SlideShare una empresa de Scribd logo
1 de 175
Descargar para leer sin conexión
PAGE 1




        INTREPID MINES LIMITED

     TUJUH BUKIT PROJECT
  REPORT ON MINERAL RESOURCES,
                LOCATED IN EAST JAVA,
                     INDONESIA


             TECHNICAL REPORT

                 FOR
        INTREPID MINES LIMITED
              LEVEL 1, 490 UPPER EDWARD ST.
                 SPRING HILL, QLD 4004
                        AUSTRALIA



                          21 JUNE 2011


    PHILLIP L. HELLMAN, BSC (HONS 1), DIP ED, PHD, MGSA, MAEG, FAIG




HELLMAN & SCHOFIELD PTY LTD                      TEL: +61 2 9858 3863

3/6 TRELAWNEY ST, EASTWOOD                       FAX: +61 2 9858 4077

NSW 2122 AUSTRALIA                    EMAIL: hellscho@hellscho.com.au
TUJUH BUKIT


2.0 CONTENTS
2.0        CONTENTS................................................................................................................................. 2 
LIST OF FIGURES ...................................................................................................................................... 4 
LIST OF TABLES ....................................................................................................................................... 6 
LIST OF APPENDICES ............................................................................................................................... 6 
3.         SUMMARY .................................................................................................................................. 1 
    3.1  Property..................................................................................................................................... 1 
    3.2  Location .................................................................................................................................... 1 
    3.3   Ownership ................................................................................................................................. 1 
    3.4   Geology and Mineralization ..................................................................................................... 1 
    3.5   Exploration Concept ................................................................................................................. 1 
    3.6   Status of Exploration ................................................................................................................ 1 
    3.7   Development and Operations.................................................................................................... 2 
    3.8   Qualified Person’s Conclusions and Recommendations .......................................................... 2 
4.         INTRODUCTION ......................................................................................................................... 3 
5.         RELIANCE ON OTHER EXPERTS ............................................................................................... 4 
6.         PROPERTY DESCRIPTION AND LOCATION ............................................................................... 5 
7.         ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY ............... 8 
8.         HISTORY .................................................................................................................................... 9 
9.         GEOLOGICAL SETTING ........................................................................................................... 11 
    9.1 Regional Geology ........................................................................................................................ 11 
    9.2 Local Geology ............................................................................................................................. 16 
    9.3 Deposit Geology .......................................................................................................................... 21 
10.        DEPOSIT TYPES....................................................................................................................... 39 
11.        MINERALIZATION..................................................................................................................... 39 
    11.1 Katak ..................................................................................................................................... 39 
    11.2 Gunung Manis ....................................................................................................................... 41 
    11.3 Candrian ................................................................................................................................ 42 
    11.4 Tumpangpitu ......................................................................................................................... 43 
12.        EXPLORATION ......................................................................................................................... 57 
13.        DRILLING ................................................................................................................................. 64 
    13.1   Drilling Contractor and Drilling Statistics .............................................................................. 66 
    13.2 Drilling Equipment .................................................................................................................. 66 
    13.3 Down hole Surveys ................................................................................................................. 67 
    13.4 Drill Hole Collar Survey and Topographic Survey ................................................................. 67 
    13.5 Summary Results of Drilling ................................................................................................... 67 
14.        SAMPLING METHOD AND APPROACH..................................................................................... 68 
    14.1 Core Processing Protocols ....................................................................................................... 69 
    14.2 Measurement of Specific Gravity............................................................................................ 71 
    14.3 Sampling Intervals................................................................................................................... 71 
    14.4   Core Recovery Data ................................................................................................................ 72 
    14.5   Comparison of Sludge Samples versus Core Samples ........................................................... 73 
15.        SAMPLE PREPARATION AND SECURITY ................................................................................. 75 
    15.1   Sample Splitting, Packaging and Labelling ............................................................................ 75 
    15.2   Procedures Employed to Ensure Sample Integrity ................................................................. 75 
    15.3   Use of IMN Employees in Sampling Procedure ..................................................................... 76 
    15.4   Sample Security and Transport ............................................................................................... 76 
    15.5 Analytical Laboratories ........................................................................................................... 77 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT


    15.6 Analytical Methods ................................................................................................................. 78 
    15.7   QAQC Procedures Employed ................................................................................................. 80 
    15.8   QAQC Results ........................................................................................................................ 83 
16.        DATA VERIFICATION ............................................................................................................... 84 
17.        ADJACENT PROPERTIES ......................................................................................................... 85 
18.        MINERAL PROCESSING AND METALLURGICAL TESTING ....................................................... 86 
    18.1  Sulfide Testwork ..................................................................................................................... 86 
    18.2  Summary of Oxide Testwork .................................................................................................. 86 
    18.3  Metcon Metallurgical Program ............................................................................................... 91 
    18.4  KCA Metallurgical Test Program ........................................................................................... 95 
    18.5  Ore and Waste Acid Neutralization Potential ......................................................................... 97 
    18.6  Future Work ............................................................................................................................ 97 
    18.7  Ore Processing ........................................................................................................................ 97 
19.        MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE .................................................. 100 
20.        OTHER RELEVANT DATA AND INFORMATION....................................................................... 130 
    20.1   Porphyry Resource................................................................................................................ 130 
    20.2   Summary Of Preliminary Economic Assessment For The Tujuh Bukit Oxide Project ........ 135 
21.        INTERPRETATIONS AND CONCLUSIONS............................................................................... 144 
    21.1  Interpretations and Conclusion of the Porphyry Resource ................................................... 144 
    21.2  Interpretations and Conclusion of the Oxide Resource ........................................................ 144 
22.        RECOMMENDATIONS ............................................................................................................ 144 
    22.1  Recommendations for the Porphyry resource ....................................................................... 144 
    22.2  Recommendations for the Preliminary Economic Assessment of the Oxide Resource........ 145 
23.        REFERENCES ........................................................................................................................ 151 
24.        DATE AND SIGNATURE PAGE ............................................................................................... 153 
25.        ADDITIONAL REQUIREMENTS FOR TECHNICAL REPORTS ON DEVELOPMENT PROPERTIES
           AND PRODUCTION PROPERTIES........................................................................................... 154 
26.        ILLUSTRATIONS .................................................................................................................... 154 




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT


LIST OF FIGURES
Figure 1: Location of the Tujuh Bukit Project, Banyuwangi, East Java, Indonesia. .................................................................... 5 
Figure 2: IUP Production Operation (outlined in red). ................................................................................................................. 6 
Figure 3: IUP Exploration outlined in red. ................................................................................................................................... 6 
Figure 4: Regional geology. ...................................................................................................................................................... 12 
Figure 5: Location of the Tujuh Bukit project. ........................................................................................................................... 13 
Figure 6 : Regional geology of the southeast corner of Java (Jawa Timur). .............................................................................. 15 
Figure 7 : Distribution of mineral prospects ............................................................................................................................... 16 
Figure 8 : Lithology of the Tumpangpitu prospect region ........................................................................................................... 17 
Figure 9 : Lithology of the Tujuh Bukit project as mapped by Placer (2000-2001). ................................................................... 18 
Figure 10 : Reduced-to-Pole magnetic image ........................................................................................................................... 20 
Figure 11 : Lithology cross-section 11060 mN at Tumpangpitu ................................................................................................. 22 
Figure 12 : Distribution of alteration styles at the Tumpangpitu prospect as mapped by GVM-Placer ...................................... 23 
Figure 13 : Outcrop of crystal lithic tuff with possible fiame from the Salakan Prospect. ........................................................... 24 
Figure 14 : Matrix-supported lithic-crystal tuff from hole GTD-34 (Zone A - Tumpangpitu) ....................................................... 25 
Figure 15 : Nine locations where sediments are encountered at Tumpangpitu (Nov. 2010). .................................................... 26 
Figure 16 : Images of sedimentary textures in fresh to incipiently propylitic-altered sediments ................................................ 28 
Figure 17 : Interbedded, fine-grained volcanic sandstones (propylitic)...................................................................................... 28 
Figure 18 : Images of laminated and banded sediment in drill hole GTD-10-162 ...................................................................... 29 
Figure 19 : Very coarse grained tonalite (CT): GTD-09-42 (667m)............................................................................................ 32 
Figure 20 : Mill breccia from an interpreted diatreme complex at Zone B.................................................................................. 34 
Figure 21 : Clast of intense porphyry quartz vein stockwork ..................................................................................................... 35 
Figure 22 : Left - Clast of quartz-magnetite alteration (potassic zone) ...................................................................................... 35 
Figure 23 : Left - Clast of porphyry related Qtz-magnetite-pyrite altered rock ........................................................................... 35 
Figure 24 : Left - Accretionary lapilli from GTD-09-60 ............................................................................................................... 36 
Figure 25 : Charcoal wood fragments embedded within chlorite-clay altered mill (diatreme) .................................................... 36 
Figure 26 : Muddy matrix breccias (GTD-09-107; 162.10m and 163m)..................................................................................... 37 
Figure 27 : Cross-section 11220 mN at Tumpangpitu. .............................................................................................................. 38 
Figure 28 : Plan of 5 planned drill holes that were subsequently drilled at Katak. ..................................................................... 40 
Figure 29 : Plan of 5 planned drill holes that were subsequently drilled at Katak. ..................................................................... 40 
Figure 30 : Alteration map at Gunung Manis ............................................................................................................................. 42 
Figure 31 : Location of the Candrian porphyry prospect ............................................................................................................ 43 
Figure 32 : Vuggy massive silica (vu-Hsi) alteration of lithic tuff ................................................................................................ 44 
Figure 33 : Alteration section 11,200 mN (Placer grid) at Zone A.............................................................................................. 45 
Figure 34 : Alteration section 10,910 mN (Placer grid) at Zone C, ............................................................................................ 46 
Figure 35 : Alteration section 9045370 mN (UTM grid) at Zone B ............................................................................................. 47 
Figure 36 : Plan of the principal porphyry Cu-Au-Mo intersections at Tumpangpitu (yellow bars), ........................................... 48 
Figure 37 : Resource block model section 11040 mN (Placer grid) at Tumpangpitu. ................................................................ 49 
Figure 38 : Alteration section 11040 mN (Placer grid) at Tumpangpitu (Nov. 2010). ................................................................ 50 
Figure 39 : Top-left, GTD-10-167 (403m) Qtz-Mo (B-vein) with Py center-line. ........................................................................ 52 
Figure 40 : Average grade of As in oxide drill holes for 3 oxidation classes (fresh, strong, complete) ...................................... 53 
Figure 41 : Enrichment factor of As in oxide Zones A-F ............................................................................................................ 53 
Figure 42 : Core from the porphyry zone in GTD-09-112 (731.20m depth). .............................................................................. 55 
Figure 43 : Core from the porphyry zone in GTD-10-163 .......................................................................................................... 55 
Figure 44: Distribution of Au anomalies in -80 mesh soil samples at Tumpangpitu, ................................................................ 60 
Figure 45 : Distribution of Cu anomalies in -80 mesh soil samples at Tumpangpitu, ................................................................ 61 
Figure 46 : Left – Aeromagnetic data flown by Golden Valley Mines (circa 1999) .................................................................... 63 
Figure 47 : Distribution of drill holes at Tumpangpitu as of 9th May 2011. ................................................................................. 65 
Figure 48 : Summary of core recovery for the diamond drilling programs at Tumpangpitu. ...................................................... 73 
Figure 49 : Plots of Au in core and in corresponding sludge samples for Tumpangpitu. ........................................................... 74 
Figure 50 : Plots of Cu in core and in corresponding sludge samples for Tumpangpitu. ........................................................... 74 
Figure 51 : Contoured elevation model showing block model limits ........................................................................................ 100 
Figure 52 : Location of new mineralised intercepts (red) ......................................................................................................... 101 
Figure 53 : Example of sectional interpretation of Cu mineralised zone .................................................................................. 102 
Figure 54 : Relationship of elevation to Cu mineralization shell and elevated Cu drill hole intercepts .................................... 102 
Figure 55 : Deposit-wide cross section, Cu in 6m composites (transition and sulfide zone) ................................................... 106 
Figure 56 : Deposit-wide long section, Cu in 6m composites (sulfide zone) ............................................................................ 107 
Figure 57 : Deposit-wide cross section, Au in 6m composites (transition and sulfide zone).................................................... 108 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT


Figure 58 :   Deposit-wide long section, Au in 6m composites (transition and sulfide zone) .................................................... 109 
Figure 59 :   Deposit-wide cross section, Mo in 6m composites (transition and sulfide zone) .................................................. 110 
Figure 60 :   Deposit-wide long section, Mo in 6m composites (transition and sulfide zone) .................................................... 111 
Figure 61 :   Deposit-wide cross section, As in 6m composites (transition and sulfide zone) ................................................... 112 
Figure 62 :   Deposit-wide long section, As in 6m composites (transition and sulfide zone) .................................................... 113 
Figure 63 :   Cu:Au relationship, 6m composites, sulfide mineralization ................................................................................... 113 
Figure 64 :   Cu:Mo relationship, 6m composites, sulfide mineralization .................................................................................. 114 
Figure 65 :   Cu:As relationship, 6m composites, sulfide mineralization ................................................................................... 114 
Figure 66 :   Au:As relationship, 6m composites, sulfide mineralization ................................................................................... 114 
Figure 67 :   Modelled variograms for Cu (from top: down hole, 040 and 130 directions, UTM) .............................................. 116 
Figure 68 :   Modelled down-hole variogram for Au .................................................................................................................. 117 
Figure 69 :   Modelled down-hole variogram for As .................................................................................................................. 117 
Figure 70 :   Modelled down-hole variogram for Mo ................................................................................................................. 117 
Figure 71 :   Location of resource in relation to Cu mineralization ............................................................................................ 118 
Figure 72 :   Location of Exploration Potential in relation to Inferred Resource ........................................................................ 121 
Figure 73 :   Combined drill holes and block model (oblique section) ....................................................................................... 122 
Figure 74 :   Legend for sections .............................................................................................................................................. 123 
Figure 75 :   Oblique section 3, drill hole GTD-08-42 and block model .................................................................................... 123 
Figure 76 :   Oblique section 6, drill holes and block model ...................................................................................................... 124 
Figure 77 :   Oblique section 7, drill holes and block model ...................................................................................................... 124 
Figure 78 :   Oblique section 8, drill holes and block model ...................................................................................................... 125 
Figure 79 :   Oblique section 9, drill holes and block model ...................................................................................................... 125 
Figure 80 :   Oblique section 10, drill holes and block model .................................................................................................... 126 
Figure 81 :   Location of oblique sections in relation to drill holes and block model ................................................................. 127 
Figure 82 :   Combined drill holes and block model (oblique section) -gold .............................................................................. 128 
Figure 83 :   Combined drill holes and block model (oblique section) - molybdenum ............................................................... 128 
Figure 84 :   Combined drill holes and block model (oblique section) - arsenic ........................................................................ 129 
Figure 85 :   Legend for composite sections for Au, Mo & As ................................................................................................... 129 
Figure 86 :   Oblique oxide section 9, new results from GTD-11-194 ....................................................................................... 131 
Figure 87 :   Oblique section 16, new results from GTD-11-201 ............................................................................................... 132 
Figure 88 :   Oblique section 18, new results from GTD-11-203 ............................................................................................... 133 
Figure 89 :   Oblique oxide section 6, new results from GTD-11-205 ....................................................................................... 134 
Figure 90 :   Oblique porphyry section 10, new results from GTD-11-206 ................................................................................ 135 
Figure 91:    Summary - Standard Bias Plot Lab: Intertek Method; FA30 Method: Au.............................................................. 162 
Figure 92:    Summary - Standard Bias Plot Lab: Intertek Method: GA02 Method: Cu ............................................................. 162 
Figure 93:    Charts for Standard: OREAS 53Pb Lab: Intertek ................................................................................................. 163 
Figure 94:    Check Assays - Au (FA30/Au-AA25); Cu (GA02/ME-OG62); Ag (GA02/ME-OG62)............................................ 165 
Figure 95:    Field Duplicate Charts (Au, Cu, Ag)...................................................................................................................... 166 
Figure 96:    Laboratory Repeatability Summary Report (Lab: Intertek) ................................................................................... 167 




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT


LIST OF TABLES
Table 1 : Inferred Oxide Resource at Tumpangpitu as reported in January 2011 ..................................................................... 58 
Table 2 : Number of core samples assayed per sampling interval (Tumpangpitu) .................................................................... 71 
Table 3 : Summary of core recovery for the diamond drilling programs at Tumpangpitu .......................................................... 72 
Table 4 : Method and detection limits for elements analysed in the Tumpangpitu drilling program. ......................................... 78 
Table 5 : List of OREAS standards (CRM’s) used in the Tujuh Bukit Project ............................................................................ 82 
Table 6 : List of OREAS standards (CRM’s) used in the Tujuh Bukit Project ............................................................................ 82 
Table 7 : Summary Results of Metcon Test Program ................................................................................................................ 86 
Table 8 : Summary of KCA Test Work ....................................................................................................................................... 88 
Table 9 : Summary of KCA Column and Projected Field Recoveries ........................................................................................ 89 
Table 10 : KCA Core Photograph Category Summary .............................................................................................................. 90 
Table 11 : Metcon Composite Samples ..................................................................................................................................... 91 
Table 12 : Head Assays ............................................................................................................................................................. 92 
Table 13 : Comparison of Expected, Assayed, & Average Calculated Head Grades ................................................................ 92 
Table 14 : Metcon Baseline Cyanidation Test Summary ........................................................................................................... 93 
Table 15 : Effect of Higher Cyanide Concentration on Residue Grades .................................................................................... 94 
Table 16 : Metcon Comminution Test Summary ........................................................................................................................ 94 
Table 17 : Metcon Analyses of Final Leach Solutions ............................................................................................................... 95 
Table 18 : Column Leach Test and Expected Field Recoveries ................................................................................................ 96 
Table 19 : Cyanide Consumption ............................................................................................................................................... 97 
Table 20 : Summary of assayed intervals within interpreted copper mineralised zone ........................................................... 103 
Table 21 : Summary of 6m composites within interpreted copper mineralised zone (only sulfide intervals) ........................... 103 
Table 22 : Summary of 6m composited densities within interpreted copper mineralised zone ............................................... 103 
Table 23: Summary, by hole, of 6m composites within interpreted porphyry zone(sulfide intercepts only) ............................ 104 
Table 24 : Block model extents ................................................................................................................................................ 118 
Table 25 : Summary of Inferred Resources, sulfide zone ........................................................................................................ 119 
Table 26: Production Statistics ............................................................................................................................................... 137 
Table 27: Summary of Pre-Production Capital Costs ............................................................................................................. 139 
Table 28 : Operating Costs ...................................................................................................................................................... 141 
Table 29 : Summary of Financial Results ................................................................................................................................ 141 
Table 30 : Internal Standards - Lab: Intertek; Method: FA30 ................................................................................................... 161 
Table 31: Internal Standards - Lab: Intertek; Method: GA02 .................................................................................................. 161 
Table 32: Internal Standards - Lab: Intertek; Method: GA30 .................................................................................................. 161 
Table 33: Internal Blanks – Lab: Intertek ................................................................................................................................ 164 
Table 34: Field Duplicates - ½ Core and Sludge samples ...................................................................................................... 165 




LIST OF APPENDICES
Appendix 1. Details of drill hole locations

Appendix 2. QA/QC Report by D Lulofs




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                             Page 1


3.     SUMMARY
3.1    Property
The Tujuh Bukit Project comprises two exploration tenements (“IUPs”) covering a total area 
of 11,621.45 hectares.  


3.2    Location
The property is located approximately 205 kilometers southeast of Surabaya, the capital of 
the  province of East Java, Indonesia  and 60 kilometers southwest of the regional center of 
Banyuwangi.  The  property  is  centerd  near  8°  35’  20.6”  S  and  114°  01’  08”  N  and  is  bound 
within UTM co‐ordinates 163,000‐179,000 E and 9042000‐9055000 N.  
 
3.3 Ownership
The IUP (Izin Usaha Pertambangan) ‐Explorasi and IUP Operasi and Produksi were granted to 
PT.  Indo Multi  Niaga  ("IMN")  on 25th  January  2010  by  the  Bupati of Banyuwangi  (Regional 
Administrator,  Banyuwangi,  East  Java)  under  decree  number  188/05/KP/429.012/2007. 
Intrepid Mines Limited (“Intrepid”) and IMN have signed a Joint Venture agreement enabling 
Intrepid to hold an 80% economic interest in the Tujuh Bukit Project.  
 
3.4 Geology and Mineralization
The principal styles of mineralization that are the focus of exploration and delineation drilling 
on  the  Tujuh  Bukit  Project  are  high‐sulfidation  epithermal  Cu‐Au‐Ag  mineralization  and 
porphyry  Cu‐Au  mineralization.  The  rocks  within  the  porphyry  environment  become 
intensely altered by the passage of hot saline fluids of varying pH and by the late descent of 
cool oxidized ground‐waters that are out of equilibrium with the host rocks.  
 
These  areas  of  rock  alteration  are  typically  zoned  at  the  district‐scale,  a  feature  that  can 
provide vectors to porphyry Cu‐Au ore in magmatic‐related hydrothermal systems. Porphyry 
deposits  contain  the  vast  majority  of  the  copper  resources  of  the  Pacific  island  arcs  and 
significant amounts of gold, silver and molybdenum. Porphyry copper‐gold deposits tend to 
be  large,  fairly  uniformly  mineralized  and  relatively  low‐grade  deposits  with  great  vertical 
extent.  
 
 
3.5 Exploration Concept
The  project  is  of  an  advanced  nature,  with  well  understood  geological  potential  and  an 
Inferred  Resource.  It  will  progress  by  infill  drilling,  step‐out  drilling,  drilling  to  depth  and 
follow‐up of geophysical (e.g. magnetic) and geochemical targets around the immediate area 
of identified mineralization. 
  
3.6 Status of Exploration
Resource delineation and step‐out drilling. 
 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                   Page 2


3.7    Development and Operations
None as yet.  
 
3.8 Qualified Person’s Conclusions and Recommendations
In the Qualified Person’s opinion, the character of the property is of sufficient merit to justify 
continued drilling. 




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                      Page 3


4.     INTRODUCTION
This technical report is prepared by P. L. Hellman, an Independent Consultant to Intrepid, to 
comply with NI 43‐101 reporting guidelines. Technical information and data contained in the 
report or used in its preparation are sourced from reports compiled by previous workers of 
the  property together with internal reports of the current tenement holders as well as the 
authors  own  observations  whilst  visiting  the  site  and  working  with  data  from  the  site 
generated by others.  
 
This report documents the second Inferred Resource estimate at the Tumpangpitu porphyry 
Cu‐Au  prospect  in  East  Java,  Indonesia.  The  Tumpangpitu  Prospect  forms  a  part  of  the 
broader Tujuh  Bukit Project.  The  objective  of  the  report  is  to estimate  the  second  Inferred 
Mineral Resource and to assess the merits of continued drilling on the Prospect 
 
The  property  has  been  visited  by  the  Author  on  four  occasions  from  November  2007.  The 
initial visit was focused on drilling programs at Tumpangpitu Prospects Zones C and A which 
were aimed at defining oxide gold‐silver resources. These have been separately reported in 
other NI 43‐101 reports (Hellman, 2008, 2009 & 2011). Later visits included reviews of drilling 
on the deeper sulfide porphyry copper‐gold system. The Author observed the progress of the 
drilling programs in the Zones C and A oxide areas, visited the site office at Pulau Merah and 
provided  advice  on  sampling,  QA/QC,  geological  logging,  geotechnical  data  acquisition  and 
general  data  handling  protocols.  The  Author  inspected  the  property  over  several  days  in 
October  2010  and  observed  drilling  activities,  drill  core  and  participate  with  on‐site 
discussions  with  staff.  The  Author  also  inspected  the  property  in  December  2010  and 
observed drill core handling in the Tumpangpitu core yard as well as attending meetings in 
the site office at Pulau Merah.  




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                         Page 4


5.     RELIANCE ON OTHER EXPERTS
The  author  of  this  report  is  an  Independent  Qualified  Person  and  has  relied  on  various 
datasets and reports that were provided by Intrepid, and project consultants to support the 
interpretation of exploration results discussed in this report on mineral resources. The data 
that was provided  to the author was deemed to be in good stead, and is  considered to  be 
reliable.  The  author  is  not  aware  of  any  critical  data  that  has  been  omitted  so  as  to  be 
detrimental  to  the  objectives  of  this  report.  There  was  sufficient  data  provided  to  enable 
credible and well constrained interpretations to be made in respect of data. 
 
Assay  data  is  handled  by  an  independent  database  bureau  that  receives  electronic  results 
directly from the laboratory. The data is then directly transferred to the Author. 
 
Statements  regarding  tenement  status,  legal  right  to  mine  and  explore,  environmental 
liability  have  been  accepted  in  good  faith  from  Intrepid  and  are  outside  the  expertise  of 
Hellman & Schofield Pty Ltd. 




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                     Page 5


6.         PROPERTY DESCRIPTION AND LOCATION
The  Tujuh  Bukit  Project  comprises  two  adjoining  IUPs  (Izin  Usaha  Pertambangan)  –  an  IUP 
Exploration of 6623.45 hectares and an IUP Production Operation of 4998 hectares ‐ located 
approximately 205 kilometers southeast of Surabaya, the capital of the province of East Java, 
Indonesia and 60 kilometers southwest of the regional center of Banyuwangi. The Project is 
centered  near  8°  35’  20.6”  S  and  114°  01’  08”  N  and  is  bound  within  UTM  co‐ordinates 
163,000‐179,000 E and 9042000‐9055000 N. The tenements are located  within  the desa of 
Sumberagung, Kecamatan Pesanggaran, Kabupaten Banyuwangi (Figure 1). 
 
The IUP Exploration (Number – 188/9/KEP/429.011/2010) abuts and surrounds to the south, 
west and north the IUP Production Operation. It was issued on 25 January 2010 for a period 
of  4  years  (Figure  2).The  IUP  Production  Operation  (Number  –  188/10/KEP/429.011/2010) 
was also issued on 25 January 2010 for a period of 20 years (Figure 2).The IUPs were issued in 
compliance with the new Indonesian Mining Law (Law number 4 Year 2009) and concerning 
the Extension Application and Adjustment of the pre‐existing  KP Exploration to become an 
IUP Exploration, and the KP Exploitation to become an IUP Production Operation. 
 
The pre‐existing KP‐Explorasi (Kuasa Pertambangan or exploration mining permit) had been 
granted to PT. Indo Multi Niaga on 16 February 2007 by the Bupati of Banyuwangi (Regional 
Administrator, Banyuwangi, East Java) under decree number 188/05/KP/429.012/2007. This 
followed directly from an initial SKIP tenure period and a subsequent one year period under 
tenement  license  KP‐General  Survey  (decree  No.  188/57/KP/429.012/2006  granted  on  20 
March, 2006). 
 




Figure 1: Location of the Tujuh Bukit Project, Banyuwangi, East Java, Indonesia.




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                    Page 6




Figure 2: IUP Production Operation (outlined in red).
(Green areas are generalised representations of areas of Protection Forest).




Figure 3: IUP Exploration outlined in red.
Green areas are generalised representations of areas of Protection Forest.




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                            Page 7


Surface  rights  in  the  area  are  held  by  the  Department  of  Forestry  and  include  farmland, 
production forests, protected forest areas, and some villages. The villages are located within 
the  IUP  area  but  not  in  any  of  the  areas  identified  for  exploration  at  this  point.  The  IUPs 
require annual rent payments and submissions of quarterly reports regarding the company’s 
activities on the tenement to the regional government. 
 
The  tenement  boundaries  were  located  with  GPS  coordinates  and  the  boundary  of  the 
tenements has subsequently been surveyed and marked with a concrete pegs. 
 
The  main  mineralized  prospect,  Tumpangpitu,  is  located  in  the  southeast  portion  of  the 
tenement  and  covers  an  area  of  about  3  by  2  kilometers.  The  other  significant  prospect, 
Salakan, is located in the northwest part of the tenement and covers an area of about 6.0 by 
4.0  kilometers.  Other  prospects  at  Gunung  Manis,  Katak  and  Candrian  lie  to  the  east  of 
Tumpangpitu.  No  historical  mining  activity  has  been  conducted  within  or  near  to  the 
boundaries of the tenement. 
 
Under the Terms of the Alliance Agreement, Intrepid was granted an option to acquire up to 
an 80% economic interest in the Tujuh Bukit Project. The agreement recognizes the potential 
to increase the area held under IUP up to a 25km radius from the existing IUP boundaries. 
 
Intrepid  has  earned  its  80%  economic  interest  in  the  project  through  project  funding  of 
A$5M (to earn 51%) and through funding further exploration for an additional A$3M to earn 
an additional 29% stake.  
 
Intrepid then free carries IMN's 20% towards completion of a Feasibility Study but this free 
carry is limited to an additional A$42M. The Alliance Agreement includes payments to IMN 
upon meeting various conditions.  
 
Upon  meeting  conditions  for  the  80/20  economic  interest,  the  parties  then  fund  on  a  pro‐
rata basis equal to their percentage interest. Standard dilution clauses apply  if either  party 
elects not to fund.  
 
Intrepid advises that there is no knowledge of any environmental liabilities associated with 
the project. A permit is required to conduct exploration activities within areas of protected 
and production forest and these have been issued by the Department of Forestry for work on 
this project.  
 
This  report  is  the  fifth  on  mineral  resource  estimates  from  this  prospect  area  within  the 
Tujuh Bukit Project.  




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                             Page 8




7.     ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND
       PHYSIOGRAPHY
The  project  area  encompasses  Gunung  Tumpangpitu  (489  m  ASL)  and  surrounding  hill 
country which graduates into alluvial plains near to sea level. The majority of landforms are 
steep  and  rugged  with  poorly  drained  ephemeral  streams  having  only  seasonal  discharges. 
Streams  and  creeks  on  the  northern  side  of  Gunung  Tumpangpitu  drain  into  Sungai  Gede 
which flows actively for 8‐10 months of the year. 
 
The region has a wet and dry season climate typical of tropical equatorial countries. The wet 
season is subject to seasonal influence of the northwest monsoon from November to March. 
Rainfall in the mountain ranges to the north ranges between 1725‐3500mm/year decreasing 
toward the coast to 1110‐1850mm/year (Campbell, 2000). Temperatures range from 26‐31oC 
during the day down to 22‐24oC overnight. Relative humidity is typically high, ranging from 
80 to 100%. Whilst the agreeable climate allows exploration activity to continue year‐round, 
prolonged dry weather may result in a lack of local water sources for drilling which then must 
be sourced from Sungai Gonggo some 4‐6 kilometers to the east of Tumpangpitu. 
 
On  the  lower  slopes,  government‐owned  teak  plantations,  classified  as  Hutan  Produksi 
(Production  Forest),  are  common  and  are  administered  by  the  Perhutani  (Forestry 
Department), Banyuwangi. Remnant stands of forest on the upper slopes and top of Gunung 
Tumpangpitu  are  classified  as  Hutan  Lindung  (Protected  Forest).  Permits  are  required,  and 
have  been  issued,  from  the  Perhutani  for  undertaking  exploration  within  Protected  and 
Production Forest areas. 
 
In lowland alluvial areas, or areas where tree plantations have been harvested, local farmers 
grow  cash  crops  such  as  corn,  rice,  coconut,  bananas,  chili,  tobacco,  vegetables  and  citrus. 
The area also supports a small local fishing industry. 
 
Road access to the project is afforded via sealed road from Surabaya (8 hours) and Denpasar, 
Bali  (7  hours).  Roads  are  single  lane  and  conditions  vary  from  good  to  poor  and  are  in  a 
constant  state  of  repair.  The  trip  from  Bali  includes  a  1‐2  hour  ferry  crossing  of  the  strait 
between Bali and Java.  
 
Helicopter access is available to the project from Bali. IMN has a helicopter on full time hire 
at  site  and  periodically  uses  the  helicopter  to  transfer  passengers  to  site.  The  flight  takes 
about 40 minutes. 
 
Domestic  and  international  flights  operate  daily  to  Surabaya  and  Denpasar  from  Jakarta, 
Singapore and Australia. 
                                   




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                            Page 9


 

8.     HISTORY
The  project  area  was  first  explored  by  PT.  Hakman  Platina  Metalindo  and  its  JV  partner, 
Golden  Valley  Mines  of  Australia.  Golden  Valley  Mines  identified  the  potential  of  the 
Tumpangpitu  and  Salakan  areas  as  prospective  targets  for  porphyry  copper  type 
mineralization following a regional (1:50,000) drainage and rock‐chip geochemical sampling 
program  conducted  during  December  1997  –  May  1998.  Subsequently,  a  rapid  detailed 
surface geochemical sampling program was conducted over Gunung Tumpangpitu resulting 
in  seven  targets  being  identified  for  drilling.  An  initial  drilling  program  of  5  diamond  drill 
holes – GT‐001 to GT‐005 – was conducted during March – June 1999. 
 
In February 2000 Placer Dome Inc. (Placer) entered into a Joint Venture with Golden Valley 
Mines  to  earn  51%  of  the  project  and  assumed  operational  control  of  the  exploration 
program.  In  order  to  better  define  targets  for  follow‐up  drilling  on  Tumpangpitu  32.75 
kilometers  of  grid‐based  geochemical  and  IP  surveys  were  completed  between  April‐May 
2000. Anomalous bedrock geochemistry  demonstrated marked consistency with  prominent 
ridges or topographic highs, trending to the northwest, consisting dominantly of vuggy silica 
altered breccia. 
 
The  results  of  the  IP  survey  demonstrated  strong  correlation  between  the  near‐surface 
resistivity anomalies and the outcropping vuggy silica zones. Deeper chargeability anomalies 
(>200‐400  m  below  surface)  were  recorded  in  the  northern  portion  of  the  grid.  Placer 
targeted the shallow resistivity anomalies for high sulfidation style Au‐Ag mineralization with 
a further 10 diamond drill holes – GT‐006 to GT‐014. 
 
On the basis of the results from the second drilling program a further 14 holes were designed 
(2,700m). However, Placer withdrew from the project due to the combined influences of the 
relatively  low  metal  prices  at  the  time  (i.e.,  the  project  did  not  appear  to  meet  corporate 
thresholds of size and grade) together with an unstable economic and political climate across 
much of south‐east Asia (the Asian Financial Crisis). 
 
There is no report or record of further work being conducted on the project by Placer‐GVM 
and the area became vacant by the time IMN applied for a KP General Survey in 2006 over 
the project area.  
 
In  June  2006  Hellman  and  Schofield  Pty  Ltd  (“H&S”,  an  independent  geological  consulting 
group from Australia) assisted a previous Joint Venture of IMN with an Australian company in 
assembling  exploration  data  and  designing  a  drilling  program  aimed  at  advancing  the 
Tumpangpitu prospect in order to report resource estimates according to the JORC Code and 
Guidelines.  
 
H&S  was  able  to  provide  an  indication  of  the  size  of  potential  mineralization  within  the 
variably oxidized gold‐silver enriched zone above the deeper copper mineralization by using 
the  limited  available  drilling  data  along  with  soil  sample  geochemical  results.  This  study 


HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                    Page 10


suggested  that  approximately  3m oz  Au  Equivalent  (“AuEq”  was  based  on  $650/Oz  Au  and 
$10/Oz Ag) was a reasonable amalgamated target size in oxide Zones A, B & C. 
 
Overall indications of potential may be expressed using cautionary language and with grade 
and tonnage ranges. It should never be assumed that suggested grades and tonnages from 
these types of studies will be realized, they are solely used in the context of understanding 
the types of drilling targets and broad scale of mineralization. 
 
On March 30, 2007 a Term Sheet was signed between Emperor Mines Ltd. (later to become 
Intrepid.  through  the  merger  of  Emperor  Mines  and  Intrepid)  and  IMN  and  IndoAust  Pty. 
Ltd., which was followed by an Alliance Agreement between Emperor Mines Ltd, and IMN in 
April 2008. Drilling on the project by IMN and Intrepid commenced in September 2007 with 
hole GTD‐07‐015. 
 
Additional  historical  drill  hole  assays  became  available  between  February  and  August  2007 
enabling a slightly more informed view of the geological potential. The September 2007 H&S 
study of Geological Potential used Ordinary Block Kriging of 2m composited AuEq data within 
polygon extrusions.  
 
This report documents the drilling completed by IMN and Intrepid  during the period 2008‐
2011 on the porphyry copper‐gold mineralization. 
                                   




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                       Page 11


 

9.     GEOLOGICAL SETTING

9.1 Regional Geology
The Tujuh Bukit project lies on the south coast of East Java, within the central portion of the 
Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then 
eastward through east Java, Bali, Lombok, Sumbawa and Flores. 
 
The  Sunda‐Banda  volcanic  arc  developed  during  subduction  of  the  north‐moving  Indo‐
Australian plate beneath the Asian continental plate margin. The Sunda‐Banda arc of Middle 
Miocene  to  Pliocene  age  is  thought  to  have  initiated  by  subduction  reversal  following  an 
Oligocene  compressive  event  that  was  associated  with  the  northward  emplacement  of 
ophiolite  and  island  arc  assemblages  onto  the  Sunda  margin  and  associated  formation  of 
melanges, ophiolite fragments and deformation zones offshore from western Sumatra (Daly 
et  al.,  1991;  Harbury  and  Kallagher,  1991).  The initiation of  northward subduction  beneath 
the Sunda‐Banda arc migrated eastward following this collision event. The western segment 
of  the  arc,  west  of  central  Java,  developed on continental crust  on  the  southern margin  of 
Sundaland whilst the arc east of Central Java developed on thinner island arc crust (Carlisle 
and Mitchell, 1994). 
  
There are substantial tectonic variations along the length of the Sunda‐Banda arc, and these 
variations  have  been  the  subject  of  studies  to  understand  along‐arc  variations  in  magma 
chemistry.  Subduction  is  highly  oblique  along  the  northwest  segment  of  the  arc,  along 
Sumatra  and  towards  the  Andaman  Islands  and  Burma  (Moore  et  al.,  1980).  The  strike‐slip 
Sumatra  Fault  takes  up  much  of  the  oblique  convergence  between  the  plates.  Along  this 
northwest portion of the arc, very thick sedimentary sequences from the Bengal and Nicobar 
fans are transported into the subduction zone. Further to the southeast, subduction is near 
perpendicular  to  the  Sunda‐Banda  arc,  off‐shore  from  Java,  and  only  a  very  thin  cover  of 
sediment  enters  the  subduction  zone.  Further  to  the  east,  incipient  areas  of  collision  are 
occurring along the arc where fragments of the Australian continental margin are accreting 
against the Banda arc (e.g. Timor).   
 
There  are  also  variations  in  dominant  styles  of  mineralization  along  the  arc.  In  northern 
Sumatra  in  the  Aceh  province,  mineralization  is  characterized  by  porphyry  Cu‐Mo  systems 
and high‐sulfidation deposits (e.g. Miwah and Martabe). In contrast, southern Sumatra, west 
Java and central Java are typified by a lack of known porphyry systems but an abundance of 
low‐sulfidation  epithermal  deposits  or  prospects/vein  systems.  Examples  include  Tambang 
Sawah,  Rawas,  Lebong  Donok,  Lebong  Simpang  and  Seung  Kecil  in  southern  Sumatra,  plus 
the  Cikotok  and  Jampang  districts,  Gunung  Pongkor  and  Cikondang  in  west  Java  and 
Trenggallek  in  central  Java.  Further  the  east,  in  east  Java  and  then  through  Lombok  and 
Sumbawa,  there  is  a  reappearance  of  porphyry  and  high‐sulfidation  epithermal  systems 
along  the  eastern  arc  segment,  including  the  Tumpangpitu  high‐sulfidation  epithermal  and 
porphyry  system  on  Intrepid’s  Tujuh  Bukit  project,  The  Selodong  high‐sulfidation  and 


HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                          Page 12


porphyry  district  including  the  Motong  Botek  porphyry  system  on  Lombok,  and  the  Batu 
Hijau porphyry Cu‐Au system on Sumbawa.     

The Sunda‐Banda arc comprises both Miocene to Pliocene volcanics and younger Quaternary 
volcanics. The arc has migrated not only from west to east over time but also from south to 
north  (Van  Bemmelen,  1970;  Whitford  et.  al.,  1979;  Katili  1989  and  Claproth  1989).  This 
migration  is  clearly  evident  by  the  east‐west  alignment  of  deeply  dissected  Miocene  to 
Pliocene volcanic centers along the south coast of Java, Lombok and Sumbawa and a parallel 
east‐west  alignment  of  juvenile  and  active  Quaternary  volcanoes  that  define  the  present 
active arc further north along central Java and northern Bali, Lombok and Sumbawa (Figure 
below). 




Figure 4: Regional geology.

Relationship of the older, Miocene age, eroded volcanic centers (blue rings) that host mineralization at Trenggalek (low
sulfidation epithermal veins), Tujuh Bukit (high-sulfidation epithermal and porphyry system), Selodong (high-sulfidation
epithermal and porphyry system), and Batu Hijau (porphyry system), relative to the younger, Quaternary arc volcanoes to the
north which collectively make up the east-west trending present day Sunda-Banda arc.



The Sunda‐Banda arc is segmented by a series of arc‐normal structures that trend NNE and 
which  are  evident  in  topographic  data‐sets  (Figure  4).  Tectonic  factors  appear  to  have 
localized  volcanic  centers  of  the  Miocene  arc  at  positions  near  the  southwest  margins  of 
these  transfer  structures.  Contemporaneous  continental  to  deep‐ocean  clastic  sediments 
were deposited on the margins of the volcanic centers.  
 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                          Page 13


The  Tujuh  Bukit  project  is  located  (Figure  5)  near  the  southeast  margin  of  a  ~50‐km‐wide 
annular zone of strongly dissected topography that is interpreted to represent the relics of a 
former  andesitic  stratovolcanic  center  in  East  Java.  This  deeply  dissected  volcanic  center 
appears to be eroded to near its roots, close to the volcanic‐basement contact (Rohrlach and 
Norris, 2006). Areas of similar topographic character occur along a WNW‐ESE linear zone that 
also  encapsulates  an  area  in  southern  Sumbawa  (which  hosts  the  Pliocene‐age  Batu  Hijau 
deposit ‐ 1640 mt @ 0.44% Cu, 0.55% Mo, 0.35 g/t Au; 3.7 Myr old (Figure 4). 




Figure 5: Location of the Tujuh Bukit project.
It occurs on the southeast flank of a deeply incised Miocene-age volcanic center that is ~50 km in diameter (black dotted
outline).This eroded volcanic center lies SSW of the Quaternary volcano Gunung Raung which forms part of a larger
composite stratovolcano in east Java. Access to the Tujuh Bukit project area is by ferry from Gilimanuk (Bali) to Banyuwangi
(regional center of Jawa Timur – East Java), and then by road through Genteng and Jajag to the project site.

Figure 6 portrays the geology over an area of approximately 70 km x 25 km in southeast Java. 
The broad stratigraphic succession of the area as defined on the 1:100,000 geology map of 
the  Blambangan  Quadrangle  is  described  below  and  comprises  various  formations  of  the 
Lampon Group of Late Tertiary Age.    

Batuampar Formation 
 
The  oldest  rock  in  the  area  comprise  the  Batuampar  Formation  of  Lower  Miocene  age.  It 
comprises  a  volcanic‐dominated  succession  of  volcanic  breccia  (pyroclastic  deposits),  tuff, 
sandstones and andesite lava with limestone intercalations. These rocks are described in the 
regional  1:100,000  map  as  "being  strongly  altered",  verified  by  Intrepid‐IMN  field 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                     Page 14


observations, since these rocks host mineralization at the Tumpangpitu prospect and at the 
Salakan  prospect.  The  volcanics  of  the  Batuampar  Formation  comprise  the  roots  of  the 
eroded  volcanic  structure  depicted  in  Figure  5.  Within  the  immediate  environs  of  the 
Tumpangpitu prospect the Batuampar Formation is dominated by intensely advanced argillic 
altered  coarse  pyroclastic  lithic  tuffs  and  very  subordinate  (<  3%)  limestone,  marl  and 
volcanic sandstone. The limestone intercalations may become important as a source of lime 
for  mineral  processing  or  control  acid‐mine  drainage  in  the  future,  as  the  Tumpangpitu 
prospect progresses towards production stage. 
    
Batuan Intrusives 
 
Intrusive stocks of Middle Miocene age intrude the Batuampar Formation volcanic rocks and 
are  almost  certainly  responsible  for  the  widespread  alteration  within  that  formation.  They 
are mapped on the 1:100,000 Blambangan Quadrangle as comprising porphyry andesite and 
granodiorite, and are confined to the southeast corner of the Tujuh Bukit project area (Figure 
6). Although these intrusives are not mapped in the Salakan prospect area on the 1:100,000 
scale map, they are likely to lie at shallow depth below the prospect. Intrusive bodies have 
been observed around the eastern periphery of the Salakan prospect by Intrepid‐IMN where 
they  are  coincident  with  magnetic  bodies.  The  magnetic  tonalites  intersected  by  the  deep 
drilling at Tumpangpitu are likely to be members of the Batuan Intrusive suite.  
 
Jaten Formation 
 
The  Jaten  Formation  of  Middle  Miocene  age  comprises  mixed  sediments  and  tuffaceous 
sediments  (sandstone,  conglomeratic  sandstone,  tuffaceous  sandstone,  calcareous 
sandstone,  claystone,  tuff  and  tuffaceous  limestone)  which  outcrop  only  in  one  mapped 
locality,  between  the  Batuampar  Formation  on  the  Capil  promontory  and  the  fault‐bound 
sliver of Wuni Formation to the north.       
 
Wuni Formation 
 
The  Wuni  Formation  is  of  Late  Miocene  to  Pliocene  age  and  comprises  of  breccia, 
conglomerate, sandstone, tuff, marl and limestone. It outcrops only in two isolated localities 
and  is  covered  by  extensive  blankets  of  Quaternary  marine  sediment  (limestones  of  the 
Punung Formation) and transported Quaternary sediments of largely volcanic origin (Kalibaru 
Formation) along the distal southern flanks of Gunung Raung.        




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                     Page 15




Figure 6 : Regional geology of the southeast corner of Java (Jawa Timur).


Punung Formation 
 
The  Punung  Formation  comprises  a  Quaternary  sequence  of  reefal  limestone,  bedded 
limestone  and  marl  which  forms  a  flat‐lying  and  recently  emergent  shallow  marine 
stratigraphic  unit.  The  extensive  exposure  of  Punung  Formation  limestones  on  the 
Blambangan  peninsula  is  likely  contiguous  with  the  isolated  outlier  of  Punung  Formation 
exposed north of the Capil promontory. More restricted outcrops of limestone occur in the 
Tujuh Bukit district in at least two localities.  
 
Kalibaru Formation 
 
The Kalibaru Formation comprises a Quaternary sequence of breccia, conglomerate, tuff and 
tuffaceous  sandstone  which  covers  extensive  areas  on  the  eastern  side  of  the  Tujuh  Bukit 
property. The Kalibaru Formation appears to represent part of an extensive outwash sheet of 
volcanic  detritus  that  is  largely  derived  from  the  Quaternary  Mount  Ruang  composite 
stratovolcano  to  the  north.  Near  the  Tujuh  Bukit  project,  these  Quaternary  sediments  lie 
directly on the older Miocene‐age altered volcanic sequence of the Batuampar formation.     
 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                       Page 16


9.2 Local Geology
Two areas of high topographic relief occur on the Tujuh Bukit property (Figure 7). The first of 
these  occurs  on  the  southern‐most  peninsula,  coincident  with  the  Tumpangpitu  porphyry 
and  high‐sulfidation  epithermal  deposit,  where  extensive  silicification  associated  with  an 
advanced  argillic  blanket  overlies  the  Tumpangpitu  porphyry  system.  This  series  of  hills 
extends to the east at lower elevation and cover the Katak porphyry prospect, the Candrian 
porphyry  prospect  and  the  Gunung  Manis  low‐sulfidation  epithermal  prospect.  The  second 
area  of  high  topographic  relief  extends  from  the  southern  end  of  the  western  peninsula 
northeast‐ward  to  the  higher  hills  that  are  coincident  with  the  Salakan  prospect.  Again, 
extensive areas of silicification associated with advanced argillic alteration are responsible for 
the erosional resistance of this elevated area at Salakan on the Tujuh Bukit property.        
 




                                                                                                            
 
Figure 7 : Distribution of mineral prospects
Yellow outlines relative to topography mark various prospects. Numerous other exploration targets have been defined north
and east of Salakan based on interpretations of helibourne-acquired magnetic data (not plotted).
 
 
Understanding  of  the  surface  geology  (lithology)  of  the  Tujuh  Bukit  project  area  is  quite 
general  in  nature  due  to  lack  of  detailed  geological  mapping  over  the  entire  region.  This 
understanding however is steadily growing as more detailed infill mapping is undertaken by 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                  Page 17


Intrepid,  and  as  interpretations  of  a  regional  magnetic  dataset  are  progressively  ground‐
truthed.   
 
A lithology map over the Tumpangpitu area, and the hilly terrain east of Tumpangpitu, was 
generated by PT Hakman Platina Metallindo prior to or during 1999 (Figure 8). This mapping 
identified  a  dominantly  diorite  and  microdiorite  substrate  which  had  been  intruded  by 
extensive  granodiorite  bodies  east  of  Tumpangpitu  and  by  smaller  quartz‐diorite  bodies  in 
and  around  Tumpangpitu.  These  intrusions  are  considered  equivalent  to  the  Batuan 
Intrusives  described  above.  This  map  appears  to  be  of  “reasonable”  accuracy  given  the 
regional reconnaissance scale of the map, and known geology in and around Tumpangpitu.    
 




                                                                                                                
 
Figure 8 : Lithology of the Tumpangpitu prospect region
In the area east of Tumpangpitu as mapped by PT. Hakman Platina Metalindo (1999). These mapped sequences comprise
volcanic breccias of the Batuampar Formation and more abundant Batuan Intrusives.
 
 
A  complete  lithology  map  also  exists  from  the  period  of  exploration  by  Placer  (2000‐2001) 
and is shown in Figure 9. This map shows similar geology to the map above, only with a more 
restricted distribution of lithic tuffs mapped by Placer. In this respect, the PT Hakman  map 
(above) appears more correct  than the Placer map. The Placer map however,  also includes 
lithology  over  the  Salakan  prospect  area,  where  diorites  are  mapped  intruding  subvolcanic 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                     Page 18


breccias,  and  with  diorite  intruded  by  quartz  diorites.  The  extensive  distribution  of  the 
mapped breccia, however, suggests that it is more likely to be volcaniclastic in origin rather 
than a subvolcanic breccia as labelled.      
 




                                                                                                  
 
Figure 9 : Lithology of the Tujuh Bukit project as mapped by Placer (2000-2001).

 
Reasonably  complete,  though  generalised,  reconnaissance  maps  were  subsequently 
generated  by  IMN  in  2006  over  the  Salakan  and  Tumpangpitu  prospects.  However,  the  PT 
Hakman lithology map (Figure 8) is considered to be more reliable in the Tumpangpitu area.                 
 
Mapping subsequently undertaken by Intrepid (2009‐2010) covers three more local and non‐
contiguous areas: 
 
        1)   The coastline west of Tumpangpitu 
        2)   The Katak porphyry prospect, and  
        3)   The Gunung Manis low‐sulfidation epithermal prospect.  
 
These  local  maps  are  of  appropriate  quality  and  detail  to  understand  the  geology  in  these 
three areas. It is planned to progressively extend these maps to cover the entire region over 
and east of Tumpangpitu. Consequently, both of the main prospect areas (Tumpangpitu and 
Salakan) require significantly more detailed mapping to be undertaken. 



HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                            Page 19


Due to limited mapping information, a significant portion of the geological understanding of 
the regional lithology comes from drilling cross‐sections. The structural understanding of the 
project area comes largely from interpretation of regional magnetic datasets. 
 
The local to deposit‐scale lithology is discussed in Section 9.3 below whilst the deposit‐scale 
alteration patterns are discussed in Section 11 (Mineralization) since alteration is intimately 
related to mineralization events.           
 
Within  the  broader  area  of  the  Tujuh  Bukit  project,  an  extensive  volcanic‐dominated 
succession of volcanic breccia (pyroclastic deposits), tuff, sandstones, and andesite lava with 
limestone  intercalations  occurs,  consistent  with  government  map  descriptions  of  this 
volcano‐sedimentary sequence (Batuampar Formation).  
 
In  areas  of  low‐terrain,  these  sequences  are  overlain  by  Quaternary  to  recent  alluvial 
deposits,  particularly  around  the  Pancer  coastal  embayment  south  of  Salakan  and  also 
northwest and east of the Salakan hills. 
 
 The Batuampar Formation is intruded by numerous plutons and stocks that are identified in 
all  generations  of  regional  mapping,  in  Intrepid/IMN  drilling,  and  extensively  identified  in 
magnetic data where they are recognized as magnetic features typical of I‐type calc‐alkaline 
magmas. These are the Batuan Intrusives described above. Intrusive members recognized by 
Intrepid  include  microdiorite,  diorite,  hornblende‐diorite,  quartz‐hornblende‐diorite 
hornblende  andesite  porphyry  and  tonalite.    In  addition  to  the  mapped  distribution  of 
intrusions, members of this suite have been identified south of Tumpangpitu and extensively 
along the eastern periphery of Salakan. Several of these intrusives (either mapped or inferred 
from magnetic data) are geochemically anomalous at surface.  
 
Intense hydrothermal alteration has obscured a substantial portion of the original protolith 
textures  of  many  rocks  in  the  district,  particularly  parts  of  the  advanced  argillic  lithocap  at 
Tumpangpitu.  
 
The  structural framework of the Tujuh Bukit  district is best  interpreted using  the heliborne 
magnetic data‐set. Figure 10 shows a Reduced‐To‐Pole (RTP) magnetic image of the broader 
Tumpangpitu Batholith and the East Salakan Batholith.  
 
The aggregation of high‐amplitude magnetic anomalies within and around the eastern half of 
the Salakan prospect are interpreted as Batuan intrusives, as are the linear array of magnetic 
highs  that  trend  northwest  through  the  Tumpangpitu  Batholith.  The  image  is  overlain  by  a 
structural  interpretation  conducted  by  Chris  Moore  of  Moore  Geophysics.  1st  order  fault 
corridors trend northwest, one passing near the  northeast margin  of the Tumpangpitu and 
East Salakan batholiths, the other passing under Pancer Bay. A third sub‐parallel to low‐angle 
northwest‐trending  structure  dissects  the  Tumpangpitu  Batholith  in  approximately  equal 
halves.  This  fault  structure  localises  a  series  of  at  least  eight  discreet  magnetic  high 
anomalies over at least a 16 km structural strike length. These discrete magnetic anomalies 
are interpreted as intrusive stocks emplaced along this structure. Consequently this district‐
scale  structure  was  likely  active  during  mid‐Miocene  Batuan  stage  magmatism.  This  key 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                                Page 20


regional  fault  (labelled  “metallogentically  fertile  structure”)  hosts  the  magnetic  diorite 
intrusion at the Katak porphyry system and the inferred magnetic intrusions immediately SSE 
of the Gunung Manis low‐sulfidation epithermal vein array.  
 




                                                                                                                             
Figure 10 : Reduced-to-Pole magnetic image
This is broadly coincident with the eastern half of the Tujuh Bukit property. Black lines are interpreted regional faults. Blue
dashed lines envelope deep-seated batholiths, white outlines define structurally-controlled magnetic intrusive centers whilst
yellow outlines define a NW array of porphyry centers at Tumpangpitu. Details of this image are discussed in the text of the
report.
 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                           Page 21


The broader East Salakan Batholith and Tumpangpitu Batholiths are about 5 km in diameter. 
At  East  Salakan,  the  batholith  appears  to  be  intruded  in  its  core  by  a  highly  magnetic 
intrusive about 1.5 km in diameter, and which is surrounded by a complex annual rim or zone 
of magnetite destruction interspersed with small discrete magnetic highs (between the two 
yellow outlines within the East Salakan Batholith). This magnetic pattern has the hallmarks of 
a  large  hydrothermal  system  developed  around  the  periphery  of  the  intrusive  core  at  East 
Salakan.        
 
Other 2nd order fault sets observed in the data shown in Figure 10 and trend ENE and WNW.  
 
The overall geometry of these structures, forming braided to  complex arrays of parallel and 
curved, en echelon faults is reminiscent of major transcurrent fault systems.  
 
Thus  the  district‐scale  structural  picture  is  of  a  regional  NW‐trending  structural  corridor 
which  is  likely  to  be  a  major  crustal‐scale  and  near  arc‐parallel  strike‐slip  fault  zone.  This 
transcurrent  fault  system  potentially  guided  the  emplacement  of  the  two  large  batholiths 
beneath the eroded volcanic center. The erosional level within the Tujuh Bukit district is at 
the  right  level  to  expose  the  top  of  porphyry  systems  whilst  preserving  the  lower  parts  of 
their  respective  epithermal  environments,  in  other  words,  around  the  sub‐volcanic  brittle‐
ductile  transition.  This  opportune  level  of  erosion  has  produced  the  complex  magnetic 
patterns characteristic of terrains that preserve the apical levels of multiple intrusive stocks 
typical of the carapace of deep‐seated batholiths. 
 
9.3 Deposit Geology
The  Tumpangpitu  deposit  comprises  a  high‐sulfidation  Cu‐Au‐Ag  epithermal  system  that  is 
telescoped onto a large underlying and Au‐rich porphyry Cu‐Au‐Mo system. 
 
In  general  terms,  the  overall  mineralizing  system  broadly  comprises  a  deep,  magnetic 
tonalite  intrusion  that  has  intruded  into  an  older  and  more  extensive  feldspar‐hornblende 
diorite stock. This older diorite intrusion has in turn intruded a cover sequence of lithic and 
crystal‐lithic  volcanic  breccias  that  lie  at  shallow  levels  of  the  deposit.  These  volcaniclastic 
tuffs and breccias conformably overlie a sequence of sediments that are ‘partly’ constrained 
to dip inward towards the tonalitic intrusive center. The interface between the tonalite stock, 
which  is  interpreted  to  be  the  progenitor  of  porphyry  ore,  and  the  overlying  intrusive  and 
extrusive country rocks is characterized by the presence of one or more extensive diatreme 
breccia  bodies  and  numerous  smaller  hydrothermal  breccias  bodies.  The  upper  portions  of 
the  intensely  altered  and  fluid  metasomatised  tonalite  stock  are  transitional  upward  to 
intrusive  breccias  (breccias  with  upward  entrained  interstitial  melt)  which  in  turn  are 
transitional at shallower levels to hydrothermal breccias as fluids have progressively exsolved 
from the entrained and decompressing melt.      




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                        Page 22




                                                                                                              
 
Figure 11 : Lithology cross-section 11060 mN at Tumpangpitu
Deep porphyry holes (26, 29, 56, 112, 172, 182 and 192) are projected onto the 050-230° section.

The high‐sulfidation epithermal component of the Tumpangpitu mineralizing system can be 
divided into four sub‐types based on oxidation intensity, metal grade and metal suite.    
 
        1)      Completely  oxidized  high‐sulfidation  ore  (Au‐Ag  strongly  enriched;  Cu  severely 
               leached). 
        2)      Partially  oxidized  high‐sulfidation  mineralization  (Au‐Ag  +/‐  Cu;  Cu  is  strongly 
               leached).  
        3)    Unoxidized but low‐grade high‐sulfidation mineralization (Au‐Ag‐Cu).  
               Au‐Ag grade is significantly lower than the overlying oxide component.  
        4)    Unoxidized but higher‐grade high‐sulfidation mineralization (Au‐Ag‐Cu) in deeper 
               structural conduits and proximal to inferred upflow zones.  
 
Components  3)  and  4)  only  are  reported  for  the  current  porphyry  resource  estimation, 
however all four components of the high‐sulfidation mineralization are discussed in Section 
11 of this report.     
 
The  geology  of  the  Tumpangpitu  prospect  in  the  shallow  epithermal  environment  is 
dominated  by  intense  hydrothermally  altered  (silica‐clay‐alunite‐pyrite)  andesitic  lithic 
volcanic  breccias, diatreme breccias,  hydrothermal breecias  and diorite,  with the alteration 
footprint covering an area in excess of 4 km x 2.5 km. The broader envelope of argillic altered 
volcanics  and  intrusives  are  cross‐cut  by  several  northwest‐trending  and  potentially 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                            Page 23


structurally‐controlled  zones  of  hydrothermal  breccias  which  are  advanced  argillic  altered 
(vuggy  silica,  silica‐alunite,  silica‐alunite‐clay,  silica‐clay‐alunite  and  silica‐clay).  These  zones 
of more siliceous alteration form multiple parallel ridges (2.5 km x 300 m) trending northwest 
across  the  prospect  (Figure  12),  and  they  trend  parallel  to  regional  structures  that  are 
evident in aeromagnetic imagery.  
 




                                                                                            
Figure 12 : Distribution of alteration styles at the Tumpangpitu prospect as mapped by GVM-Placer
Showing the locations of 14 historical drill holes (GVM – Holes 1 to 5 and Placer – Holes 6 to 14).
 
The  geology  of  the  deeper  portions  of  the  Tumpangpitu  prospect  is  characterized  by 
alteration  and  vein  assemblages  characteristic  of  porphyry  systems  (Section  11).  A  large 
tonalite  intrusion  is  encountered  in  the  lower  parts  of  the  deepest  drill  holes  at 
Tumpangpitu.  This  tonalite  intrusion  has  a  broad  apex  in  the  vicinity  of  cross‐sections 
11040mN to 11360mN and plunges to greater depths to the SW and NE. The geometry of the 
intrusion in detail is still being refined by infill drilling and magnetic modelling.   
 
An interpreted diatreme breccia body (ovoid in plan and upward flaring) with a diameter of 
approximately  500m  occurs  below  the  Zone  C  area  of  the  oxide  zone.  This  breccia  is 
dominated  by  polymict  mill  breccia  in  its  middle  and  upper  parts,  and  has  roots  that 
penetrate down into the tonalite intrusions.  At deeper levels near the tonalite intrusion, the 
breccia has increasing characteristics of an intrusion breccia. This breccia is a major feature 
on two of the porphyry cross‐sections, and clasts of porphyry mineralization are incorporated 
into the breccia (detailed descriptions provided in Section 9.3.4). Steeply‐oriented structural 
feeders to high‐sulfidation mineralization have been intersected over‐printing this diatreme 
breccia.  Both  these  observations  suggest  that  the  timing  of  diatreme  emplacement  was 
broadly syn‐mineral with respect to the porphyry system.   
 


HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                          Page 24


Porphyry  Cu‐Au‐Mo  mineralization  occurs  within  a  carapace  or  shell  of  magnetite,  quartz‐
magnetite  and  quartz  vein  stockwork  that  occurs  within  and  around  the  periphery  of  the 
causative tonalite intrusion, overprinting both the outer margins of the intrusion as well as 
the proximal country rock. This mineralization occurs dominantly within areas characterized 
by  phyllic  overprint  of  potassic  alteration  and  lesser  areas  of  potassic  alteration  within  the 
tonalite intrusion.  
 
  
9.3.1 Volcaniclastic Breccias 
 
Volcaniclastic breccias are a major rock type on the Tujuh Bukit project area (Figure 13 and 
Figure  14).  They  comprise  dominantly  lithic  tuff  and  crystal  lithic  tuff  of  andesitic  (?) 
composition,  and  are  characteristically  intensely  argillic  and  advanced  argillic  altered.  They 
occur in the upper part of many oxide drill cross‐sections at Tumpangpitu, particularly in the 
Zone A area which lies on the northeast side of the prospect, but are also observed occurring 
widely around the eastern flank of the deposit,  as well as around the Katak porphyry system 
2 km northeast of Tumpangpitu, where the breccias are intruded by the Katak diorite body. 
Volcaniclastic  breccias  are  also  present  around  the  northern  and  eastern  fringes  of  the 
Salakan prospect.  
 
These volcaniclastic breccias are believed to be part of the Batuampar Formation described 
above.  The  breccias  tend  to  be  heteorolithic  in  lithology  and  clast  alteration  intensity.  The 
volcanic breccias at Tumpangpitu are increasingly being viewed as part of an extensive and 
large diatreme breccia complex that has poor internal layering. 
 




                                                                               
 
Figure 13 : Outcrop of crystal lithic tuff with possible fiame from the Salakan Prospect.




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                          Page 25




                                                                              
  
Figure 14 : Matrix-supported lithic-crystal tuff from hole GTD-34 (Zone A - Tumpangpitu)
This shows a strong alignment of flattened fiame-like pyroclasts. Sample from a zone of Hsi-cy alteration (silica-clay) with
clay-altered clasts and phenocrysts fragments, and silicified matrix.
 
In  cross‐section,  the  breccias  that  occupy  the  Zone  A  hill  (Gunung  Tumpangpitu)  were 
previously  interpreted  as  coarse  lithic  tuffs,  but  are  currently  interpreted  as  remnants  of  a 
larger  diatreme  breccia  body.  Current  interpretations  have  these  massive  units  dipping 
radially  inward  at  a  gentle  angle  towards  the  porphyry  core.  Crystal  tuffs  and  broadly 
conformable sediments mapped along the coastline west of Tumpangpitu dip gently to the 
southeast, whilst other parts of the same sediment package further south along the coastline 
dip  to  the  northeast.  On  the  Zone  A  oxide  drill‐grid,  the  shallow  lithic  tuffs  (currently  re‐
interpreted  on  the  two  porphyry  cross‐sections  as  diatreme  breccias)  are  thought  to  dip 
towards  the  southwest,  based  on  the  dips  of  concordant  acid  alteration  zones.  These 
geometries  collectively  suggest  a  radially  inward‐dipping  series  of  volcanic  ejecta.  The 
polymict  nature  of  clasts  in  the  lithic  tuffs  (or  diatreme  breccias)  is  consistent  with  a  near‐
vent source. Two possible scenarios for this pattern can be considered: 
 
Deflation of an underlying magma chamber causing structural subsidence above and around 
the chamber.  
 
Inward‐dipping  blankets  of  volcanic  ejecta  developed  around  the  inner rim of  one or  more 
diatreme  bodies  within  the  region.  If  this  is  the  case,  these  volcanic  breccias  must  have 
erupted onto the substrate rather than be intruded by it. The relationship between the old 
diorite  intrusion  and  the  overlying  volcaniclastic  breccias  continues  to  be  investigated  to 
resolve the relative timing.   
 
 
9.3.2   Sediments 
 
A sedimentary sequence is widespread within the stratigraphic pile at Tumpangpitu (Figure 
15), and occurs at RLs near and below sea‐level. The sedimentary sequence is likely to be a 

HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                            Page 26


turbidite  accumulation  of  sedimentary  breccia,  juvenile  volcanic  sandstone  or  wacke  and 
lesser mudstone, intercalated with rare marine limestone.  
 




                                                                                                        
 
Figure 15 : Nine locations where sediments are encountered at Tumpangpitu (Nov. 2010).
Shapes are coastal outcrops whilst bars are subsurface drill-hole intersections of sediment units. Black and red dots show the
distribution of drilling at Tumpangpitu.
 
This  sedimentary  sequence  is  overlain  by  andesitic  volcanics  on  the  northeast  side  of 
Tumpangpitu (Holes GTD‐08‐46 and GTD‐09‐94). 
 
The sediments are interpreted to dip inward towards the porphyry center. Controls on dips 
are  reasonably  well  constrained  on  the  southwest  flank  of  the  porphyry  system,  but  are 
poorly constrained on the northeast flank of the system. It is postulated that the inward dip 
of  these  sediments  is  related  to  the  geometry  of  a  diatreme‐related  porphyry  system. 
Geometric  similarities  are  tentatively  being  made  by  B.  Rohrlach  (Intrepid  chief  geologist) 
with the Marcapunta deposit in central Peru, where a diatreme and dome complex is rooted 
above  a  porphyry  system,  with  400‐500m  inward  subsidence  of  sediments  within  the  host 
stratigraphic pile.       
 
The  sedimentary  sequence  at  Tumpangpitu  shows  increasing  degrees  of  metasomatism 
(hydrothermal  alteration)  and  veining  as  the sediments  approach  the  porphyry  center.  The 
degree of hydrothermal overprint observed in these sediments range from near fresh (Area 1 
coastline  and  GTD‐08‐26),  to  propylitic  altered  and  fractured  (GTD‐08‐28),  to  intermediate 


HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                           Page 27


argillic  and  argillic  altered  (GTD‐09‐94),  and  subsequently  to  strong  advanced‐argillic  and 
phyllic alteration (GTD‐08‐46 and GTD‐08‐42), often with intense overprinting stockwork.        
 
Areas of the sedimentary sequence that occur in close  proximity  to the  main Tumpangpitu 
tonalite  body  are  intensely  disrupted  by  cross‐cutting  intrusive  breccias,  microdiorite  and 
tonalite  bodies  (potential  dykes).  The  occurrences  of  these  features  in  the  sediment 
sequence indicate close proximity to the main tonalite porphyry body.   
 
The  sediments,  and  in  particular  the  calcareous  and  carbonaceous  component  of  these 
sediments,  show  increasing  signs  of  sulfidation  and  incipient  skarn  development  as  the 
tonalite porphyry body is approached, as evidence by:  
 
        Intense sulfidation (pyrite) in mudstone horizons, with anomalous Cu, Au and Zn in sulfidized 
         sediment (GTD‐08‐26).  
 
        Garnet  alteration  of  sediment  with  anomalous  Zn  reflecting  incipient  calcic  exoskarn 
         assemblages (GTD‐09‐94). 
 
        Garnet  and  vesuvianite  alteration  (skarn  assemblage)  in  local  carbonate  units  within  the 
         sedimentary package (GTD‐08‐46). 
 
        Incipient  magnetite skarn  type  replacement  of  sediments,  grossly  concordant  to  bedding at 
         the scale of drill core (GTD‐08‐42). 
 
The collective observations above suggest increasing degrees of contact metamorphism and 
skarn development within reactive (non‐siliciclastic) units of the sediment package, in close 
proximity to the Tumpangpitu tonalite. 
 
Clasts derived from the surrounding sediment host sequence are incorporated into some of 
the  major  diatreme  breccia  bodies,  particularly  in  GTD‐08‐29  where  the  mudstone 
component  of  the  sediments  is  intensely  brecciated,  with  clasts  of  sediment  incorporated 
into the cross‐cutting diatreme breccia. Various examples are provided in Figure 16 to Figure 
18. 
  




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                           Page 28




                                                                                         
Figure 16 : Images of sedimentary textures in fresh to incipiently propylitic-altered sediments
From drill hole GTD-08-26, southwest of Zone C.
 




                                                                       
 
Figure 17 : Interbedded, fine-grained volcanic sandstones (propylitic)
Includes recessively weathered tuffaceous? siltstone (Locality 2). Thicknesses of individual beds are similar to those in the
type section in drill hole GTD-08-26 where the sediments have a turbidite appearance.
 




HELLMAN AND SCHOFIELD | JUNE 2011
TUJUH BUKIT                                                                                                         Page 29




                                                                                                
 
Figure 18 : Images of laminated and banded sediment in drill hole GTD-10-162
The sediments here are much more strongly metasomatized than in GTD-08-26 where they are almost unaltered.
Nevertheless, textural similarities can be seen that identify these rocks in GTD-10-162 as sediments, namely centimetre-
scale banding, finer laminations, and local preservation of cross-bedding textures. The sediments are overprinted by sparse
networks of Fe-carbonate veins, potentially akin to those calcite veins observed in GTD-08-26.
 
9.3.3    Intrusives 
 
The geology of Tumpangpitu deposit consists of a multiple intrusion complex with members 
that vary in composition (diorite to tonalite), in texture (equigranular to porphyritic) and in 
size  (small  dykes  to  stocks).  The  intrusive  rocks  observed  to  date  in  chronological  order 
include  coarse‐grained  diorite  (CD),  fine‐grained  Tonalite  (FT),  coarse‐grained  Tonalite  (CT), 

HELLMAN AND SCHOFIELD | JUNE 2011
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu
Tumpengan Tumpang Pitu

Más contenido relacionado

La actualidad más candente

Tugas paper cekungan batubara pada pulau kalimantan
Tugas paper cekungan batubara pada pulau kalimantanTugas paper cekungan batubara pada pulau kalimantan
Tugas paper cekungan batubara pada pulau kalimantanSylvester Saragih
 
Pengujian kekrasan brinell dengan palu poldy a'lim abror (13504241062)
 Pengujian kekrasan brinell dengan palu poldy a'lim abror  (13504241062) Pengujian kekrasan brinell dengan palu poldy a'lim abror  (13504241062)
Pengujian kekrasan brinell dengan palu poldy a'lim abror (13504241062)Aliem Sgralhtobat
 
genesa mineral bijih pembukaan
genesa mineral bijih pembukaangenesa mineral bijih pembukaan
genesa mineral bijih pembukaandesra99
 
MATERI 4 HIDROGEOLOGI ; EKSPLORASI AIR TANAH (Manajemen Pertambangan & Ener...
MATERI 4 HIDROGEOLOGI ; EKSPLORASI  AIR  TANAH (Manajemen Pertambangan & Ener...MATERI 4 HIDROGEOLOGI ; EKSPLORASI  AIR  TANAH (Manajemen Pertambangan & Ener...
MATERI 4 HIDROGEOLOGI ; EKSPLORASI AIR TANAH (Manajemen Pertambangan & Ener...YOHANIS SAHABAT
 
Model endapan bahan galian
Model endapan bahan galianModel endapan bahan galian
Model endapan bahan galianseed3d
 
GeoTek Kestabilan Lereng
GeoTek Kestabilan LerengGeoTek Kestabilan Lereng
GeoTek Kestabilan LerengAyu Kuleh Putri
 
Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...
Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...
Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...Mario Yuven
 
Tugas makalah ilmu ukur tambang
Tugas makalah ilmu ukur tambangTugas makalah ilmu ukur tambang
Tugas makalah ilmu ukur tambangSylvester Saragih
 
Geografi gempa bumi
Geografi gempa bumiGeografi gempa bumi
Geografi gempa bumiLia Melinda
 
3. Batas Kelelahan Logam Konsep S-N (AA)
3. Batas Kelelahan Logam Konsep S-N (AA)3. Batas Kelelahan Logam Konsep S-N (AA)
3. Batas Kelelahan Logam Konsep S-N (AA)Abrianto Akuan
 
2-Aspek Metalurgis Thd Kelelahan Logam (AA)
2-Aspek Metalurgis Thd Kelelahan Logam (AA)2-Aspek Metalurgis Thd Kelelahan Logam (AA)
2-Aspek Metalurgis Thd Kelelahan Logam (AA)Abrianto Akuan
 
Laporan Bentuk Asal Marine Daerah Bengkulu
Laporan Bentuk Asal Marine Daerah BengkuluLaporan Bentuk Asal Marine Daerah Bengkulu
Laporan Bentuk Asal Marine Daerah Bengkulu'Oke Aflatun'
 
Genesa bahan galian bijih nikel laterit
Genesa bahan galian bijih nikel lateritGenesa bahan galian bijih nikel laterit
Genesa bahan galian bijih nikel lateritSylvester Saragih
 

La actualidad más candente (20)

Genesa bahan galian
Genesa bahan galian Genesa bahan galian
Genesa bahan galian
 
Tugas paper cekungan batubara pada pulau kalimantan
Tugas paper cekungan batubara pada pulau kalimantanTugas paper cekungan batubara pada pulau kalimantan
Tugas paper cekungan batubara pada pulau kalimantan
 
Pengujian kekrasan brinell dengan palu poldy a'lim abror (13504241062)
 Pengujian kekrasan brinell dengan palu poldy a'lim abror  (13504241062) Pengujian kekrasan brinell dengan palu poldy a'lim abror  (13504241062)
Pengujian kekrasan brinell dengan palu poldy a'lim abror (13504241062)
 
Isi makalah uji kuat tarik
Isi makalah uji kuat tarikIsi makalah uji kuat tarik
Isi makalah uji kuat tarik
 
genesa mineral bijih pembukaan
genesa mineral bijih pembukaangenesa mineral bijih pembukaan
genesa mineral bijih pembukaan
 
MATERI 4 HIDROGEOLOGI ; EKSPLORASI AIR TANAH (Manajemen Pertambangan & Ener...
MATERI 4 HIDROGEOLOGI ; EKSPLORASI  AIR  TANAH (Manajemen Pertambangan & Ener...MATERI 4 HIDROGEOLOGI ; EKSPLORASI  AIR  TANAH (Manajemen Pertambangan & Ener...
MATERI 4 HIDROGEOLOGI ; EKSPLORASI AIR TANAH (Manajemen Pertambangan & Ener...
 
Model endapan bahan galian
Model endapan bahan galianModel endapan bahan galian
Model endapan bahan galian
 
GeoTek Kestabilan Lereng
GeoTek Kestabilan LerengGeoTek Kestabilan Lereng
GeoTek Kestabilan Lereng
 
Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...
Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...
Materi Kuliah Teknik Pertambangan ; Geologi Struktur Semester III STTNAS Yogy...
 
Humprey spiral
Humprey spiralHumprey spiral
Humprey spiral
 
The Geology of Borneo
The Geology of BorneoThe Geology of Borneo
The Geology of Borneo
 
Rank batubara
Rank batubaraRank batubara
Rank batubara
 
Tugas makalah ilmu ukur tambang
Tugas makalah ilmu ukur tambangTugas makalah ilmu ukur tambang
Tugas makalah ilmu ukur tambang
 
Geografi gempa bumi
Geografi gempa bumiGeografi gempa bumi
Geografi gempa bumi
 
Sesar atau fault
Sesar atau faultSesar atau fault
Sesar atau fault
 
Mineral Zircon
Mineral ZirconMineral Zircon
Mineral Zircon
 
3. Batas Kelelahan Logam Konsep S-N (AA)
3. Batas Kelelahan Logam Konsep S-N (AA)3. Batas Kelelahan Logam Konsep S-N (AA)
3. Batas Kelelahan Logam Konsep S-N (AA)
 
2-Aspek Metalurgis Thd Kelelahan Logam (AA)
2-Aspek Metalurgis Thd Kelelahan Logam (AA)2-Aspek Metalurgis Thd Kelelahan Logam (AA)
2-Aspek Metalurgis Thd Kelelahan Logam (AA)
 
Laporan Bentuk Asal Marine Daerah Bengkulu
Laporan Bentuk Asal Marine Daerah BengkuluLaporan Bentuk Asal Marine Daerah Bengkulu
Laporan Bentuk Asal Marine Daerah Bengkulu
 
Genesa bahan galian bijih nikel laterit
Genesa bahan galian bijih nikel lateritGenesa bahan galian bijih nikel laterit
Genesa bahan galian bijih nikel laterit
 

Destacado

Notify batubara selaras sapta (ain't final)
Notify batubara selaras sapta (ain't final)Notify batubara selaras sapta (ain't final)
Notify batubara selaras sapta (ain't final)Sang Fathramadhani
 
1210 grant kensington
1210 grant kensington1210 grant kensington
1210 grant kensingtonSymposium
 
Apache conna2010 os-gi_flex-fornaciari
Apache conna2010 os-gi_flex-fornaciariApache conna2010 os-gi_flex-fornaciari
Apache conna2010 os-gi_flex-fornaciariZenika
 
20090416 Allami Tamogatas Es Kozbeszerzes
20090416 Allami Tamogatas Es Kozbeszerzes20090416 Allami Tamogatas Es Kozbeszerzes
20090416 Allami Tamogatas Es Kozbeszerzesgaalnorb
 
Hoivaa ja voimaa luonnosta -seminaari 12.12.2013
Hoivaa ja voimaa luonnosta -seminaari 12.12.2013Hoivaa ja voimaa luonnosta -seminaari 12.12.2013
Hoivaa ja voimaa luonnosta -seminaari 12.12.2013Sari-Maarit Peltola
 
la fête du jambon Da costa Fidalgo Yara
 la fête du jambon Da costa Fidalgo Yara la fête du jambon Da costa Fidalgo Yara
la fête du jambon Da costa Fidalgo Yarakedougou
 
Fête du riz au lait- Rodríguez Quintas Fátima
Fête du riz au lait- Rodríguez Quintas FátimaFête du riz au lait- Rodríguez Quintas Fátima
Fête du riz au lait- Rodríguez Quintas Fátimakedougou
 
Scratchbuilding Signs
Scratchbuilding SignsScratchbuilding Signs
Scratchbuilding SignsScott Povlot
 
Tech talk October 2014 - Rotary Cadre Foundation Communication
Tech talk October 2014 - Rotary Cadre Foundation CommunicationTech talk October 2014 - Rotary Cadre Foundation Communication
Tech talk October 2014 - Rotary Cadre Foundation CommunicationPablo Ruiz Amo
 
Ning presentation 10 13-10
Ning presentation 10 13-10Ning presentation 10 13-10
Ning presentation 10 13-10mtmathieu
 
Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...
Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...
Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...Michael Levine-Clark
 
Δομή Επανάληψης
Δομή ΕπανάληψηςΔομή Επανάληψης
Δομή Επανάληψηςgkesel
 
Untitled 1 2
Untitled 1 2Untitled 1 2
Untitled 1 2mfw265
 
East Magazine Issue 2
East Magazine Issue 2East Magazine Issue 2
East Magazine Issue 2MarkBradbury
 
Can Government Do More with Less?
Can Government Do More with Less?Can Government Do More with Less?
Can Government Do More with Less?Steve Ressler
 

Destacado (20)

Notify batubara selaras sapta (ain't final)
Notify batubara selaras sapta (ain't final)Notify batubara selaras sapta (ain't final)
Notify batubara selaras sapta (ain't final)
 
1210 grant kensington
1210 grant kensington1210 grant kensington
1210 grant kensington
 
Apache conna2010 os-gi_flex-fornaciari
Apache conna2010 os-gi_flex-fornaciariApache conna2010 os-gi_flex-fornaciari
Apache conna2010 os-gi_flex-fornaciari
 
20090416 Allami Tamogatas Es Kozbeszerzes
20090416 Allami Tamogatas Es Kozbeszerzes20090416 Allami Tamogatas Es Kozbeszerzes
20090416 Allami Tamogatas Es Kozbeszerzes
 
Hoivaa ja voimaa luonnosta -seminaari 12.12.2013
Hoivaa ja voimaa luonnosta -seminaari 12.12.2013Hoivaa ja voimaa luonnosta -seminaari 12.12.2013
Hoivaa ja voimaa luonnosta -seminaari 12.12.2013
 
Fallas
FallasFallas
Fallas
 
la fête du jambon Da costa Fidalgo Yara
 la fête du jambon Da costa Fidalgo Yara la fête du jambon Da costa Fidalgo Yara
la fête du jambon Da costa Fidalgo Yara
 
upload test2
upload test2upload test2
upload test2
 
Fête du riz au lait- Rodríguez Quintas Fátima
Fête du riz au lait- Rodríguez Quintas FátimaFête du riz au lait- Rodríguez Quintas Fátima
Fête du riz au lait- Rodríguez Quintas Fátima
 
Scratchbuilding Signs
Scratchbuilding SignsScratchbuilding Signs
Scratchbuilding Signs
 
Tech talk October 2014 - Rotary Cadre Foundation Communication
Tech talk October 2014 - Rotary Cadre Foundation CommunicationTech talk October 2014 - Rotary Cadre Foundation Communication
Tech talk October 2014 - Rotary Cadre Foundation Communication
 
Ning presentation 10 13-10
Ning presentation 10 13-10Ning presentation 10 13-10
Ning presentation 10 13-10
 
Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...
Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...
Demand-Driven Acquisitions for a Shared eBook Collection: The Colorado Allian...
 
Twitter
TwitterTwitter
Twitter
 
Δομή Επανάληψης
Δομή ΕπανάληψηςΔομή Επανάληψης
Δομή Επανάληψης
 
upload test2
upload test2upload test2
upload test2
 
Untitled 1 2
Untitled 1 2Untitled 1 2
Untitled 1 2
 
MYOB Hosting
MYOB HostingMYOB Hosting
MYOB Hosting
 
East Magazine Issue 2
East Magazine Issue 2East Magazine Issue 2
East Magazine Issue 2
 
Can Government Do More with Less?
Can Government Do More with Less?Can Government Do More with Less?
Can Government Do More with Less?
 

Similar a Tumpengan Tumpang Pitu

Agata ni43 101-dmc090122
Agata ni43 101-dmc090122Agata ni43 101-dmc090122
Agata ni43 101-dmc090122returnant
 
MICON - NI 43-101 Technical Resource Report
MICON - NI 43-101 Technical Resource ReportMICON - NI 43-101 Technical Resource Report
MICON - NI 43-101 Technical Resource ReportSpider Resources, Inc.
 
Ecological assesment of fauna, sindh
Ecological assesment of fauna, sindhEcological assesment of fauna, sindh
Ecological assesment of fauna, sindhMuhammad Rehan
 
Tmi-escalones_amended_technical_report_final_for_filing
Tmi-escalones_amended_technical_report_final_for_filingTmi-escalones_amended_technical_report_final_for_filing
Tmi-escalones_amended_technical_report_final_for_filingChris Helweg
 
OceanaGold -110729 NI-43-101-Technical-Report-Didipio
OceanaGold -110729 NI-43-101-Technical-Report-DidipioOceanaGold -110729 NI-43-101-Technical-Report-Didipio
OceanaGold -110729 NI-43-101-Technical-Report-DidipioNo to mining in Palawan
 
Production of rare earth oxides
Production of rare earth oxidesProduction of rare earth oxides
Production of rare earth oxidesalan59
 
2013 QER review oil shale Qld
2013 QER review oil shale Qld2013 QER review oil shale Qld
2013 QER review oil shale QldJulius Marinelli
 
Fs volume iv (eia) environment comments
Fs volume iv (eia) environment commentsFs volume iv (eia) environment comments
Fs volume iv (eia) environment commentszubeditufail
 
Feasibility study coconut industry
Feasibility study coconut industryFeasibility study coconut industry
Feasibility study coconut industrySetiono Winardi
 
Africa; Agricultural Water Management Technologies for Small Scale Farmers i...
Africa;  Agricultural Water Management Technologies for Small Scale Farmers i...Africa;  Agricultural Water Management Technologies for Small Scale Farmers i...
Africa; Agricultural Water Management Technologies for Small Scale Farmers i...D7Z
 
Great quest-tilemsi-phosphate-project-pea-(06 feb13)
Great quest-tilemsi-phosphate-project-pea-(06 feb13)Great quest-tilemsi-phosphate-project-pea-(06 feb13)
Great quest-tilemsi-phosphate-project-pea-(06 feb13)Adnet Communications
 
2014 Techniques and Methods
2014 Techniques and Methods2014 Techniques and Methods
2014 Techniques and MethodsDr Lendy Spires
 
2008 Annual Report Wasso Hospital, Ngorongoro, Tanzania
2008 Annual Report Wasso Hospital, Ngorongoro, Tanzania2008 Annual Report Wasso Hospital, Ngorongoro, Tanzania
2008 Annual Report Wasso Hospital, Ngorongoro, TanzaniaChristian van Rij
 
Philippine Allotment Garden Manual with an Introduction to Ecological Sanitation
Philippine Allotment Garden Manual with an Introduction to Ecological SanitationPhilippine Allotment Garden Manual with an Introduction to Ecological Sanitation
Philippine Allotment Garden Manual with an Introduction to Ecological SanitationFaiga64c
 
Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...
Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...
Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...Themistocles Papadimopoulos
 
Clostridiumbotulism
ClostridiumbotulismClostridiumbotulism
Clostridiumbotulismthuytrang246
 
Nakasongola Community Diagnosis Report
Nakasongola Community Diagnosis ReportNakasongola Community Diagnosis Report
Nakasongola Community Diagnosis ReportOriba Dan Langoya
 
The nigerian tourism sector and the impact of fiscal policy.a case study of 2...
The nigerian tourism sector and the impact of fiscal policy.a case study of 2...The nigerian tourism sector and the impact of fiscal policy.a case study of 2...
The nigerian tourism sector and the impact of fiscal policy.a case study of 2...Attah Peter
 

Similar a Tumpengan Tumpang Pitu (20)

Nuukfjord 43-101
Nuukfjord 43-101Nuukfjord 43-101
Nuukfjord 43-101
 
Agata ni43 101-dmc090122
Agata ni43 101-dmc090122Agata ni43 101-dmc090122
Agata ni43 101-dmc090122
 
MICON - NI 43-101 Technical Resource Report
MICON - NI 43-101 Technical Resource ReportMICON - NI 43-101 Technical Resource Report
MICON - NI 43-101 Technical Resource Report
 
Ecological assesment of fauna, sindh
Ecological assesment of fauna, sindhEcological assesment of fauna, sindh
Ecological assesment of fauna, sindh
 
Tmi-escalones_amended_technical_report_final_for_filing
Tmi-escalones_amended_technical_report_final_for_filingTmi-escalones_amended_technical_report_final_for_filing
Tmi-escalones_amended_technical_report_final_for_filing
 
OceanaGold -110729 NI-43-101-Technical-Report-Didipio
OceanaGold -110729 NI-43-101-Technical-Report-DidipioOceanaGold -110729 NI-43-101-Technical-Report-Didipio
OceanaGold -110729 NI-43-101-Technical-Report-Didipio
 
Production of rare earth oxides
Production of rare earth oxidesProduction of rare earth oxides
Production of rare earth oxides
 
2013 QER review oil shale Qld
2013 QER review oil shale Qld2013 QER review oil shale Qld
2013 QER review oil shale Qld
 
Fs volume iv (eia) environment comments
Fs volume iv (eia) environment commentsFs volume iv (eia) environment comments
Fs volume iv (eia) environment comments
 
Feasibility study coconut industry
Feasibility study coconut industryFeasibility study coconut industry
Feasibility study coconut industry
 
Africa; Agricultural Water Management Technologies for Small Scale Farmers i...
Africa;  Agricultural Water Management Technologies for Small Scale Farmers i...Africa;  Agricultural Water Management Technologies for Small Scale Farmers i...
Africa; Agricultural Water Management Technologies for Small Scale Farmers i...
 
Great quest-tilemsi-phosphate-project-pea-(06 feb13)
Great quest-tilemsi-phosphate-project-pea-(06 feb13)Great quest-tilemsi-phosphate-project-pea-(06 feb13)
Great quest-tilemsi-phosphate-project-pea-(06 feb13)
 
2014 Techniques and Methods
2014 Techniques and Methods2014 Techniques and Methods
2014 Techniques and Methods
 
2008 Annual Report Wasso Hospital, Ngorongoro, Tanzania
2008 Annual Report Wasso Hospital, Ngorongoro, Tanzania2008 Annual Report Wasso Hospital, Ngorongoro, Tanzania
2008 Annual Report Wasso Hospital, Ngorongoro, Tanzania
 
Philippine Allotment Garden Manual with an Introduction to Ecological Sanitation
Philippine Allotment Garden Manual with an Introduction to Ecological SanitationPhilippine Allotment Garden Manual with an Introduction to Ecological Sanitation
Philippine Allotment Garden Manual with an Introduction to Ecological Sanitation
 
Crcif - Irrigation futures
Crcif  - Irrigation futuresCrcif  - Irrigation futures
Crcif - Irrigation futures
 
Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...
Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...
Digital Strategy for Tourism Destinations- The case study of Ancient Olympia,...
 
Clostridiumbotulism
ClostridiumbotulismClostridiumbotulism
Clostridiumbotulism
 
Nakasongola Community Diagnosis Report
Nakasongola Community Diagnosis ReportNakasongola Community Diagnosis Report
Nakasongola Community Diagnosis Report
 
The nigerian tourism sector and the impact of fiscal policy.a case study of 2...
The nigerian tourism sector and the impact of fiscal policy.a case study of 2...The nigerian tourism sector and the impact of fiscal policy.a case study of 2...
The nigerian tourism sector and the impact of fiscal policy.a case study of 2...
 

Más de Sang Fathramadhani

Más de Sang Fathramadhani (6)

Mobile Crusher ciamik
Mobile Crusher ciamikMobile Crusher ciamik
Mobile Crusher ciamik
 
Kalteng iup.c&c
Kalteng iup.c&cKalteng iup.c&c
Kalteng iup.c&c
 
Izin Pinjam Pakai Kawasan Hutan
Izin Pinjam Pakai Kawasan HutanIzin Pinjam Pakai Kawasan Hutan
Izin Pinjam Pakai Kawasan Hutan
 
Notaris.G1
Notaris.G1Notaris.G1
Notaris.G1
 
Mau, Bisa, Pasti Bisa Mining69
Mau, Bisa, Pasti Bisa Mining69Mau, Bisa, Pasti Bisa Mining69
Mau, Bisa, Pasti Bisa Mining69
 
Dept Of The Interior Saf142
Dept Of  The  Interior Saf142Dept Of  The  Interior Saf142
Dept Of The Interior Saf142
 

Último

办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一z xss
 
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...Amil baba
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricksabhishekparmar618
 
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full NightCall Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCRdollysharma2066
 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10uasjlagroup
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVAAnastasiya Kudinova
 
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full NightCall Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCRCall In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCRdollysharma2066
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一F La
 
Pharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdfPharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdfAayushChavan5
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造kbdhl05e
 
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`dajasot375
 
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubaikojalkojal131
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfSumit Lathwal
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case StudySophia Viganò
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfneelspinoy
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfShivakumar Viswanathan
 

Último (20)

办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
 
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricks
 
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full NightCall Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
 
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full NightCall Girls Aslali 7397865700 Ridhima Hire Me Full Night
Call Girls Aslali 7397865700 Ridhima Hire Me Full Night
 
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCRCall In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
Call In girls Bhikaji Cama Place 🔝 ⇛8377877756 FULL Enjoy Delhi NCR
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
 
Pharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdfPharmaceutical Packaging for the elderly.pdf
Pharmaceutical Packaging for the elderly.pdf
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造
 
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
 
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdf
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case Study
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdf
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdf
 

Tumpengan Tumpang Pitu

  • 1. PAGE 1 INTREPID MINES LIMITED TUJUH BUKIT PROJECT REPORT ON MINERAL RESOURCES, LOCATED IN EAST JAVA, INDONESIA TECHNICAL REPORT FOR INTREPID MINES LIMITED LEVEL 1, 490 UPPER EDWARD ST. SPRING HILL, QLD 4004 AUSTRALIA 21 JUNE 2011 PHILLIP L. HELLMAN, BSC (HONS 1), DIP ED, PHD, MGSA, MAEG, FAIG HELLMAN & SCHOFIELD PTY LTD TEL: +61 2 9858 3863 3/6 TRELAWNEY ST, EASTWOOD FAX: +61 2 9858 4077 NSW 2122 AUSTRALIA EMAIL: hellscho@hellscho.com.au
  • 2. TUJUH BUKIT 2.0 CONTENTS 2.0   CONTENTS................................................................................................................................. 2  LIST OF FIGURES ...................................................................................................................................... 4  LIST OF TABLES ....................................................................................................................................... 6  LIST OF APPENDICES ............................................................................................................................... 6  3.  SUMMARY .................................................................................................................................. 1  3.1  Property..................................................................................................................................... 1  3.2  Location .................................................................................................................................... 1  3.3   Ownership ................................................................................................................................. 1  3.4   Geology and Mineralization ..................................................................................................... 1  3.5   Exploration Concept ................................................................................................................. 1  3.6   Status of Exploration ................................................................................................................ 1  3.7   Development and Operations.................................................................................................... 2  3.8   Qualified Person’s Conclusions and Recommendations .......................................................... 2  4.  INTRODUCTION ......................................................................................................................... 3  5.  RELIANCE ON OTHER EXPERTS ............................................................................................... 4  6.  PROPERTY DESCRIPTION AND LOCATION ............................................................................... 5  7.  ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY ............... 8  8.  HISTORY .................................................................................................................................... 9  9.  GEOLOGICAL SETTING ........................................................................................................... 11  9.1 Regional Geology ........................................................................................................................ 11  9.2 Local Geology ............................................................................................................................. 16  9.3 Deposit Geology .......................................................................................................................... 21  10.  DEPOSIT TYPES....................................................................................................................... 39  11.  MINERALIZATION..................................................................................................................... 39  11.1 Katak ..................................................................................................................................... 39  11.2 Gunung Manis ....................................................................................................................... 41  11.3 Candrian ................................................................................................................................ 42  11.4 Tumpangpitu ......................................................................................................................... 43  12.  EXPLORATION ......................................................................................................................... 57  13.  DRILLING ................................................................................................................................. 64  13.1   Drilling Contractor and Drilling Statistics .............................................................................. 66  13.2 Drilling Equipment .................................................................................................................. 66  13.3 Down hole Surveys ................................................................................................................. 67  13.4 Drill Hole Collar Survey and Topographic Survey ................................................................. 67  13.5 Summary Results of Drilling ................................................................................................... 67  14.  SAMPLING METHOD AND APPROACH..................................................................................... 68  14.1 Core Processing Protocols ....................................................................................................... 69  14.2 Measurement of Specific Gravity............................................................................................ 71  14.3 Sampling Intervals................................................................................................................... 71  14.4   Core Recovery Data ................................................................................................................ 72  14.5   Comparison of Sludge Samples versus Core Samples ........................................................... 73  15.   SAMPLE PREPARATION AND SECURITY ................................................................................. 75  15.1   Sample Splitting, Packaging and Labelling ............................................................................ 75  15.2   Procedures Employed to Ensure Sample Integrity ................................................................. 75  15.3   Use of IMN Employees in Sampling Procedure ..................................................................... 76  15.4   Sample Security and Transport ............................................................................................... 76  15.5 Analytical Laboratories ........................................................................................................... 77  HELLMAN AND SCHOFIELD | JUNE 2011
  • 3. TUJUH BUKIT 15.6 Analytical Methods ................................................................................................................. 78  15.7   QAQC Procedures Employed ................................................................................................. 80  15.8   QAQC Results ........................................................................................................................ 83  16.  DATA VERIFICATION ............................................................................................................... 84  17.  ADJACENT PROPERTIES ......................................................................................................... 85  18.   MINERAL PROCESSING AND METALLURGICAL TESTING ....................................................... 86  18.1  Sulfide Testwork ..................................................................................................................... 86  18.2  Summary of Oxide Testwork .................................................................................................. 86  18.3  Metcon Metallurgical Program ............................................................................................... 91  18.4  KCA Metallurgical Test Program ........................................................................................... 95  18.5  Ore and Waste Acid Neutralization Potential ......................................................................... 97  18.6  Future Work ............................................................................................................................ 97  18.7  Ore Processing ........................................................................................................................ 97  19.  MINERAL RESOURCE AND MINERAL RESERVE ESTIMATE .................................................. 100  20.  OTHER RELEVANT DATA AND INFORMATION....................................................................... 130  20.1   Porphyry Resource................................................................................................................ 130  20.2   Summary Of Preliminary Economic Assessment For The Tujuh Bukit Oxide Project ........ 135  21.  INTERPRETATIONS AND CONCLUSIONS............................................................................... 144  21.1  Interpretations and Conclusion of the Porphyry Resource ................................................... 144  21.2  Interpretations and Conclusion of the Oxide Resource ........................................................ 144  22.   RECOMMENDATIONS ............................................................................................................ 144  22.1  Recommendations for the Porphyry resource ....................................................................... 144  22.2  Recommendations for the Preliminary Economic Assessment of the Oxide Resource........ 145  23.  REFERENCES ........................................................................................................................ 151  24.  DATE AND SIGNATURE PAGE ............................................................................................... 153  25.   ADDITIONAL REQUIREMENTS FOR TECHNICAL REPORTS ON DEVELOPMENT PROPERTIES AND PRODUCTION PROPERTIES........................................................................................... 154  26.   ILLUSTRATIONS .................................................................................................................... 154  HELLMAN AND SCHOFIELD | JUNE 2011
  • 4. TUJUH BUKIT LIST OF FIGURES Figure 1: Location of the Tujuh Bukit Project, Banyuwangi, East Java, Indonesia. .................................................................... 5  Figure 2: IUP Production Operation (outlined in red). ................................................................................................................. 6  Figure 3: IUP Exploration outlined in red. ................................................................................................................................... 6  Figure 4: Regional geology. ...................................................................................................................................................... 12  Figure 5: Location of the Tujuh Bukit project. ........................................................................................................................... 13  Figure 6 : Regional geology of the southeast corner of Java (Jawa Timur). .............................................................................. 15  Figure 7 : Distribution of mineral prospects ............................................................................................................................... 16  Figure 8 : Lithology of the Tumpangpitu prospect region ........................................................................................................... 17  Figure 9 : Lithology of the Tujuh Bukit project as mapped by Placer (2000-2001). ................................................................... 18  Figure 10 : Reduced-to-Pole magnetic image ........................................................................................................................... 20  Figure 11 : Lithology cross-section 11060 mN at Tumpangpitu ................................................................................................. 22  Figure 12 : Distribution of alteration styles at the Tumpangpitu prospect as mapped by GVM-Placer ...................................... 23  Figure 13 : Outcrop of crystal lithic tuff with possible fiame from the Salakan Prospect. ........................................................... 24  Figure 14 : Matrix-supported lithic-crystal tuff from hole GTD-34 (Zone A - Tumpangpitu) ....................................................... 25  Figure 15 : Nine locations where sediments are encountered at Tumpangpitu (Nov. 2010). .................................................... 26  Figure 16 : Images of sedimentary textures in fresh to incipiently propylitic-altered sediments ................................................ 28  Figure 17 : Interbedded, fine-grained volcanic sandstones (propylitic)...................................................................................... 28  Figure 18 : Images of laminated and banded sediment in drill hole GTD-10-162 ...................................................................... 29  Figure 19 : Very coarse grained tonalite (CT): GTD-09-42 (667m)............................................................................................ 32  Figure 20 : Mill breccia from an interpreted diatreme complex at Zone B.................................................................................. 34  Figure 21 : Clast of intense porphyry quartz vein stockwork ..................................................................................................... 35  Figure 22 : Left - Clast of quartz-magnetite alteration (potassic zone) ...................................................................................... 35  Figure 23 : Left - Clast of porphyry related Qtz-magnetite-pyrite altered rock ........................................................................... 35  Figure 24 : Left - Accretionary lapilli from GTD-09-60 ............................................................................................................... 36  Figure 25 : Charcoal wood fragments embedded within chlorite-clay altered mill (diatreme) .................................................... 36  Figure 26 : Muddy matrix breccias (GTD-09-107; 162.10m and 163m)..................................................................................... 37  Figure 27 : Cross-section 11220 mN at Tumpangpitu. .............................................................................................................. 38  Figure 28 : Plan of 5 planned drill holes that were subsequently drilled at Katak. ..................................................................... 40  Figure 29 : Plan of 5 planned drill holes that were subsequently drilled at Katak. ..................................................................... 40  Figure 30 : Alteration map at Gunung Manis ............................................................................................................................. 42  Figure 31 : Location of the Candrian porphyry prospect ............................................................................................................ 43  Figure 32 : Vuggy massive silica (vu-Hsi) alteration of lithic tuff ................................................................................................ 44  Figure 33 : Alteration section 11,200 mN (Placer grid) at Zone A.............................................................................................. 45  Figure 34 : Alteration section 10,910 mN (Placer grid) at Zone C, ............................................................................................ 46  Figure 35 : Alteration section 9045370 mN (UTM grid) at Zone B ............................................................................................. 47  Figure 36 : Plan of the principal porphyry Cu-Au-Mo intersections at Tumpangpitu (yellow bars), ........................................... 48  Figure 37 : Resource block model section 11040 mN (Placer grid) at Tumpangpitu. ................................................................ 49  Figure 38 : Alteration section 11040 mN (Placer grid) at Tumpangpitu (Nov. 2010). ................................................................ 50  Figure 39 : Top-left, GTD-10-167 (403m) Qtz-Mo (B-vein) with Py center-line. ........................................................................ 52  Figure 40 : Average grade of As in oxide drill holes for 3 oxidation classes (fresh, strong, complete) ...................................... 53  Figure 41 : Enrichment factor of As in oxide Zones A-F ............................................................................................................ 53  Figure 42 : Core from the porphyry zone in GTD-09-112 (731.20m depth). .............................................................................. 55  Figure 43 : Core from the porphyry zone in GTD-10-163 .......................................................................................................... 55  Figure 44: Distribution of Au anomalies in -80 mesh soil samples at Tumpangpitu, ................................................................ 60  Figure 45 : Distribution of Cu anomalies in -80 mesh soil samples at Tumpangpitu, ................................................................ 61  Figure 46 : Left – Aeromagnetic data flown by Golden Valley Mines (circa 1999) .................................................................... 63  Figure 47 : Distribution of drill holes at Tumpangpitu as of 9th May 2011. ................................................................................. 65  Figure 48 : Summary of core recovery for the diamond drilling programs at Tumpangpitu. ...................................................... 73  Figure 49 : Plots of Au in core and in corresponding sludge samples for Tumpangpitu. ........................................................... 74  Figure 50 : Plots of Cu in core and in corresponding sludge samples for Tumpangpitu. ........................................................... 74  Figure 51 : Contoured elevation model showing block model limits ........................................................................................ 100  Figure 52 : Location of new mineralised intercepts (red) ......................................................................................................... 101  Figure 53 : Example of sectional interpretation of Cu mineralised zone .................................................................................. 102  Figure 54 : Relationship of elevation to Cu mineralization shell and elevated Cu drill hole intercepts .................................... 102  Figure 55 : Deposit-wide cross section, Cu in 6m composites (transition and sulfide zone) ................................................... 106  Figure 56 : Deposit-wide long section, Cu in 6m composites (sulfide zone) ............................................................................ 107  Figure 57 : Deposit-wide cross section, Au in 6m composites (transition and sulfide zone).................................................... 108  HELLMAN AND SCHOFIELD | JUNE 2011
  • 5. TUJUH BUKIT Figure 58 : Deposit-wide long section, Au in 6m composites (transition and sulfide zone) .................................................... 109  Figure 59 : Deposit-wide cross section, Mo in 6m composites (transition and sulfide zone) .................................................. 110  Figure 60 : Deposit-wide long section, Mo in 6m composites (transition and sulfide zone) .................................................... 111  Figure 61 : Deposit-wide cross section, As in 6m composites (transition and sulfide zone) ................................................... 112  Figure 62 : Deposit-wide long section, As in 6m composites (transition and sulfide zone) .................................................... 113  Figure 63 : Cu:Au relationship, 6m composites, sulfide mineralization ................................................................................... 113  Figure 64 : Cu:Mo relationship, 6m composites, sulfide mineralization .................................................................................. 114  Figure 65 : Cu:As relationship, 6m composites, sulfide mineralization ................................................................................... 114  Figure 66 : Au:As relationship, 6m composites, sulfide mineralization ................................................................................... 114  Figure 67 : Modelled variograms for Cu (from top: down hole, 040 and 130 directions, UTM) .............................................. 116  Figure 68 : Modelled down-hole variogram for Au .................................................................................................................. 117  Figure 69 : Modelled down-hole variogram for As .................................................................................................................. 117  Figure 70 : Modelled down-hole variogram for Mo ................................................................................................................. 117  Figure 71 : Location of resource in relation to Cu mineralization ............................................................................................ 118  Figure 72 : Location of Exploration Potential in relation to Inferred Resource ........................................................................ 121  Figure 73 : Combined drill holes and block model (oblique section) ....................................................................................... 122  Figure 74 : Legend for sections .............................................................................................................................................. 123  Figure 75 : Oblique section 3, drill hole GTD-08-42 and block model .................................................................................... 123  Figure 76 : Oblique section 6, drill holes and block model ...................................................................................................... 124  Figure 77 : Oblique section 7, drill holes and block model ...................................................................................................... 124  Figure 78 : Oblique section 8, drill holes and block model ...................................................................................................... 125  Figure 79 : Oblique section 9, drill holes and block model ...................................................................................................... 125  Figure 80 : Oblique section 10, drill holes and block model .................................................................................................... 126  Figure 81 : Location of oblique sections in relation to drill holes and block model ................................................................. 127  Figure 82 : Combined drill holes and block model (oblique section) -gold .............................................................................. 128  Figure 83 : Combined drill holes and block model (oblique section) - molybdenum ............................................................... 128  Figure 84 : Combined drill holes and block model (oblique section) - arsenic ........................................................................ 129  Figure 85 : Legend for composite sections for Au, Mo & As ................................................................................................... 129  Figure 86 : Oblique oxide section 9, new results from GTD-11-194 ....................................................................................... 131  Figure 87 : Oblique section 16, new results from GTD-11-201 ............................................................................................... 132  Figure 88 : Oblique section 18, new results from GTD-11-203 ............................................................................................... 133  Figure 89 : Oblique oxide section 6, new results from GTD-11-205 ....................................................................................... 134  Figure 90 : Oblique porphyry section 10, new results from GTD-11-206 ................................................................................ 135  Figure 91: Summary - Standard Bias Plot Lab: Intertek Method; FA30 Method: Au.............................................................. 162  Figure 92: Summary - Standard Bias Plot Lab: Intertek Method: GA02 Method: Cu ............................................................. 162  Figure 93: Charts for Standard: OREAS 53Pb Lab: Intertek ................................................................................................. 163  Figure 94: Check Assays - Au (FA30/Au-AA25); Cu (GA02/ME-OG62); Ag (GA02/ME-OG62)............................................ 165  Figure 95: Field Duplicate Charts (Au, Cu, Ag)...................................................................................................................... 166  Figure 96: Laboratory Repeatability Summary Report (Lab: Intertek) ................................................................................... 167  HELLMAN AND SCHOFIELD | JUNE 2011
  • 6. TUJUH BUKIT LIST OF TABLES Table 1 : Inferred Oxide Resource at Tumpangpitu as reported in January 2011 ..................................................................... 58  Table 2 : Number of core samples assayed per sampling interval (Tumpangpitu) .................................................................... 71  Table 3 : Summary of core recovery for the diamond drilling programs at Tumpangpitu .......................................................... 72  Table 4 : Method and detection limits for elements analysed in the Tumpangpitu drilling program. ......................................... 78  Table 5 : List of OREAS standards (CRM’s) used in the Tujuh Bukit Project ............................................................................ 82  Table 6 : List of OREAS standards (CRM’s) used in the Tujuh Bukit Project ............................................................................ 82  Table 7 : Summary Results of Metcon Test Program ................................................................................................................ 86  Table 8 : Summary of KCA Test Work ....................................................................................................................................... 88  Table 9 : Summary of KCA Column and Projected Field Recoveries ........................................................................................ 89  Table 10 : KCA Core Photograph Category Summary .............................................................................................................. 90  Table 11 : Metcon Composite Samples ..................................................................................................................................... 91  Table 12 : Head Assays ............................................................................................................................................................. 92  Table 13 : Comparison of Expected, Assayed, & Average Calculated Head Grades ................................................................ 92  Table 14 : Metcon Baseline Cyanidation Test Summary ........................................................................................................... 93  Table 15 : Effect of Higher Cyanide Concentration on Residue Grades .................................................................................... 94  Table 16 : Metcon Comminution Test Summary ........................................................................................................................ 94  Table 17 : Metcon Analyses of Final Leach Solutions ............................................................................................................... 95  Table 18 : Column Leach Test and Expected Field Recoveries ................................................................................................ 96  Table 19 : Cyanide Consumption ............................................................................................................................................... 97  Table 20 : Summary of assayed intervals within interpreted copper mineralised zone ........................................................... 103  Table 21 : Summary of 6m composites within interpreted copper mineralised zone (only sulfide intervals) ........................... 103  Table 22 : Summary of 6m composited densities within interpreted copper mineralised zone ............................................... 103  Table 23: Summary, by hole, of 6m composites within interpreted porphyry zone(sulfide intercepts only) ............................ 104  Table 24 : Block model extents ................................................................................................................................................ 118  Table 25 : Summary of Inferred Resources, sulfide zone ........................................................................................................ 119  Table 26: Production Statistics ............................................................................................................................................... 137  Table 27: Summary of Pre-Production Capital Costs ............................................................................................................. 139  Table 28 : Operating Costs ...................................................................................................................................................... 141  Table 29 : Summary of Financial Results ................................................................................................................................ 141  Table 30 : Internal Standards - Lab: Intertek; Method: FA30 ................................................................................................... 161  Table 31: Internal Standards - Lab: Intertek; Method: GA02 .................................................................................................. 161  Table 32: Internal Standards - Lab: Intertek; Method: GA30 .................................................................................................. 161  Table 33: Internal Blanks – Lab: Intertek ................................................................................................................................ 164  Table 34: Field Duplicates - ½ Core and Sludge samples ...................................................................................................... 165  LIST OF APPENDICES Appendix 1. Details of drill hole locations Appendix 2. QA/QC Report by D Lulofs HELLMAN AND SCHOFIELD | JUNE 2011
  • 7. TUJUH BUKIT Page 1 3. SUMMARY 3.1 Property The Tujuh Bukit Project comprises two exploration tenements (“IUPs”) covering a total area  of 11,621.45 hectares.   3.2 Location The property is located approximately 205 kilometers southeast of Surabaya, the capital of  the  province of East Java, Indonesia  and 60 kilometers southwest of the regional center of  Banyuwangi.  The  property  is  centerd  near  8°  35’  20.6”  S  and  114°  01’  08”  N  and  is  bound  within UTM co‐ordinates 163,000‐179,000 E and 9042000‐9055000 N.     3.3 Ownership The IUP (Izin Usaha Pertambangan) ‐Explorasi and IUP Operasi and Produksi were granted to  PT.  Indo Multi  Niaga  ("IMN")  on 25th  January  2010  by  the  Bupati of Banyuwangi  (Regional  Administrator,  Banyuwangi,  East  Java)  under  decree  number  188/05/KP/429.012/2007.  Intrepid Mines Limited (“Intrepid”) and IMN have signed a Joint Venture agreement enabling  Intrepid to hold an 80% economic interest in the Tujuh Bukit Project.     3.4 Geology and Mineralization The principal styles of mineralization that are the focus of exploration and delineation drilling  on  the  Tujuh  Bukit  Project  are  high‐sulfidation  epithermal  Cu‐Au‐Ag  mineralization  and  porphyry  Cu‐Au  mineralization.  The  rocks  within  the  porphyry  environment  become  intensely altered by the passage of hot saline fluids of varying pH and by the late descent of  cool oxidized ground‐waters that are out of equilibrium with the host rocks.     These  areas  of  rock  alteration  are  typically  zoned  at  the  district‐scale,  a  feature  that  can  provide vectors to porphyry Cu‐Au ore in magmatic‐related hydrothermal systems. Porphyry  deposits  contain  the  vast  majority  of  the  copper  resources  of  the  Pacific  island  arcs  and  significant amounts of gold, silver and molybdenum. Porphyry copper‐gold deposits tend to  be  large,  fairly  uniformly  mineralized  and  relatively  low‐grade  deposits  with  great  vertical  extent.       3.5 Exploration Concept The  project  is  of  an  advanced  nature,  with  well  understood  geological  potential  and  an  Inferred  Resource.  It  will  progress  by  infill  drilling,  step‐out  drilling,  drilling  to  depth  and  follow‐up of geophysical (e.g. magnetic) and geochemical targets around the immediate area  of identified mineralization.     3.6 Status of Exploration Resource delineation and step‐out drilling.    HELLMAN AND SCHOFIELD | JUNE 2011
  • 8. TUJUH BUKIT Page 2 3.7 Development and Operations None as yet.     3.8 Qualified Person’s Conclusions and Recommendations In the Qualified Person’s opinion, the character of the property is of sufficient merit to justify  continued drilling.  HELLMAN AND SCHOFIELD | JUNE 2011
  • 9. TUJUH BUKIT Page 3 4. INTRODUCTION This technical report is prepared by P. L. Hellman, an Independent Consultant to Intrepid, to  comply with NI 43‐101 reporting guidelines. Technical information and data contained in the  report or used in its preparation are sourced from reports compiled by previous workers of  the  property together with internal reports of the current tenement holders as well as the  authors  own  observations  whilst  visiting  the  site  and  working  with  data  from  the  site  generated by others.     This report documents the second Inferred Resource estimate at the Tumpangpitu porphyry  Cu‐Au  prospect  in  East  Java,  Indonesia.  The  Tumpangpitu  Prospect  forms  a  part  of  the  broader Tujuh  Bukit Project.  The  objective  of  the  report  is  to estimate  the  second  Inferred  Mineral Resource and to assess the merits of continued drilling on the Prospect    The  property  has  been  visited  by  the  Author  on  four  occasions  from  November  2007.  The  initial visit was focused on drilling programs at Tumpangpitu Prospects Zones C and A which  were aimed at defining oxide gold‐silver resources. These have been separately reported in  other NI 43‐101 reports (Hellman, 2008, 2009 & 2011). Later visits included reviews of drilling  on the deeper sulfide porphyry copper‐gold system. The Author observed the progress of the  drilling programs in the Zones C and A oxide areas, visited the site office at Pulau Merah and  provided  advice  on  sampling,  QA/QC,  geological  logging,  geotechnical  data  acquisition  and  general  data  handling  protocols.  The  Author  inspected  the  property  over  several  days  in  October  2010  and  observed  drilling  activities,  drill  core  and  participate  with  on‐site  discussions  with  staff.  The  Author  also  inspected  the  property  in  December  2010  and  observed drill core handling in the Tumpangpitu core yard as well as attending meetings in  the site office at Pulau Merah.   HELLMAN AND SCHOFIELD | JUNE 2011
  • 10. TUJUH BUKIT Page 4 5. RELIANCE ON OTHER EXPERTS The  author  of  this  report  is  an  Independent  Qualified  Person  and  has  relied  on  various  datasets and reports that were provided by Intrepid, and project consultants to support the  interpretation of exploration results discussed in this report on mineral resources. The data  that was provided  to the author was deemed to be in good stead, and is  considered to  be  reliable.  The  author  is  not  aware  of  any  critical  data  that  has  been  omitted  so  as  to  be  detrimental  to  the  objectives  of  this  report.  There  was  sufficient  data  provided  to  enable  credible and well constrained interpretations to be made in respect of data.    Assay  data  is  handled  by  an  independent  database  bureau  that  receives  electronic  results  directly from the laboratory. The data is then directly transferred to the Author.    Statements  regarding  tenement  status,  legal  right  to  mine  and  explore,  environmental  liability  have  been  accepted  in  good  faith  from  Intrepid  and  are  outside  the  expertise  of  Hellman & Schofield Pty Ltd.  HELLMAN AND SCHOFIELD | JUNE 2011
  • 11. TUJUH BUKIT Page 5 6. PROPERTY DESCRIPTION AND LOCATION The  Tujuh  Bukit  Project  comprises  two  adjoining  IUPs  (Izin  Usaha  Pertambangan)  –  an  IUP  Exploration of 6623.45 hectares and an IUP Production Operation of 4998 hectares ‐ located  approximately 205 kilometers southeast of Surabaya, the capital of the province of East Java,  Indonesia and 60 kilometers southwest of the regional center of Banyuwangi. The Project is  centered  near  8°  35’  20.6”  S  and  114°  01’  08”  N  and  is  bound  within  UTM  co‐ordinates  163,000‐179,000 E and 9042000‐9055000 N. The tenements are located  within  the desa of  Sumberagung, Kecamatan Pesanggaran, Kabupaten Banyuwangi (Figure 1).    The IUP Exploration (Number – 188/9/KEP/429.011/2010) abuts and surrounds to the south,  west and north the IUP Production Operation. It was issued on 25 January 2010 for a period  of  4  years  (Figure  2).The  IUP  Production  Operation  (Number  –  188/10/KEP/429.011/2010)  was also issued on 25 January 2010 for a period of 20 years (Figure 2).The IUPs were issued in  compliance with the new Indonesian Mining Law (Law number 4 Year 2009) and concerning  the Extension Application and Adjustment of the pre‐existing  KP Exploration to become an  IUP Exploration, and the KP Exploitation to become an IUP Production Operation.    The pre‐existing KP‐Explorasi (Kuasa Pertambangan or exploration mining permit) had been  granted to PT. Indo Multi Niaga on 16 February 2007 by the Bupati of Banyuwangi (Regional  Administrator, Banyuwangi, East Java) under decree number 188/05/KP/429.012/2007. This  followed directly from an initial SKIP tenure period and a subsequent one year period under  tenement  license  KP‐General  Survey  (decree  No.  188/57/KP/429.012/2006  granted  on  20  March, 2006).    Figure 1: Location of the Tujuh Bukit Project, Banyuwangi, East Java, Indonesia. HELLMAN AND SCHOFIELD | JUNE 2011
  • 12. TUJUH BUKIT Page 6 Figure 2: IUP Production Operation (outlined in red). (Green areas are generalised representations of areas of Protection Forest). Figure 3: IUP Exploration outlined in red. Green areas are generalised representations of areas of Protection Forest. HELLMAN AND SCHOFIELD | JUNE 2011
  • 13. TUJUH BUKIT Page 7 Surface  rights  in  the  area  are  held  by  the  Department  of  Forestry  and  include  farmland,  production forests, protected forest areas, and some villages. The villages are located within  the  IUP  area  but  not  in  any  of  the  areas  identified  for  exploration  at  this  point.  The  IUPs  require annual rent payments and submissions of quarterly reports regarding the company’s  activities on the tenement to the regional government.    The  tenement  boundaries  were  located  with  GPS  coordinates  and  the  boundary  of  the  tenements has subsequently been surveyed and marked with a concrete pegs.    The  main  mineralized  prospect,  Tumpangpitu,  is  located  in  the  southeast  portion  of  the  tenement  and  covers  an  area  of  about  3  by  2  kilometers.  The  other  significant  prospect,  Salakan, is located in the northwest part of the tenement and covers an area of about 6.0 by  4.0  kilometers.  Other  prospects  at  Gunung  Manis,  Katak  and  Candrian  lie  to  the  east  of  Tumpangpitu.  No  historical  mining  activity  has  been  conducted  within  or  near  to  the  boundaries of the tenement.    Under the Terms of the Alliance Agreement, Intrepid was granted an option to acquire up to  an 80% economic interest in the Tujuh Bukit Project. The agreement recognizes the potential  to increase the area held under IUP up to a 25km radius from the existing IUP boundaries.    Intrepid  has  earned  its  80%  economic  interest  in  the  project  through  project  funding  of  A$5M (to earn 51%) and through funding further exploration for an additional A$3M to earn  an additional 29% stake.     Intrepid then free carries IMN's 20% towards completion of a Feasibility Study but this free  carry is limited to an additional A$42M. The Alliance Agreement includes payments to IMN  upon meeting various conditions.     Upon  meeting  conditions  for  the  80/20  economic  interest,  the  parties  then  fund  on  a  pro‐ rata basis equal to their percentage interest. Standard dilution clauses apply  if either  party  elects not to fund.     Intrepid advises that there is no knowledge of any environmental liabilities associated with  the project. A permit is required to conduct exploration activities within areas of protected  and production forest and these have been issued by the Department of Forestry for work on  this project.     This  report  is  the  fifth  on  mineral  resource  estimates  from  this  prospect  area  within  the  Tujuh Bukit Project.   HELLMAN AND SCHOFIELD | JUNE 2011
  • 14. TUJUH BUKIT Page 8 7. ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY The  project  area  encompasses  Gunung  Tumpangpitu  (489  m  ASL)  and  surrounding  hill  country which graduates into alluvial plains near to sea level. The majority of landforms are  steep  and  rugged  with  poorly  drained  ephemeral  streams  having  only  seasonal  discharges.  Streams  and  creeks  on  the  northern  side  of  Gunung  Tumpangpitu  drain  into  Sungai  Gede  which flows actively for 8‐10 months of the year.    The region has a wet and dry season climate typical of tropical equatorial countries. The wet  season is subject to seasonal influence of the northwest monsoon from November to March.  Rainfall in the mountain ranges to the north ranges between 1725‐3500mm/year decreasing  toward the coast to 1110‐1850mm/year (Campbell, 2000). Temperatures range from 26‐31oC  during the day down to 22‐24oC overnight. Relative humidity is typically high, ranging from  80 to 100%. Whilst the agreeable climate allows exploration activity to continue year‐round,  prolonged dry weather may result in a lack of local water sources for drilling which then must  be sourced from Sungai Gonggo some 4‐6 kilometers to the east of Tumpangpitu.    On  the  lower  slopes,  government‐owned  teak  plantations,  classified  as  Hutan  Produksi  (Production  Forest),  are  common  and  are  administered  by  the  Perhutani  (Forestry  Department), Banyuwangi. Remnant stands of forest on the upper slopes and top of Gunung  Tumpangpitu  are  classified  as  Hutan  Lindung  (Protected  Forest).  Permits  are  required,  and  have  been  issued,  from  the  Perhutani  for  undertaking  exploration  within  Protected  and  Production Forest areas.    In lowland alluvial areas, or areas where tree plantations have been harvested, local farmers  grow  cash  crops  such  as  corn,  rice,  coconut,  bananas,  chili,  tobacco,  vegetables  and  citrus.  The area also supports a small local fishing industry.    Road access to the project is afforded via sealed road from Surabaya (8 hours) and Denpasar,  Bali  (7  hours).  Roads  are  single  lane  and  conditions  vary  from  good  to  poor  and  are  in  a  constant  state  of  repair.  The  trip  from  Bali  includes  a  1‐2  hour  ferry  crossing  of  the  strait  between Bali and Java.     Helicopter access is available to the project from Bali. IMN has a helicopter on full time hire  at  site  and  periodically  uses  the  helicopter  to  transfer  passengers  to  site.  The  flight  takes  about 40 minutes.    Domestic  and  international  flights  operate  daily  to  Surabaya  and  Denpasar  from  Jakarta,  Singapore and Australia.    HELLMAN AND SCHOFIELD | JUNE 2011
  • 15. TUJUH BUKIT Page 9   8. HISTORY The  project  area  was  first  explored  by  PT.  Hakman  Platina  Metalindo  and  its  JV  partner,  Golden  Valley  Mines  of  Australia.  Golden  Valley  Mines  identified  the  potential  of  the  Tumpangpitu  and  Salakan  areas  as  prospective  targets  for  porphyry  copper  type  mineralization following a regional (1:50,000) drainage and rock‐chip geochemical sampling  program  conducted  during  December  1997  –  May  1998.  Subsequently,  a  rapid  detailed  surface geochemical sampling program was conducted over Gunung Tumpangpitu resulting  in  seven  targets  being  identified  for  drilling.  An  initial  drilling  program  of  5  diamond  drill  holes – GT‐001 to GT‐005 – was conducted during March – June 1999.    In February 2000 Placer Dome Inc. (Placer) entered into a Joint Venture with Golden Valley  Mines  to  earn  51%  of  the  project  and  assumed  operational  control  of  the  exploration  program.  In  order  to  better  define  targets  for  follow‐up  drilling  on  Tumpangpitu  32.75  kilometers  of  grid‐based  geochemical  and  IP  surveys  were  completed  between  April‐May  2000. Anomalous bedrock geochemistry  demonstrated marked consistency with  prominent  ridges or topographic highs, trending to the northwest, consisting dominantly of vuggy silica  altered breccia.    The  results  of  the  IP  survey  demonstrated  strong  correlation  between  the  near‐surface  resistivity anomalies and the outcropping vuggy silica zones. Deeper chargeability anomalies  (>200‐400  m  below  surface)  were  recorded  in  the  northern  portion  of  the  grid.  Placer  targeted the shallow resistivity anomalies for high sulfidation style Au‐Ag mineralization with  a further 10 diamond drill holes – GT‐006 to GT‐014.    On the basis of the results from the second drilling program a further 14 holes were designed  (2,700m). However, Placer withdrew from the project due to the combined influences of the  relatively  low  metal  prices  at  the  time  (i.e.,  the  project  did  not  appear  to  meet  corporate  thresholds of size and grade) together with an unstable economic and political climate across  much of south‐east Asia (the Asian Financial Crisis).    There is no report or record of further work being conducted on the project by Placer‐GVM  and the area became vacant by the time IMN applied for a KP General Survey in 2006 over  the project area.     In  June  2006  Hellman  and  Schofield  Pty  Ltd  (“H&S”,  an  independent  geological  consulting  group from Australia) assisted a previous Joint Venture of IMN with an Australian company in  assembling  exploration  data  and  designing  a  drilling  program  aimed  at  advancing  the  Tumpangpitu prospect in order to report resource estimates according to the JORC Code and  Guidelines.     H&S  was  able  to  provide  an  indication  of  the  size  of  potential  mineralization  within  the  variably oxidized gold‐silver enriched zone above the deeper copper mineralization by using  the  limited  available  drilling  data  along  with  soil  sample  geochemical  results.  This  study  HELLMAN AND SCHOFIELD | JUNE 2011
  • 16. TUJUH BUKIT Page 10 suggested  that  approximately  3m oz  Au  Equivalent  (“AuEq”  was  based  on  $650/Oz  Au  and  $10/Oz Ag) was a reasonable amalgamated target size in oxide Zones A, B & C.    Overall indications of potential may be expressed using cautionary language and with grade  and tonnage ranges. It should never be assumed that suggested grades and tonnages from  these types of studies will be realized, they are solely used in the context of understanding  the types of drilling targets and broad scale of mineralization.    On March 30, 2007 a Term Sheet was signed between Emperor Mines Ltd. (later to become  Intrepid.  through  the  merger  of  Emperor  Mines  and  Intrepid)  and  IMN  and  IndoAust  Pty.  Ltd., which was followed by an Alliance Agreement between Emperor Mines Ltd, and IMN in  April 2008. Drilling on the project by IMN and Intrepid commenced in September 2007 with  hole GTD‐07‐015.    Additional  historical  drill  hole  assays  became  available  between  February  and  August  2007  enabling a slightly more informed view of the geological potential. The September 2007 H&S  study of Geological Potential used Ordinary Block Kriging of 2m composited AuEq data within  polygon extrusions.     This report documents the drilling completed by IMN and Intrepid  during the period 2008‐ 2011 on the porphyry copper‐gold mineralization.    HELLMAN AND SCHOFIELD | JUNE 2011
  • 17. TUJUH BUKIT Page 11   9. GEOLOGICAL SETTING 9.1 Regional Geology The Tujuh Bukit project lies on the south coast of East Java, within the central portion of the  Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then  eastward through east Java, Bali, Lombok, Sumbawa and Flores.    The  Sunda‐Banda  volcanic  arc  developed  during  subduction  of  the  north‐moving  Indo‐ Australian plate beneath the Asian continental plate margin. The Sunda‐Banda arc of Middle  Miocene  to  Pliocene  age  is  thought  to  have  initiated  by  subduction  reversal  following  an  Oligocene  compressive  event  that  was  associated  with  the  northward  emplacement  of  ophiolite  and  island  arc  assemblages  onto  the  Sunda  margin  and  associated  formation  of  melanges, ophiolite fragments and deformation zones offshore from western Sumatra (Daly  et  al.,  1991;  Harbury  and  Kallagher,  1991).  The initiation of  northward subduction  beneath  the Sunda‐Banda arc migrated eastward following this collision event. The western segment  of  the  arc,  west  of  central  Java,  developed on continental crust  on  the  southern margin  of  Sundaland whilst the arc east of Central Java developed on thinner island arc crust (Carlisle  and Mitchell, 1994).     There are substantial tectonic variations along the length of the Sunda‐Banda arc, and these  variations  have  been  the  subject  of  studies  to  understand  along‐arc  variations  in  magma  chemistry.  Subduction  is  highly  oblique  along  the  northwest  segment  of  the  arc,  along  Sumatra  and  towards  the  Andaman  Islands  and  Burma  (Moore  et  al.,  1980).  The  strike‐slip  Sumatra  Fault  takes  up  much  of  the  oblique  convergence  between  the  plates.  Along  this  northwest portion of the arc, very thick sedimentary sequences from the Bengal and Nicobar  fans are transported into the subduction zone. Further to the southeast, subduction is near  perpendicular  to  the  Sunda‐Banda  arc,  off‐shore  from  Java,  and  only  a  very  thin  cover  of  sediment  enters  the  subduction  zone.  Further  to  the  east,  incipient  areas  of  collision  are  occurring along the arc where fragments of the Australian continental margin are accreting  against the Banda arc (e.g. Timor).      There  are  also  variations  in  dominant  styles  of  mineralization  along  the  arc.  In  northern  Sumatra  in  the  Aceh  province,  mineralization  is  characterized  by  porphyry  Cu‐Mo  systems  and high‐sulfidation deposits (e.g. Miwah and Martabe). In contrast, southern Sumatra, west  Java and central Java are typified by a lack of known porphyry systems but an abundance of  low‐sulfidation  epithermal  deposits  or  prospects/vein  systems.  Examples  include  Tambang  Sawah,  Rawas,  Lebong  Donok,  Lebong  Simpang  and  Seung  Kecil  in  southern  Sumatra,  plus  the  Cikotok  and  Jampang  districts,  Gunung  Pongkor  and  Cikondang  in  west  Java  and  Trenggallek  in  central  Java.  Further  the  east,  in  east  Java  and  then  through  Lombok  and  Sumbawa,  there  is  a  reappearance  of  porphyry  and  high‐sulfidation  epithermal  systems  along  the  eastern  arc  segment,  including  the  Tumpangpitu  high‐sulfidation  epithermal  and  porphyry  system  on  Intrepid’s  Tujuh  Bukit  project,  The  Selodong  high‐sulfidation  and  HELLMAN AND SCHOFIELD | JUNE 2011
  • 18. TUJUH BUKIT Page 12 porphyry  district  including  the  Motong  Botek  porphyry  system  on  Lombok,  and  the  Batu  Hijau porphyry Cu‐Au system on Sumbawa.      The Sunda‐Banda arc comprises both Miocene to Pliocene volcanics and younger Quaternary  volcanics. The arc has migrated not only from west to east over time but also from south to  north  (Van  Bemmelen,  1970;  Whitford  et.  al.,  1979;  Katili  1989  and  Claproth  1989).  This  migration  is  clearly  evident  by  the  east‐west  alignment  of  deeply  dissected  Miocene  to  Pliocene volcanic centers along the south coast of Java, Lombok and Sumbawa and a parallel  east‐west  alignment  of  juvenile  and  active  Quaternary  volcanoes  that  define  the  present  active arc further north along central Java and northern Bali, Lombok and Sumbawa (Figure  below).  Figure 4: Regional geology. Relationship of the older, Miocene age, eroded volcanic centers (blue rings) that host mineralization at Trenggalek (low sulfidation epithermal veins), Tujuh Bukit (high-sulfidation epithermal and porphyry system), Selodong (high-sulfidation epithermal and porphyry system), and Batu Hijau (porphyry system), relative to the younger, Quaternary arc volcanoes to the north which collectively make up the east-west trending present day Sunda-Banda arc. The Sunda‐Banda arc is segmented by a series of arc‐normal structures that trend NNE and  which  are  evident  in  topographic  data‐sets  (Figure  4).  Tectonic  factors  appear  to  have  localized  volcanic  centers  of  the  Miocene  arc  at  positions  near  the  southwest  margins  of  these  transfer  structures.  Contemporaneous  continental  to  deep‐ocean  clastic  sediments  were deposited on the margins of the volcanic centers.     HELLMAN AND SCHOFIELD | JUNE 2011
  • 19. TUJUH BUKIT Page 13 The  Tujuh  Bukit  project  is  located  (Figure  5)  near  the  southeast  margin  of  a  ~50‐km‐wide  annular zone of strongly dissected topography that is interpreted to represent the relics of a  former  andesitic  stratovolcanic  center  in  East  Java.  This  deeply  dissected  volcanic  center  appears to be eroded to near its roots, close to the volcanic‐basement contact (Rohrlach and  Norris, 2006). Areas of similar topographic character occur along a WNW‐ESE linear zone that  also  encapsulates  an  area  in  southern  Sumbawa  (which  hosts  the  Pliocene‐age  Batu  Hijau  deposit ‐ 1640 mt @ 0.44% Cu, 0.55% Mo, 0.35 g/t Au; 3.7 Myr old (Figure 4).  Figure 5: Location of the Tujuh Bukit project. It occurs on the southeast flank of a deeply incised Miocene-age volcanic center that is ~50 km in diameter (black dotted outline).This eroded volcanic center lies SSW of the Quaternary volcano Gunung Raung which forms part of a larger composite stratovolcano in east Java. Access to the Tujuh Bukit project area is by ferry from Gilimanuk (Bali) to Banyuwangi (regional center of Jawa Timur – East Java), and then by road through Genteng and Jajag to the project site. Figure 6 portrays the geology over an area of approximately 70 km x 25 km in southeast Java.  The broad stratigraphic succession of the area as defined on the 1:100,000 geology map of  the  Blambangan  Quadrangle  is  described  below  and  comprises  various  formations  of  the  Lampon Group of Late Tertiary Age.     Batuampar Formation    The  oldest  rock  in  the  area  comprise  the  Batuampar  Formation  of  Lower  Miocene  age.  It  comprises  a  volcanic‐dominated  succession  of  volcanic  breccia  (pyroclastic  deposits),  tuff,  sandstones and andesite lava with limestone intercalations. These rocks are described in the  regional  1:100,000  map  as  "being  strongly  altered",  verified  by  Intrepid‐IMN  field  HELLMAN AND SCHOFIELD | JUNE 2011
  • 20. TUJUH BUKIT Page 14 observations, since these rocks host mineralization at the Tumpangpitu prospect and at the  Salakan  prospect.  The  volcanics  of  the  Batuampar  Formation  comprise  the  roots  of  the  eroded  volcanic  structure  depicted  in  Figure  5.  Within  the  immediate  environs  of  the  Tumpangpitu prospect the Batuampar Formation is dominated by intensely advanced argillic  altered  coarse  pyroclastic  lithic  tuffs  and  very  subordinate  (<  3%)  limestone,  marl  and  volcanic sandstone. The limestone intercalations may become important as a source of lime  for  mineral  processing  or  control  acid‐mine  drainage  in  the  future,  as  the  Tumpangpitu  prospect progresses towards production stage.       Batuan Intrusives    Intrusive stocks of Middle Miocene age intrude the Batuampar Formation volcanic rocks and  are  almost  certainly  responsible  for  the  widespread  alteration  within  that  formation.  They  are mapped on the 1:100,000 Blambangan Quadrangle as comprising porphyry andesite and  granodiorite, and are confined to the southeast corner of the Tujuh Bukit project area (Figure  6). Although these intrusives are not mapped in the Salakan prospect area on the 1:100,000  scale map, they are likely to lie at shallow depth below the prospect. Intrusive bodies have  been observed around the eastern periphery of the Salakan prospect by Intrepid‐IMN where  they  are  coincident  with  magnetic  bodies.  The  magnetic  tonalites  intersected  by  the  deep  drilling at Tumpangpitu are likely to be members of the Batuan Intrusive suite.     Jaten Formation    The  Jaten  Formation  of  Middle  Miocene  age  comprises  mixed  sediments  and  tuffaceous  sediments  (sandstone,  conglomeratic  sandstone,  tuffaceous  sandstone,  calcareous  sandstone,  claystone,  tuff  and  tuffaceous  limestone)  which  outcrop  only  in  one  mapped  locality,  between  the  Batuampar  Formation  on  the  Capil  promontory  and  the  fault‐bound  sliver of Wuni Formation to the north.          Wuni Formation    The  Wuni  Formation  is  of  Late  Miocene  to  Pliocene  age  and  comprises  of  breccia,  conglomerate, sandstone, tuff, marl and limestone. It outcrops only in two isolated localities  and  is  covered  by  extensive  blankets  of  Quaternary  marine  sediment  (limestones  of  the  Punung Formation) and transported Quaternary sediments of largely volcanic origin (Kalibaru  Formation) along the distal southern flanks of Gunung Raung.         HELLMAN AND SCHOFIELD | JUNE 2011
  • 21. TUJUH BUKIT Page 15 Figure 6 : Regional geology of the southeast corner of Java (Jawa Timur). Punung Formation    The  Punung  Formation  comprises  a  Quaternary  sequence  of  reefal  limestone,  bedded  limestone  and  marl  which  forms  a  flat‐lying  and  recently  emergent  shallow  marine  stratigraphic  unit.  The  extensive  exposure  of  Punung  Formation  limestones  on  the  Blambangan  peninsula  is  likely  contiguous  with  the  isolated  outlier  of  Punung  Formation  exposed north of the Capil promontory. More restricted outcrops of limestone occur in the  Tujuh Bukit district in at least two localities.     Kalibaru Formation    The Kalibaru Formation comprises a Quaternary sequence of breccia, conglomerate, tuff and  tuffaceous  sandstone  which  covers  extensive  areas  on  the  eastern  side  of  the  Tujuh  Bukit  property. The Kalibaru Formation appears to represent part of an extensive outwash sheet of  volcanic  detritus  that  is  largely  derived  from  the  Quaternary  Mount  Ruang  composite  stratovolcano  to  the  north.  Near  the  Tujuh  Bukit  project,  these  Quaternary  sediments  lie  directly on the older Miocene‐age altered volcanic sequence of the Batuampar formation.        HELLMAN AND SCHOFIELD | JUNE 2011
  • 22. TUJUH BUKIT Page 16 9.2 Local Geology Two areas of high topographic relief occur on the Tujuh Bukit property (Figure 7). The first of  these  occurs  on  the  southern‐most  peninsula,  coincident  with  the  Tumpangpitu  porphyry  and  high‐sulfidation  epithermal  deposit,  where  extensive  silicification  associated  with  an  advanced  argillic  blanket  overlies  the  Tumpangpitu  porphyry  system.  This  series  of  hills  extends to the east at lower elevation and cover the Katak porphyry prospect, the Candrian  porphyry  prospect  and  the  Gunung  Manis  low‐sulfidation  epithermal  prospect.  The  second  area  of  high  topographic  relief  extends  from  the  southern  end  of  the  western  peninsula  northeast‐ward  to  the  higher  hills  that  are  coincident  with  the  Salakan  prospect.  Again,  extensive areas of silicification associated with advanced argillic alteration are responsible for  the erosional resistance of this elevated area at Salakan on the Tujuh Bukit property.               Figure 7 : Distribution of mineral prospects Yellow outlines relative to topography mark various prospects. Numerous other exploration targets have been defined north and east of Salakan based on interpretations of helibourne-acquired magnetic data (not plotted).     Understanding  of  the  surface  geology  (lithology)  of  the  Tujuh  Bukit  project  area  is  quite  general  in  nature  due  to  lack  of  detailed  geological  mapping  over  the  entire  region.  This  understanding however is steadily growing as more detailed infill mapping is undertaken by  HELLMAN AND SCHOFIELD | JUNE 2011
  • 23. TUJUH BUKIT Page 17 Intrepid,  and  as  interpretations  of  a  regional  magnetic  dataset  are  progressively  ground‐ truthed.      A lithology map over the Tumpangpitu area, and the hilly terrain east of Tumpangpitu, was  generated by PT Hakman Platina Metallindo prior to or during 1999 (Figure 8). This mapping  identified  a  dominantly  diorite  and  microdiorite  substrate  which  had  been  intruded  by  extensive  granodiorite  bodies  east  of  Tumpangpitu  and  by  smaller  quartz‐diorite  bodies  in  and  around  Tumpangpitu.  These  intrusions  are  considered  equivalent  to  the  Batuan  Intrusives  described  above.  This  map  appears  to  be  of  “reasonable”  accuracy  given  the  regional reconnaissance scale of the map, and known geology in and around Tumpangpitu.           Figure 8 : Lithology of the Tumpangpitu prospect region In the area east of Tumpangpitu as mapped by PT. Hakman Platina Metalindo (1999). These mapped sequences comprise volcanic breccias of the Batuampar Formation and more abundant Batuan Intrusives.     A  complete  lithology  map  also  exists  from  the  period  of  exploration  by  Placer  (2000‐2001)  and is shown in Figure 9. This map shows similar geology to the map above, only with a more  restricted distribution of lithic tuffs mapped by Placer. In this respect, the PT Hakman  map  (above) appears more correct  than the Placer map. The Placer map however,  also includes  lithology  over  the  Salakan  prospect  area,  where  diorites  are  mapped  intruding  subvolcanic  HELLMAN AND SCHOFIELD | JUNE 2011
  • 24. TUJUH BUKIT Page 18 breccias,  and  with  diorite  intruded  by  quartz  diorites.  The  extensive  distribution  of  the  mapped breccia, however, suggests that it is more likely to be volcaniclastic in origin rather  than a subvolcanic breccia as labelled.             Figure 9 : Lithology of the Tujuh Bukit project as mapped by Placer (2000-2001).   Reasonably  complete,  though  generalised,  reconnaissance  maps  were  subsequently  generated  by  IMN  in  2006  over  the  Salakan  and  Tumpangpitu  prospects.  However,  the  PT  Hakman lithology map (Figure 8) is considered to be more reliable in the Tumpangpitu area.                    Mapping subsequently undertaken by Intrepid (2009‐2010) covers three more local and non‐ contiguous areas:    1)   The coastline west of Tumpangpitu  2)   The Katak porphyry prospect, and   3)   The Gunung Manis low‐sulfidation epithermal prospect.     These  local  maps  are  of  appropriate  quality  and  detail  to  understand  the  geology  in  these  three areas. It is planned to progressively extend these maps to cover the entire region over  and east of Tumpangpitu. Consequently, both of the main prospect areas (Tumpangpitu and  Salakan) require significantly more detailed mapping to be undertaken.  HELLMAN AND SCHOFIELD | JUNE 2011
  • 25. TUJUH BUKIT Page 19 Due to limited mapping information, a significant portion of the geological understanding of  the regional lithology comes from drilling cross‐sections. The structural understanding of the  project area comes largely from interpretation of regional magnetic datasets.    The local to deposit‐scale lithology is discussed in Section 9.3 below whilst the deposit‐scale  alteration patterns are discussed in Section 11 (Mineralization) since alteration is intimately  related to mineralization events.              Within  the  broader  area  of  the  Tujuh  Bukit  project,  an  extensive  volcanic‐dominated  succession of volcanic breccia (pyroclastic deposits), tuff, sandstones, and andesite lava with  limestone  intercalations  occurs,  consistent  with  government  map  descriptions  of  this  volcano‐sedimentary sequence (Batuampar Formation).     In  areas  of  low‐terrain,  these  sequences  are  overlain  by  Quaternary  to  recent  alluvial  deposits,  particularly  around  the  Pancer  coastal  embayment  south  of  Salakan  and  also  northwest and east of the Salakan hills.     The Batuampar Formation is intruded by numerous plutons and stocks that are identified in  all  generations  of  regional  mapping,  in  Intrepid/IMN  drilling,  and  extensively  identified  in  magnetic data where they are recognized as magnetic features typical of I‐type calc‐alkaline  magmas. These are the Batuan Intrusives described above. Intrusive members recognized by  Intrepid  include  microdiorite,  diorite,  hornblende‐diorite,  quartz‐hornblende‐diorite  hornblende  andesite  porphyry  and  tonalite.    In  addition  to  the  mapped  distribution  of  intrusions, members of this suite have been identified south of Tumpangpitu and extensively  along the eastern periphery of Salakan. Several of these intrusives (either mapped or inferred  from magnetic data) are geochemically anomalous at surface.     Intense hydrothermal alteration has obscured a substantial portion of the original protolith  textures  of  many  rocks  in  the  district,  particularly  parts  of  the  advanced  argillic  lithocap  at  Tumpangpitu.     The  structural framework of the Tujuh Bukit  district is best  interpreted using  the heliborne  magnetic data‐set. Figure 10 shows a Reduced‐To‐Pole (RTP) magnetic image of the broader  Tumpangpitu Batholith and the East Salakan Batholith.     The aggregation of high‐amplitude magnetic anomalies within and around the eastern half of  the Salakan prospect are interpreted as Batuan intrusives, as are the linear array of magnetic  highs  that  trend  northwest  through  the  Tumpangpitu  Batholith.  The  image  is  overlain  by  a  structural  interpretation  conducted  by  Chris  Moore  of  Moore  Geophysics.  1st  order  fault  corridors trend northwest, one passing near the  northeast margin  of the Tumpangpitu and  East Salakan batholiths, the other passing under Pancer Bay. A third sub‐parallel to low‐angle  northwest‐trending  structure  dissects  the  Tumpangpitu  Batholith  in  approximately  equal  halves.  This  fault  structure  localises  a  series  of  at  least  eight  discreet  magnetic  high  anomalies over at least a 16 km structural strike length. These discrete magnetic anomalies  are interpreted as intrusive stocks emplaced along this structure. Consequently this district‐ scale  structure  was  likely  active  during  mid‐Miocene  Batuan  stage  magmatism.  This  key  HELLMAN AND SCHOFIELD | JUNE 2011
  • 26. TUJUH BUKIT Page 20 regional  fault  (labelled  “metallogentically  fertile  structure”)  hosts  the  magnetic  diorite  intrusion at the Katak porphyry system and the inferred magnetic intrusions immediately SSE  of the Gunung Manis low‐sulfidation epithermal vein array.       Figure 10 : Reduced-to-Pole magnetic image This is broadly coincident with the eastern half of the Tujuh Bukit property. Black lines are interpreted regional faults. Blue dashed lines envelope deep-seated batholiths, white outlines define structurally-controlled magnetic intrusive centers whilst yellow outlines define a NW array of porphyry centers at Tumpangpitu. Details of this image are discussed in the text of the report.   HELLMAN AND SCHOFIELD | JUNE 2011
  • 27. TUJUH BUKIT Page 21 The broader East Salakan Batholith and Tumpangpitu Batholiths are about 5 km in diameter.  At  East  Salakan,  the  batholith  appears  to  be  intruded  in  its  core  by  a  highly  magnetic  intrusive about 1.5 km in diameter, and which is surrounded by a complex annual rim or zone  of magnetite destruction interspersed with small discrete magnetic highs (between the two  yellow outlines within the East Salakan Batholith). This magnetic pattern has the hallmarks of  a  large  hydrothermal  system  developed  around  the  periphery  of  the  intrusive  core  at  East  Salakan.           Other 2nd order fault sets observed in the data shown in Figure 10 and trend ENE and WNW.     The overall geometry of these structures, forming braided to  complex arrays of parallel and  curved, en echelon faults is reminiscent of major transcurrent fault systems.     Thus  the  district‐scale  structural  picture  is  of  a  regional  NW‐trending  structural  corridor  which  is  likely  to  be  a  major  crustal‐scale  and  near  arc‐parallel  strike‐slip  fault  zone.  This  transcurrent  fault  system  potentially  guided  the  emplacement  of  the  two  large  batholiths  beneath the eroded volcanic center. The erosional level within the Tujuh Bukit district is at  the  right  level  to  expose  the  top  of  porphyry  systems  whilst  preserving  the  lower  parts  of  their  respective  epithermal  environments,  in  other  words,  around  the  sub‐volcanic  brittle‐ ductile  transition.  This  opportune  level  of  erosion  has  produced  the  complex  magnetic  patterns characteristic of terrains that preserve the apical levels of multiple intrusive stocks  typical of the carapace of deep‐seated batholiths.    9.3 Deposit Geology The  Tumpangpitu  deposit  comprises  a  high‐sulfidation  Cu‐Au‐Ag  epithermal  system  that  is  telescoped onto a large underlying and Au‐rich porphyry Cu‐Au‐Mo system.    In  general  terms,  the  overall  mineralizing  system  broadly  comprises  a  deep,  magnetic  tonalite  intrusion  that  has  intruded  into  an  older  and  more  extensive  feldspar‐hornblende  diorite stock. This older diorite intrusion has in turn intruded a cover sequence of lithic and  crystal‐lithic  volcanic  breccias  that  lie  at  shallow  levels  of  the  deposit.  These  volcaniclastic  tuffs and breccias conformably overlie a sequence of sediments that are ‘partly’ constrained  to dip inward towards the tonalitic intrusive center. The interface between the tonalite stock,  which  is  interpreted  to  be  the  progenitor  of  porphyry  ore,  and  the  overlying  intrusive  and  extrusive country rocks is characterized by the presence of one or more extensive diatreme  breccia  bodies  and  numerous  smaller  hydrothermal  breccias  bodies.  The  upper  portions  of  the  intensely  altered  and  fluid  metasomatised  tonalite  stock  are  transitional  upward  to  intrusive  breccias  (breccias  with  upward  entrained  interstitial  melt)  which  in  turn  are  transitional at shallower levels to hydrothermal breccias as fluids have progressively exsolved  from the entrained and decompressing melt.       HELLMAN AND SCHOFIELD | JUNE 2011
  • 28. TUJUH BUKIT Page 22     Figure 11 : Lithology cross-section 11060 mN at Tumpangpitu Deep porphyry holes (26, 29, 56, 112, 172, 182 and 192) are projected onto the 050-230° section. The high‐sulfidation epithermal component of the Tumpangpitu mineralizing system can be  divided into four sub‐types based on oxidation intensity, metal grade and metal suite.       1)      Completely  oxidized  high‐sulfidation  ore  (Au‐Ag  strongly  enriched;  Cu  severely  leached).  2)      Partially  oxidized  high‐sulfidation  mineralization  (Au‐Ag  +/‐  Cu;  Cu  is  strongly  leached).   3)    Unoxidized but low‐grade high‐sulfidation mineralization (Au‐Ag‐Cu).          Au‐Ag grade is significantly lower than the overlying oxide component.   4)    Unoxidized but higher‐grade high‐sulfidation mineralization (Au‐Ag‐Cu) in deeper  structural conduits and proximal to inferred upflow zones.     Components  3)  and  4)  only  are  reported  for  the  current  porphyry  resource  estimation,  however all four components of the high‐sulfidation mineralization are discussed in Section  11 of this report.        The  geology  of  the  Tumpangpitu  prospect  in  the  shallow  epithermal  environment  is  dominated  by  intense  hydrothermally  altered  (silica‐clay‐alunite‐pyrite)  andesitic  lithic  volcanic  breccias, diatreme breccias,  hydrothermal breecias  and diorite,  with the alteration  footprint covering an area in excess of 4 km x 2.5 km. The broader envelope of argillic altered  volcanics  and  intrusives  are  cross‐cut  by  several  northwest‐trending  and  potentially  HELLMAN AND SCHOFIELD | JUNE 2011
  • 29. TUJUH BUKIT Page 23 structurally‐controlled  zones  of  hydrothermal  breccias  which  are  advanced  argillic  altered  (vuggy  silica,  silica‐alunite,  silica‐alunite‐clay,  silica‐clay‐alunite  and  silica‐clay).  These  zones  of more siliceous alteration form multiple parallel ridges (2.5 km x 300 m) trending northwest  across  the  prospect  (Figure  12),  and  they  trend  parallel  to  regional  structures  that  are  evident in aeromagnetic imagery.       Figure 12 : Distribution of alteration styles at the Tumpangpitu prospect as mapped by GVM-Placer Showing the locations of 14 historical drill holes (GVM – Holes 1 to 5 and Placer – Holes 6 to 14).   The  geology  of  the  deeper  portions  of  the  Tumpangpitu  prospect  is  characterized  by  alteration  and  vein  assemblages  characteristic  of  porphyry  systems  (Section  11).  A  large  tonalite  intrusion  is  encountered  in  the  lower  parts  of  the  deepest  drill  holes  at  Tumpangpitu.  This  tonalite  intrusion  has  a  broad  apex  in  the  vicinity  of  cross‐sections  11040mN to 11360mN and plunges to greater depths to the SW and NE. The geometry of the  intrusion in detail is still being refined by infill drilling and magnetic modelling.      An interpreted diatreme breccia body (ovoid in plan and upward flaring) with a diameter of  approximately  500m  occurs  below  the  Zone  C  area  of  the  oxide  zone.  This  breccia  is  dominated  by  polymict  mill  breccia  in  its  middle  and  upper  parts,  and  has  roots  that  penetrate down into the tonalite intrusions.  At deeper levels near the tonalite intrusion, the  breccia has increasing characteristics of an intrusion breccia. This breccia is a major feature  on two of the porphyry cross‐sections, and clasts of porphyry mineralization are incorporated  into the breccia (detailed descriptions provided in Section 9.3.4). Steeply‐oriented structural  feeders to high‐sulfidation mineralization have been intersected over‐printing this diatreme  breccia.  Both  these  observations  suggest  that  the  timing  of  diatreme  emplacement  was  broadly syn‐mineral with respect to the porphyry system.      HELLMAN AND SCHOFIELD | JUNE 2011
  • 30. TUJUH BUKIT Page 24 Porphyry  Cu‐Au‐Mo  mineralization  occurs  within  a  carapace  or  shell  of  magnetite,  quartz‐ magnetite  and  quartz  vein  stockwork  that  occurs  within  and  around  the  periphery  of  the  causative tonalite intrusion, overprinting both the outer margins of the intrusion as well as  the proximal country rock. This mineralization occurs dominantly within areas characterized  by  phyllic  overprint  of  potassic  alteration  and  lesser  areas  of  potassic  alteration  within  the  tonalite intrusion.        9.3.1 Volcaniclastic Breccias    Volcaniclastic breccias are a major rock type on the Tujuh Bukit project area (Figure 13 and  Figure  14).  They  comprise  dominantly  lithic  tuff  and  crystal  lithic  tuff  of  andesitic  (?)  composition,  and  are  characteristically  intensely  argillic  and  advanced  argillic  altered.  They  occur in the upper part of many oxide drill cross‐sections at Tumpangpitu, particularly in the  Zone A area which lies on the northeast side of the prospect, but are also observed occurring  widely around the eastern flank of the deposit,  as well as around the Katak porphyry system  2 km northeast of Tumpangpitu, where the breccias are intruded by the Katak diorite body.  Volcaniclastic  breccias  are  also  present  around  the  northern  and  eastern  fringes  of  the  Salakan prospect.     These volcaniclastic breccias are believed to be part of the Batuampar Formation described  above.  The  breccias  tend  to  be  heteorolithic  in  lithology  and  clast  alteration  intensity.  The  volcanic breccias at Tumpangpitu are increasingly being viewed as part of an extensive and  large diatreme breccia complex that has poor internal layering.        Figure 13 : Outcrop of crystal lithic tuff with possible fiame from the Salakan Prospect. HELLMAN AND SCHOFIELD | JUNE 2011
  • 31. TUJUH BUKIT Page 25      Figure 14 : Matrix-supported lithic-crystal tuff from hole GTD-34 (Zone A - Tumpangpitu) This shows a strong alignment of flattened fiame-like pyroclasts. Sample from a zone of Hsi-cy alteration (silica-clay) with clay-altered clasts and phenocrysts fragments, and silicified matrix.   In  cross‐section,  the  breccias  that  occupy  the  Zone  A  hill  (Gunung  Tumpangpitu)  were  previously  interpreted  as  coarse  lithic  tuffs,  but  are  currently  interpreted  as  remnants  of  a  larger  diatreme  breccia  body.  Current  interpretations  have  these  massive  units  dipping  radially  inward  at  a  gentle  angle  towards  the  porphyry  core.  Crystal  tuffs  and  broadly  conformable sediments mapped along the coastline west of Tumpangpitu dip gently to the  southeast, whilst other parts of the same sediment package further south along the coastline  dip  to  the  northeast.  On  the  Zone  A  oxide  drill‐grid,  the  shallow  lithic  tuffs  (currently  re‐ interpreted  on  the  two  porphyry  cross‐sections  as  diatreme  breccias)  are  thought  to  dip  towards  the  southwest,  based  on  the  dips  of  concordant  acid  alteration  zones.  These  geometries  collectively  suggest  a  radially  inward‐dipping  series  of  volcanic  ejecta.  The  polymict  nature  of  clasts  in  the  lithic  tuffs  (or  diatreme  breccias)  is  consistent  with  a  near‐ vent source. Two possible scenarios for this pattern can be considered:    Deflation of an underlying magma chamber causing structural subsidence above and around  the chamber.     Inward‐dipping  blankets  of  volcanic  ejecta  developed  around  the  inner rim of  one or  more  diatreme  bodies  within  the  region.  If  this  is  the  case,  these  volcanic  breccias  must  have  erupted onto the substrate rather than be intruded by it. The relationship between the old  diorite  intrusion  and  the  overlying  volcaniclastic  breccias  continues  to  be  investigated  to  resolve the relative timing.        9.3.2   Sediments    A sedimentary sequence is widespread within the stratigraphic pile at Tumpangpitu (Figure  15), and occurs at RLs near and below sea‐level. The sedimentary sequence is likely to be a  HELLMAN AND SCHOFIELD | JUNE 2011
  • 32. TUJUH BUKIT Page 26 turbidite  accumulation  of  sedimentary  breccia,  juvenile  volcanic  sandstone  or  wacke  and  lesser mudstone, intercalated with rare marine limestone.         Figure 15 : Nine locations where sediments are encountered at Tumpangpitu (Nov. 2010). Shapes are coastal outcrops whilst bars are subsurface drill-hole intersections of sediment units. Black and red dots show the distribution of drilling at Tumpangpitu.   This  sedimentary  sequence  is  overlain  by  andesitic  volcanics  on  the  northeast  side  of  Tumpangpitu (Holes GTD‐08‐46 and GTD‐09‐94).    The sediments are interpreted to dip inward towards the porphyry center. Controls on dips  are  reasonably  well  constrained  on  the  southwest  flank  of  the  porphyry  system,  but  are  poorly constrained on the northeast flank of the system. It is postulated that the inward dip  of  these  sediments  is  related  to  the  geometry  of  a  diatreme‐related  porphyry  system.  Geometric  similarities  are  tentatively  being  made  by  B.  Rohrlach  (Intrepid  chief  geologist)  with the Marcapunta deposit in central Peru, where a diatreme and dome complex is rooted  above  a  porphyry  system,  with  400‐500m  inward  subsidence  of  sediments  within  the  host  stratigraphic pile.          The  sedimentary  sequence  at  Tumpangpitu  shows  increasing  degrees  of  metasomatism  (hydrothermal  alteration)  and  veining  as  the sediments  approach  the  porphyry  center.  The  degree of hydrothermal overprint observed in these sediments range from near fresh (Area 1  coastline  and  GTD‐08‐26),  to  propylitic  altered  and  fractured  (GTD‐08‐28),  to  intermediate  HELLMAN AND SCHOFIELD | JUNE 2011
  • 33. TUJUH BUKIT Page 27 argillic  and  argillic  altered  (GTD‐09‐94),  and  subsequently  to  strong  advanced‐argillic  and  phyllic alteration (GTD‐08‐46 and GTD‐08‐42), often with intense overprinting stockwork.           Areas of the sedimentary sequence that occur in close  proximity  to the  main Tumpangpitu  tonalite  body  are  intensely  disrupted  by  cross‐cutting  intrusive  breccias,  microdiorite  and  tonalite  bodies  (potential  dykes).  The  occurrences  of  these  features  in  the  sediment  sequence indicate close proximity to the main tonalite porphyry body.      The  sediments,  and  in  particular  the  calcareous  and  carbonaceous  component  of  these  sediments,  show  increasing  signs  of  sulfidation  and  incipient  skarn  development  as  the  tonalite porphyry body is approached, as evidence by:      Intense sulfidation (pyrite) in mudstone horizons, with anomalous Cu, Au and Zn in sulfidized  sediment (GTD‐08‐26).      Garnet  alteration  of  sediment  with  anomalous  Zn  reflecting  incipient  calcic  exoskarn  assemblages (GTD‐09‐94).     Garnet  and  vesuvianite  alteration  (skarn  assemblage)  in  local  carbonate  units  within  the  sedimentary package (GTD‐08‐46).     Incipient  magnetite skarn  type  replacement  of  sediments,  grossly  concordant  to  bedding at  the scale of drill core (GTD‐08‐42).    The collective observations above suggest increasing degrees of contact metamorphism and  skarn development within reactive (non‐siliciclastic) units of the sediment package, in close  proximity to the Tumpangpitu tonalite.    Clasts derived from the surrounding sediment host sequence are incorporated into some of  the  major  diatreme  breccia  bodies,  particularly  in  GTD‐08‐29  where  the  mudstone  component  of  the  sediments  is  intensely  brecciated,  with  clasts  of  sediment  incorporated  into the cross‐cutting diatreme breccia. Various examples are provided in Figure 16 to Figure  18.     HELLMAN AND SCHOFIELD | JUNE 2011
  • 34. TUJUH BUKIT Page 28   Figure 16 : Images of sedimentary textures in fresh to incipiently propylitic-altered sediments From drill hole GTD-08-26, southwest of Zone C.       Figure 17 : Interbedded, fine-grained volcanic sandstones (propylitic) Includes recessively weathered tuffaceous? siltstone (Locality 2). Thicknesses of individual beds are similar to those in the type section in drill hole GTD-08-26 where the sediments have a turbidite appearance.   HELLMAN AND SCHOFIELD | JUNE 2011
  • 35. TUJUH BUKIT Page 29     Figure 18 : Images of laminated and banded sediment in drill hole GTD-10-162 The sediments here are much more strongly metasomatized than in GTD-08-26 where they are almost unaltered. Nevertheless, textural similarities can be seen that identify these rocks in GTD-10-162 as sediments, namely centimetre- scale banding, finer laminations, and local preservation of cross-bedding textures. The sediments are overprinted by sparse networks of Fe-carbonate veins, potentially akin to those calcite veins observed in GTD-08-26.   9.3.3    Intrusives    The geology of Tumpangpitu deposit consists of a multiple intrusion complex with members  that vary in composition (diorite to tonalite), in texture (equigranular to porphyritic) and in  size  (small  dykes  to  stocks).  The  intrusive  rocks  observed  to  date  in  chronological  order  include  coarse‐grained  diorite  (CD),  fine‐grained  Tonalite  (FT),  coarse‐grained  Tonalite  (CT),  HELLMAN AND SCHOFIELD | JUNE 2011