Presentado Por: Sebastián Manzano Sebastián López Fernández John Alexander Ferro Alumnos 10-01
1. Función f(x)= sen x
<ul><li>Dominio: (-∞, +∞) </li></ul><ul><li>Rango: [-1, 1] </li></ul><ul><li>Valor máximo: +1 </li></ul><ul><li>Valor míni...
2. Función f(x)= cos x
<ul><li>Dominio: (-∞, +∞) </li></ul><ul><li>Rango: [-1, 1] </li></ul><ul><li>Valor máximo: +1 </li></ul><ul><li>Valor míni...
3. Función f(x)= tan x
<ul><li>Las discontinuidades se dan cada  π /2± π , por lo cual el dominio va desde (-∞, +∞) – { π /2± π }. </li></ul><ul>...
Intervalo de concavidad de f(x)= tan x
Intervalo de convexidad de f(x)= tan x
4a. Grafica de f(x) = 5sen x
Grafica de f(x) = 0.5sen x
Grafica de f(x) = -sen x
4b. Grafica de f(x) = 5cos x
Grafica de f(x) = 0.5cos x
Grafica de f(x) = -cos x
Similitudes y diferencias de las graficas <ul><li>Al mirar las graficas de la función seno, tenemos que tienen la misma fo...
5a. Y = sen x Periodo: 2 π Amplitud: 1
5b. Y = (sen x)+2 Periodo: 2 π Amplitud: 1
5c. Y = (sen x)-3 Periodo: 2 π Amplitud: 1
5d. Y = (sen x)+3 Periodo: 2 π Amplitud: 1
<ul><li>Al adicionar un valor constante en la función, se obtiene que la función se mueve hacia arriba si es positivo o ha...
6. Graficas de coseno -  Y = cos x -  Y = (cos x)+0.25  -  Y = (cos x)+0.5
<ul><li>En las graficas de coseno, se puede ver que al colocar una constante cada ves mas grande, la grafica se mueve haci...
7a. Grafica de las funciones Y =sen x :  Y = sen (x +  π /6) -  Y = sen x -  Y = sen (x +  π /6)
7b. Grafica de las funciones Y =sen x :  Y = sen (x –  π /3) -  Y = sen x -  Y = sen (x –  π /3)
7c. Grafica de las funciones Y =sen x :  Y = sen (x +  π /2) -  Y = sen x -  Y = sen (x +  π /2)
<ul><li>El periodo de todas las funciones es: 2 π </li></ul><ul><li>La amplitud de todas las funciones es: 1 </li></ul><ul...
8. Grafica conjunta de la f(x)=cos (ax) -  Y = cos 2x  -  Y = cos (x/2)  -  Y = cos (3x)
Similitudes y diferencias <ul><li>Las graficas tienen el mismo patrón, la diferencia es el periodo, debido a la constante ...
9. ejercicio <ul><li>Edad en días: 5761 </li></ul><ul><li>Índices de biorritmo </li></ul><ul><li>Físico: P = sen (2 π /23)...
<ul><li>En la vida real, esto no se cumple, ya que en la parte emocional no estoy mal; en la parte intelectual, la  </li><...
10a. Grafica de f(x) = cot x
<ul><li>Dominio: (-∞, +∞)-{0± π } </li></ul><ul><li>Rango: (-∞, +∞) </li></ul><ul><li>Donde hay discontinuidad:  π ±  π </...
10b. Grafica de f(x) = sec x
<ul><li>Dominio: (-∞, +∞)-{ π /2± π } </li></ul><ul><li>Rango: (-∞, +∞)-(1, 1) </li></ul><ul><li>Donde hay discontinuidad:...
10c. Grafica de f(x) = cosc x
<ul><li>Dominio: (-∞, +∞)-{0± π } </li></ul><ul><li>Rango: (-∞, +∞)-(1, 1) </li></ul><ul><li>Donde hay discontinuidad: 0± ...
11. Aplicaciones de las funciones  trigonométricas <ul><li>Las funciones trigonométricas sirven en muchas áreas de la cien...
Próxima SlideShare
Cargando en…5
×

Trabajo funciones trigonométricas

1.565 visualizaciones

Publicado el

Publicado en: Viajes, Empresariales
0 comentarios
1 recomendación
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
1.565
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
12
Comentarios
0
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.

Trabajo funciones trigonométricas

  1. 1. Presentado Por: Sebastián Manzano Sebastián López Fernández John Alexander Ferro Alumnos 10-01
  2. 2. 1. Función f(x)= sen x
  3. 3. <ul><li>Dominio: (-∞, +∞) </li></ul><ul><li>Rango: [-1, 1] </li></ul><ul><li>Valor máximo: +1 </li></ul><ul><li>Valor mínimo: -1 </li></ul><ul><li>Donde hay discontinuidad: no hay . </li></ul><ul><li>Puntos de inflexión: 0± π </li></ul><ul><li>Intervalos donde la función es creciente: [- π /2, π /2] y se repite cada ±2 π . </li></ul><ul><li>Intervalos donde la función es decreciente: [ π /2, 3 π /2] y se repite cada ±2 π . </li></ul><ul><li>Periodo: 2 π </li></ul><ul><li>Amplitud: 1 </li></ul><ul><li>La función es impar. </li></ul>
  4. 4. 2. Función f(x)= cos x
  5. 5. <ul><li>Dominio: (-∞, +∞) </li></ul><ul><li>Rango: [-1, 1] </li></ul><ul><li>Valor máximo: +1 </li></ul><ul><li>Valor mínimo: -1 </li></ul><ul><li>Donde hay discontinuidad: no hay. </li></ul><ul><li>Puntos de inflexión: 0± π </li></ul><ul><li>Intervalos donde la función es creciente: [ π , 2 π ] y se repite cada ±2 π . </li></ul><ul><li>Intervalos donde la función es decreciente: [0, π ] y se repite cada ±2 π . </li></ul><ul><li>Periodo: 2 π </li></ul><ul><li>Amplitud: 1 </li></ul><ul><li>La función es par. </li></ul>
  6. 6. 3. Función f(x)= tan x
  7. 7. <ul><li>Las discontinuidades se dan cada π /2± π , por lo cual el dominio va desde (-∞, +∞) – { π /2± π }. </li></ul><ul><li>Intervalo donde hay 3 asíntotas: [0, 3 π ] </li></ul><ul><li>Rango: (-∞, +∞) </li></ul><ul><li>No hay máximos ni mínimos. </li></ul><ul><li>Puntos de inflexión: 0± π </li></ul><ul><li>Intervalos donde la función es creciente: (-∞, +∞) – { π /2± π } </li></ul><ul><li>Intervalos donde la función es decreciente: no hay. </li></ul><ul><li>Periodo: π </li></ul><ul><li>Concavidad: [0, π /2]± π </li></ul><ul><li>Convexidad: (- π /2, 0]± π </li></ul>
  8. 8. Intervalo de concavidad de f(x)= tan x
  9. 9. Intervalo de convexidad de f(x)= tan x
  10. 10. 4a. Grafica de f(x) = 5sen x
  11. 11. Grafica de f(x) = 0.5sen x
  12. 12. Grafica de f(x) = -sen x
  13. 13. 4b. Grafica de f(x) = 5cos x
  14. 14. Grafica de f(x) = 0.5cos x
  15. 15. Grafica de f(x) = -cos x
  16. 16. Similitudes y diferencias de las graficas <ul><li>Al mirar las graficas de la función seno, tenemos que tienen la misma forma, lo que cambia es la amplitud de la función en la grafica, y si le colocamos un valor negativo a la amplitud, la grafica queda al revés. </li></ul><ul><li>En la función coseno, tenemos los mismos aspectos que la función anterior. </li></ul>
  17. 17. 5a. Y = sen x Periodo: 2 π Amplitud: 1
  18. 18. 5b. Y = (sen x)+2 Periodo: 2 π Amplitud: 1
  19. 19. 5c. Y = (sen x)-3 Periodo: 2 π Amplitud: 1
  20. 20. 5d. Y = (sen x)+3 Periodo: 2 π Amplitud: 1
  21. 21. <ul><li>Al adicionar un valor constante en la función, se obtiene que la función se mueve hacia arriba si es positivo o hacia abajo si es negativo. </li></ul><ul><li>Si se adiciona un valor decimal o fracción, se tendría el mismo comportamiento de arriba, pero la grafica se movería en las mismas decimales o fracciones. </li></ul>
  22. 22. 6. Graficas de coseno - Y = cos x - Y = (cos x)+0.25 - Y = (cos x)+0.5
  23. 23. <ul><li>En las graficas de coseno, se puede ver que al colocar una constante cada ves mas grande, la grafica se mueve hacia arriba, teniendo el mismo comportamiento que la función seno que se vio en el punto 5. </li></ul><ul><li>La función coseno mantiene su mismo periodo y amplitud, no importa el valor que le coloquemos, estos valores nunca van a cambiar. </li></ul>
  24. 24. 7a. Grafica de las funciones Y =sen x : Y = sen (x + π /6) - Y = sen x - Y = sen (x + π /6)
  25. 25. 7b. Grafica de las funciones Y =sen x : Y = sen (x – π /3) - Y = sen x - Y = sen (x – π /3)
  26. 26. 7c. Grafica de las funciones Y =sen x : Y = sen (x + π /2) - Y = sen x - Y = sen (x + π /2)
  27. 27. <ul><li>El periodo de todas las funciones es: 2 π </li></ul><ul><li>La amplitud de todas las funciones es: 1 </li></ul><ul><li>El efecto de adicionar una constante al ángulo, es que la grafica se mueve hacia la derecha o izquierda si es negativo o positivo respectivamente. </li></ul><ul><li>En el punto 7c, se puede ver que las funciones seno y coseno , son las mismas funciones, pero con un desfase de π /2 </li></ul>
  28. 28. 8. Grafica conjunta de la f(x)=cos (ax) - Y = cos 2x - Y = cos (x/2) - Y = cos (3x)
  29. 29. Similitudes y diferencias <ul><li>Las graficas tienen el mismo patrón, la diferencia es el periodo, debido a la constante que se le multiplica al ángulo, si el numero crece, el periodo disminuye, por lo tanto son inversamente proporcionales. </li></ul><ul><li>La amplitud de las funciones son los mismos. </li></ul>
  30. 30. 9. ejercicio <ul><li>Edad en días: 5761 </li></ul><ul><li>Índices de biorritmo </li></ul><ul><li>Físico: P = sen (2 π /23)x = sen (2 π /23)(5761) = 0.72 </li></ul><ul><li>Emocional: E = sen (2 π /28)x = sen (2 π /28)(5761) = -0.54 </li></ul><ul><li>Intelectual: I = sen (2 π /33)x = sen (2 π /33)(5761) = 0.29 </li></ul><ul><li>En la parte física, estamos en buenas condiciones para competir en competencias, en cuanto a lo emocional, se esta pasando por unos días duros, ya que no se esta alegre y en la parte intelectual, estamos en un bache de regular tirando a bien. </li></ul>
  31. 31. <ul><li>En la vida real, esto no se cumple, ya que en la parte emocional no estoy mal; en la parte intelectual, la </li></ul><ul><li>Explicar si coincide con su vida. </li></ul><ul><li>Este tipo de funciones, no permite mostrar el verdader0 estado de animo de la persona, ya que la vida no es un ciclo, según algunos filósofos, además esto se volvería una forma de adivinación. </li></ul>
  32. 32. 10a. Grafica de f(x) = cot x
  33. 33. <ul><li>Dominio: (-∞, +∞)-{0± π } </li></ul><ul><li>Rango: (-∞, +∞) </li></ul><ul><li>Donde hay discontinuidad: π ± π </li></ul><ul><li>Puntos de inflexión: π /2± π </li></ul><ul><li>Intervalos donde la función es decreciente: (0, π ) y se repite cada ± π . </li></ul><ul><li>Concavidad: (0, π /2]± π </li></ul><ul><li>Convexidad: [ π /2, π )± π </li></ul>
  34. 34. 10b. Grafica de f(x) = sec x
  35. 35. <ul><li>Dominio: (-∞, +∞)-{ π /2± π } </li></ul><ul><li>Rango: (-∞, +∞)-(1, 1) </li></ul><ul><li>Donde hay discontinuidad: π /2± π </li></ul><ul><li>Intervalos donde la función es creciente: (- π /2, π /2) y se repite cada ±2 π . </li></ul><ul><li>Intervalos donde la función es decreciente: ( π /2, 3 π /2) y se repite cada ±2 π . </li></ul><ul><li>Concavidad: (- π /2, π /2)±2 π </li></ul><ul><li>Convexidad: ( π /2, 3 π /2)±2 π </li></ul>
  36. 36. 10c. Grafica de f(x) = cosc x
  37. 37. <ul><li>Dominio: (-∞, +∞)-{0± π } </li></ul><ul><li>Rango: (-∞, +∞)-(1, 1) </li></ul><ul><li>Donde hay discontinuidad: 0± π </li></ul><ul><li>Intervalos donde la función es creciente: (0, π ) y se repite cada ±2 π . </li></ul><ul><li>Intervalos donde la función es decreciente: ( π , 2 π ) y se repite cada ±2 π . </li></ul><ul><li>Concavidad: (0, π )±2 π </li></ul><ul><li>Convexidad: ( π , 2 π )±2 π </li></ul>
  38. 38. 11. Aplicaciones de las funciones trigonométricas <ul><li>Las funciones trigonométricas sirven en muchas áreas de la ciencia y de la vida, por ejemplo: </li></ul><ul><li>En los movimientos armónicos simples, se utilizan las funciones seno y coseno para demostrar como se mueven los objetos que tengan esta clase de movimiento. </li></ul><ul><li>En la geometría, se usan para poder sacar la longitud y el ángulo de un triangulo rectángulo. </li></ul><ul><li>En la mecánica clásica, se usan para poder descomponer los vectores y poderlos sumar </li></ul>

×