SlideShare a Scribd company logo
1 of 8
Human Cancer Biology


Prominent Microvascular Proliferation in Clinically
Aggressive Neuroblastoma
Radhika Peddinti,1 Rana Zeine,2 Dragos Luca,5 Roopa Seshadri,1 Alexandre Chlenski,2 Kristina Cole,4
Bruce Pawel,4 Helen R. Salwen,2 John M. Maris,4 and Susan L. Cohn3



      Abstract           Purpose: Tumor vasculature is disorganized and glomeruloid microvascular proliferation (MVP)
                         has been identified as a poor prognosticator in some adult cancers. To determine the clinical sig-
                         nificance of MVP, including glomeruloid MVP in neuroblastoma, we initially examined vessel
                         architecture in tumor sections from 51 children diagnosed at Children’s Memorial Hospital
                         (CMH) and subsequently evaluated 154 neuroblastoma tumors on a tissue microarray con-
                         structed at Children’s Hospital of Philadelphia (CHOP).
                         Experimental Design: H&E sections were examined for the presence of structurally abnormal
                         vessels and further characterized by immunostaining for CD31and von Willebrand factor to high-
                         light endothelial cells and a-smooth muscle actin for pericytes. Tumors with thickened walls con-
                         taining a complete layer of hypertrophic endothelial cells plus additional layers of vascular mural
                         cells were classified as MVP positive. Associations between MVP and established clinicopatho-
                         logic features and outcome were assessed.
                         Results: In both series, MVP was significantly associated with Schwannian stroma-poor histol-
                         ogy (CMH, P = 0.008; CHOP, P < 0.001) and decreased survival probability (CMH, P = 0.017;
                         CHOP, P = 0.014). In the CHOP series, MVP was associated with high-risk group classification
                         (P < 0.001), although this association was not seen in the smaller CMH cohort.
                         Conclusions: The association between MVP and poor outcome provides further support for the
                         concept that angiogenesis plays an important role in determining the biological behavior of neu-
                         roblastoma tumors. Our results also indicate that angiogenesis is regulated differently in Schwan-
                         nian stroma-rich versus stroma-poor neuroblastoma tumors. Further studies investigating the
                         activity of angiogenic inhibitors in children with clinically aggressive stroma-poor neuroblastoma
                         are warranted.




Neuroblastoma, the most common extracranial solid tumor in                                cells, and the amount of Schwannian stroma strongly affects
children, is unique among pediatric cancers for its broad                                 prognosis (2). Favorable outcome is associated with tumors
spectrum of clinical behavior (1). This tumor is composed of                              with abundant Schwannian stroma. In addition to tumor
two main cell types, neuroblastic/ganglion cells and Schwann                              histology, various genetic and biological factors have been
                                                                                          shown to correlate with outcome. However, the cellular
                                                                                          mechanisms that underlie the clinical variability observed in
                                                                                          neuroblastoma remain largely unknown. It is widely accepted
Authors’ Affiliations: 1Department of Pediatrics, Children’s Memorial Hospital;           that malignant solid tumors must acquire a new blood supply
2
 Robert H. Lurie Comprehensive Cancer Center, Northwestern University; 3Institute
                                                                                          for their progressive growth to a clinically relevant size and for
for Molecular Pediatric Sciences, University of Chicago, Chicago, Illinois; 4Department
of Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania     metastasis (3, 4). In contrast to normal vessels, tumor
School of Medicine, Philadelphia, Pennsylvania; and 5Department of Pathology,             vasculature tends to be disorganized with vessels that are
Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota                     dilated and tortuous and have uneven diameters and excessive
Received 2/2/07; revised 3/14/07; accepted 3/29/07.                                       branching (5). Microvascular proliferation (MVP) ranges from
Grant support: Clinical Oncology Research Training grant T32 CA079447, NIH
grants R01 NS049814 and P01 CA97323, the Neuroblastoma Children’s Cancer
                                                                                          slight to extreme degrees. Focal proliferative buddings of
Society, Friends for Steven Pediatric Cancer Research Fund, the Elise Anderson            endothelial cells resembling a renal glomerulus [glomeruloid
Neuroblastoma Research Fund, Neuroblastoma Kids, Alex’s Lemonade Stand                    MVPs (GMP)] have been described in some types of adult
Foundation, and The Robert H. Lurie Comprehensive Cancer Center, NIH, National            cancers, and several studies have shown an association between
Cancer Institute Core grant 5P30CA60553.
                                                                                          the presence of GMP and shorter survival (6 – 8). Wesseling
The costs of publication of this article were defrayed in part by the payment of page
charges. This article must therefore be hereby marked advertisement in accordance         et al. (9) have shown by electron microscopy that the process of
with 18 U.S.C. Section 1734 solely to indicate this fact.                                 MVP involves not only endothelial cell proliferation but also a
Requests for reprints: Susan L. Cohn, Clinical Sciences, Institute for Molecular          significant contribution from pericytes. In the WHO grading of
Pediatric Sciences, University of Chicago, 5841 Maryland Avenue, MC 4060,                 astrocytic neoplasms, GMP is a criterion for increasing the
Room N114, Chicago, IL 60637. Phone: 773-702-2571; Fax: 773-834-1329;
E-mail: scohn@ peds.bsd.uchicago.edu.
                                                                                          tumor grade (10). However, the clinical significance of MVP
    F 2007 American Association for Cancer Research.                                      has not been evaluated previously in neuroblastoma or other
    doi:10.1158/1078-0432.CCR-07-0237                                                     pediatric cancers.



www.aacrjournals.org                                                                  3499                  Clin Cancer Res 2007;13(12) June 15, 2007
Human Cancer Biology


   There is significant evidence that angiogenesis contributes to            Histologic evaluation. H&E-stained slides were examined histolog-
the aggressive behavior of neuroblastoma tumors. In retrospec-            ically for Schwannian stroma and neuroblast differentiation. The entire
tive studies, high vascular density has been correlated with poor         tissue section was evaluated from one block for each of 51 tumors from
                                                                          the CMH series. Of these, 33 were neuroblastomas, 13 were
clinical outcome (11, 12). Furthermore, high levels of
                                                                          ganglioneuroblastomas of which 9 were intermixed and 4 were
angiogenesis activators have been detected in clinically aggres-
                                                                          nodular, and 5 were ganglioneuromas. One to four cores sampled on
sive neuroblastoma tumors (13). Conversely, increased levels of           the TMA were assessed for 154 tumors adequate for judging vascular
endogenous inhibitors of angiogenesis are present in Schwan-              architecture, of which 118 were neuroblastomas, 24 were ganglioneur-
nian stroma-rich tumors that are associated with favorable                oblastomas of which 13 were intermixed and 11 were nodular, and 12
outcome (14, 15). Preclinical studies have also shown that                were ganglioneuromas. Without knowledge of the patient’s stage,
neuroblastoma growth can be inhibited by agents that target               MYCN status, or clinical course, the tumors were evaluated for
blood vessels (16 – 20). However, no correlation between                  morphology of blood vessels, hemorrhage, and necrosis. Blood vessels
vascular variables and survival was seen in a study reported              were classified into two types according to the vessel wall structure by
by Canete et al. (21). The conflicting results most likely reflect        two independent reviewers (R. Peddinti and R. Zeine). On H&E,
                                                                          sections showing vessels with thickened walls containing a complete
differences in techniques used to measure vessel number, a
                                                                          layer of hypertrophic endothelial cells plus additional layers of vascular
difficulty encountered in reconciling the results of studies of
                                                                          mural cells were classified as MVP positive. The degree of MVP varied
other solid tumors, such as breast cancer (22).                           from slight to GMP, which was defined as florid proliferation of small
   Because the architecture of tumor blood vessels is distinct            vessels with the formation of complex glomeruloid structures (25).
from normal vasculature, we hypothesized that structurally                Tumor sections that contained only thin walled vessels with no more
abnormal vessels would be identified in neuroblastoma                     than one layer of flat, spindle-shaped endothelial cells were classified as
tumors that are highly angiogenic and clinically aggressive.              MVP negative. Special care was taken to avoid confusing tangentially cut
To test this hypothesis, we initially evaluated vessel structure          vessels. MVP noted within lymph nodes or in intense inflammatory
in neuroblastoma tumors from 51 children diagnosed at                     infiltrates was excluded from analysis. Arteries and veins were also
Children’s Memorial Hospital (CMH) in Chicago. In this                    excluded from analysis.
cohort, MVP was significantly associated with stroma-poor                    Immunohistochemistry. The structure of the tumor vasculature was
                                                                          further evaluated by examination of adjacent sections from all CMH
histology and decreased survival. These findings were con-
                                                                          cases stained by immunohistochemistry for endothelial cell marker,
firmed using a neuroblastoma tissue microarray (TMA) cons-                CD31, and for pericytes with a-smooth muscle actin (a-SMA). The TMA
tructed at the Children’s Hospital of Philadelphia (CHOP)                 was stained for von Willebrand factor to highlight endothelial cells.
that contained 154 tumor samples. Our results indicate that               Sections (4 Am) were deparaffinized and heat-induced antigen retrieval
angiogenesis plays a critical role in neuroblastoma pathogen-             was carried out in a steamer for 20 min in citrate buffer (Target Retrieval
esis and suggest that the process is regulated differentially in          Solution (pH 6), DakoCytomation) for von Willebrand factor and
Schwannian stroma-rich versus stroma-poor tumors.                         CD31 and for 20 min in Target Retrieval Solution (pH 9; DakoCyto-
                                                                          mation) for a-SMA. Subsequently, slides were immersed in peroxidase
                                                                          block solution (DakoCytomation) and then incubated for 1 h at room
 Materials and Methods                                                    temperature with the following primary antibodies: monoclonal mouse
                                                                          anti-human CD31 (clone JC70A, DakoCytomation) at 1:40 dilution,
   Patients and tumor specimens. The CMH patients were selected           polyclonal rabbit anti-human von Willebrand factor (DakoCytoma-
based on the availability of adequate full tissue sections from the       tion) at 1:40 dilution, and monoclonal mouse anti-human a-SMA
primary tumor. Sections from 51 primary neuroblastoma tumors or           (clone 1A4, DakoCytomation) at 1:50 dilution. The EnVision+/
ganglioneuromas were obtained from CMH at the time of diagnosis,          Horseradish Peroxidase antimouse and antirabbit detection systems
before administration of chemotherapy. Patients were diagnosed            (DakoCytomation) were used to visualize antibody binding sites with
between 1986 and 2005. Medical records were reviewed to obtain            3,3¶-diaminobenzidine (DakoCytomation) as a chromogen. Sections
information about patient age, sex, tumor stage, histology, MYCN gene     were counterstained with Gill’s hematoxylin.
status, and outcome. The CMH Institutional Review Board approved             For hypoxia-inducible factor (HIF)-1a, antigen retrieval was done in
this study.                                                               pH 6 citrate buffer in a pressure cooker. Primary mouse monoclonal
   Histology sections of 154 different neuroblastoma tumors on a TMA      antibody to HIF-1a (ESEE122; Novus Biologicals, Abcam) was
constructed at CHOP were also examined (one to four cores per tumor).     visualized using the Catalyzed Signal Amplification System according
All the samples used were from the initial biopsy or surgery before       to the manufacturer’s instructions (DakoCytomation).
administration of chemotherapy. The cores were linked to clinical            Immunofluorescence. Sections were deparaffinized and heat-induced
information, including patient age, stage, sex, histology, MYCN status,   antigen retrieval was carried out in a steamer for 20 min in citrate buffer
and outcome. The CHOP Institutional Review Board approved this            pH 6. Nonspecific staining was blocked by preincubation in PBS con-
study.                                                                    taining 10% donkey serum. Primary antibodies for anti-CD31 (platelet/
   For both patient cohorts, tumors were staged according to the          endothelial cell adhesion molecule 1, M-20, Santa Cruz Biotechnology)
International Neuroblastoma Staging System (23). MYCN gene                and anti-a-SMA (clone 1A4, DakoCytomation) were used at 1:100
status was determined in the Children’s Oncology Group Neuro-             dilution. Immunocomplexes were visualized with corresponding FITC-
blastoma Reference Laboratory using fluorescence in situ hybridiza-       donkey anti-mouse and R-PE donkey anti-goat – labeled secondary
tion (24). Tumors were histologically classified as favorable or          antibody (Jackson ImmunoResearch Laboratories).
unfavorable histology according to the criteria described by Shimada         Statistical analysis. Associations of MVP with various known
et al. (2).                                                               clinicopathologic prognostic factors of neuroblastoma were analyzed
   Tissue microarray. The TMA was constructed from formalin-fixed,        using the m2 or Fisher’s exact tests. All degrees of MVP, including GMP,
paraffin-embedded archival tissue specimens accessioned at CHOP           were considered MVP positive. CMH and CHOP cohorts were analyzed
from 1974 to 2004. All tumors were reviewed by a pediatric pathologist    separately due to smaller size of the tissue sections on the TMA from the
(B. Pawel). One to four samples (0.6 mm cores) of representative tumor    CHOP series. Ganglioneuromas were included only in analyses related
tissue from each case and normal control tissues were included using a    to stroma histology. Patients were stratified into two risk groups based
manual arrayer (Beecher Instruments, Inc.).                               on stage, age, and MYCN status. The non – high-risk group included



Clin Cancer Res 2007;13(12) June 15, 2007                             3500                                            www.aacrjournals.org
Vascular Architecture in Neuroblastoma


                                                                             0.001) were seen. However, MVP did not correlate with age
  Table 1. Clinical and biological characteristics of                        (P = 0.82). In the smaller CMH series, the correlation between
  the CMH cohort                                                             MVP and stage was not significant (P = 0.6), and MVP was seen
                                                                             in only 5 of the 10 MYCN– amplified tumors. Interestingly,
  Characteristic       No. patients      OS rate              P
                       (%)               (95% CI)                            four of these five patients have died, whereas there were no
                                                                             deaths in the subset of patients with MYCN-amplified tumors
  Age at diagnosis (mo)
    <12                 16   (34.7)      85.9 (71.1-100)          NS
                                                                             that lacked MVP (n = 5).
    z12                 30   (65.3)        79 (60.6-97.4)                       MVP is associated with Schwannian stroma-poor histology.
  Pathology                                                                  The presence of MVP was significantly associated with
    NB                  33   (64.7)      81.3 (67.8-94.9)         NS*        Schwannian stroma-poor histology in the CMH series (P =
    GNB                 13   (25.4)      83.3 (53.5-100)
                                                                             0.008) and CHOP series (P < 0.001). All of the Schwannian
    GNR                  5   (9.8)
  Stage                                                                      stroma-dominant ganglioneuromas (CMH, n = 5; CHOP,
    1                   18   (39.1)                               0.002      n = 12) had thin-walled vessels with no evidence of MVP
    2                    8   (17.4)      92.4 (82.3-100)                     (Fig. 1A-C). Immunohistochemistry showed a single layer of
    3                    8   (17.4)                                          CD31-positive endothelial cells (Fig. 1B) and good coverage by
    4                   12   (26.1)      55.5 (26.3-84.8)
  Risk group
                                                                             a-SMA – positive pericytes (Fig. 1C). Similarly, blood vessels in
    Non – high-risk     31   (60.8)            100            <0.001         the Schwannian stroma-rich ganglioneuroblastoma intermixed
    High-risk           15   (29.5)      50.5 (24.4-76.7)                    tumors were thin walled and MVP was not seen (CMH, n = 6;
  Histology                                                                  CHOP, n = 13; Fig. 1D-F and Fig. 2, left).
    Unfavorable         24   (55.8)      61.9 (35.6-88.2)         0.079
                                                                                In contrast, MVP was detected in 65% of the Schwannian
    Favorable           19   (44.1)      94.1 (82.9-100)
  MYCN                                                                       stroma-poor tumors, and the incidence was inversely correlated
    Amplified           10   (23.2)       60 (29.6-90)            0.041      with neuroblast differentiation. In the CMH series, all four
    Nonamplified        33   (76.7)      89.2 (77.7-100)                     (100%) undifferentiated tumors had MVP. MVP was seen in 6
  MVP                                                                        of the 11 (54.5%) differentiating neuroblastomas (Fig. 1J-L)
    Present             26   (56.5)      70.1 (51.3-88.9)         0.017
    Absent              20   (43.4)            100
                                                                             and11 of the 16 (68.7%) poorly differentiated tumors
                                                                             (Fig. 1M-O). Of the 118 neuroblastoma tumors analyzed on
                                                                             the TMA, all eight (100%) of the undifferentiated neuroblas-
  Abbreviations: 95% CI, 95% confidence interval; GNB, ganglio-
  neuroblastoma; GNR, ganglioneuroma; NS, not significant.
                                                                             toma had evidence of MVP. Fifty-three of the 82 (64.6%)
  *Only neuroblastoma and ganglioneuroblastoma were used in                  poorly differentiated tumors and 17 of the 28 (60.7%)
  survival analysis.                                                         differentiating neuroblastomas had MVP. Similarly in the


                                                                                 Table 2. Clinical and biological characteristics of
patients with nonamplified MYCN stage 1, 2, and 3 tumors and infants
                                                                                 the CHOP cohort
with stage 4 and 4s neuroblastoma that lacked MYCN amplification.
Patients with stage 3 MYCN-amplified tumors and children older than
                                                                                 Characteristic     No. patients   OS rate             P
1 year of age with stage 4 disease were classified as high risk. Survival                           (%)            (95% CI)
estimates were described using the Kaplan-Meier method, and survival
curves were compared among clinical and biological subgroups using               Age at diagnosis (mo)
the log-rank test. Five-year overall survival estimates are reported with          <12                 51 (36.1)   97.3 (93.6-100)         0.014
                                                                                   z12                 90 (63.8)   77.2 (66.7 -87.8)
corresponding SE. Cox proportional hazards regression analysis was
                                                                                 Pathology
used to test the association between risk factors and survival. For the            NB                118 (75.6)    83.7 (76.8-90.6)        NS*
CMH cohort, sample size limited the analyses to single predictor                   GNB                 24 (15.3)   88.9 (74.1-100)
models. The best two-predictor model was selected based on the score               GNR                 12 (7.6)
statistic for the CHOP cohort. Statistical analyses were conducted using         Stage
SAS statistical software version 9.1 and S-Plus version 6.2.                       1                   45 (32.8)                       <0.001
                                                                                   2                   39 (28.4)   90.2 (84.4-96)
                                                                                   3                   25 (18.2)
 Results                                                                           4s                   1 (0.7)
                                                                                   4                   27 (19.7)   64.4 (45.6-83.2)
   Clinical and biological characteristics of the patient                        Risk group
cohorts. Tables 1 and 2 list the clinical characteristics of                       Non – high-risk   104 (73.2)    95.5 (91.2-99.9)    <0.001
CMH and CHOP cohorts. In the CMH series, 15 patients had                           High-risk           38 (26.7)   55.5 (39.2-71.9)
high-risk disease and 31 patients had non – high-risk disease.                   Histology
                                                                                   Unfavorable         58 (42)     66.6 (53.9-79.4)    <0.001
Overall survival was 82% F 6 with a median follow-up time of                       Favorable           80 (58)     98.6 (78.3-100)
5 years and 10 months. The CHOP series consisted of 38 high-                     MYCN
risk and 104 non – high-risk patients, and the overall survival                    Nonamplified        85 (88.5)   87.2 (79.8-94.7)        0.003
was 84% F 3.                                                                       Amplified           11 (11.5)   46.6 (14.2-79.2)
                                                                                 MVP
   MVP is associated with widely disseminated disease and high-
                                                                                   Present             83 (58)     77.9 (68.6-87.3)        0.014
risk group classification. Table 3 shows the relationships                         Absent              60 (42)     94.7 (89-100)
between MVP and stage, age, MYCN status, and risk group
classification. In the CHOP series, statistically significant                    *Only neuroblastoma and ganglioneuroblastoma were used in
associations between MVP and stage (P = 0.008), MYCN                             survival analysis.
amplification (P = 0.006), and risk group classification (P <



www.aacrjournals.org                                                      3501                    Clin Cancer Res 2007;13(12) June 15, 2007
Human Cancer Biology


CMH series, all four (100%) undifferentiated tumors had MVP.          stroma-poor regions. Further evidence of hypoxic-ischemic
MVP was seen in 6 of the 11 (54.5%) differentiating                   changes, including nuclear pyknosis, hypereosinophilic cyto-
neuroblastomas (Fig. 1J-L) and 11 of the 16 (68.7%) poorly            plasm, and ghost cells, were also noted in the populations of
differentiated tumors (Fig. 1M-O). Both immunohistochemical           differentiating neuroblasts closest to the abnormal vessels. In
and immunofluorescent staining with a-SMA revealed at least           response to hypoxia, tumor cells commonly adapt by up-
one but sometimes multiple layers of pericytes (Fig. 1L and O         regulating HIF-1a, a major regulator of the proangiogenic factor
and Fig. 2, right). In the CMH series, GMP was extensive in seven     vascular endothelial growth factor. To investigate whether the
of the differentiating and poorly differentiated neuroblastomas,      HIF-1a – dependent mechanism had a role in the induction of
and staining with a-SMA revealed a prominent pericytic                MVP, we stained representative sections from four neuroblas-
component (Fig. 1L and O). In undifferentiated neuroblastoma          toma tumors that had extensive necrosis for HIF-1a. In all four
tumors, a slightly different pattern of vasculature was noted         neuroblastoma tumor sections, there was focal up-regulation of
characterized by continuous networks of MVP (Fig. 1P-R). Tiny         nuclear HIF-1a positivity in the neuroblasts intervening
microvessels were lined by endothelial cells that were small and      between necrosis and MVP (Fig. 3B).
weakly positive for CD31 (Fig. 1Q). a-SMA – positive pericytes           MVP is associated with poor outcome. MVP correlated
were also detected in close proximity to the microvessels in          strongly with poor outcome in both cohorts. In the CMH
undifferentiated neuroblastoma tumors (Fig. 1R).                      series, MVP was seen in the tumors from all seven children who
   The difference in the vascular architecture was most               died from disease. The 5-year survival in the cohort of children
prominent in the composite ganglioneuroblastomas of the               with tumors that lacked MVP (n = 20) was 100% (Fig. 4B). In
nodular type. There were five ganglioneuroblastoma nodular            contrast, a survival rate of 70% F 9.6 was seen in the subset of
tumors in the CMH series for which both stroma-rich and               patients (n = 26) with tumors with MVP (P = 0.017). Of the 12
stroma-poor regions were analyzed. Of the 10 nodular                  patients with stage 4 disease, 5 died, and all had tumors with
ganglioneuroblastomas in the CHOP series, cores from 6                evidence of MVP. Similarly, in the CHOP series, 18 of the 22
tumors had only stroma-rich tissue, whereas cores from 4 were         (81.8%) patients who died had tumors with MVP (Fig. 4D).
stroma-poor areas. In both series, vessels were MVP negative in       The 5-year survival in the groups with (n = 83) and without
Schwannian stroma-rich regions and MVP positive in Schwan-            (n = 60) MVP was 77.9% F 4.7 versus 94.7% F 2.9,
nian stroma-poor areas (Fig. 1G-I). Pericytes were present but        respectively (P = 0.014). Of the 27 patients with stage 4 disease
provided poor coverage in the vessels with MVP as highlighted         in the CHOP series, there were 10 deaths, and 9 (90%) of these
by the anti-a-SMA antibody.                                           patients had tumors with MVP.
   MVP is spatially related to regions of necrosis. Interestingly,
necrosis was not detected in tumors that lacked MVP, whereas              Discussion
12 of 17 (70%) of neuroblastoma tumors with MVP exhibited
frank necrosis in close proximity to the abnormal vessels. The          Tumor vessels are frequently disorganized and tortuous due
neuroblasts surrounding the necrotic areas and leading up to          to dysregulated angiogenesis. Structural abnormalities, such
the MVP exhibited a pseudopalisading pattern (Fig. 3A). In            as GMP, are characteristic of an angiogenic tumor phenotype
nodular ganglioneuroblastomas, frank necrosis was not ob-             and are associated with poor prognosis in some types of cancer
served, although hypocellular and acellular islands of neuropil       (6 – 8). However, much less is known about the role of
were noted in the vicinity of MVP within the Schwannian               angiogenesis in pediatric cancers, and to our knowledge, this


  Table 3. Associations between clinical factors and MVP in CMH and CHOP cohorts

  Characteristic                    CMH                    Total      P                     CHOP                   Total     P
                       MVP Present        MVP Absent                            MVP Present        MVP Absent
  Age (mo)
    <12                     14                 8             26       0.35             29              22            51          0.82
    z12                     12                12             22                        53              37            90
  Stage
    1, 2, 3, 4s             20                14             34       0.6              59              54           113          0.008
    4                        6                 6             12                        22               5            27
  Risk group
    High-risk                8                 7             15       0.76             31               7            38      <0.001
    Non – high-risk         18                13             31                        51              53           104
  MYCN
    Amplified                5                 5             10       0.73             11               0            11          0.006
    Nonamplified            19                14             33                        50              35            85
  Survival
    Dead                     7                 0              7       0.017            18               4            22          0.014
    Alive                   19                20             39                        65              56           121
  Histology
    Unfavorable               7                6             13       0.39             45              13            58      <0.001
    Favorable                 8               11             19                        36              44            80
  Stroma
    Stroma-poor             23                14             37       0.008            81              42           123      <0.001
    Stroma-rich              3                11             14                         2              18            20




Clin Cancer Res 2007;13(12) June 15, 2007                          3502                                      www.aacrjournals.org
Vascular Architecture in Neuroblastoma




Fig. 1. Representative sections of
human neuroblastoma (NB),
ganglioneuroblastoma (GNB), and
ganglioneuroma (GNR) stained with H&E
(A, D, G, J, M, and P), CD31 (B, E, H, K, N,
and Q), and a-SMA (C, F, I, L, O, and R).
Blood vessels are thin walled in
Schwannian stroma-dominant
ganglioneuroma (A-C) and Schwannian
stroma-rich ganglioneuroblastomas
(D-F). In contrast, blood vessels are
structurally abnormal and show MVP in
Schwannian Stroma-poor regions of
nodular ganglioneuroblastoma (G-I) and
neuroblastoma (J-R). CD31and a-SMA
immunostaining highlight the endothelial
cells and pericytes, respectively.
Magnifications, Â400 (A-Q) and
Â600 (R).




is the first study evaluating the clinical significance of MVP in   ing advanced stage disease and MYCN amplification. In both
neuroblastoma. We initially examined tumor MVP in tumor             study cohorts, we also found that MVP was significantly
sections from 51 patients from a single institution and then        associated with decreased survival.
confirmed our findings using a TMA that contained 154 tumor            Angiogenesis has been extensively studied in various adult
samples. Other series have shown an overall survival in patients    cancers, and it is well established that microvessel density
with neuroblastoma in the United States to be 57% (51-63%;          is associated with prognosis in many types of neoplasms
ref. 26). Thus, the overall survival of both study groups was       (27 – 29). Much less is known about angiogenesis in pediatric
more favorable than expected (CMH series, 82% F 6; CHOP             cancers, but there is evidence that angiogenesis also plays a
series, 84% F 3), most likely due to a bias away from high-risk     critical role in the pathogenesis of neuroblastoma and Wilms’
patients for whom tumor sections were not available because         tumors (11 – 13). We showed previously that high vascular
the diagnosis was based on bone marrow studies. However, as         index correlated with MYCN amplification, metastases, and
expected, worse outcome was associated with established             poor outcome (11). Advanced-stage neuroblastoma has also
unfavorable prognostic clinical and biological factors, includ-     been associated with high levels of angiogenic stimuli and avh3



www.aacrjournals.org                                            3503                 Clin Cancer Res 2007;13(12) June 15, 2007
Human Cancer Biology




                                                                                                   Fig. 2. Sections of human
                                                                                                   ganglioneuroblastoma (left) and
                                                                                                   neuroblastoma (right) double stained for
                                                                                                   CD31 (red) and a-SMA (green). Thin
                                                                                                   vessels showing flat, spindle-shaped
                                                                                                   endothelial cells and one layer of pericytes
                                                                                                   (left). MVP seen in vessels with enlarged
                                                                                                   endothelial cells and multiple layers of
                                                                                                   a-SMA ^ positive vascular mural cells
                                                                                                   (right). Magnification, Â100 (left and right).




and avh5 integrins, both markers of active angiogenesis              evaluated was seen (Fig. 3B). Recently, Holmquist-Mengelbier
(13, 30). However, vascular variables were not predictive of         et al. (34) have reported an association between high levels of
survival in a cohort of neuroblastoma patients analyzed by           HIF-2a expression and poor outcome in neuroblastoma.
Canete et al. (21). These investigators used a computerized          However, in contrast to our results, only low to undetectable
system to assess CD34-stained sections in the richest vascular       HIF-1a staining was seen in well-vascularized areas of the
area. The contrasting studies highlight the effect different         tumors. The reasons for the conflicting results are unclear but
techniques can have in quantifying vessel number and show            may indicate that different HIF-a proteins may be present in
how difficult obtaining reproducible results can be. In our          highly vascularized versus necrotic regions of the tumor.
study, all degrees of MVP were identified readily in H&E as well     Similar to other types of cancers, HIF-1a stimulates vascular
as immunostained neuroblastoma tumor sections, first on the          endothelial growth factor mRNA and protein expression in
CMH samples and then reproduced in the smaller TMA cores,            neuroblastoma cells (35). Interestingly, recent studies indicate
suggesting that assessing tumors for MVP may prove to be an          that serum-derived growth factors, insulin-like growth factor-1,
effective method for identifying an angiogenic phenotype in          and high levels of brain-derived neurotrophic factor and its
neuroblastoma tumors.                                                tyrosine kinase receptor TrkB, also stimulate HIF-1a and
   In glioblastoma multiforme, where glomeruloid microvessel         vascular endothelial growth factor expression in neuroblastoma
proliferations and MVP were first described, a spatial relation-     cells (36).
ship between GMP and necrosis is observed (31, 32).                     With the exception of composite ganglioneuroblastomas
Furthermore, the hypoxic conditions associated with necrosis         (nodular), high rates of survival are associated with neuro-
leads to up-regulation of HIF-1a, a major regulator of the           blastic tumors with abundant Schwannian stroma, suggesting
proangiogenic factor vascular endothelial growth factor, and         that Schwann cells are capable of influencing neuroblastoma
chaotic blood vessel growth (33). In our study of neuroblas-         tumor biology (37). In support of this hypothesis, Schwann
toma tumors, we also found a spatial relationship between            cells are known to produce neurotrophic factors as well as a
MVP and necrosis, and nuclear HIF-1a expression in neuro-            spectrum of angiogenesis inhibitors (14, 15, 38). Furthermore,
blasts closest to the necrotic areas in the four tumor sections we   Schwann cell – conditioned medium is capable of inducing




                                                                                                   Fig. 3. Sections of human neuroblastoma
                                                                                                   stained with H&E (A) and HIF-1a (B).
                                                                                                   Blood vessels with MVP are seen adjacent
                                                                                                   to the areas of necrosis (A). Up-regulation
                                                                                                   of HIF-1ais seen in the area of necrosis with
                                                                                                   adjoining blood vessels exhibiting MVP.
                                                                                                   N, necrosis; T, tumor cells; V, blood vessels.
                                                                                                   Magnifications, Â50 (A) and Â600 (B).




Clin Cancer Res 2007;13(12) June 15, 2007                        3504                                         www.aacrjournals.org
Vascular Architecture in Neuroblastoma




Fig. 4. Kaplan-Meier analysis of the two cohorts of neuroblastoma patients. A, overall survival in CMH series. B, survival by MVP in CMH series (P = 0.017). C, overall survival
in CHOP series. D, survival by MVP in CHOP series (P = 0.014).


neuroblastoma differentiation in vitro (39), and we have shown                                Recently, significantly increased survival has been reported in
that infiltrating mouse Schwann cells can induce differentiation                           patients with colon, breast, and lung cancer following
and inhibit angiogenesis in human neuroblastoma xenografts                                 treatment with antiangiogenic agents in combination with
in vivo (40). The current study indicates that vessel structure is                         chemotherapy (41, 42). Emerging evidence suggests that
also influenced by Schwann cells as MVP was not detected in                                antiangiogenic therapy can normalize blood vessel architecture
any of the Schwannian stroma-dominant ganglioneuromas or                                   leading to more efficient drug delivery to the tumor (43, 44).
Schwannian stroma-rich intermixed ganglioneuroblastomas. In                                Our results correlating MVP with poor survival in children with
contrast, structurally abnormal blood vessels were seen in 65%                             neuroblastoma provide further rationale for using antiangio-
of the stroma-poor neuroblastomas. Similarly, in the nodular                               genic strategies in this cohort of patients. Additional clinical
ganglioneuroblastomas, prominent MVP was seen in the                                       studies testing the activity of angiogenic inhibitors alone or in
Schwannian stroma-poor areas, whereas only thin vessels were                               combination with cytotoxic therapy in children with clinically
present areas of the tumor that were Schwannian stroma rich.                               aggressive neuroblastomas are warranted.


References
1. Brodeur GM, Maris JM. Neuroblastoma. In: Pizzo PA,      5. Gijtenbeek JM,Wesseling P, Maass C, Burgers L, van        nostic importance of glomeruloid microvascular prolif-
  Poplack DG, editors. Principles and practice of            der Laak JA. Three-dimensional reconstruction of tu-       eration indicates an aggressive angiogenic phenotype
  pediatric oncology, 4 ed. Philadelphia: Lippincott-        mor microvasculature: simultaneous visualization of        in human cancers. Cancer Res 2002;62:6808 ^ 11.
  Raven, 2001:895 ^ 937.                                     multiple components in paraffin-embedded tissue.          9. Wesseling P, Schlingemann RO, Rietveld FJ, et al.
2. Shimada H, Ambros IM, Dehner LP, et al. The interna-      Angiogenesis 2005;8:297 ^ 305.                             Early and extensive contribution of pericytes/vascular
  tional neuroblastoma pathology classification (the       6. Kim TS, Halliday AL, Hedley-Whyte ET, Convery K.          smooth muscle cells to microvascular proliferation in
  Shimada System). Cancer 1999;86:364 ^ 72.                  Correlates of survival and the Daumas-Duport grading       glioblastoma multiforme : an immuno-light and
3. Folkman J. What is the evidence that tumors are           system for astrocytomas. JNeurosurg1991   ;74:27 ^ 37.     immuno-electron microscopic study. J Neuropathol
  angiogenesis dependent? J Natl Cancer Inst 1990;         7. Brat DJ,Van Meir EG. Glomeruloid microvascular prolif-    Exp Neurol 1995;54:304 ^ 10.
  82:4 ^ 6.                                                  eration orchestrated by VPF/VEGF: a new world of an-      10. Cavenee WK, Furnari FB, Nagane M. Diffusely infil-
4. Folkman J. Angiogenesis in cancer, vascular, rheuma-      giogenesis research. AmJPathol 2001  ;158:789 ^ 96.        trating astrocytomas. In: Kleihues P, CaveneeWK, edi-
  toid and other disease. Nat Med 1995;1:27 ^ 31.          8. Straume O, Chappuis PO, Salvesen HB, et al. Prog-         tors. Pathology and genetics of tumors of the nervous




www.aacrjournals.org                                                                3505                          Clin Cancer Res 2007;13(12) June 15, 2007
Human Cancer Biology


  system: WHO classification of tumors, 2nd ed. Lyon            vessel density in human solid tumours. Br J Cancer         34. Holmquist-Mengelbier L, Fredlund E, Lofstedt T,
  (France): IARC Press; 2000:9 ^ 54.                            2002;86:1566 ^ 77.                                           et al. Recruitment of HIF-1a and HIF-2a to common
11. Meitar D, Crawford SE, Rademaker AW, Cohn SL.              23. Brodeur GM, Seeger RC, Barrett A, et al. Interna-         target genes is differentially regulated in neuroblas-
  Tumor angiogenesis correlates with metastatic dis-            tional criteria for diagnosis, staging, and response to      toma: HIF-2a promotes an aggressive phenotype.
  ease, N-myc amplification, and poor outcome in hu-            treatment in patients with neuroblastoma. J Clin Oncol       Cancer Cell 2006;10:413 ^ 23.
  man neuroblastoma. J Clin Oncol 1996;14:405 ^ 14.             1988;6:1874 ^ 81.                                          35. Beppu K, Nakamura K, Linehan WM, Rapisarda A,
12. Ribatti D, Surico G,Vacca A, et al. Angiogenesis ex-       24. Mathew P,Valentine MB, Bowman LC, et al. Detec-           Thiele CJ. Topotecan blocks hypoxia-inducible factor-
  tent and expression of matrix metalloproteinase-2 and         tion of MYCN gene amplification in neuroblastoma by          1a and vascular endothelial growth factor expression
  -9 correlate with progression in human neuroblasto-           fluorescence in situ hybridization: a pediatric oncolo-      induced by insulin-like growth factor-I in neuroblasto-
  ma. Life Sci 2001  ;68:1161 ^ 8.                              gy group study. Neoplasia 2001    ;3:105 ^ 9.                ma cells. Cancer Res 2005;65:4775 ^ 81.
13. Eggert A, Ikegaki N, Kwiatkowski J, et al. High-level      25. Rojiani AM, Dorovini-Zis K. Glomeruloid vascular        36. Nakamura K, Martin KC, Jackson JK, et al. Brain-
  expression of angiogenic factors is associated with           structures in glioblastoma multiforme: an immunohis-         derived neurotrophic factor activation of TrkB induces
  advanced tumor stage in human neuroblastomas. Clin            tochemical and ultrastructural study. J Neurosurg            vascular endothelial growth factor expression via
  Cancer Res 2000;6:1900 ^ 8.                                   1996;85:1078 ^ 84.                                           hypoxia-inducible factor-1a in neuroblastoma cells.
14. Chlenski A, Liu S, Crawford SE, et al. SPARC is a key      26. Gatta G, Capocaccia R, Coleman MP, Ries LA,Berrino        Cancer Res 2006;66:4249 ^ 55.
  Schwannian-derivedinhibitor controllingneuroblastoma          F. Childhood cancer survival in Europe and the United      37. Ambros IM, Zellner A, Roald B, et al. Role of ploi-
  tumor angiogenesis. Cancer Res 2002;62:7357 ^ 63.             States. Cancer 2002;95:1767 ^ 72.                            dy, chromosome 1p, and Schwann cells in the matu-
15. Crawford SE, Stellmach V, Ranalli M, et al. Pigment        27. Gasparini G, Weidner N, Bevilacqua P, et al. Tumor        ration of neuroblastoma. N Engl J Med 1996;34:
  epithelium-derived factor (PEDF) in neuroblastoma: a          microvessel density, p53 expression, tumor size, and         1505 ^ 11.
  multifunctional mediator of Schwann cell antitumor            peritumoral lymphatic vessel invasion are relevant         3 8. Huang D, Rutkowski JL, Brodeur GM, et al.
  activity. J Cell Sci 2001;114:4421 ^ 8.                       prognostic markers in node-negative breast carcino-          Schwann cell-conditioned medium inhibits angiogen-
16. Kaicker S, McCrudden KW, Beck L, et al. Thalido-            ma. J Clin Oncol 1994;12:454 ^ 66.                           esis. Cancer Res 2000;60:5966 ^ 71.
  mide is anti-angiogenic in a xenograft model of neuro-       28. Depasquale I, Thompson WD. Microvessel density          39. Kwiatkowski JL, Rutkowski JL, Yamashiro DJ,
  blastoma. Int J Oncol 2003;23:1651 ^ 5.                       for melanoma prognosis. Histopathology 2005;47:              Tennekoon GI, Brodeur GM. Schwann cell-condi-
17. Ribatti D, Raffaghello L, Marimpietri D, et al. Fenreti-    186 ^ 94.                                                    tioned medium promotes neuroblastoma survival and
  nide as an anti-angiogenic agent in neuroblastoma.           29. Offersen BV, Borre M, Overgaard J. Immunohisto-           differentiation. Cancer Res 1998;58:4602 ^ 6.
  Cancer Lett 2003;197:181 ^ 4.                                 chemical determination of tumor angiogenesis mea-          40. Liu S, Tian Y, Chlenski A, et al. ‘‘Cross-talk’’ be-
18. Streck CJ, Ng CY, ZhangY, et al. Interferon-mediated        sured by the maximal microvessel density in human            tween Schwann cells and neuroblasts influences the
  anti-angiogenic therapy for neuroblastoma. Cancer Lett        prostate cancer. APMIS 1998;106:463 ^ 9.                     biology of neuroblastoma xenografts. Am J Pathol
  2005;228:163 ^ 70.                                           30. Erdreich-Epstein A, Shimada H, Groshen S, et al.          2005;166:891 ^ 900.
19. Katzenstein HM, Rademaker AW, Senger C, et al.              Integrins avh3 and avh5 are expressed by endothelium       41. Hurwitz H, Kabbinavar F. Bevacizumab combined
  Effectiveness of the angiogenesis inhibitor TNP-470           of high-risk neuroblastoma and their inhibition is asso-     with standard fluoropyrimidine-based chemotherapy
  in reducing the growth of human neuroblastoma in              ciated with increased endogenous ceramide. Cancer            regimens to treat colorectal cancer. Oncology 2005;
  nude mice inversely correlates with tumor burden. Clin        Res 2000;60:712 ^ 21.                                        69 Suppl 3:17 ^ 24.
  Cancer Res 1999;5:4273 ^ 8.                                  31. Zagzag D, Zhong H, Scalzitti JM, et al. Expression of   42. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall
20. Shusterman S, Grupp SA, Barr R, et al. The angio-           hypoxia-inducible factor 1a in brain tumors: associa-        JH. Imaging angiogenesis: applications and poten-
  genesis inhibitor TNP-470 effectively inhibits human          tion with angiogenesis, invasion, and progression.           tial for drug development. J Natl Cancer Inst 2005;
  neuroblastoma xenograft growth, especially in the             Cancer 2000;88:2606 ^ 18.                                    97:172 ^ 87.
  setting of subclinical disease. Clin Cancer Res 2001     ;   32. Sondergaard KL, Hilton DA, Penney M, Ollerenshaw        43. Jain RK. Normalization of tumor vasculature: an
  7:977 ^ 84.                                                   M, Demaine AG. Expression of hypoxia-inducible               emerging concept in antiangiogenic therapy. Science
21. Canete A, Navarro S, Bermudez J, et al. Angiogene-          factor 1a in tumours of patients with glioblastoma.          2005;307:58 ^ 62.
  sis in neuroblastoma: relationship to survival and other      Neuropathol Appl Neurobiol 2002;28:210 ^ 7.                44. Yang Q,Tian Y, Liu S, et al. Thrombospondin-1 pep-
  prognostic factors in a cohort of neuroblastoma              33. Fischer I, GagnerJP, Law M, Newcomb EW, Zagzag            tide ABT-510 combined with valproic acid is an effec-
  patients. J Clin Oncol 2000;18:27 ^ 34.                       D. Angiogenesis in gliomas: biology and molecular            tive antiangiogenesis strategy in neuroblastoma.
22. Hasan J, Byers R, Jayson GC. Intra-tumoural micro-          pathophysiology. Brain Pathol 2005;15:297 ^ 310.             Cancer Res 2007;67:1716 ^ 24.




Clin Cancer Res 2007;13(12) June 15, 2007                                              3506                                                      www.aacrjournals.org

More Related Content

What's hot

Pediatric histocytosic disorders
Pediatric histocytosic disorders Pediatric histocytosic disorders
Pediatric histocytosic disorders Dr. Liza Bulsara
 
Lombardi et al: XMRV/CFS Inflammatory Signature
Lombardi et al: XMRV/CFS Inflammatory SignatureLombardi et al: XMRV/CFS Inflammatory Signature
Lombardi et al: XMRV/CFS Inflammatory Signaturedegarden
 
Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...
Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...
Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...European School of Oncology
 
Cancer invasion and metastasis
Cancer invasion and metastasisCancer invasion and metastasis
Cancer invasion and metastasisNilesh Kucha
 
Chapter 32 invasion and metastasis
Chapter 32 invasion and metastasisChapter 32 invasion and metastasis
Chapter 32 invasion and metastasisNilesh Kucha
 
Case record... Grade II,III mixed astrocytoma
Case record... Grade II,III mixed astrocytomaCase record... Grade II,III mixed astrocytoma
Case record... Grade II,III mixed astrocytomaProfessor Yasser Metwally
 
Affy (1)
Affy (1)Affy (1)
Affy (1)arnimat
 
Angiosarcoma Review
Angiosarcoma ReviewAngiosarcoma Review
Angiosarcoma ReviewNHS
 
Low grade oligodendroglioma
Low grade oligodendrogliomaLow grade oligodendroglioma
Low grade oligodendrogliomaMQ_Library
 
Magnani2006 myocarditis
Magnani2006 myocarditisMagnani2006 myocarditis
Magnani2006 myocarditistommy8998
 
Identification of a common Wnt-associated genetic signature across multiple c...
Identification of a common Wnt-associated genetic signature across multiple c...Identification of a common Wnt-associated genetic signature across multiple c...
Identification of a common Wnt-associated genetic signature across multiple c...Rubin Baskir, Ph.D.
 
ACMG-2016-CNVs-in-Cardiomyopathy-Genes
ACMG-2016-CNVs-in-Cardiomyopathy-GenesACMG-2016-CNVs-in-Cardiomyopathy-Genes
ACMG-2016-CNVs-in-Cardiomyopathy-GenesRebecca Latimer
 

What's hot (20)

Update on thyroid tumors
Update on thyroid tumorsUpdate on thyroid tumors
Update on thyroid tumors
 
Association Between Telomerase Reverse Transcriptase Promoter Mutations and M...
Association Between Telomerase Reverse Transcriptase Promoter Mutations and M...Association Between Telomerase Reverse Transcriptase Promoter Mutations and M...
Association Between Telomerase Reverse Transcriptase Promoter Mutations and M...
 
Pediatric histocytosic disorders
Pediatric histocytosic disorders Pediatric histocytosic disorders
Pediatric histocytosic disorders
 
Case record...Thalamic glioma
Case record...Thalamic gliomaCase record...Thalamic glioma
Case record...Thalamic glioma
 
Lombardi et al: XMRV/CFS Inflammatory Signature
Lombardi et al: XMRV/CFS Inflammatory SignatureLombardi et al: XMRV/CFS Inflammatory Signature
Lombardi et al: XMRV/CFS Inflammatory Signature
 
Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...
Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...
Rare Solid Cancers: An Introduction - Slide 11 - A.P. Dei Tos - The pathology...
 
Cancer invasion and metastasis
Cancer invasion and metastasisCancer invasion and metastasis
Cancer invasion and metastasis
 
Neoplasia & Oncologic Pathology
Neoplasia & Oncologic PathologyNeoplasia & Oncologic Pathology
Neoplasia & Oncologic Pathology
 
Chapter 32 invasion and metastasis
Chapter 32 invasion and metastasisChapter 32 invasion and metastasis
Chapter 32 invasion and metastasis
 
Nrneph.2014.170
Nrneph.2014.170Nrneph.2014.170
Nrneph.2014.170
 
Tumours
TumoursTumours
Tumours
 
Case record... Grade II,III mixed astrocytoma
Case record... Grade II,III mixed astrocytomaCase record... Grade II,III mixed astrocytoma
Case record... Grade II,III mixed astrocytoma
 
Affy (1)
Affy (1)Affy (1)
Affy (1)
 
Angiosarcoma Review
Angiosarcoma ReviewAngiosarcoma Review
Angiosarcoma Review
 
Affy
AffyAffy
Affy
 
Low grade oligodendroglioma
Low grade oligodendrogliomaLow grade oligodendroglioma
Low grade oligodendroglioma
 
Magnani2006 myocarditis
Magnani2006 myocarditisMagnani2006 myocarditis
Magnani2006 myocarditis
 
Identification of a common Wnt-associated genetic signature across multiple c...
Identification of a common Wnt-associated genetic signature across multiple c...Identification of a common Wnt-associated genetic signature across multiple c...
Identification of a common Wnt-associated genetic signature across multiple c...
 
ACMG-2016-CNVs-in-Cardiomyopathy-Genes
ACMG-2016-CNVs-in-Cardiomyopathy-GenesACMG-2016-CNVs-in-Cardiomyopathy-Genes
ACMG-2016-CNVs-in-Cardiomyopathy-Genes
 
Cancer diagnosis
Cancer diagnosisCancer diagnosis
Cancer diagnosis
 

Viewers also liked

Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014Rana ZEINE, MD, PhD, MBA
 
Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...Rana ZEINE, MD, PhD, MBA
 

Viewers also liked (9)

Su, Lin, Zeine et. al. Am J OBGYN 2009
Su, Lin, Zeine et. al. Am J OBGYN 2009Su, Lin, Zeine et. al. Am J OBGYN 2009
Su, Lin, Zeine et. al. Am J OBGYN 2009
 
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
Zeine et al. 2011 Organizational Culture in Higher Education, in Kazeroony, H...
 
8251
82518251
8251
 
Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014Zeine et al. Considerate Leadership in Medical and Higher Education 2014
Zeine et al. Considerate Leadership in Medical and Higher Education 2014
 
Zeine & Owens, J. Neuroimmunology 1993
Zeine & Owens, J. Neuroimmunology 1993Zeine & Owens, J. Neuroimmunology 1993
Zeine & Owens, J. Neuroimmunology 1993
 
Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...Zeine et al. External Adaptability of Higher Education Institutions The Use o...
Zeine et al. External Adaptability of Higher Education Institutions The Use o...
 
Change Presentation
Change PresentationChange Presentation
Change Presentation
 
Zeine et al. J. Neuroimmunology 1993
Zeine et al. J. Neuroimmunology 1993Zeine et al. J. Neuroimmunology 1993
Zeine et al. J. Neuroimmunology 1993
 
Zeine & Owens, J. Neuroimmunology 1992
Zeine & Owens, J. Neuroimmunology 1992Zeine & Owens, J. Neuroimmunology 1992
Zeine & Owens, J. Neuroimmunology 1992
 

Similar to Prominent Microvascular Proliferation Linked to Poor Outcomes in Neuroblastoma

Gene expression profiling reveals molecularly and clinically distinct subtype...
Gene expression profiling reveals molecularly and clinically distinct subtype...Gene expression profiling reveals molecularly and clinically distinct subtype...
Gene expression profiling reveals molecularly and clinically distinct subtype...Yu Liang
 
Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...
Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...
Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...◂ Justin (M) Gaines ▸
 
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in NeuroblastomaZeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in NeuroblastomaRana ZEINE, MD, PhD, MBA
 
Correlation between vascular endothelial growth factor-A expression and tumor...
Correlation between vascular endothelial growth factor-A expression and tumor...Correlation between vascular endothelial growth factor-A expression and tumor...
Correlation between vascular endothelial growth factor-A expression and tumor...UniversitasGadjahMada
 
CSF-Derived cell-free DNA for Diagnosis and Characterization of.pptx
CSF-Derived cell-free DNA for Diagnosis and Characterization of.pptxCSF-Derived cell-free DNA for Diagnosis and Characterization of.pptx
CSF-Derived cell-free DNA for Diagnosis and Characterization of.pptxAmit Ghosh
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndromedaranisaha
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeJohnJulie1
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAnonIshanvi
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeEditorSara
 
An_Adrenal_Mass_in_a_Patient_with_Lynch.pdf
An_Adrenal_Mass_in_a_Patient_with_Lynch.pdfAn_Adrenal_Mass_in_a_Patient_with_Lynch.pdf
An_Adrenal_Mass_in_a_Patient_with_Lynch.pdfsemualkaira
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeClinicsofOncology
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndromesemualkaira
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndromesemualkaira
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeNainaAnon
 
Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727
Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727
Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727John Cassidy
 
FHCRC strategies to enhance umbilical cord blood engraftment in adult patients
FHCRC strategies to enhance umbilical cord blood engraftment in adult patientsFHCRC strategies to enhance umbilical cord blood engraftment in adult patients
FHCRC strategies to enhance umbilical cord blood engraftment in adult patientslifextechnologies
 

Similar to Prominent Microvascular Proliferation Linked to Poor Outcomes in Neuroblastoma (20)

Zeine et al. Modern Pathology 2009
Zeine et al. Modern Pathology 2009Zeine et al. Modern Pathology 2009
Zeine et al. Modern Pathology 2009
 
Gene expression profiling reveals molecularly and clinically distinct subtype...
Gene expression profiling reveals molecularly and clinically distinct subtype...Gene expression profiling reveals molecularly and clinically distinct subtype...
Gene expression profiling reveals molecularly and clinically distinct subtype...
 
Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...
Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...
Administration of Autologous Bone Marrow Stem Cells Into Spinal Cord Injury P...
 
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in NeuroblastomaZeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
Zeine et al. Poster 2007 Cancer Associated Fibroblasts in Neuroblastoma
 
WJSC-6-432
WJSC-6-432WJSC-6-432
WJSC-6-432
 
Correlation between vascular endothelial growth factor-A expression and tumor...
Correlation between vascular endothelial growth factor-A expression and tumor...Correlation between vascular endothelial growth factor-A expression and tumor...
Correlation between vascular endothelial growth factor-A expression and tumor...
 
Brain cancer
Brain cancerBrain cancer
Brain cancer
 
Leucemia renal
Leucemia renalLeucemia renal
Leucemia renal
 
CSF-Derived cell-free DNA for Diagnosis and Characterization of.pptx
CSF-Derived cell-free DNA for Diagnosis and Characterization of.pptxCSF-Derived cell-free DNA for Diagnosis and Characterization of.pptx
CSF-Derived cell-free DNA for Diagnosis and Characterization of.pptx
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
An_Adrenal_Mass_in_a_Patient_with_Lynch.pdf
An_Adrenal_Mass_in_a_Patient_with_Lynch.pdfAn_Adrenal_Mass_in_a_Patient_with_Lynch.pdf
An_Adrenal_Mass_in_a_Patient_with_Lynch.pdf
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
An Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch SyndromeAn Adrenal Mass in a Patient with Lynch Syndrome
An Adrenal Mass in a Patient with Lynch Syndrome
 
Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727
Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727
Cancer Res-2015-Cassidy-0008-5472.CAN-15-0727
 
FHCRC strategies to enhance umbilical cord blood engraftment in adult patients
FHCRC strategies to enhance umbilical cord blood engraftment in adult patientsFHCRC strategies to enhance umbilical cord blood engraftment in adult patients
FHCRC strategies to enhance umbilical cord blood engraftment in adult patients
 

More from Rana ZEINE, MD, PhD, MBA

Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014Rana ZEINE, MD, PhD, MBA
 
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014Rana ZEINE, MD, PhD, MBA
 
Zeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education InstitutionsZeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education InstitutionsRana ZEINE, MD, PhD, MBA
 
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...Rana ZEINE, MD, PhD, MBA
 
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...Rana ZEINE, MD, PhD, MBA
 
Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001Rana ZEINE, MD, PhD, MBA
 
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma CancersZeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma CancersRana ZEINE, MD, PhD, MBA
 

More from Rana ZEINE, MD, PhD, MBA (12)

Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014Zeine et al. customer service, management education 2014
Zeine et al. customer service, management education 2014
 
Zeine women in medicine mar 19, 2015
Zeine women in medicine mar 19, 2015Zeine women in medicine mar 19, 2015
Zeine women in medicine mar 19, 2015
 
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
Zeine et al. External Adaptability (Agility) in HEd., Vancouver 2013
 
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
Zeine et al. Customer Service Focus and Mission Articulation in HEd., Oxford ...
 
Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014Zeine et al. Considerate Leadership in HEd., Oxford 2014
Zeine et al. Considerate Leadership in HEd., Oxford 2014
 
Zeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education InstitutionsZeine 2011 Changing Organizational Culture in Higher Education Institutions
Zeine 2011 Changing Organizational Culture in Higher Education Institutions
 
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
Zeine 2011 LinkedIn Use of Information Technology for Global Professional Net...
 
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
Zeine Seminar 2010, Cancer Associated Fibroblasts and Microvascular Prolifera...
 
Yang et al. Cancer Research 2007
Yang et al. Cancer Research 2007Yang et al. Cancer Research 2007
Yang et al. Cancer Research 2007
 
Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001Zeine et al. J. Neuroscience Research 2001
Zeine et al. J. Neuroscience Research 2001
 
Zeine et al. J. Neuroimmunology 1998
Zeine et al.  J.  Neuroimmunology 1998Zeine et al.  J.  Neuroimmunology 1998
Zeine et al. J. Neuroimmunology 1998
 
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma CancersZeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
Zeine et al. Poster 2009 Tumor Stromal Interactions in Neuroblastoma Cancers
 

Recently uploaded

Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...astropune
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...chandars293
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...parulsinha
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...narwatsonia7
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 

Recently uploaded (20)

Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 

Prominent Microvascular Proliferation Linked to Poor Outcomes in Neuroblastoma

  • 1. Human Cancer Biology Prominent Microvascular Proliferation in Clinically Aggressive Neuroblastoma Radhika Peddinti,1 Rana Zeine,2 Dragos Luca,5 Roopa Seshadri,1 Alexandre Chlenski,2 Kristina Cole,4 Bruce Pawel,4 Helen R. Salwen,2 John M. Maris,4 and Susan L. Cohn3 Abstract Purpose: Tumor vasculature is disorganized and glomeruloid microvascular proliferation (MVP) has been identified as a poor prognosticator in some adult cancers. To determine the clinical sig- nificance of MVP, including glomeruloid MVP in neuroblastoma, we initially examined vessel architecture in tumor sections from 51 children diagnosed at Children’s Memorial Hospital (CMH) and subsequently evaluated 154 neuroblastoma tumors on a tissue microarray con- structed at Children’s Hospital of Philadelphia (CHOP). Experimental Design: H&E sections were examined for the presence of structurally abnormal vessels and further characterized by immunostaining for CD31and von Willebrand factor to high- light endothelial cells and a-smooth muscle actin for pericytes. Tumors with thickened walls con- taining a complete layer of hypertrophic endothelial cells plus additional layers of vascular mural cells were classified as MVP positive. Associations between MVP and established clinicopatho- logic features and outcome were assessed. Results: In both series, MVP was significantly associated with Schwannian stroma-poor histol- ogy (CMH, P = 0.008; CHOP, P < 0.001) and decreased survival probability (CMH, P = 0.017; CHOP, P = 0.014). In the CHOP series, MVP was associated with high-risk group classification (P < 0.001), although this association was not seen in the smaller CMH cohort. Conclusions: The association between MVP and poor outcome provides further support for the concept that angiogenesis plays an important role in determining the biological behavior of neu- roblastoma tumors. Our results also indicate that angiogenesis is regulated differently in Schwan- nian stroma-rich versus stroma-poor neuroblastoma tumors. Further studies investigating the activity of angiogenic inhibitors in children with clinically aggressive stroma-poor neuroblastoma are warranted. Neuroblastoma, the most common extracranial solid tumor in cells, and the amount of Schwannian stroma strongly affects children, is unique among pediatric cancers for its broad prognosis (2). Favorable outcome is associated with tumors spectrum of clinical behavior (1). This tumor is composed of with abundant Schwannian stroma. In addition to tumor two main cell types, neuroblastic/ganglion cells and Schwann histology, various genetic and biological factors have been shown to correlate with outcome. However, the cellular mechanisms that underlie the clinical variability observed in neuroblastoma remain largely unknown. It is widely accepted Authors’ Affiliations: 1Department of Pediatrics, Children’s Memorial Hospital; that malignant solid tumors must acquire a new blood supply 2 Robert H. Lurie Comprehensive Cancer Center, Northwestern University; 3Institute for their progressive growth to a clinically relevant size and for for Molecular Pediatric Sciences, University of Chicago, Chicago, Illinois; 4Department of Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania metastasis (3, 4). In contrast to normal vessels, tumor School of Medicine, Philadelphia, Pennsylvania; and 5Department of Pathology, vasculature tends to be disorganized with vessels that are Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota dilated and tortuous and have uneven diameters and excessive Received 2/2/07; revised 3/14/07; accepted 3/29/07. branching (5). Microvascular proliferation (MVP) ranges from Grant support: Clinical Oncology Research Training grant T32 CA079447, NIH grants R01 NS049814 and P01 CA97323, the Neuroblastoma Children’s Cancer slight to extreme degrees. Focal proliferative buddings of Society, Friends for Steven Pediatric Cancer Research Fund, the Elise Anderson endothelial cells resembling a renal glomerulus [glomeruloid Neuroblastoma Research Fund, Neuroblastoma Kids, Alex’s Lemonade Stand MVPs (GMP)] have been described in some types of adult Foundation, and The Robert H. Lurie Comprehensive Cancer Center, NIH, National cancers, and several studies have shown an association between Cancer Institute Core grant 5P30CA60553. the presence of GMP and shorter survival (6 – 8). Wesseling The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance et al. (9) have shown by electron microscopy that the process of with 18 U.S.C. Section 1734 solely to indicate this fact. MVP involves not only endothelial cell proliferation but also a Requests for reprints: Susan L. Cohn, Clinical Sciences, Institute for Molecular significant contribution from pericytes. In the WHO grading of Pediatric Sciences, University of Chicago, 5841 Maryland Avenue, MC 4060, astrocytic neoplasms, GMP is a criterion for increasing the Room N114, Chicago, IL 60637. Phone: 773-702-2571; Fax: 773-834-1329; E-mail: scohn@ peds.bsd.uchicago.edu. tumor grade (10). However, the clinical significance of MVP F 2007 American Association for Cancer Research. has not been evaluated previously in neuroblastoma or other doi:10.1158/1078-0432.CCR-07-0237 pediatric cancers. www.aacrjournals.org 3499 Clin Cancer Res 2007;13(12) June 15, 2007
  • 2. Human Cancer Biology There is significant evidence that angiogenesis contributes to Histologic evaluation. H&E-stained slides were examined histolog- the aggressive behavior of neuroblastoma tumors. In retrospec- ically for Schwannian stroma and neuroblast differentiation. The entire tive studies, high vascular density has been correlated with poor tissue section was evaluated from one block for each of 51 tumors from the CMH series. Of these, 33 were neuroblastomas, 13 were clinical outcome (11, 12). Furthermore, high levels of ganglioneuroblastomas of which 9 were intermixed and 4 were angiogenesis activators have been detected in clinically aggres- nodular, and 5 were ganglioneuromas. One to four cores sampled on sive neuroblastoma tumors (13). Conversely, increased levels of the TMA were assessed for 154 tumors adequate for judging vascular endogenous inhibitors of angiogenesis are present in Schwan- architecture, of which 118 were neuroblastomas, 24 were ganglioneur- nian stroma-rich tumors that are associated with favorable oblastomas of which 13 were intermixed and 11 were nodular, and 12 outcome (14, 15). Preclinical studies have also shown that were ganglioneuromas. Without knowledge of the patient’s stage, neuroblastoma growth can be inhibited by agents that target MYCN status, or clinical course, the tumors were evaluated for blood vessels (16 – 20). However, no correlation between morphology of blood vessels, hemorrhage, and necrosis. Blood vessels vascular variables and survival was seen in a study reported were classified into two types according to the vessel wall structure by by Canete et al. (21). The conflicting results most likely reflect two independent reviewers (R. Peddinti and R. Zeine). On H&E, sections showing vessels with thickened walls containing a complete differences in techniques used to measure vessel number, a layer of hypertrophic endothelial cells plus additional layers of vascular difficulty encountered in reconciling the results of studies of mural cells were classified as MVP positive. The degree of MVP varied other solid tumors, such as breast cancer (22). from slight to GMP, which was defined as florid proliferation of small Because the architecture of tumor blood vessels is distinct vessels with the formation of complex glomeruloid structures (25). from normal vasculature, we hypothesized that structurally Tumor sections that contained only thin walled vessels with no more abnormal vessels would be identified in neuroblastoma than one layer of flat, spindle-shaped endothelial cells were classified as tumors that are highly angiogenic and clinically aggressive. MVP negative. Special care was taken to avoid confusing tangentially cut To test this hypothesis, we initially evaluated vessel structure vessels. MVP noted within lymph nodes or in intense inflammatory in neuroblastoma tumors from 51 children diagnosed at infiltrates was excluded from analysis. Arteries and veins were also Children’s Memorial Hospital (CMH) in Chicago. In this excluded from analysis. cohort, MVP was significantly associated with stroma-poor Immunohistochemistry. The structure of the tumor vasculature was further evaluated by examination of adjacent sections from all CMH histology and decreased survival. These findings were con- cases stained by immunohistochemistry for endothelial cell marker, firmed using a neuroblastoma tissue microarray (TMA) cons- CD31, and for pericytes with a-smooth muscle actin (a-SMA). The TMA tructed at the Children’s Hospital of Philadelphia (CHOP) was stained for von Willebrand factor to highlight endothelial cells. that contained 154 tumor samples. Our results indicate that Sections (4 Am) were deparaffinized and heat-induced antigen retrieval angiogenesis plays a critical role in neuroblastoma pathogen- was carried out in a steamer for 20 min in citrate buffer (Target Retrieval esis and suggest that the process is regulated differentially in Solution (pH 6), DakoCytomation) for von Willebrand factor and Schwannian stroma-rich versus stroma-poor tumors. CD31 and for 20 min in Target Retrieval Solution (pH 9; DakoCyto- mation) for a-SMA. Subsequently, slides were immersed in peroxidase block solution (DakoCytomation) and then incubated for 1 h at room Materials and Methods temperature with the following primary antibodies: monoclonal mouse anti-human CD31 (clone JC70A, DakoCytomation) at 1:40 dilution, Patients and tumor specimens. The CMH patients were selected polyclonal rabbit anti-human von Willebrand factor (DakoCytoma- based on the availability of adequate full tissue sections from the tion) at 1:40 dilution, and monoclonal mouse anti-human a-SMA primary tumor. Sections from 51 primary neuroblastoma tumors or (clone 1A4, DakoCytomation) at 1:50 dilution. The EnVision+/ ganglioneuromas were obtained from CMH at the time of diagnosis, Horseradish Peroxidase antimouse and antirabbit detection systems before administration of chemotherapy. Patients were diagnosed (DakoCytomation) were used to visualize antibody binding sites with between 1986 and 2005. Medical records were reviewed to obtain 3,3¶-diaminobenzidine (DakoCytomation) as a chromogen. Sections information about patient age, sex, tumor stage, histology, MYCN gene were counterstained with Gill’s hematoxylin. status, and outcome. The CMH Institutional Review Board approved For hypoxia-inducible factor (HIF)-1a, antigen retrieval was done in this study. pH 6 citrate buffer in a pressure cooker. Primary mouse monoclonal Histology sections of 154 different neuroblastoma tumors on a TMA antibody to HIF-1a (ESEE122; Novus Biologicals, Abcam) was constructed at CHOP were also examined (one to four cores per tumor). visualized using the Catalyzed Signal Amplification System according All the samples used were from the initial biopsy or surgery before to the manufacturer’s instructions (DakoCytomation). administration of chemotherapy. The cores were linked to clinical Immunofluorescence. Sections were deparaffinized and heat-induced information, including patient age, stage, sex, histology, MYCN status, antigen retrieval was carried out in a steamer for 20 min in citrate buffer and outcome. The CHOP Institutional Review Board approved this pH 6. Nonspecific staining was blocked by preincubation in PBS con- study. taining 10% donkey serum. Primary antibodies for anti-CD31 (platelet/ For both patient cohorts, tumors were staged according to the endothelial cell adhesion molecule 1, M-20, Santa Cruz Biotechnology) International Neuroblastoma Staging System (23). MYCN gene and anti-a-SMA (clone 1A4, DakoCytomation) were used at 1:100 status was determined in the Children’s Oncology Group Neuro- dilution. Immunocomplexes were visualized with corresponding FITC- blastoma Reference Laboratory using fluorescence in situ hybridiza- donkey anti-mouse and R-PE donkey anti-goat – labeled secondary tion (24). Tumors were histologically classified as favorable or antibody (Jackson ImmunoResearch Laboratories). unfavorable histology according to the criteria described by Shimada Statistical analysis. Associations of MVP with various known et al. (2). clinicopathologic prognostic factors of neuroblastoma were analyzed Tissue microarray. The TMA was constructed from formalin-fixed, using the m2 or Fisher’s exact tests. All degrees of MVP, including GMP, paraffin-embedded archival tissue specimens accessioned at CHOP were considered MVP positive. CMH and CHOP cohorts were analyzed from 1974 to 2004. All tumors were reviewed by a pediatric pathologist separately due to smaller size of the tissue sections on the TMA from the (B. Pawel). One to four samples (0.6 mm cores) of representative tumor CHOP series. Ganglioneuromas were included only in analyses related tissue from each case and normal control tissues were included using a to stroma histology. Patients were stratified into two risk groups based manual arrayer (Beecher Instruments, Inc.). on stage, age, and MYCN status. The non – high-risk group included Clin Cancer Res 2007;13(12) June 15, 2007 3500 www.aacrjournals.org
  • 3. Vascular Architecture in Neuroblastoma 0.001) were seen. However, MVP did not correlate with age Table 1. Clinical and biological characteristics of (P = 0.82). In the smaller CMH series, the correlation between the CMH cohort MVP and stage was not significant (P = 0.6), and MVP was seen in only 5 of the 10 MYCN– amplified tumors. Interestingly, Characteristic No. patients OS rate P (%) (95% CI) four of these five patients have died, whereas there were no deaths in the subset of patients with MYCN-amplified tumors Age at diagnosis (mo) <12 16 (34.7) 85.9 (71.1-100) NS that lacked MVP (n = 5). z12 30 (65.3) 79 (60.6-97.4) MVP is associated with Schwannian stroma-poor histology. Pathology The presence of MVP was significantly associated with NB 33 (64.7) 81.3 (67.8-94.9) NS* Schwannian stroma-poor histology in the CMH series (P = GNB 13 (25.4) 83.3 (53.5-100) 0.008) and CHOP series (P < 0.001). All of the Schwannian GNR 5 (9.8) Stage stroma-dominant ganglioneuromas (CMH, n = 5; CHOP, 1 18 (39.1) 0.002 n = 12) had thin-walled vessels with no evidence of MVP 2 8 (17.4) 92.4 (82.3-100) (Fig. 1A-C). Immunohistochemistry showed a single layer of 3 8 (17.4) CD31-positive endothelial cells (Fig. 1B) and good coverage by 4 12 (26.1) 55.5 (26.3-84.8) Risk group a-SMA – positive pericytes (Fig. 1C). Similarly, blood vessels in Non – high-risk 31 (60.8) 100 <0.001 the Schwannian stroma-rich ganglioneuroblastoma intermixed High-risk 15 (29.5) 50.5 (24.4-76.7) tumors were thin walled and MVP was not seen (CMH, n = 6; Histology CHOP, n = 13; Fig. 1D-F and Fig. 2, left). Unfavorable 24 (55.8) 61.9 (35.6-88.2) 0.079 In contrast, MVP was detected in 65% of the Schwannian Favorable 19 (44.1) 94.1 (82.9-100) MYCN stroma-poor tumors, and the incidence was inversely correlated Amplified 10 (23.2) 60 (29.6-90) 0.041 with neuroblast differentiation. In the CMH series, all four Nonamplified 33 (76.7) 89.2 (77.7-100) (100%) undifferentiated tumors had MVP. MVP was seen in 6 MVP of the 11 (54.5%) differentiating neuroblastomas (Fig. 1J-L) Present 26 (56.5) 70.1 (51.3-88.9) 0.017 Absent 20 (43.4) 100 and11 of the 16 (68.7%) poorly differentiated tumors (Fig. 1M-O). Of the 118 neuroblastoma tumors analyzed on the TMA, all eight (100%) of the undifferentiated neuroblas- Abbreviations: 95% CI, 95% confidence interval; GNB, ganglio- neuroblastoma; GNR, ganglioneuroma; NS, not significant. toma had evidence of MVP. Fifty-three of the 82 (64.6%) *Only neuroblastoma and ganglioneuroblastoma were used in poorly differentiated tumors and 17 of the 28 (60.7%) survival analysis. differentiating neuroblastomas had MVP. Similarly in the Table 2. Clinical and biological characteristics of patients with nonamplified MYCN stage 1, 2, and 3 tumors and infants the CHOP cohort with stage 4 and 4s neuroblastoma that lacked MYCN amplification. Patients with stage 3 MYCN-amplified tumors and children older than Characteristic No. patients OS rate P 1 year of age with stage 4 disease were classified as high risk. Survival (%) (95% CI) estimates were described using the Kaplan-Meier method, and survival curves were compared among clinical and biological subgroups using Age at diagnosis (mo) the log-rank test. Five-year overall survival estimates are reported with <12 51 (36.1) 97.3 (93.6-100) 0.014 z12 90 (63.8) 77.2 (66.7 -87.8) corresponding SE. Cox proportional hazards regression analysis was Pathology used to test the association between risk factors and survival. For the NB 118 (75.6) 83.7 (76.8-90.6) NS* CMH cohort, sample size limited the analyses to single predictor GNB 24 (15.3) 88.9 (74.1-100) models. The best two-predictor model was selected based on the score GNR 12 (7.6) statistic for the CHOP cohort. Statistical analyses were conducted using Stage SAS statistical software version 9.1 and S-Plus version 6.2. 1 45 (32.8) <0.001 2 39 (28.4) 90.2 (84.4-96) 3 25 (18.2) Results 4s 1 (0.7) 4 27 (19.7) 64.4 (45.6-83.2) Clinical and biological characteristics of the patient Risk group cohorts. Tables 1 and 2 list the clinical characteristics of Non – high-risk 104 (73.2) 95.5 (91.2-99.9) <0.001 CMH and CHOP cohorts. In the CMH series, 15 patients had High-risk 38 (26.7) 55.5 (39.2-71.9) high-risk disease and 31 patients had non – high-risk disease. Histology Unfavorable 58 (42) 66.6 (53.9-79.4) <0.001 Overall survival was 82% F 6 with a median follow-up time of Favorable 80 (58) 98.6 (78.3-100) 5 years and 10 months. The CHOP series consisted of 38 high- MYCN risk and 104 non – high-risk patients, and the overall survival Nonamplified 85 (88.5) 87.2 (79.8-94.7) 0.003 was 84% F 3. Amplified 11 (11.5) 46.6 (14.2-79.2) MVP MVP is associated with widely disseminated disease and high- Present 83 (58) 77.9 (68.6-87.3) 0.014 risk group classification. Table 3 shows the relationships Absent 60 (42) 94.7 (89-100) between MVP and stage, age, MYCN status, and risk group classification. In the CHOP series, statistically significant *Only neuroblastoma and ganglioneuroblastoma were used in associations between MVP and stage (P = 0.008), MYCN survival analysis. amplification (P = 0.006), and risk group classification (P < www.aacrjournals.org 3501 Clin Cancer Res 2007;13(12) June 15, 2007
  • 4. Human Cancer Biology CMH series, all four (100%) undifferentiated tumors had MVP. stroma-poor regions. Further evidence of hypoxic-ischemic MVP was seen in 6 of the 11 (54.5%) differentiating changes, including nuclear pyknosis, hypereosinophilic cyto- neuroblastomas (Fig. 1J-L) and 11 of the 16 (68.7%) poorly plasm, and ghost cells, were also noted in the populations of differentiated tumors (Fig. 1M-O). Both immunohistochemical differentiating neuroblasts closest to the abnormal vessels. In and immunofluorescent staining with a-SMA revealed at least response to hypoxia, tumor cells commonly adapt by up- one but sometimes multiple layers of pericytes (Fig. 1L and O regulating HIF-1a, a major regulator of the proangiogenic factor and Fig. 2, right). In the CMH series, GMP was extensive in seven vascular endothelial growth factor. To investigate whether the of the differentiating and poorly differentiated neuroblastomas, HIF-1a – dependent mechanism had a role in the induction of and staining with a-SMA revealed a prominent pericytic MVP, we stained representative sections from four neuroblas- component (Fig. 1L and O). In undifferentiated neuroblastoma toma tumors that had extensive necrosis for HIF-1a. In all four tumors, a slightly different pattern of vasculature was noted neuroblastoma tumor sections, there was focal up-regulation of characterized by continuous networks of MVP (Fig. 1P-R). Tiny nuclear HIF-1a positivity in the neuroblasts intervening microvessels were lined by endothelial cells that were small and between necrosis and MVP (Fig. 3B). weakly positive for CD31 (Fig. 1Q). a-SMA – positive pericytes MVP is associated with poor outcome. MVP correlated were also detected in close proximity to the microvessels in strongly with poor outcome in both cohorts. In the CMH undifferentiated neuroblastoma tumors (Fig. 1R). series, MVP was seen in the tumors from all seven children who The difference in the vascular architecture was most died from disease. The 5-year survival in the cohort of children prominent in the composite ganglioneuroblastomas of the with tumors that lacked MVP (n = 20) was 100% (Fig. 4B). In nodular type. There were five ganglioneuroblastoma nodular contrast, a survival rate of 70% F 9.6 was seen in the subset of tumors in the CMH series for which both stroma-rich and patients (n = 26) with tumors with MVP (P = 0.017). Of the 12 stroma-poor regions were analyzed. Of the 10 nodular patients with stage 4 disease, 5 died, and all had tumors with ganglioneuroblastomas in the CHOP series, cores from 6 evidence of MVP. Similarly, in the CHOP series, 18 of the 22 tumors had only stroma-rich tissue, whereas cores from 4 were (81.8%) patients who died had tumors with MVP (Fig. 4D). stroma-poor areas. In both series, vessels were MVP negative in The 5-year survival in the groups with (n = 83) and without Schwannian stroma-rich regions and MVP positive in Schwan- (n = 60) MVP was 77.9% F 4.7 versus 94.7% F 2.9, nian stroma-poor areas (Fig. 1G-I). Pericytes were present but respectively (P = 0.014). Of the 27 patients with stage 4 disease provided poor coverage in the vessels with MVP as highlighted in the CHOP series, there were 10 deaths, and 9 (90%) of these by the anti-a-SMA antibody. patients had tumors with MVP. MVP is spatially related to regions of necrosis. Interestingly, necrosis was not detected in tumors that lacked MVP, whereas Discussion 12 of 17 (70%) of neuroblastoma tumors with MVP exhibited frank necrosis in close proximity to the abnormal vessels. The Tumor vessels are frequently disorganized and tortuous due neuroblasts surrounding the necrotic areas and leading up to to dysregulated angiogenesis. Structural abnormalities, such the MVP exhibited a pseudopalisading pattern (Fig. 3A). In as GMP, are characteristic of an angiogenic tumor phenotype nodular ganglioneuroblastomas, frank necrosis was not ob- and are associated with poor prognosis in some types of cancer served, although hypocellular and acellular islands of neuropil (6 – 8). However, much less is known about the role of were noted in the vicinity of MVP within the Schwannian angiogenesis in pediatric cancers, and to our knowledge, this Table 3. Associations between clinical factors and MVP in CMH and CHOP cohorts Characteristic CMH Total P CHOP Total P MVP Present MVP Absent MVP Present MVP Absent Age (mo) <12 14 8 26 0.35 29 22 51 0.82 z12 12 12 22 53 37 90 Stage 1, 2, 3, 4s 20 14 34 0.6 59 54 113 0.008 4 6 6 12 22 5 27 Risk group High-risk 8 7 15 0.76 31 7 38 <0.001 Non – high-risk 18 13 31 51 53 104 MYCN Amplified 5 5 10 0.73 11 0 11 0.006 Nonamplified 19 14 33 50 35 85 Survival Dead 7 0 7 0.017 18 4 22 0.014 Alive 19 20 39 65 56 121 Histology Unfavorable 7 6 13 0.39 45 13 58 <0.001 Favorable 8 11 19 36 44 80 Stroma Stroma-poor 23 14 37 0.008 81 42 123 <0.001 Stroma-rich 3 11 14 2 18 20 Clin Cancer Res 2007;13(12) June 15, 2007 3502 www.aacrjournals.org
  • 5. Vascular Architecture in Neuroblastoma Fig. 1. Representative sections of human neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GNR) stained with H&E (A, D, G, J, M, and P), CD31 (B, E, H, K, N, and Q), and a-SMA (C, F, I, L, O, and R). Blood vessels are thin walled in Schwannian stroma-dominant ganglioneuroma (A-C) and Schwannian stroma-rich ganglioneuroblastomas (D-F). In contrast, blood vessels are structurally abnormal and show MVP in Schwannian Stroma-poor regions of nodular ganglioneuroblastoma (G-I) and neuroblastoma (J-R). CD31and a-SMA immunostaining highlight the endothelial cells and pericytes, respectively. Magnifications, Â400 (A-Q) and Â600 (R). is the first study evaluating the clinical significance of MVP in ing advanced stage disease and MYCN amplification. In both neuroblastoma. We initially examined tumor MVP in tumor study cohorts, we also found that MVP was significantly sections from 51 patients from a single institution and then associated with decreased survival. confirmed our findings using a TMA that contained 154 tumor Angiogenesis has been extensively studied in various adult samples. Other series have shown an overall survival in patients cancers, and it is well established that microvessel density with neuroblastoma in the United States to be 57% (51-63%; is associated with prognosis in many types of neoplasms ref. 26). Thus, the overall survival of both study groups was (27 – 29). Much less is known about angiogenesis in pediatric more favorable than expected (CMH series, 82% F 6; CHOP cancers, but there is evidence that angiogenesis also plays a series, 84% F 3), most likely due to a bias away from high-risk critical role in the pathogenesis of neuroblastoma and Wilms’ patients for whom tumor sections were not available because tumors (11 – 13). We showed previously that high vascular the diagnosis was based on bone marrow studies. However, as index correlated with MYCN amplification, metastases, and expected, worse outcome was associated with established poor outcome (11). Advanced-stage neuroblastoma has also unfavorable prognostic clinical and biological factors, includ- been associated with high levels of angiogenic stimuli and avh3 www.aacrjournals.org 3503 Clin Cancer Res 2007;13(12) June 15, 2007
  • 6. Human Cancer Biology Fig. 2. Sections of human ganglioneuroblastoma (left) and neuroblastoma (right) double stained for CD31 (red) and a-SMA (green). Thin vessels showing flat, spindle-shaped endothelial cells and one layer of pericytes (left). MVP seen in vessels with enlarged endothelial cells and multiple layers of a-SMA ^ positive vascular mural cells (right). Magnification, Â100 (left and right). and avh5 integrins, both markers of active angiogenesis evaluated was seen (Fig. 3B). Recently, Holmquist-Mengelbier (13, 30). However, vascular variables were not predictive of et al. (34) have reported an association between high levels of survival in a cohort of neuroblastoma patients analyzed by HIF-2a expression and poor outcome in neuroblastoma. Canete et al. (21). These investigators used a computerized However, in contrast to our results, only low to undetectable system to assess CD34-stained sections in the richest vascular HIF-1a staining was seen in well-vascularized areas of the area. The contrasting studies highlight the effect different tumors. The reasons for the conflicting results are unclear but techniques can have in quantifying vessel number and show may indicate that different HIF-a proteins may be present in how difficult obtaining reproducible results can be. In our highly vascularized versus necrotic regions of the tumor. study, all degrees of MVP were identified readily in H&E as well Similar to other types of cancers, HIF-1a stimulates vascular as immunostained neuroblastoma tumor sections, first on the endothelial growth factor mRNA and protein expression in CMH samples and then reproduced in the smaller TMA cores, neuroblastoma cells (35). Interestingly, recent studies indicate suggesting that assessing tumors for MVP may prove to be an that serum-derived growth factors, insulin-like growth factor-1, effective method for identifying an angiogenic phenotype in and high levels of brain-derived neurotrophic factor and its neuroblastoma tumors. tyrosine kinase receptor TrkB, also stimulate HIF-1a and In glioblastoma multiforme, where glomeruloid microvessel vascular endothelial growth factor expression in neuroblastoma proliferations and MVP were first described, a spatial relation- cells (36). ship between GMP and necrosis is observed (31, 32). With the exception of composite ganglioneuroblastomas Furthermore, the hypoxic conditions associated with necrosis (nodular), high rates of survival are associated with neuro- leads to up-regulation of HIF-1a, a major regulator of the blastic tumors with abundant Schwannian stroma, suggesting proangiogenic factor vascular endothelial growth factor, and that Schwann cells are capable of influencing neuroblastoma chaotic blood vessel growth (33). In our study of neuroblas- tumor biology (37). In support of this hypothesis, Schwann toma tumors, we also found a spatial relationship between cells are known to produce neurotrophic factors as well as a MVP and necrosis, and nuclear HIF-1a expression in neuro- spectrum of angiogenesis inhibitors (14, 15, 38). Furthermore, blasts closest to the necrotic areas in the four tumor sections we Schwann cell – conditioned medium is capable of inducing Fig. 3. Sections of human neuroblastoma stained with H&E (A) and HIF-1a (B). Blood vessels with MVP are seen adjacent to the areas of necrosis (A). Up-regulation of HIF-1ais seen in the area of necrosis with adjoining blood vessels exhibiting MVP. N, necrosis; T, tumor cells; V, blood vessels. Magnifications, Â50 (A) and Â600 (B). Clin Cancer Res 2007;13(12) June 15, 2007 3504 www.aacrjournals.org
  • 7. Vascular Architecture in Neuroblastoma Fig. 4. Kaplan-Meier analysis of the two cohorts of neuroblastoma patients. A, overall survival in CMH series. B, survival by MVP in CMH series (P = 0.017). C, overall survival in CHOP series. D, survival by MVP in CHOP series (P = 0.014). neuroblastoma differentiation in vitro (39), and we have shown Recently, significantly increased survival has been reported in that infiltrating mouse Schwann cells can induce differentiation patients with colon, breast, and lung cancer following and inhibit angiogenesis in human neuroblastoma xenografts treatment with antiangiogenic agents in combination with in vivo (40). The current study indicates that vessel structure is chemotherapy (41, 42). Emerging evidence suggests that also influenced by Schwann cells as MVP was not detected in antiangiogenic therapy can normalize blood vessel architecture any of the Schwannian stroma-dominant ganglioneuromas or leading to more efficient drug delivery to the tumor (43, 44). Schwannian stroma-rich intermixed ganglioneuroblastomas. In Our results correlating MVP with poor survival in children with contrast, structurally abnormal blood vessels were seen in 65% neuroblastoma provide further rationale for using antiangio- of the stroma-poor neuroblastomas. Similarly, in the nodular genic strategies in this cohort of patients. Additional clinical ganglioneuroblastomas, prominent MVP was seen in the studies testing the activity of angiogenic inhibitors alone or in Schwannian stroma-poor areas, whereas only thin vessels were combination with cytotoxic therapy in children with clinically present areas of the tumor that were Schwannian stroma rich. aggressive neuroblastomas are warranted. References 1. Brodeur GM, Maris JM. Neuroblastoma. In: Pizzo PA, 5. Gijtenbeek JM,Wesseling P, Maass C, Burgers L, van nostic importance of glomeruloid microvascular prolif- Poplack DG, editors. Principles and practice of der Laak JA. Three-dimensional reconstruction of tu- eration indicates an aggressive angiogenic phenotype pediatric oncology, 4 ed. Philadelphia: Lippincott- mor microvasculature: simultaneous visualization of in human cancers. Cancer Res 2002;62:6808 ^ 11. Raven, 2001:895 ^ 937. multiple components in paraffin-embedded tissue. 9. Wesseling P, Schlingemann RO, Rietveld FJ, et al. 2. Shimada H, Ambros IM, Dehner LP, et al. The interna- Angiogenesis 2005;8:297 ^ 305. Early and extensive contribution of pericytes/vascular tional neuroblastoma pathology classification (the 6. Kim TS, Halliday AL, Hedley-Whyte ET, Convery K. smooth muscle cells to microvascular proliferation in Shimada System). Cancer 1999;86:364 ^ 72. Correlates of survival and the Daumas-Duport grading glioblastoma multiforme : an immuno-light and 3. Folkman J. What is the evidence that tumors are system for astrocytomas. JNeurosurg1991 ;74:27 ^ 37. immuno-electron microscopic study. J Neuropathol angiogenesis dependent? J Natl Cancer Inst 1990; 7. Brat DJ,Van Meir EG. Glomeruloid microvascular prolif- Exp Neurol 1995;54:304 ^ 10. 82:4 ^ 6. eration orchestrated by VPF/VEGF: a new world of an- 10. Cavenee WK, Furnari FB, Nagane M. Diffusely infil- 4. Folkman J. Angiogenesis in cancer, vascular, rheuma- giogenesis research. AmJPathol 2001 ;158:789 ^ 96. trating astrocytomas. In: Kleihues P, CaveneeWK, edi- toid and other disease. Nat Med 1995;1:27 ^ 31. 8. Straume O, Chappuis PO, Salvesen HB, et al. Prog- tors. Pathology and genetics of tumors of the nervous www.aacrjournals.org 3505 Clin Cancer Res 2007;13(12) June 15, 2007
  • 8. Human Cancer Biology system: WHO classification of tumors, 2nd ed. Lyon vessel density in human solid tumours. Br J Cancer 34. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, (France): IARC Press; 2000:9 ^ 54. 2002;86:1566 ^ 77. et al. Recruitment of HIF-1a and HIF-2a to common 11. Meitar D, Crawford SE, Rademaker AW, Cohn SL. 23. Brodeur GM, Seeger RC, Barrett A, et al. Interna- target genes is differentially regulated in neuroblas- Tumor angiogenesis correlates with metastatic dis- tional criteria for diagnosis, staging, and response to toma: HIF-2a promotes an aggressive phenotype. ease, N-myc amplification, and poor outcome in hu- treatment in patients with neuroblastoma. J Clin Oncol Cancer Cell 2006;10:413 ^ 23. man neuroblastoma. J Clin Oncol 1996;14:405 ^ 14. 1988;6:1874 ^ 81. 35. Beppu K, Nakamura K, Linehan WM, Rapisarda A, 12. Ribatti D, Surico G,Vacca A, et al. Angiogenesis ex- 24. Mathew P,Valentine MB, Bowman LC, et al. Detec- Thiele CJ. Topotecan blocks hypoxia-inducible factor- tent and expression of matrix metalloproteinase-2 and tion of MYCN gene amplification in neuroblastoma by 1a and vascular endothelial growth factor expression -9 correlate with progression in human neuroblasto- fluorescence in situ hybridization: a pediatric oncolo- induced by insulin-like growth factor-I in neuroblasto- ma. Life Sci 2001 ;68:1161 ^ 8. gy group study. Neoplasia 2001 ;3:105 ^ 9. ma cells. Cancer Res 2005;65:4775 ^ 81. 13. Eggert A, Ikegaki N, Kwiatkowski J, et al. High-level 25. Rojiani AM, Dorovini-Zis K. Glomeruloid vascular 36. Nakamura K, Martin KC, Jackson JK, et al. Brain- expression of angiogenic factors is associated with structures in glioblastoma multiforme: an immunohis- derived neurotrophic factor activation of TrkB induces advanced tumor stage in human neuroblastomas. Clin tochemical and ultrastructural study. J Neurosurg vascular endothelial growth factor expression via Cancer Res 2000;6:1900 ^ 8. 1996;85:1078 ^ 84. hypoxia-inducible factor-1a in neuroblastoma cells. 14. Chlenski A, Liu S, Crawford SE, et al. SPARC is a key 26. Gatta G, Capocaccia R, Coleman MP, Ries LA,Berrino Cancer Res 2006;66:4249 ^ 55. Schwannian-derivedinhibitor controllingneuroblastoma F. Childhood cancer survival in Europe and the United 37. Ambros IM, Zellner A, Roald B, et al. Role of ploi- tumor angiogenesis. Cancer Res 2002;62:7357 ^ 63. States. Cancer 2002;95:1767 ^ 72. dy, chromosome 1p, and Schwann cells in the matu- 15. Crawford SE, Stellmach V, Ranalli M, et al. Pigment 27. Gasparini G, Weidner N, Bevilacqua P, et al. Tumor ration of neuroblastoma. N Engl J Med 1996;34: epithelium-derived factor (PEDF) in neuroblastoma: a microvessel density, p53 expression, tumor size, and 1505 ^ 11. multifunctional mediator of Schwann cell antitumor peritumoral lymphatic vessel invasion are relevant 3 8. Huang D, Rutkowski JL, Brodeur GM, et al. activity. J Cell Sci 2001;114:4421 ^ 8. prognostic markers in node-negative breast carcino- Schwann cell-conditioned medium inhibits angiogen- 16. Kaicker S, McCrudden KW, Beck L, et al. Thalido- ma. J Clin Oncol 1994;12:454 ^ 66. esis. Cancer Res 2000;60:5966 ^ 71. mide is anti-angiogenic in a xenograft model of neuro- 28. Depasquale I, Thompson WD. Microvessel density 39. Kwiatkowski JL, Rutkowski JL, Yamashiro DJ, blastoma. Int J Oncol 2003;23:1651 ^ 5. for melanoma prognosis. Histopathology 2005;47: Tennekoon GI, Brodeur GM. Schwann cell-condi- 17. Ribatti D, Raffaghello L, Marimpietri D, et al. Fenreti- 186 ^ 94. tioned medium promotes neuroblastoma survival and nide as an anti-angiogenic agent in neuroblastoma. 29. Offersen BV, Borre M, Overgaard J. Immunohisto- differentiation. Cancer Res 1998;58:4602 ^ 6. Cancer Lett 2003;197:181 ^ 4. chemical determination of tumor angiogenesis mea- 40. Liu S, Tian Y, Chlenski A, et al. ‘‘Cross-talk’’ be- 18. Streck CJ, Ng CY, ZhangY, et al. Interferon-mediated sured by the maximal microvessel density in human tween Schwann cells and neuroblasts influences the anti-angiogenic therapy for neuroblastoma. Cancer Lett prostate cancer. APMIS 1998;106:463 ^ 9. biology of neuroblastoma xenografts. Am J Pathol 2005;228:163 ^ 70. 30. Erdreich-Epstein A, Shimada H, Groshen S, et al. 2005;166:891 ^ 900. 19. Katzenstein HM, Rademaker AW, Senger C, et al. Integrins avh3 and avh5 are expressed by endothelium 41. Hurwitz H, Kabbinavar F. Bevacizumab combined Effectiveness of the angiogenesis inhibitor TNP-470 of high-risk neuroblastoma and their inhibition is asso- with standard fluoropyrimidine-based chemotherapy in reducing the growth of human neuroblastoma in ciated with increased endogenous ceramide. Cancer regimens to treat colorectal cancer. Oncology 2005; nude mice inversely correlates with tumor burden. Clin Res 2000;60:712 ^ 21. 69 Suppl 3:17 ^ 24. Cancer Res 1999;5:4273 ^ 8. 31. Zagzag D, Zhong H, Scalzitti JM, et al. Expression of 42. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall 20. Shusterman S, Grupp SA, Barr R, et al. The angio- hypoxia-inducible factor 1a in brain tumors: associa- JH. Imaging angiogenesis: applications and poten- genesis inhibitor TNP-470 effectively inhibits human tion with angiogenesis, invasion, and progression. tial for drug development. J Natl Cancer Inst 2005; neuroblastoma xenograft growth, especially in the Cancer 2000;88:2606 ^ 18. 97:172 ^ 87. setting of subclinical disease. Clin Cancer Res 2001 ; 32. Sondergaard KL, Hilton DA, Penney M, Ollerenshaw 43. Jain RK. Normalization of tumor vasculature: an 7:977 ^ 84. M, Demaine AG. Expression of hypoxia-inducible emerging concept in antiangiogenic therapy. Science 21. Canete A, Navarro S, Bermudez J, et al. Angiogene- factor 1a in tumours of patients with glioblastoma. 2005;307:58 ^ 62. sis in neuroblastoma: relationship to survival and other Neuropathol Appl Neurobiol 2002;28:210 ^ 7. 44. Yang Q,Tian Y, Liu S, et al. Thrombospondin-1 pep- prognostic factors in a cohort of neuroblastoma 33. Fischer I, GagnerJP, Law M, Newcomb EW, Zagzag tide ABT-510 combined with valproic acid is an effec- patients. J Clin Oncol 2000;18:27 ^ 34. D. Angiogenesis in gliomas: biology and molecular tive antiangiogenesis strategy in neuroblastoma. 22. Hasan J, Byers R, Jayson GC. Intra-tumoural micro- pathophysiology. Brain Pathol 2005;15:297 ^ 310. Cancer Res 2007;67:1716 ^ 24. Clin Cancer Res 2007;13(12) June 15, 2007 3506 www.aacrjournals.org