SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
Noncommutativity and T-duality
           Lj. Davidovi´, B. Nikoli´ and B. Sazdovi´
                         c            c               c
               Institute of Physics, Belgrade, Serbia




• We will discuss relation between

     – Open string parameters

        Gef f (G, B) and θ µν (G, B)
         µν


     – and T-dual background fields

         Gµν (G, B) and B µν (G, B)

    as functions of the initial background fields:
    metric tensor Gµν and Kalb-Ramond field Bµν

• Noncommutativity of Dp-brane world volume

    The quantization of the open bosonic string whose ends
    are attached to the Dp-brane leads to noncommutativity of
    Dp-brane world volume
    The noncommutativity parameter θ µν (G, B)


Noncommutativity and T-duality                            BSW 2011
• Effective theory

    On the solution of boundary conditions the initial theory
    turns to the effective one with effective metric tensor
    Gef f (G, B) and vanishing effective Kalb-Ramond field
      µν


• T-duality
  T-duality in presence of background fields leads T-dual
  background fields Gµν (G, B) and B µν (G, B)

• We will extend these investigations considering

    1. II B superstring theory instead of bosonic one
     – Bosonic duality

     – Fermionic duality

    2. ”Weakly curved background” Bµν [x] = bµν + 1 Bµνρxρ
                                                  3
    instead of the flat one        Bµν = bµν = const.




Noncommutativity and T-duality                          BSW 2011
1
                                 The action

describing the open string propagation in curved background

                 2        g αβ           αβ
                                                        µ    ν
S=κ             d ξ    −g      Gµν (x)+ √    Bµν (x) ∂αx ∂β x ,
            Σ              2              −g

• xµ(ξ), µ = 0, 1, ..., D − 1 the coordinates of the
  D-dimentional space-time

• ξ α(ξ 0 = τ, ξ 1 = σ) parametrize 2-dim world-sheet

• gαβ (ξ) intrinsic world-sheet metric (g = detgαβ )

•        background fields

     –     Gµν (x) space-time metric

     –     Bµν (x) Kalb-Ramond antisymmetric field




Noncommutativity and T-duality                         BSW 2011
2
                    Action principle for string

Evolution from the initial to final configuration is such that the
action is stationary


          τf        σf
S=       τi
               dτ   σi
                         dσL(xµ, xµ, x µ, gαβ )
                                 ˙



                            ∂L      ∂L     ∂L    µ
        δS =          dτ dσ     − ∂τ µ − ∂σ µ δx
                            ∂xµ     ∂x
                                     ˙     ∂x
                                            ˙


                                    ∂L µ        σ=π
                         +       dτ      δx
                                    ∂ xµ
                                      ˙         σ=0

From the action principle we get


1) equation of motion

xµ = x
¨           µ
                − 2B µ xν x ρ,
                      νρ ˙



Bµνρ = ∂µBνρ + ∂ν Bρµ + ∂ρBµν                   is field strength


2) boundary condition
 µ                            µ
γ0 δxµ              = 0,     γ0 ≡   ∂L
                                    ∂ xµ
                                      ˙    = x µ − 2(G−1B)µν xν
                                                             ˙
          σ=0,π


Noncommutativity and T-duality                                     BSW 2011
3
                     The Boundary conditions

• The closed string fulfills the boundary condition because
  xµ(0) = xµ(π)

• For the open string we can impose

    1) Neumann boundary condition

      δxµ          ,          δxµ
               0                    π

    are arbitrary i.e. string end-points can move freely

     0                0
    γµ         = 0 , γµ             =0
         σ=0                  σ=π

    2) Dirichlet boundary condition

      δxµ              = 0,      δxµ          =0
               σ=0                      σ=π

    The edges of the string are fixed




Noncommutativity and T-duality                             BSW 2011
4
       Noncommutativity and effective theory
                 bosonic open string in flat space-time I



• We impose Neumann boundary conditions

• We treat boundary conditions as constraints

              0
• Constraint γµ must be conserved in time

                             1
                                 ˙0
     – Secundary constraint γµ = γµ

                                   n
                                       ˙ n−1
     – Infinite set of constraints γµ = γµ , (n = 1, 2, · · ·)

     – Two σ -dependent constraints

                          ∞    σn µ
        Γµ(σ) ≡           n=0 (n)! γn
                                        σ=0

        ¯                 ∞ (σ−π)n µ
        Γµ(σ) ≡           n=0 (n)! γn
                                          σ=π

• 2π -periodicity                        xµ(σ) = xµ(σ + 2π)

    solve constraint at σ = π                         ¯
                                          Γµ(σ) = 0 → Γµ(σ) = 0




Noncommutativity and T-duality                             BSW 2011
5
       Noncommutativity and effective theory
                 bosonic open string in flat space-time II



• Solving the constraints

     – In canonical formalism

        {Γµ(σ), Γν (¯ )} = −κGE δ (σ − σ )
                    σ         µν       ¯

        For GE = 0
             µν                  Γµ(σ) are SSC

     – Introduce world-sheet parity Ω

        Ω : σ → −σ ,              Ωxµ(σ) → xµ(−σ)

        and new variables

        q µ = 1 (1 + Ω)xµ
              2                      q µ = 1 (1 − Ω)xµ
                                     ¯     2


     – Solve Ω odd parts in terms of Ω even

        ∗ q = f1(q, p),
          ¯                        p = f2(q, p)
                                   ¯

        ∗ xµ = q µ − 2θ µν          dσ1pν ,      π µ = pµ




Noncommutativity and T-duality                              BSW 2011
5



• Effective action and background fields

     – S ef f = κ        d2ξ 1 η αβ GE ∂αq µ∂β q ν
                             2       µν


     – Gµν → Gef f = GE ,
              µν      µν                Bµν → Bµνf = 0
                                               ef



GE ≡ [G − 4BG−1B]µν
 µν

effective metric

• Noncommuatativity
                              
                               −1               σ, σ = 0
                                                    ¯
    {X µ(σ), X ν (¯ )} = θ µν
                  σ              1               σ, σ = π
                                                    ¯      .
                              
                                 0               otherwise

   θ µν ≡ − κ (G−1BG−1)µν
            2
                E

non-commutativity parameter




Noncommutativity and T-duality                           BSW 2011
6
 T0-duality of closed string– trivial background

• Background:
  – One spatial dimension is curled up into circle
  – Remaining dimensions are described as
    Minkowski space-time
  – All others background fields vanish, Bµν = 0, Φ = 0

• – x25(σ + π) = x25(σ) + 2πRm,             (m ∈ Z)
  – m– winding number

• Consequences of compactification:
                                              n
  – Momentum along circle is quantized, p = R (n ∈ Z),
    Lost some states
  – New states that wrap around circle arise, winding states
    Gained some states




Noncommutativity and T-duality                      BSW 2011
7
      Surprising symmetry as stringy property

• Mass square of the states

              n2        m2 R 2
    M2 =      R2
                   +           +   contributions from oscilators
                         α2




• – Complementary behavior of
    momentum and winding states

     – M 2(R, n, m) = M 2( α , m, n)
                           R


     – R ←→         α     ˜
                        ≡ R,          n ←→ m,        ˜
                                                     R — Dual radius
                    R


• T0 duality for closed string

    Compactification with radius R
    is physically indistinguishable from
                                   ˜
    Compactification with radius R = α   R


• T0 dual coordinate
  – Equation of motion
     ∂+∂−x = 0 =⇒ x = x+(τ + σ) + x−(τ − σ)
  – T0 dual coordinate
     x ≡ x+(τ + σ) − x−(τ − σ)
     ˜




Noncommutativity and T-duality                                     BSW 2011
8
           T-duality – nontrivial background I
• – Background fields are independent of the circular
    coordinate
  – We take all coordinate to be circular
    → Gµν , Bµν = const
    Toroidal duality of all cordinates

• Lagrange multiplier method

     S[y, v+, v−] =

             2    µ                   ν         2        µ         µ
    κ      d ξv+(B + 1 G)µν v− +
                     2                         d ξyµ(∂+v− − ∂−v+),

     – yµ – Lagrange multiplier

• Integration over y returns to the original action

       µ      µ                            µ
    ∂+v− − ∂−v+ = 0               ⇒       v± = ∂±xµ

• Integrating out vector field v±

     µ
    v±(y) = −2[θ µν              1   −1 µν
                                 κ (GE ) ]∂± yν


GE ≡ [G − 4BG−1B]µν ,
 µν                                       θ µν ≡ − κ (G−1BG−1)µν
                                                   2
                                                       E



are the open string background fields:
effective metric and non-commutativity parameter

Noncommutativity and T-duality                               BSW 2011
9
           T-duality–nontrivial background II

•    S[∂+y, ∂−y] = 2              d2ξ∂+yµ[θ µν + κ (G−1)µν ]∂+yµ
                                                 1
                                                     E


                           =κ        d2ξ∂+yµ( B +    1
                                                     2   G)µν ∂+yµ

• Dual background fields

     B µν = κ θ µν ,
            2
                                      Gµν = ( κ )2(G−1)µν
                                              2
                                                    E


• Turn off background fields

                                                                     2
     – Bµν → 0,            Gµν → (ηµν , G25,25 = G),         κ→      α

                      2π          √        2π          √
     – 2πR =         0
                           ds =       G   0
                                                dθ = 2π G

           ⇒       G = R2 ,                   ˜
                                          G = R2
                    2                   ˜
     –   G = α G−1               ⇒     RR = α

     – ∂±x = ±∂±y                ⇒     y=x
                                         ˜




Noncommutativity and T-duality                                 BSW 2011
10
   Relation between T-duality, effective theory
             and noncommuatativity

• T-duality

                   2
     Gµν = α G−1µν ,
              E                  B µν = α θ µν

• Effective theory

    Gef f = GE
     µν      µν                           /

• Noncommuatativity

          /                             θ µν

• The same background fields: effective metric

     – GE ≡ [G − 4BG−1B]µν
        µν


        and non-commutativity parameter

           θ µν ≡ − κ (G−1BG−1)µν
                    2
                        E




Noncommutativity and T-duality                   BSW 2011
11
                           Type II B theory

• Type IIB theory in pure spinor formulation
                           2     1 mn        mn       µ    ν
            S=κ           d ξ      η  Gµν + ε Bµν ∂m x ∂n x
                      Σ          2
            2           α   α µ         ¯α  ¯α µ π       1     αβ
    +      d ξ −πα ∂− (θ + Ψµ x ) + ∂+ (θ + Ψµ x )¯ α +    πα F πβ¯
         Σ                                              2κ

• Variables

                ¯
    xµ, θ α and θ α

• Background fields

     – NS-NS              Gµν , Bµν

     – NS-R                ¯
                       Ψα, Ψα         , gravitinos
                        µ    µ


     – R-R           F αβ ∼ A0, A2, A4,              dA4-self dual




Noncommutativity and T-duality                                   BSW 2011
12
                          Type II B theory
                       Neumann boundary conditions



• Boundary conditions
                                                          π
                   (0)
                  γi δx
                        i               ¯α ¯
                                           α
                             + παδθ + δ θ πα                  =0
                                                          0

            (0)        j         j         α   ¯ α¯
          γi      = Π+i I−j + Π−i I+j + παΨi + Ψi πα



• For bosonic coordinates Neumann boundary conditions
                                       (0) π
                                      γi   0
                                               =0

• Fermionic coordinates preserves N=1 SUSY
                                 π                        π
                   α¯α
               (θ − θ )              = 0 ⇒ (πα1 − πα1 )
                                                  ¯           =0
                                 0                        0




Noncommutativity and T-duality                                     BSW 2011
13
                           Type II B theory
       Neumann b. c., Effective theory and non-commutativity

B.Nikoli´ and B. Sazdovi´, Phys. Lett. B666 (2008) 400
        c               c

B. Nikoli´ and B. Sazdovi´, Nucl. Phys. B 836 (2010) 100
         c               c


• Similar method as in bosonic case
• Background fields

     – Ω even corresponds to Type I
                                            E
                                     Gµν → Gµν

               1 α          α   1 α        −1    α
                 Ψ+µ → (ΨE )µ = Ψ+µ + (BG Ψ−)µ
               2                2
                  αβ    αβ     αβ       −1    αβ
                 Fa → FE = F − (Ψ−G Ψ−)


     – Ω odd fields vanish Bµν → 0, Ψ− → 0, Fs → 0

• Non-commutativity
  Ω odd fields are source of non-commutativity

                       µ         ν          µν
                  {x (σ) , x (¯ )} = 2θ θ(σ + σ )
                              σ               ¯
                    µ       α          µα
                  {x (σ) , θ (¯ )} = −θ θ(σ + σ )
                              σ               ¯
                    α      ¯β σ      1 αβ
                  {θ (σ) , θ (¯ )} = θ θ(σ + σ )
                                              ¯
                                     2


Noncommutativity and T-duality                             BSW 2011
14
                          Type II B theory
                            Bosonic TIIBb -dulity



• Action has global shift symmetry in bosonic direction

    Similar method produce dual background fields

                   2
     Gµν = α G−1µν ,
              E                                B µν = α θ µν

     ψ− = −2G−1µν (ψE )a
      aµ
             E         ν
                                                 aµ
                                                ψ+ = 2κθ aµ

      ab   ab     a
     Fa = FE + 4(ψE G−1ψE )
                     E
                        b                        ab
                                                Fs = 2κθ ab




Noncommutativity and T-duality                                 BSW 2011
15
    Relation between T-duality, effective theory
              and noncommuatativity
                       Type II B and bosonic duality



• T-duality                      Effective theory         Noncommuatativity

    Bosonic N bc                     Ω-symm             Ω-antisymm

                   2
•    Gµν = α G−1µν
              E                        Gef f = GE
                                        µν      µν           /

     B µν = α θ µν                             /             θ µν

      aµ
•    ψ− = −2(G−1ψE )aµ
              E                         (ψef f )a = (ψE )a
                                                µ        µ    /

      aµ
     ψ+ = 2κθ aµ                               /             θ aµ

•    Fa = FE + 4(ψE G−1ψE ) Fef f = FE
      ab   ab     a
                     E
                        b    ab      ab
                                                              /

     Fs = 2κθ ab
      ab
                                               /             θ ab




Noncommutativity and T-duality                                   BSW 2011
16
                          Type II B theory
                          Fermionic TIIBf -dulity


B. Nikoli´ and B. Sazdovi´
         c               c
Fermionic T-duality and momenta noncommutativity
hep-th/1103.4520
to be published in Phys. Rev. D


• Fermionic T-duality —
                                                   ¯
  Duality with respect to fermionic variables θ a, θ a

     – Suppose that action has a global shift symmetry in
               ¯
       θ α and θ α directions

     – Similar procedure as in bosonic case produces
       TIIBf dual background fields:

                           ¯
              Bµν = Bµν + (ΨF
                                        −1           ¯ −1
                                             Ψ)µν − (ΨF Ψ)νµ
                            ¯
             Gµν = Gµν + 2 (ΨF
                                         −1           ¯ −1
                                              Ψ)µν + (ΨF Ψ)νµ
             Ψαµ = 4(F
                                 −1
                                  Ψ)αµ ,   ¯        ¯ −1
                                           Ψµα = −4(ΨF )µα
                                             −1
                                  Fαβ = 16(F )αβ




Noncommutativity and T-duality                            BSW 2011
17
                             Type II B theory
     Fermionic TIIBf -dulity and Dirichlet boundary conditions I



• T-duality                       Effective theory and Noncommuatativity

    BOSONIC                 ←→            Neumann b.c. for xµ
    .                                                        ¯
                                          SUSY b.c. for θ a, θ a

    FERMIONIC                 ←→                  ? b.c.

• DIRICHLET boundary conditions
                       π                      π                    π
               x
                   µ
                           = 0,       θ
                                          α
                                                  = 0,        ¯α
                                                              θ        =0
                       0                      0                    0
• Solve constraints
  – odd variables are independent
  – trivial solution for coordinates, non-trivial for momenta
          µ            µ                            ν 1 ¯α       1        α
        x (σ) = q (σ) ,
                ˜                  πµ = pµ −2κBµν q − Ψµ (ηa )α + (¯a )α Ψµ
                                        ˜         ˜                η
                                                      2          2

               α             α                                      1
              θ (σ) = θa (σ) ,                             πα = pα − (¯a )α
                                                                ˜     η
                                                                    2
             ¯α     ¯α                                              1
            θ (σ) = θa (σ) ,                                    ˜
                                                           πα = pα − (ηa )α
                                                           ¯    ¯
                                                                    2
        where
                            −1        β           β µ                  ¯β ¯ β ˜µ   −1
        (ηa )α ≡ 4κ(F            )αβ (θa +Ψµ q ) ,
                                             ˜             (¯a )α ≡ 4κ(θa +Ψµ q )(F )βα
                                                            η




Noncommutativity and T-duality                                              BSW 2011
18
                          Type II B theory
                        Non-commutativity relations



• Non-commutativity relations

             {Pµ(σ), Pν (¯ )}D = Θµν ∆(σ + σ ) ,
                          σ                 ¯
                          σ      ¯
             {Pµ(σ), Pα(¯ )}D = Θµα∆(σ + σ ) ,
                                             ¯
                       ¯ σ
              Pµ(σ), Pα(¯ ) D = Θαµ∆(σ + σ ) ,
                                             ¯
                       ¯ σ
              Pα(σ), Pβ (¯ ) D = Θαβ ∆(σ + σ ) ,
                                             ¯
                               ¯      ¯ σ
          {Pα(σ), Pβ (¯ )}D = Pα(σ), Pβ (¯ ) D = 0 ,
                      σ



    where the noncommutativity parameters are

                  Θµν = 2κ Bµν ,             ¯ µα = κ Ψµα
                                             Θ        ¯
                                                    2
                             κ                        κ
               Θαµ = −         Ψαµ ,        Θαβ = −     Fβα ,
                             2                        8
    and
                                 σ
            PA(σ) =                  dσ1πA(σ1)   A = {µ, a, a}
                                                            ¯
                            0




Noncommutativity and T-duality                                  BSW 2011
19
    Relation between T-duality, effective theory
              and noncommuatativity
                      Type II B and fermionic duality



• T-duality                      {Γa, Γb}         {Pa, Pb}

•    Gµν                                 Gµν             /

     Bµν                             /                  θµν = 2κ Bµν

                                     1
•    ψaµ                             2   ψaµ            θaµ = − κ ψaµ
                                                                2

     ¯
     ψµa                             1   ¯
                                         ψµa            ¯
                                                        θµa =   κ   ¯
                                                                    ψµa
                                     2                          2

                                     1
•    Fab                         −   8    Fab           θab = − κ Fab
                                                                8




Noncommutativity and T-duality                                      BSW 2011
20
   Bosonic string in weakly curved background

• The consistency of the theory

     – Quantum world-sheet conformal invariance

     – produce conditions on background fields
       space-time equations of motion
                             1       ρσ
                      Rµν − Bµρσ Bν = 0 ,
                             4
                                 ρ
                            DρB µν = 0
     – Bµνρ     = ∂µBνρ + ∂ν Bρµ + ∂ρBµν is a field strength

     – Rµν and Dµ Ricci tensor and covariant derivative

• We will consider the following particular solution

                                                1     ρ
            Gµν = const,         Bµν [x] = bµν + Bµνρx ,
                                                3
     – bµν is constant
     – Bµνρ is constant and infinitesimally small

• – We will work up to the first order in Bµνρ

     – Ricci tensor Rµν is an infinitesimal of the second order
       and as such is neglected


Noncommutativity and T-duality                         BSW 2011
21

 T-duality of weakly curved background (Twcb)

Lj. Davidovi´ and B. Sazdovi´
            c               c
T-duality in the weakly curved background
in preparation


• More complicated procedure then in flat background

                   2
     Gµν = α G−1µν ( x),
              E                        B µν = α θ µν ( x)

     x is Twcb of x and y is T0 dual of y
                        ˜

     x = g −1(2by + y )
                    ˜




Noncommutativity and T-duality                              BSW 2011
22
    Effective theory and non-commutativity in
           weakly curved background
Lj. Davidovi´ and B. Sazdovi´
            c               c
Phys. Rev. D 83 (2011) 066014

Lj. Davidovi´ and B. Sazdovi´,
            c               c
Non-commutativity parameters depend not only on the effective
coordinate but on its T-dual as well
hep-th/1106.1064
to be published in JHEP


• Similar procedure but much more complicated calculation

• Effective background fields

    Gef f (u) = GE (u),
     µν          µν                Bµνf = − κ (gθ(u)g)µν
                                    ef
                                            2


    u = q + 2b˜
              q

• Non-commutativity parameter

     – Nontrivial both at string endpoints and at string interior

     – Depends on the σ -integral of the effective momenta
                 σ
       Pµ(σ) = 0 dηpµ(η)

        which is in fact T0-dual of the effective coordinate,
        Pµ = κgµν q ν .
                   ˜


Noncommutativity and T-duality                           BSW 2011
23
 Relation between Twcb-duality, effective theory
            and noncommuatativity

• Twcb-duality                      Effective theory    Noncommuatativity

                        Dual background fields

                   2
     Gµν = α G−1µν ( x)
              E                            Gef f = GE (u)
                                            µν      µν            /

     B µν = α θ µν ( x)                           /         θ µν (v)

                                 Dual variables

                                                             3 ˜
     x = g −1(2by+ y )
                   ˜                   u = q+2b˜
                                               q      v = q− π bQcm




Noncommutativity and T-duality                               BSW 2011

Más contenido relacionado

La actualidad más candente

Physics of Algorithms Talk
Physics of Algorithms TalkPhysics of Algorithms Talk
Physics of Algorithms Talk
jasonj383
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climateMartin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Jiří Šmída
 
SigmaXi SugraPresentation
SigmaXi SugraPresentationSigmaXi SugraPresentation
SigmaXi SugraPresentation
iacoman
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
Grigor Alaverdyan
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
cerezaso
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
Tarun Gehlot
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
Dabe Milli
 

La actualidad más candente (20)

Physics of Algorithms Talk
Physics of Algorithms TalkPhysics of Algorithms Talk
Physics of Algorithms Talk
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climateMartin Roth: A spatial peaks-over-threshold model in a nonstationary climate
Martin Roth: A spatial peaks-over-threshold model in a nonstationary climate
 
Tensor Decomposition and its Applications
Tensor Decomposition and its ApplicationsTensor Decomposition and its Applications
Tensor Decomposition and its Applications
 
SigmaXi SugraPresentation
SigmaXi SugraPresentationSigmaXi SugraPresentation
SigmaXi SugraPresentation
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Ysu conference presentation alaverdyan
Ysu conference  presentation alaverdyanYsu conference  presentation alaverdyan
Ysu conference presentation alaverdyan
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Iskmaa
IskmaaIskmaa
Iskmaa
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
Local Volatility 1
Local Volatility 1Local Volatility 1
Local Volatility 1
 
Bubbles of True Vacuum and Duality in M-theory
Bubbles of True Vacuum and Duality in M-theoryBubbles of True Vacuum and Duality in M-theory
Bubbles of True Vacuum and Duality in M-theory
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
 
Jeju2013
Jeju2013Jeju2013
Jeju2013
 
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
 

Destacado

Destacado (20)

D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 
G. Fiore - Learning from Julius
G. Fiore - Learning from JuliusG. Fiore - Learning from Julius
G. Fiore - Learning from Julius
 
A. Proykova - National, Regional and European Physical Societies
A. Proykova - National, Regional and European Physical SocietiesA. Proykova - National, Regional and European Physical Societies
A. Proykova - National, Regional and European Physical Societies
 
M. Buric - Julius and his Students
M. Buric - Julius and his StudentsM. Buric - Julius and his Students
M. Buric - Julius and his Students
 
R. Constantinescu - Science and Society
R. Constantinescu - Science and SocietyR. Constantinescu - Science and Society
R. Constantinescu - Science and Society
 
Astronomical Statiоn at Vidojevica
Astronomical Statiоn at VidojevicaAstronomical Statiоn at Vidojevica
Astronomical Statiоn at Vidojevica
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
F. Stoeckel - DAAD Activities in SEE
F. Stoeckel - DAAD Activities in SEEF. Stoeckel - DAAD Activities in SEE
F. Stoeckel - DAAD Activities in SEE
 
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino ModelB. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
B. Nikolic - Renormalizability of the D-Deformed Wess-Zumino Model
 
M. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHCM. Nemevsek - Neutrino Mass and the LHC
M. Nemevsek - Neutrino Mass and the LHC
 
Ernest Rutherford and The Discovery of Atomic Nucleus
Ernest Rutherford and The Discovery of Atomic NucleusErnest Rutherford and The Discovery of Atomic Nucleus
Ernest Rutherford and The Discovery of Atomic Nucleus
 
F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
F. Remey - French scientific cooperation, The example of Serbia, Perspectives...F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
F. Remey - French scientific cooperation, The example of Serbia, Perspectives...
 
Astronomy Via the Internet
Astronomy Via the InternetAstronomy Via the Internet
Astronomy Via the Internet
 
G. Senjanovic - Neutrino Paradigm and LHC
G. Senjanovic - Neutrino Paradigm and LHCG. Senjanovic - Neutrino Paradigm and LHC
G. Senjanovic - Neutrino Paradigm and LHC
 
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie AlgebrasT. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
T. Popov - Drinfeld-Jimbo and Cremmer-Gervais Quantum Lie Algebras
 
V. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
V. Ciornea - Institute of Applied Physics of the Academy of Science of MoldavaV. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
V. Ciornea - Institute of Applied Physics of the Academy of Science of Moldava
 
Problems of the Environment in the Science Classroom. Introducing the STSE
Problems of the Environment in the Science Classroom. Introducing the STSEProblems of the Environment in the Science Classroom. Introducing the STSE
Problems of the Environment in the Science Classroom. Introducing the STSE
 
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
W. Kinney - Scale-Invariant Perturbations: is Inflation the only Way?
 
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
An Approach to the Concept of Energy for Primary School: Disciplinary Framewo...
 
J. Mandili - Department of Physics, University of Vlora, Albania
J. Mandili - Department of Physics, University of Vlora, AlbaniaJ. Mandili - Department of Physics, University of Vlora, Albania
J. Mandili - Department of Physics, University of Vlora, Albania
 

Similar a B. Sazdovic - Noncommutativity and T-duality

Fatigue damage in solder joint interconnects - presentation
Fatigue damage in solder joint interconnects - presentationFatigue damage in solder joint interconnects - presentation
Fatigue damage in solder joint interconnects - presentation
Dr. Adnan Judeh (Abdul-Baqi)
 
Lecture on solving1
Lecture on solving1Lecture on solving1
Lecture on solving1
NBER
 
Exchange confirm
Exchange confirmExchange confirm
Exchange confirm
NBER
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
oriolespinal
 

Similar a B. Sazdovic - Noncommutativity and T-duality (20)

Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Fatigue damage in solder joint interconnects - presentation
Fatigue damage in solder joint interconnects - presentationFatigue damage in solder joint interconnects - presentation
Fatigue damage in solder joint interconnects - presentation
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
 
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
 
Lecture on solving1
Lecture on solving1Lecture on solving1
Lecture on solving1
 
Exchange confirm
Exchange confirmExchange confirm
Exchange confirm
 
Fluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregationFluctuations and rare events in stochastic aggregation
Fluctuations and rare events in stochastic aggregation
 
PhD thesis presentation of Nguyen Bich Van
PhD thesis presentation of Nguyen Bich VanPhD thesis presentation of Nguyen Bich Van
PhD thesis presentation of Nguyen Bich Van
 
Igv2008
Igv2008Igv2008
Igv2008
 
Lecture 9 f17
Lecture 9 f17Lecture 9 f17
Lecture 9 f17
 
Sparsity by worst-case quadratic penalties
Sparsity by worst-case quadratic penaltiesSparsity by worst-case quadratic penalties
Sparsity by worst-case quadratic penalties
 
Omiros' talk on the Bernoulli factory problem
Omiros' talk on the  Bernoulli factory problemOmiros' talk on the  Bernoulli factory problem
Omiros' talk on the Bernoulli factory problem
 
Expo
ExpoExpo
Expo
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Friction
FrictionFriction
Friction
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
 
M. Dimitrijevic - Twisted Symmetry and Noncommutative Field Theory
M. Dimitrijevic - Twisted Symmetry and Noncommutative Field TheoryM. Dimitrijevic - Twisted Symmetry and Noncommutative Field Theory
M. Dimitrijevic - Twisted Symmetry and Noncommutative Field Theory
 
Normal
NormalNormal
Normal
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Talk at CIRM on Poisson equation and debiasing techniques
Talk at CIRM on Poisson equation and debiasing techniquesTalk at CIRM on Poisson equation and debiasing techniques
Talk at CIRM on Poisson equation and debiasing techniques
 

Más de SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
SEENET-MTP
 

Más de SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Último

Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 

Último (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 

B. Sazdovic - Noncommutativity and T-duality

  • 1. Noncommutativity and T-duality Lj. Davidovi´, B. Nikoli´ and B. Sazdovi´ c c c Institute of Physics, Belgrade, Serbia • We will discuss relation between – Open string parameters Gef f (G, B) and θ µν (G, B) µν – and T-dual background fields Gµν (G, B) and B µν (G, B) as functions of the initial background fields: metric tensor Gµν and Kalb-Ramond field Bµν • Noncommutativity of Dp-brane world volume The quantization of the open bosonic string whose ends are attached to the Dp-brane leads to noncommutativity of Dp-brane world volume The noncommutativity parameter θ µν (G, B) Noncommutativity and T-duality BSW 2011
  • 2. • Effective theory On the solution of boundary conditions the initial theory turns to the effective one with effective metric tensor Gef f (G, B) and vanishing effective Kalb-Ramond field µν • T-duality T-duality in presence of background fields leads T-dual background fields Gµν (G, B) and B µν (G, B) • We will extend these investigations considering 1. II B superstring theory instead of bosonic one – Bosonic duality – Fermionic duality 2. ”Weakly curved background” Bµν [x] = bµν + 1 Bµνρxρ 3 instead of the flat one Bµν = bµν = const. Noncommutativity and T-duality BSW 2011
  • 3. 1 The action describing the open string propagation in curved background 2 g αβ αβ µ ν S=κ d ξ −g Gµν (x)+ √ Bµν (x) ∂αx ∂β x , Σ 2 −g • xµ(ξ), µ = 0, 1, ..., D − 1 the coordinates of the D-dimentional space-time • ξ α(ξ 0 = τ, ξ 1 = σ) parametrize 2-dim world-sheet • gαβ (ξ) intrinsic world-sheet metric (g = detgαβ ) • background fields – Gµν (x) space-time metric – Bµν (x) Kalb-Ramond antisymmetric field Noncommutativity and T-duality BSW 2011
  • 4. 2 Action principle for string Evolution from the initial to final configuration is such that the action is stationary τf σf S= τi dτ σi dσL(xµ, xµ, x µ, gαβ ) ˙ ∂L ∂L ∂L µ δS = dτ dσ − ∂τ µ − ∂σ µ δx ∂xµ ∂x ˙ ∂x ˙ ∂L µ σ=π + dτ δx ∂ xµ ˙ σ=0 From the action principle we get 1) equation of motion xµ = x ¨ µ − 2B µ xν x ρ, νρ ˙ Bµνρ = ∂µBνρ + ∂ν Bρµ + ∂ρBµν is field strength 2) boundary condition µ µ γ0 δxµ = 0, γ0 ≡ ∂L ∂ xµ ˙ = x µ − 2(G−1B)µν xν ˙ σ=0,π Noncommutativity and T-duality BSW 2011
  • 5. 3 The Boundary conditions • The closed string fulfills the boundary condition because xµ(0) = xµ(π) • For the open string we can impose 1) Neumann boundary condition δxµ , δxµ 0 π are arbitrary i.e. string end-points can move freely 0 0 γµ = 0 , γµ =0 σ=0 σ=π 2) Dirichlet boundary condition δxµ = 0, δxµ =0 σ=0 σ=π The edges of the string are fixed Noncommutativity and T-duality BSW 2011
  • 6. 4 Noncommutativity and effective theory bosonic open string in flat space-time I • We impose Neumann boundary conditions • We treat boundary conditions as constraints 0 • Constraint γµ must be conserved in time 1 ˙0 – Secundary constraint γµ = γµ n ˙ n−1 – Infinite set of constraints γµ = γµ , (n = 1, 2, · · ·) – Two σ -dependent constraints ∞ σn µ Γµ(σ) ≡ n=0 (n)! γn σ=0 ¯ ∞ (σ−π)n µ Γµ(σ) ≡ n=0 (n)! γn σ=π • 2π -periodicity xµ(σ) = xµ(σ + 2π) solve constraint at σ = π ¯ Γµ(σ) = 0 → Γµ(σ) = 0 Noncommutativity and T-duality BSW 2011
  • 7. 5 Noncommutativity and effective theory bosonic open string in flat space-time II • Solving the constraints – In canonical formalism {Γµ(σ), Γν (¯ )} = −κGE δ (σ − σ ) σ µν ¯ For GE = 0 µν Γµ(σ) are SSC – Introduce world-sheet parity Ω Ω : σ → −σ , Ωxµ(σ) → xµ(−σ) and new variables q µ = 1 (1 + Ω)xµ 2 q µ = 1 (1 − Ω)xµ ¯ 2 – Solve Ω odd parts in terms of Ω even ∗ q = f1(q, p), ¯ p = f2(q, p) ¯ ∗ xµ = q µ − 2θ µν dσ1pν , π µ = pµ Noncommutativity and T-duality BSW 2011
  • 8. 5 • Effective action and background fields – S ef f = κ d2ξ 1 η αβ GE ∂αq µ∂β q ν 2 µν – Gµν → Gef f = GE , µν µν Bµν → Bµνf = 0 ef GE ≡ [G − 4BG−1B]µν µν effective metric • Noncommuatativity   −1 σ, σ = 0 ¯ {X µ(σ), X ν (¯ )} = θ µν σ 1 σ, σ = π ¯ .  0 otherwise θ µν ≡ − κ (G−1BG−1)µν 2 E non-commutativity parameter Noncommutativity and T-duality BSW 2011
  • 9. 6 T0-duality of closed string– trivial background • Background: – One spatial dimension is curled up into circle – Remaining dimensions are described as Minkowski space-time – All others background fields vanish, Bµν = 0, Φ = 0 • – x25(σ + π) = x25(σ) + 2πRm, (m ∈ Z) – m– winding number • Consequences of compactification: n – Momentum along circle is quantized, p = R (n ∈ Z), Lost some states – New states that wrap around circle arise, winding states Gained some states Noncommutativity and T-duality BSW 2011
  • 10. 7 Surprising symmetry as stringy property • Mass square of the states n2 m2 R 2 M2 = R2 + + contributions from oscilators α2 • – Complementary behavior of momentum and winding states – M 2(R, n, m) = M 2( α , m, n) R – R ←→ α ˜ ≡ R, n ←→ m, ˜ R — Dual radius R • T0 duality for closed string Compactification with radius R is physically indistinguishable from ˜ Compactification with radius R = α R • T0 dual coordinate – Equation of motion ∂+∂−x = 0 =⇒ x = x+(τ + σ) + x−(τ − σ) – T0 dual coordinate x ≡ x+(τ + σ) − x−(τ − σ) ˜ Noncommutativity and T-duality BSW 2011
  • 11. 8 T-duality – nontrivial background I • – Background fields are independent of the circular coordinate – We take all coordinate to be circular → Gµν , Bµν = const Toroidal duality of all cordinates • Lagrange multiplier method S[y, v+, v−] = 2 µ ν 2 µ µ κ d ξv+(B + 1 G)µν v− + 2 d ξyµ(∂+v− − ∂−v+), – yµ – Lagrange multiplier • Integration over y returns to the original action µ µ µ ∂+v− − ∂−v+ = 0 ⇒ v± = ∂±xµ • Integrating out vector field v± µ v±(y) = −2[θ µν 1 −1 µν κ (GE ) ]∂± yν GE ≡ [G − 4BG−1B]µν , µν θ µν ≡ − κ (G−1BG−1)µν 2 E are the open string background fields: effective metric and non-commutativity parameter Noncommutativity and T-duality BSW 2011
  • 12. 9 T-duality–nontrivial background II • S[∂+y, ∂−y] = 2 d2ξ∂+yµ[θ µν + κ (G−1)µν ]∂+yµ 1 E =κ d2ξ∂+yµ( B + 1 2 G)µν ∂+yµ • Dual background fields B µν = κ θ µν , 2 Gµν = ( κ )2(G−1)µν 2 E • Turn off background fields 2 – Bµν → 0, Gµν → (ηµν , G25,25 = G), κ→ α 2π √ 2π √ – 2πR = 0 ds = G 0 dθ = 2π G ⇒ G = R2 , ˜ G = R2 2 ˜ – G = α G−1 ⇒ RR = α – ∂±x = ±∂±y ⇒ y=x ˜ Noncommutativity and T-duality BSW 2011
  • 13. 10 Relation between T-duality, effective theory and noncommuatativity • T-duality 2 Gµν = α G−1µν , E B µν = α θ µν • Effective theory Gef f = GE µν µν / • Noncommuatativity / θ µν • The same background fields: effective metric – GE ≡ [G − 4BG−1B]µν µν and non-commutativity parameter θ µν ≡ − κ (G−1BG−1)µν 2 E Noncommutativity and T-duality BSW 2011
  • 14. 11 Type II B theory • Type IIB theory in pure spinor formulation 2 1 mn mn µ ν S=κ d ξ η Gµν + ε Bµν ∂m x ∂n x Σ 2 2 α α µ ¯α ¯α µ π 1 αβ + d ξ −πα ∂− (θ + Ψµ x ) + ∂+ (θ + Ψµ x )¯ α + πα F πβ¯ Σ 2κ • Variables ¯ xµ, θ α and θ α • Background fields – NS-NS Gµν , Bµν – NS-R ¯ Ψα, Ψα , gravitinos µ µ – R-R F αβ ∼ A0, A2, A4, dA4-self dual Noncommutativity and T-duality BSW 2011
  • 15. 12 Type II B theory Neumann boundary conditions • Boundary conditions π (0) γi δx i ¯α ¯ α + παδθ + δ θ πα =0 0 (0) j j α ¯ α¯ γi = Π+i I−j + Π−i I+j + παΨi + Ψi πα • For bosonic coordinates Neumann boundary conditions (0) π γi 0 =0 • Fermionic coordinates preserves N=1 SUSY π π α¯α (θ − θ ) = 0 ⇒ (πα1 − πα1 ) ¯ =0 0 0 Noncommutativity and T-duality BSW 2011
  • 16. 13 Type II B theory Neumann b. c., Effective theory and non-commutativity B.Nikoli´ and B. Sazdovi´, Phys. Lett. B666 (2008) 400 c c B. Nikoli´ and B. Sazdovi´, Nucl. Phys. B 836 (2010) 100 c c • Similar method as in bosonic case • Background fields – Ω even corresponds to Type I E Gµν → Gµν 1 α α 1 α −1 α Ψ+µ → (ΨE )µ = Ψ+µ + (BG Ψ−)µ 2 2 αβ αβ αβ −1 αβ Fa → FE = F − (Ψ−G Ψ−) – Ω odd fields vanish Bµν → 0, Ψ− → 0, Fs → 0 • Non-commutativity Ω odd fields are source of non-commutativity µ ν µν {x (σ) , x (¯ )} = 2θ θ(σ + σ ) σ ¯ µ α µα {x (σ) , θ (¯ )} = −θ θ(σ + σ ) σ ¯ α ¯β σ 1 αβ {θ (σ) , θ (¯ )} = θ θ(σ + σ ) ¯ 2 Noncommutativity and T-duality BSW 2011
  • 17. 14 Type II B theory Bosonic TIIBb -dulity • Action has global shift symmetry in bosonic direction Similar method produce dual background fields 2 Gµν = α G−1µν , E B µν = α θ µν ψ− = −2G−1µν (ψE )a aµ E ν aµ ψ+ = 2κθ aµ ab ab a Fa = FE + 4(ψE G−1ψE ) E b ab Fs = 2κθ ab Noncommutativity and T-duality BSW 2011
  • 18. 15 Relation between T-duality, effective theory and noncommuatativity Type II B and bosonic duality • T-duality Effective theory Noncommuatativity Bosonic N bc Ω-symm Ω-antisymm 2 • Gµν = α G−1µν E Gef f = GE µν µν / B µν = α θ µν / θ µν aµ • ψ− = −2(G−1ψE )aµ E (ψef f )a = (ψE )a µ µ / aµ ψ+ = 2κθ aµ / θ aµ • Fa = FE + 4(ψE G−1ψE ) Fef f = FE ab ab a E b ab ab / Fs = 2κθ ab ab / θ ab Noncommutativity and T-duality BSW 2011
  • 19. 16 Type II B theory Fermionic TIIBf -dulity B. Nikoli´ and B. Sazdovi´ c c Fermionic T-duality and momenta noncommutativity hep-th/1103.4520 to be published in Phys. Rev. D • Fermionic T-duality — ¯ Duality with respect to fermionic variables θ a, θ a – Suppose that action has a global shift symmetry in ¯ θ α and θ α directions – Similar procedure as in bosonic case produces TIIBf dual background fields: ¯ Bµν = Bµν + (ΨF −1 ¯ −1 Ψ)µν − (ΨF Ψ)νµ ¯ Gµν = Gµν + 2 (ΨF −1 ¯ −1 Ψ)µν + (ΨF Ψ)νµ Ψαµ = 4(F −1 Ψ)αµ , ¯ ¯ −1 Ψµα = −4(ΨF )µα −1 Fαβ = 16(F )αβ Noncommutativity and T-duality BSW 2011
  • 20. 17 Type II B theory Fermionic TIIBf -dulity and Dirichlet boundary conditions I • T-duality Effective theory and Noncommuatativity BOSONIC ←→ Neumann b.c. for xµ . ¯ SUSY b.c. for θ a, θ a FERMIONIC ←→ ? b.c. • DIRICHLET boundary conditions π π π x µ = 0, θ α = 0, ¯α θ =0 0 0 0 • Solve constraints – odd variables are independent – trivial solution for coordinates, non-trivial for momenta µ µ ν 1 ¯α 1 α x (σ) = q (σ) , ˜ πµ = pµ −2κBµν q − Ψµ (ηa )α + (¯a )α Ψµ ˜ ˜ η 2 2 α α 1 θ (σ) = θa (σ) , πα = pα − (¯a )α ˜ η 2 ¯α ¯α 1 θ (σ) = θa (σ) , ˜ πα = pα − (ηa )α ¯ ¯ 2 where −1 β β µ ¯β ¯ β ˜µ −1 (ηa )α ≡ 4κ(F )αβ (θa +Ψµ q ) , ˜ (¯a )α ≡ 4κ(θa +Ψµ q )(F )βα η Noncommutativity and T-duality BSW 2011
  • 21. 18 Type II B theory Non-commutativity relations • Non-commutativity relations {Pµ(σ), Pν (¯ )}D = Θµν ∆(σ + σ ) , σ ¯ σ ¯ {Pµ(σ), Pα(¯ )}D = Θµα∆(σ + σ ) , ¯ ¯ σ Pµ(σ), Pα(¯ ) D = Θαµ∆(σ + σ ) , ¯ ¯ σ Pα(σ), Pβ (¯ ) D = Θαβ ∆(σ + σ ) , ¯ ¯ ¯ σ {Pα(σ), Pβ (¯ )}D = Pα(σ), Pβ (¯ ) D = 0 , σ where the noncommutativity parameters are Θµν = 2κ Bµν , ¯ µα = κ Ψµα Θ ¯ 2 κ κ Θαµ = − Ψαµ , Θαβ = − Fβα , 2 8 and σ PA(σ) = dσ1πA(σ1) A = {µ, a, a} ¯ 0 Noncommutativity and T-duality BSW 2011
  • 22. 19 Relation between T-duality, effective theory and noncommuatativity Type II B and fermionic duality • T-duality {Γa, Γb} {Pa, Pb} • Gµν Gµν / Bµν / θµν = 2κ Bµν 1 • ψaµ 2 ψaµ θaµ = − κ ψaµ 2 ¯ ψµa 1 ¯ ψµa ¯ θµa = κ ¯ ψµa 2 2 1 • Fab − 8 Fab θab = − κ Fab 8 Noncommutativity and T-duality BSW 2011
  • 23. 20 Bosonic string in weakly curved background • The consistency of the theory – Quantum world-sheet conformal invariance – produce conditions on background fields space-time equations of motion 1 ρσ Rµν − Bµρσ Bν = 0 , 4 ρ DρB µν = 0 – Bµνρ = ∂µBνρ + ∂ν Bρµ + ∂ρBµν is a field strength – Rµν and Dµ Ricci tensor and covariant derivative • We will consider the following particular solution 1 ρ Gµν = const, Bµν [x] = bµν + Bµνρx , 3 – bµν is constant – Bµνρ is constant and infinitesimally small • – We will work up to the first order in Bµνρ – Ricci tensor Rµν is an infinitesimal of the second order and as such is neglected Noncommutativity and T-duality BSW 2011
  • 24. 21 T-duality of weakly curved background (Twcb) Lj. Davidovi´ and B. Sazdovi´ c c T-duality in the weakly curved background in preparation • More complicated procedure then in flat background 2 Gµν = α G−1µν ( x), E B µν = α θ µν ( x) x is Twcb of x and y is T0 dual of y ˜ x = g −1(2by + y ) ˜ Noncommutativity and T-duality BSW 2011
  • 25. 22 Effective theory and non-commutativity in weakly curved background Lj. Davidovi´ and B. Sazdovi´ c c Phys. Rev. D 83 (2011) 066014 Lj. Davidovi´ and B. Sazdovi´, c c Non-commutativity parameters depend not only on the effective coordinate but on its T-dual as well hep-th/1106.1064 to be published in JHEP • Similar procedure but much more complicated calculation • Effective background fields Gef f (u) = GE (u), µν µν Bµνf = − κ (gθ(u)g)µν ef 2 u = q + 2b˜ q • Non-commutativity parameter – Nontrivial both at string endpoints and at string interior – Depends on the σ -integral of the effective momenta σ Pµ(σ) = 0 dηpµ(η) which is in fact T0-dual of the effective coordinate, Pµ = κgµν q ν . ˜ Noncommutativity and T-duality BSW 2011
  • 26. 23 Relation between Twcb-duality, effective theory and noncommuatativity • Twcb-duality Effective theory Noncommuatativity Dual background fields 2 Gµν = α G−1µν ( x) E Gef f = GE (u) µν µν / B µν = α θ µν ( x) / θ µν (v) Dual variables 3 ˜ x = g −1(2by+ y ) ˜ u = q+2b˜ q v = q− π bQcm Noncommutativity and T-duality BSW 2011