Clase 1 semejanza triangulos

12.811 visualizaciones

Publicado el

Clase 1 semejanza de triángulos.

1 comentario
1 recomendación
Estadísticas
Notas
Sin descargas
Visualizaciones
Visualizaciones totales
12.811
En SlideShare
0
De insertados
0
Número de insertados
361
Acciones
Compartido
0
Descargas
131
Comentarios
1
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.

Clase 1 semejanza triangulos

  1. 1. Clase 1Semejanza de triángulos Criterios de Semejanza en triángulos. Mister Samuel Pereira M.
  2. 2. Unidad: GeometríaContenido: Semejanza de Triángulos – Criterios de Semejanza.Capacidades: Razonamiento LógicoDestreza: Identificar, razonar, Inferir, calcular, clasificar.
  3. 3. • Semejanza de polígonos• Para comenzar Recordemos las condiciones necesarias para que dos polígonos sean semejantes:a) Todos sus ángulos interiores son iguales
  4. 4. • b) Sus lados correspondientes son proporcionales AB BC CA = = A B B C C A
  5. 5. • Semejanza para triángulo:• Recordemos también que en el caso de los triángulos basta con que solo 2 ángulos sean iguales para decir que los triángulos dados son semejantes. Es lógico que el tercer ángulo será igual en ambos triángulos. (la suma de los ángulos interiores del un triángulo es 180 grados) α ≅ α Esta condición define el Primer β ≅ β Criterio de Semejanza AA “Dos Triángulo son semejantes si dos de sus ángulos son congruentes, por lo tanto sus lados correspondientes son proporcionales” ∆ABC : ∆A B C
  6. 6. • En efecto podemos indicar: α ≅ α• Sabemos que (1) β ≅ β• Luego podemos indicar que para ∆ABC α + β + (ángulo, en, C ) = 180 (ángulo, en, C ) = 180 − (α + β ) Reemplazando α y β por la relación (1) tenemos: (ángulo, en, C ) = 180 − (α + β )• Y como para el ∆A B C • el ángulo en C’ es (ángulo, en, C ) = 180 − (α + β )• Podemos decir que: (ángulo, en, C ) = (ángulo, en, C )
  7. 7. • Veamos un Ejemplo: Se pide calcular la altura de la Araucaria sabiendo que el poste del cerco que mide 1 m y el árbol están perpendiculares al suelo. El hombre que esta en suela esta a una distancia de 4m al poste y de 100 m a la Araucaria.
  8. 8. • Como podemos ver el problema podemos representarlo en la siguiente figura colocando además letras a los vértices formados en los triángulos.
  9. 9. • Como podemos ver el problema no se puede resolver con el Teorema de Pitágoras.• Identificamos 2 triángulos en la figura los cuales debemos demostrar que son semejantes para poder trabajar con la proporcionalidad de los lados.
  10. 10. • Paso 1: Demostrar que son triángulos semejantes:i) Podemos ver que ambos triángulos tienen 2 ángulos iguales y correspondientes. ∠DAE ≅ ∠BAC ∠ADE ≅ ∠ABC = 90º (recto) Por lo anterior podemos decir que: Por criterio de semejanza AA (ángulo – ángulo) los triángulos son semejantes y sus lados correspondientes proporcionales.
  11. 11. • Paso 2: Determinar los lados correspondientes y definir las proporciones según los datos conocidos: Demostrada la semejanza podemos decir que sus lados correspondientes son proporcionales. De aquí de obtiene: AD DE EA = = AB BC CA Destacar que es muy importante leer correctamente los ángulos y segmentos, respetando la lógica de lectura (Ej. De triángulo pequeño v/s triángulo grande)
  12. 12. • Ocuparemos la proporción de lados correspondientes que nos sirva de modo de formar una ecuación donde este presente la única incógnita del problema, la altura del árbol: AD DE 4m 1m = = AB BC 100m h• Espejando h (multiplicar cruzado) y simplificando la unidades de medida nos queda: 1m *100m h= h = 25m 4m• Por lo tanto “ la altura de la araucaria es de 25 metros”.
  13. 13. • Semejanza para triángulo: Criterio Lado Lado Lado (LLL): Recordemos que dos triángulos son congruentes cuando todos sus lados correspondientes son iguales. Luego para los siguientes triángulos tenemos: Para estos triángulos sus lados correspondientes son GF FH HG Este sería el segundo criterio de = = semejanza, LLL: G F F H HG “ Si dos triángulos tienen sus lados correspondientes proporcionales, entonces serán semejantes” ∆GFH : ∆G F H
  14. 14. • Veamos un ejemplo: Determina los valores de x e y sabiendo que los triángulos dados son semejantes. Sus Lados correspondientes serían: BC CA AB = = RQ QA AR Podemos asumir que sus lados correspondientes son proporcionales ya que el problema me indica inicialmente que los triángulos son semejantes
  15. 15. • Luego como sus lados son proporcionales podemos reemplazar y resolver BC CA AB x 3 3,5 x 3 3,5 = = = = = = RQ QA AR 4 y 7 4 y 7• las ecuaciones: Tomaremos esta igualdad primero para encontrar el valor 3 3,5 3* 7 de y. = =y 6=y y 7 3,5• Finalmente encontramos el valor de x utilizando la otra proporción: x 3 3* 4 12 = x= x= x=2 4 6 6 6
  16. 16. • Semejanza para triángulo: Criterio Lado ángulo Lado (LAL): Recordemos que dos triángulos son congruentes cuando dos de sus lados correspondientes son iguales y el ángulo comprendido . Luego para los siguientes triángulos tenemos: Definiremos así el tercer criterio Podemos Ver que para los dos de semejanza, Criterio L A L: triángulo formados tenemos: “ Si dos lados correspondientes son proporcionales y el ángulo HJ HK comprendido entre ellos es igual, = (lados − proporcionales ) podemos decir que los triángulos HG HI son semejantes ”∠GHI ≅ ∠JHK ∆GHI : ∆JHK
  17. 17. • Veamos un ejemplo: Dada la siguiente figura y siendo los puntos D, E, F puntos medios de sus respectivos lados, tenemos:
  18. 18. • Recordemos algunas cosas de geometría para este problema y algunas observaciones de semejanza: Podemos observar que los segmentos Los segmentos DE, medios DE y FD son EF y FD se llaman proporcionales a sus segmentos medios lados opuestos AC y del triángulo ABC BC respectivamente Los segmentos DE, EF y FD son Paralelos Finalmente los ángulos a sus lado opuesto indicados son iguales y respectivos del están entre lados triángulo ABC correspondientes proporcionales
  19. 19. • Finalmente podemos decir que : Por Criterio L A L ∆ABC : ∆DEF• Luego sus lados correspondientes son proporcionales: DF DE FE = = CB CA BA• Reemplazando y resolviendo las ecuaciones tenemos: 3,33 4,12 x 4,12*3,8 = = =x x = 1,9 6, 66 8, 24 3,8 8, 24
  20. 20. • En Resumen podemos indicar los Criterios de Semejanza para triángulos:• Criterio AA: Si dos triángulos tienen dos ángulos correspondientes iguales, podemos decir que aquellos triángulos son semejantes, por lo tanto sus lados proporcionales.• Criterio LLL: Si dos triángulos tienen todos sus lados correspondientes proporcionales, podemos decir que aquellos triángulos son semejantes.• Criterio LAL: Si dos triángulos tienen dos lados correspondientes proporcionales, y el ángulo comprendido entre ellos es igual, podemos decir que aquellos triángulos son semejantes, por lo tanto todos sus lados proporcionales.
  21. 21. • Por hoy hemos terminado.• Debes estar muy atento a la publicación de la clase 2.• Revisar la Guía de ejercicios para esta clase. Suerte¡¡¡¡¡

×