Computación para
Ingenieros
Tarea 3
“Manejo Interno de Datos”

Oropeza Bonfanti Rodrigo

414012716

Profesor: Ing. Méndez ...
DISPOSITIVOS
Y
ALMACENAMIENTO

UNIDADES

DE

MEDIDA

DE

Para comenzar en el tema, primero debemos de entender diversos co...
NIBBLE
Se le conoce con este nombre a los conjuntos de 4 bits
Además de conocer estos términos debemos de recordar un poco...
Carácter (1 byte)

ASCII (ocho bits)

A
B
Espacio
Punto
a
b

10000001
10000010
01000000
01001011
11000001
11000010

 EBCD...
 Semi-posicionales:
El sistema de los números romanos no es estrictamente posicional ya
que no sigue un orden lógico de p...
Decimal

Octal

Binario

0

0

000

1

1

001

2

2

010

3

3

011

4

4

100

5

5

101

6

6

110

7

7

111

RELACIÓN ...
REPRESENTACIÓN DE ENTEROS
Los enteros son números íntegros (es decir, números sin una fracción).
Un entero puede ser posit...
Por ejemplo, si se tienen 4 bits, los números +4 y -4 se representan de la
siguiente manera:

+4 = 0100
-4 = 1011
Para alm...
3. Si el número es positivo, no se necesita ninguna otra acción; si el signo es
negativo, todos los 0 en el extremo derech...
CÁLCULO DEL ERROR ABSOLUTO Y DEL ERROR RELATIVO
 ERROR ABSOLUTO
Es la diferencia entre el valor de la medida (que se obti...
grabar en pistas separadas que luego se coordinan para su ejecución y
manejo simultáneo.
Extensiones: mpeg, avi, etc
 COM...
Próxima SlideShare
Cargando en…5
×

Tarea 3 tipos de datos corregida

280 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
280
En SlideShare
0
De insertados
0
Número de insertados
23
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Tarea 3 tipos de datos corregida

  1. 1. Computación para Ingenieros Tarea 3 “Manejo Interno de Datos” Oropeza Bonfanti Rodrigo 414012716 Profesor: Ing. Méndez Hernández Ernesto 27/08/2013
  2. 2. DISPOSITIVOS Y ALMACENAMIENTO UNIDADES DE MEDIDA DE Para comenzar en el tema, primero debemos de entender diversos conceptos de los que se estará hablando constantemente en este escrito, por lo que es conveniente que hablemos de los tipos de datos que se manejan en la actualidad y sus características. En la actualidad los datos se presentan de muchas y diversas maneras, por ejemplo: números, texto, imágenes, audio y video. Contrariamente a lo que se pensaba en la antigüedad, no es necesario tener varias computadoras para poder procesar estos tipos de datos, ya que, por lo general son una mezcla de varios tipos de formatos de datos y no es necesario el uso de más de una computadora. La solución más eficaz que se encontró fue usar una representación uniforme de los datos. Este formato universal se llama patrón de bits. Para entender mejor lo anterior, debemos de primero entender que es un bit. BIT En inglés “binary digit”. El término se da a conocer originalmente por John Tukey. El bit es la unidad mínima de almacenamiento de información en computación. Consiste de dos valores (binario): 0,1 0 = apagado 1 = encendido BYTE Es una agrupación de 8 bits, generalmente utilizada para representar caractereso símbolos. Por ejemplo: „A‟ = 01000001 (65) „1‟ = 00110001 (31) PALABRA En el contexto informático, una palabra es una cadena o número de bits que son manejados como un conjunto por la máquina. El tamaño o longitud de una palabra hace referencia al número de bits contenidos en ella, y está muy relacionado con la arquitectura de la computadora. Ej. Arquitecturas de 8, 16, 32 y 64 bits.
  3. 3. NIBBLE Se le conoce con este nombre a los conjuntos de 4 bits Además de conocer estos términos debemos de recordar un poco de matemáticas para poder continuar en el tema. Hay distintos prefijos que se usan diariamente por la gente al hablar de las computadoras; sin embargo no todas conocen lo que significan. Por ejemplo: k = kilo = 103, M = mega = 106, G = giga = 109 , T = tera = 1012, P = peta = 1015 , E = exa = 1018 en sistema decimal REPRESENTACIÓN DE DATOS TIPO TEXTO Para representar datos que sean del tipo texto es necesario establecer un código que asocie a cada carácter con un valor binario visto anteriormente. Este código debe ser conocido por todos los participantes en un intercambio de información. La información se puede representar como:  Caracteres:que ocupan 1 byte en memoria. También se les llama caracteres alfanuméricos  Números enteros: que generalmente ocupan 2 bytes en memoria (depende del compilador)  Números reales: que ocupan 4 bytes en memoria  Cadenas:conjunto de caracteres.  Datos Lógicos: Conocidos también como datos booleanos, este tipo de dato es aquel que sólo admite dos tipos de valores, los que son verdadero (true) o falso (false).Son usados para la representación de alternativas (si/no) que se dan según la condición que se plantee CARACTERES Debemos de entender que los caracteres permiten representar texto en la computadora; para ello se han establecido, a lo largo del tiempo, el uso de varios códigos que agrupan la representación de sus símbolos. Los más comunes son:  ASCII(American Standard Code for Information Interchange) El American National Standards Institute (ANSI) desarrolló el American Standard Code For Information Interchange (ASCII). Es un código de caracteres basado en el alfabeto latino tal como se usa en el inglés moderno y en otras lenguas occidentales. Este código utiliza siete bits para cada símbolo. Esto significa que se pueden representar 2^7=128 símbolos distintos.El código ASCII-extendido utiliza 8 bits, es decir 2^8=256 símbolos.
  4. 4. Carácter (1 byte) ASCII (ocho bits) A B Espacio Punto a b 10000001 10000010 01000000 01001011 11000001 11000010  EBCDIC (Extended Binary Coded Decimal Interchange Code) Es un código binario estándar que representa caracteres alfanuméricos, controles y signos de puntuación usado por computadoras mainframe IBM. Cada carácter está compuesto por 8 bits, define un total de 256 caracteres.  Unicode Unicode es un estándar que proporciona un código único para cada carácter independientemente de la plataforma, el software y el idioma (Se asigna un código único a cada carácter). Es el esquema de codificación de caracteres más extenso y completo, siendo el más dominante en la internacionalización y adaptación local del software. Se han definido más de 90.000 caracteres codificados, sin embargo ya no es de 8 bits, ya que usa grupos de bytes para representar los caracteres para los alfabetos de muchos de los lenguajes del mundo. El principal problema de ambos códigos de caracteres es su limitación a 256 símbolos, pueden ser suficientes para el alfabeto latino pero no para lenguajes ideográficos con varios miles de símbolos.El objetivo original de este código fue utilizar un código de 16 bits para representar 2^16=65,536 caracteres. REPRESENTACIÓN POSICIONAL NUMÉRICA O DE NUMERACIÓN Los sistemas de numeración son conjuntos de símbolos usados para representar cantidades, se clasifican como:  No posicionales: Estos son los sistemas más primitivos en los cuales se usaban por ejemplo los dedos de la mano para representar la cantidad cinco y después se hablaba de cuántas manos se tenía, por ejemplo, el sistema maya o azteca.
  5. 5.  Semi-posicionales: El sistema de los números romanos no es estrictamente posicional ya que no sigue un orden lógico de posicionamiento como los demás.  Posicionales: Se nombran haciendo referencia a la base, que representa el número de dígitos diferentes para representar todos los números. El sistema de numeración más utilizado en la actualidad es el decimal que cuenta con los dígitos del 0 al 9 para nuestros cálculos cotidianos; sin embargo, existen otro tipo de sistemas que no son tan usados, por ejemplo:  Decimal o base 10 El sistema de numeración decimal es el que más se usa en la actualidad. Se compone de diez símbolos, del “0” al “9”, de forma que su base=10  Binario o base 2 Es el sistema que vimos con anterioridad, el cual sólo usa dos símbolos el 0 y el 1 a los cuales se les llama bits, de forma que su base= 2  Octal o base 8 Este sistema representa las cantidades en base 8 empleando 8 símbolos, del “0” al “7” de tal manera que su base=8  Hexadecimal o base 16 Este sistema representa las cantidades en base 16 empleando dieciséis símbolos, del “0” al “9” además de las letras “A” a la “F” para representar los valores 10,11,12,13,14,15 respectivamente en orden acendente, de manera que su base=16 RELACIÓN BINARIO - OCTAL Si nosotros agrupamos 3 bits del sistema binarios podemos obtener el equivalente en un dígito octal lo cual se puede apreciar mejor en la siguiente tabla.
  6. 6. Decimal Octal Binario 0 0 000 1 1 001 2 2 010 3 3 011 4 4 100 5 5 101 6 6 110 7 7 111 RELACIÓN BINARIO – HEXADECIMAL Al agrupar un conjunto de 4 bits binarios se obtiene su equivalente en un dígito hexadecimal, como se puede observar en la siguiente tabla. Decimal Hexadecimal Binario 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
  7. 7. REPRESENTACIÓN DE ENTEROS Los enteros son números íntegros (es decir, números sin una fracción). Un entero puede ser positivo o negativo. Un entero negativo varía del infinito negativo a 0; un entero positivo varía de 0 al infinito positivo. REPRESENTACIÓN DE ENTEROS SIN SIGNO También conocido como binario puro, sirve para representar solamente 0 y enteros positivos. El intervalo de números que puede representar, depende del número de bits disponibles REPRESENTACIÓN DE ENTEROS EN SIGNO Y MAGNITUD El almacenamiento de un entero en el formato de signo y magnitud requiere 1 bit para representar el signo (0 para positivo, 1 para negativo). Esto significa que en una asignación de ocho bits, sólo se pueden usar siete bits para representar el valor absoluto del número (número sin signo) COMPLEMENTOS Los complementos se utilizan para simplificar la operación de resta y efectuar manipulaciones lógicas. Hay dos tipos de complementos par cada sistema de base r: el complemento a la base y el complemento a la base disminuida.  Al primero se denomina complemento a r  Al segundo se denomina complemento a (r - 1 ) Si sustituimos el valor de la base r en estos nombres, los dos tipos son el complemento a dos y el complemento a uno, en el caso de los números binarios, y el complemento a diez y el complemento a nueve en el caso de los números decimales. Antes de convertir un valor binario a una forma complementaria se debe definir el número de dígitos binarios, o bits, que se ocupará para las representaciones. Este número de dígitos deberá permanecer constante para conservar las equivalencias. Si un valor tiene menos dígitos que el establecido, deberán agregarse ceros a la izquierda hasta completar el número de dígitos requeridos. REPRESENTACIÓN DE ENTEROS EN COMPLEMENTO A 1 Para representar un número positivo, se usa la convención adoptada para un entero sin signo y para representar un número negativo, se complementa el número positivo El complemento de un número se obtiene al cambiar todos los 0 a 1 y todos los 1 a 0
  8. 8. Por ejemplo, si se tienen 4 bits, los números +4 y -4 se representan de la siguiente manera: +4 = 0100 -4 = 1011 Para almacenar los enteros en complemento a 1 se realizan los siguientes pasos 1. Cambiar el número a binario, el signo es ignorado 2. Añadir uno o varios 0 a la izquierda del número para hacer un total de „N‟ bits 3. Si el número es positivo, no se necesita ninguna otra acción; si es negativo, se complementa cada bit (cambiar 0 por 1 y 1 por 0) Ejemplo de complemento a 1  Representación del número -5 en complemento a 1 con 4 bits 0101 = 1010 REPRESENTACIÓN DE ENTEROS EN COMPLEMENTO A 2 Las dos representaciones anteriores presentan el problema de la ambigüedad del cero, es decir, ambas tienen representación para el +0 y el 0 La representación de complemento a 2 evita esta ambigüedad, es la representación de enteros más común, más importante y de más amplio uso en la actualidad. 
 El complemento a 2 de un valor binario se obtiene sumándole 1 al complemento a 1 del valor. Bit de signoes el bit ubicado más a la izquierda y sirve para indicar si el número es positivo (cuando es 0) o negativo (cuando es 1). Para un sistema con palabras de n bits se dispone de n-1 bits para representar el valor absoluto de la cantidad, y el bit restante es el de signo. Para almacenar los enteros complemento a 2 se realizan los siguientes pasos 1. Cambiar el número a binario, el signo es ignorado 2. Añadir uno o varios 0 a la izquierda del número para hacer un total de „N‟ bits
  9. 9. 3. Si el número es positivo, no se necesita ninguna otra acción; si el signo es negativo, todos los 0 en el extremo derecho y el primer 1 permanecen sin cambios; el resto de los bits se complementa. El complemento a 2 se obtiene sumando 1 al bit menos significativo del complemento a 1. Para obtener el valor decimal de un número representado en complemento a dos se realiza lo siguiente:  Si el primer bit es 0, se aplica la conversión de binario a decimal  Si el primer bit es 1, se aplica el complemento a 2, se convierte de binario a decimal y el resultado será el negativo del número obtenido Ejemplo de complemento a 2  Representación del número -5 en complemento a 2 con 4 bits 0101 = 1011 TIPOS DE ERRORES QUE SE MANIPULACIÓN DE CANTIDADES PRESENTAN EN LA Debido a las limitaciones físicas de la memoria se presentan distintos tipos de errores en la manipulación de datos numéricos. Algunos de estos son:  ERROR INHERENTE Es aquel error que se encuentra ligado a cualquier medición debido a que no se pueden realizar mediciones exactas y por lo mismo las cantidades que se representan tampoco son exactas. Ej. El perímetro de un círculo.  ERROR DE REDONDEO Este error ocurre por la necesidad de utilizar menos dígitos en alguna fracción. Se originan debido a que la computadora emplea un número determinado de cifras significativas durante un cálculo. Los números tales como π ó e no pueden expresarse con un número fijo de cifras significativas – Ej. 1/3= 0.33333…  ERROR DE TRUNCAMIENTO El error de truncamiento se presenta cuando se detiene algún proceso matemático recursivo sin alcanzar el resultado exacto. Los errores de truncamiento son aquellos que resultan al usar una aproximación en lugar de un procedimiento matemático exacto
  10. 10. CÁLCULO DEL ERROR ABSOLUTO Y DEL ERROR RELATIVO  ERROR ABSOLUTO Es la diferencia entre el valor de la medida (que se obtiene) y el valor tomado como exacto; es decir, entre la aproximación que se maneja y el valor preciso.  ERROR RELATIVO Es el cociente (la división) entre el error absoluto y el valor exacto del valor que se esta usando. FORMATOS DE INFORMACIÓN La información que es almacenada en la computadora se encuentra en archivos. Un archivoes una colección de datos guardados bajo un formato determinado.Un archivo consta de un nombre único y una extensión separados por un punto. El nombre sirve para distinguirlo de otros archivos y la extensión le asocia las propiedades del formato en el que está almacenado Todos conocemos los archivos y para que los usamos pero debemos entender que la funcionalidad de un archivo se centra principalmente en las aplicaciones y en los documentos. Hoy en día sabemos que una aplicación es un software o programa que se utilizan para realizar un determinado tipo de trabajo, mientras que un documento es todo aquello que se crea con una aplicación, incluyendo cualquier información que se escriba, edite, presente en pantalla o guarde.  AUDIO Los archivos de audio son todos aquellos archivos que contienen sonidos. Cualquier tipo de sonido, no sólo música. El sonido, igual que las imágenes, puede ser grabado y formateado de tal forma que la computadora pueda manipularlo y usarlo posteriormente en otras aplicaciones. Extensiones: wav, mp3, etc  VIDEO Los archivos de video son los formatos que guardan conjuntos de imágenes y el audio que las acompaña. Normalmente, un archivo de vídeo es una colección de imágenes acompañada de un sonido que se manejan conjuntamente; la información de uno y otro tipo se suele
  11. 11. grabar en pistas separadas que luego se coordinan para su ejecución y manejo simultáneo. Extensiones: mpeg, avi, etc  COMPRIMIDOS Permiten reunir varios archivos en uno y que se ocupe el menor espacio posible zip, rar, tar, etc  IMÁGENES Cada formato tiene un método de representación y da una calidad diferente a cada uno. Actualmente las imágenes se representan en una computadora mediante uno de dos métodos:  Gráficos rasterizados: es una estructura de datos que representa una rejilla rectangular de pixeles  Gráficos vectoriales: es una imagen digital formada por objetos geométricos independientes (segmentos, polígonos, arcos, etc.), cada uno de ellos definido por distintos atributos matemáticos de forma, de posición, de color, etc. Extensiones: jpeg, bmp, gif, etc.  Texto Existen aquellos que sólo manejan texto plano y otros texto enriquecido txt, doc, rtf, etc.

×