sea cero; es decir uno de los dígitos binarios se representa mediante la presencia de la portadora a amplitud constante, y el otro dígito se representa mediante la ausencia de la señal portadora. Si consideramos que la Amplitud viene dada por voltajes, en este caso la señal moduladora vale:
  22. 22. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. Como ya vimos la señal moduladora vm(t) al ser una señal digital toma únicamente los valores 0 y 1, con lo cual la señal modulada resulta La señal modulada puede representarse gráficamente de la siguiente manera PSK - Desplazamiento de fase PSK (Phase-shift keying), es una modulación de fase donde la señal moduladora (datos) es digital. Existen dos alternativas de modulación PSK: PSK convencional, donde se tienen en cuenta los desplazamientos de fase y PSK diferencial, en la cual se consideran las transiciones. Las consideraciones que siguen a continuación son válidas para ambos casos.
  23. 23. UNIVERSIDAD NACIONAL DE CHIMBORAZO Facultad de Ciencias de la Educación Humanas y Tecnologías ESCUELA DE INFORMÁTICA EDUCATIVA Comunicación de Datos y Redes Lic. Raúl Lozada Y. La comprensión de cómo se debe utilizar esta técnica de modulación implica un engorroso juego trigonométrico que no viene demasiado al caso, así, para nuestro curso dejaremos sentado que en PSK el valor de la señal moduladora está dado por. Mientras que la señal portadora vale: vp(t) = Vp sen(2π fp t) En donde Vp es el valor pico (Amplitud) de la señal portadora y fp es la frecuencia de la señal portadora.

×