SlideShare una empresa de Scribd logo
1 de 95
Descargar para leer sin conexión
On Integrable Systems in Cosmology
                       Dimitar Mladenov
 Theoretical Physics Department, Faculty of Physics, Sofia University

• Dynamics on Lie groups
• Geodesic flow on GL(n, R) group manifold
• Homogeneous cosmological models

Faculty of Science and Mathematics, University of Niˇ,
                                                    s
Niˇ, Serbia, 7 December 2011
  s
                             2   1/95   ¹
CMS models

More than thirty five years after the famous paper of

Francesco Calogero
Solution of the one-dimensional n-body problem with quadratic
and/or inversely quadratic pair potentials
Journal of Mathematical Physics 12 (1971) 419-436

Bill Sutherland
Physical Review A 1971, 1972

J¨ rgen Moser
 u
Adv. Math. 1975
                         ´     2/95   ¹
CMS models

The Calogero-Sutherland-Moser type system which con-
sists of n-particles on a line interacting with pairwise po-
tential V (x) admits the following spin generalization

                    1 n 2 1 n
           HECM =        p +      fab fba V (xa − xb )
                    2 a=1 a 2 a=b




                       ´      3/95    ¹
CMS models
The Euler-Calogero-Sutherland-Moser type systems are
integrable in the following cases
            I.   V(z) = z −2      Calogero
             II.    V(z) = a2 sinh−2 az
             III.   V(z) = a2 sin−2 az     Sutherland
             IV.    V(z) = a2 ℘(az)
          V. V(z) = z −2 + ωz 2          Calogero
The nonvanishing Poisson bracket relations
        {xi , pj } = δij , {fab , fcd } = δbc fad − δad fcb

                           ´      4/95    ¹
Dynamics on Lie groups
Let G be a real Lie group and A(G) be its Lie algebra. The
action of the Lie group G in its group manifold is given by
the following diffeomorphisms
     Lg : G −→ G     Lg h = gh
     Rg : G −→ G     Rg h = hg     h, g ∈ G
The adjoint and coadjoint actions are
     Adg : A(G) −→ A(G)   Adgh = Adg Adh
     Ad∗ : A(G) −→ A(G)
       g                  Ad∗ = Ad∗ Ad∗
                            gh     h   g




                      ´     5/95   ¹
Dynamics on Lie groups
The Lie-Poisson brackets are

     {F, H} = x, [ F (x), H(x)]  ,
                     ∂F ∂H
                 k
     {F, H} = Cij xk         , x ∈ A∗ (G)
                     ∂xi ∂xj
The left and right invariant 1-forms obey the First structure
Cartan equation
     dω L + ω L ∧ ω L = 0 ,
     dω R − ω R ∧ ω R = 0



                          ´   6/95   ¹
Dynamics on Lie groups

The geodesic flow on the matrix Lie group G is described
by the map

                        t −→ g(t) ∈ G
and by the Lagrangian
                    1
               L=      ω, ω ,      ω ∈ A(G)
                    2
In local coordinates we have
                           1
                      L=     Gµν X µ X ν
                           2
                      ´      7/95    ¹
Dynamics on Lie groups

The phase space is the cotangent bundle T ∗ (G) with
canonical symplectic structure

                           Ω = d(Pµ dX µ )


          {X µ , X ν } = 0 , {Pµ , Pν } = 0 , {X µ , Pν } = δν
                                                             µ




and Hamiltonian
                                1 µν
                          H=      G Pµ Pν
                                2
                          ´       8/95     ¹
Dynamics on Lie groups
Let us define the functions

                         ξµ = ΩL,R
                          L,R         ν
                                       µ Pν

such that
                       ξµ = Adν ξν
                        R
                               µ
                                 L

with Poisson bracket relations
       R R            γ R
     {ξα , ξβ } = − Cαβ ξγ ,
       L L          γ R
     {ξα , ξβ } = Cαβ ξγ ,
       R R
     {ξα , ξβ } = 0

                          ´    9/95     ¹
Geodesic flow on GL(n, R) group manifold
Let us consider the Lagrangian
                     1
                L=      ω, ω ,      ω ∈ gl(n, R)
                     2
 which is defined by the following one parameter family of
non-singular metrics on GL(n, R) group manifold
                                       α
             X , Y = TrXY −               TrX TrY ,
                                     αn − 2
where X, Y ∈ gl(n, R) and α ∈ [0, 1]

                       ´     10/95      ¹
Geodesic flow on GL(n, R)
Thus we have

           1             2          α
     L=      tr g −1 g
                     ˙       −             tr2 g −1 g =
                                                    ˙
           2                     2(αn − 2)
         1 −1
     =    G      gab gcd
                 ˙ ˙
         2 ab,cd
Here g ∈ GL(n, R) and
                         α
     Gab,cd = gad gcb −    gab gcd ,
                         2
                             α
     G−1
      ab,cd
                 −1 −1
              = gda gbc −          g −1 g −1
                          αn − 2 ba dc

                                 ´    11/95    ¹
Geodesic flow on GL(n, R)
The invariance of the Lagrangian under the left and right
translations leads to the possibility of explicit integration
of the dynamical equations
             d −1
                g g = 0 ⇒ g(t) = g(0) exp (tJ)
                  ˙
             dt
The canonical Hamiltonian corresponding to the bi-invariant
Lagrangian L is
             1            2       α 2 T     1
        H=     tr π T g       −     tr π g = Gab,cd πab πcd
             2                    4         2


                          ´         12/95   ¹
Geodesic flow on GL(n, R)
The nonvanishing Poisson brackets between the fundamen-
tal phase space variables are
                     {gab , πcd } = δab δcd
At first we would like to analyze the following symmetry
action on SO(n, R) in GL(n, R)
                        g → g = Rg
It is convenient to use the polar decomposition for an arbi-
trary element of GL(n, R)
                           g = OS


                      ´       13/95    ¹
Geodesic flow on GL(n, R)
The orthogonal matrix O(φ) is parameterized by the Euler
angles (φ1 , · · · , φ n(n−1) ) and S is a positive definite symmetric
                          2
matrix

We can treat the polar decomposition as 1 − 1 transforma-
tion from n2 variables g to a new set of Lagrangian variables:

                           g −→ (Sab , φa ) ,
      n(n−1)                      n(n+1)
the      2
               Euler angles and      2
                                            symmetric matrix variables
Sab
                           ´        14/95     ¹
Geodesic flow on GL(n, R)
In terms of these new variables the Lagrangian can be
rewritten as
                        1             ˙        2
                LGL = tr ΘL + S S −1
                        2
The polar decomposition induces a canonical transforma-
tion
                (g, π) −→ (Sab , Pab ; φa , Pa )

The canonical pairs obey the Poisson bracket relations
                       1
      {Sab , Pcd } =     (δac δbd + δad δbc ) ,    {φa , Pb } = δab
                       2

                             ´       15/95    ¹
Geodesic flow on GL(n, R)
In the case of GL(3, R) the orthogonal matrix is given by
O(φ1 , φ2 , φ3 ) = eφ1 J3 eφ2 J1 eφ3 J3 ∈ SO(3, R). The canonical trans-
formation is given by

                     (g, π) −→ (Sab , Pab ; φa , Pa ) ,

where
      π = O (P − ka Ja ) ,
            −1  L
      ka = γab ηb − εbmn (SP )mn

and
                          γik = Sik − δik trS
                             ´      16/95    ¹
Geodesic flow on GL(n, R)

      L
Here ηa are three left-invariant vector fields on SO(3, R)

      L     sin φ3
     η1 = −        P1 − cos φ3 P2 + cot φ2 sin φ3 P3 ,
            sin φ2
      L     cos φ3
     η2 = −        P1 + sin φ3 P2 + cot φ2 cos φ3 P3 ,
            sin φ2
      L
     η3 = −P3




                         ´      17/95   ¹
Geodesic flow on GL(n, R)

The right-invariant vector fields are

      R                                   sin φ1
     η1 = − sin φ1 cot φ2 P1 + cos φ1 P2 +       P3 ,
                                          sin φ2
       R                                 cos φ1
     η2 = cos φ1 cot φ2 P1 + sin φ1 P2 −        P3 ,
                                         sin φ2
       R
     η 3 = P1




                        ´      18/95   ¹
Geodesic flow on GL(n, R)

In terms of the new variables the canonical Hamiltonian
takes the form
           1           α           1
        H = tr (P S)2 − tr2 (P S) + tr (Ja SJb S) ka kb
           2           4           2


The canonical variables (Sab , Pab ) are invariant while (φa , Pa )
undergo changes



                         ´      19/95   ¹
Geodesic flow on GL(n, R)

The configuration space S of the real symmetric 3 × 3 ma-
trices can be endowed with the flat Riemannian metric

                ds2 = dQ , dQ = Tr dQ2 ,


whose group of isometry is formed by orthogonal trans-
formations Q = RT Q R. The system is invariant under the
orthogonal transformations S = RT S R. The orbit space is
given as a quotient space S/SO(3, R) which is a stratified
manifold

                     ´     20/95   ¹
Geodesic flow on GL(n, R)

(1) Principal orbit-type stratum,
     when all eigenvalues are unequal x1  x2  x3
     with the smallest isotropy group Z2 ⊗ Z2
(2) Singular orbit-type strata
     forming the boundaries of orbit space with
    (a) two coinciding eigenvalues (e.g. x1 = x2 ) ,
        when the isotropy group is SO(2) ⊗ Z2
    (b) all three eigenvalues are equal (x1 = x2 = x3 ) ,
        here the isotropy group coincides with the isometry
        group SO(3, R)

                      ´     21/95   ¹
Geodesic flow on GL(n, R)

          Hamiltonian on the Principal orbit
To write down the Hamiltonian describing the motion on
the principal orbit stratum we use the main-axes decompo-
sition in the form

                        S = RT (χ)e2X R(χ) ,

where R(χ) ∈ SO(3, R) is parametrized by three Euler angles
χ = (χ1 , χ2 , χ3 ) and e2X is a diagonal e2X = diag e2x1 , e2x2 , e2x3


                           ´     22/95    ¹
Geodesic flow on GL(n, R)

The original physical momenta Pab are expressed in terms
of the new canonical pairs

               (Sab , Pab ) −→ (xa , pa ; χa , Pχa ) ,

where
                            3              3
          P = RT e−X            ¯ ¯
                                Pa αa +         Pa αa e−X R
                         a=1              a=1




                        ´        23/95     ¹
Geodesic flow on GL(n, R)
with

       ¯    1
       Pa = pa ,
            2
                      R
              1      ξa
       Pa = −                  ,           (cyclic a = b = c)
              4 sinh(xb − xc )
In the representation we introduce the orthogonal basis for
the symmetric 3×3 matrices αA = (αi , αi ), i = 1, 2, 3 with the
scalar product

    tr(¯ a αb ) = δab ,
       α ¯                tr(αa αb ) = 2δab ,      tr(¯ a αb ) = 0
                                                      α


                            ´      24/95       ¹
Geodesic flow on GL(n, R)

In this case the SO(3, R) right-invariant Killing vector fields
are
      R
     ξ1 = −pχ1 ,
      R                                     sin χ1
     ξ2 = sin χ1 cot χ2 pχ1 − cos χ1 pχ2 −          pχ ,
                                            sin χ2 3
      R                                        cos χ1
     ξ3 = − cos χ1 cot χ2 pχ1   − sin χ1 pχ2 +         p χ3
                                                sin χ2




                        ´       25/95    ¹
Geodesic flow on GL(n, R)
After passing to these main-axes variables the canonical
Hamiltonian reads
                                          2
        1 3 2      α           3
     H=       pa −                 pa
        8 a=1      16       a=1
                                                            2
        1             (ξa )2
                        R
                                    1       Rab ηb + 1 ξa
                                                 L
                                                      2
                                                        R
     +                2           −
       16   (abc) sinh (xb − xc )
                                    4 (abc) cosh2 (xb − xc )

The integrable dynamical system describing the free motion
on principal orbits represents the
Generalized Euler-Calogero-Moser-Sutherland model
                           ´            26/95   ¹
Geodesic flow on GL(n, R)

         Reduction to Pseudo-Euclidean
          Euler-Calogero-Moser model
We demonstrate how IIA2 Euler-Calogero-Moser-Sutherland
type model arises from the Hamiltonian after projection
onto a certain invariant submanifold determined by dis-
crete symmetries. Let us impose the condition of symmetry
of the matrices g ∈ GL(n, R)
                     (1)
                    ψa = εabc gbc = 0


                     ´     27/95   ¹
Geodesic flow on GL(n, R)

One can check that the invariant submanifold of T ∗ (GL(n, R))
is defined by
                              (1)  (2)
                      ΨA = (ψa , ψa )


and the dynamics of the corresponding induced system is
governed by the reduced Hamiltonian
                          1            α
              H|ΨA =0 =     tr (P S)2 − tr2 (P S)
                          2            4


                       ´      28/95   ¹
Geodesic flow on GL(n, R)

The matrices S and P are now symmetric and nondegener-
ate.

It can be shown that
               3
                           α                    1           (ξa )2
                                                               R
   HP ECM =         p2 −
                     a       (p1 + p2 + p3 )2 +
              a=1          2                    2 (abc) sinh2 (xb − xc )

which is a Pseudo-Euclidean version of the Euler-Calogero-
Moser-Sutherland model.


                             ´       29/95   ¹
Geodesic flow on GL(n, R)
After the projection the Poisson structure is changed ac-
cording to the Dirac prescription
                                         −1
          {F, G}D = {F, G}P B − {F, ψA }CAB {ψB , G}

To verify this statement it is necessary to note that the
                         (1)  (2)
Poisson matrix CAB = {ψa , ψb } is not degenerate. The
resulting fundamental Dirac brackets between the main-
axes variables are
                          1                                  1
          {xa , pb }D =     δab ,           {χa , pχb }D =     δab
                          2                                  2

                          ´         30/95      ¹
Geodesic flow on GL(n, R)
The Dirac bracket algebra for the right-invariant vector
fields on SO(3, R) reduces to

                      R R             1       R
                    {ξa , ξb }D =       εabc ξc .
                                      2

All angular variables are gathered in the Hamiltonian in
                                   L
three left-invariant vector fields ηa . The corresponding right-
                  R        L
invariant fields ηa = Oab ηb are the integrals of motion
                        R
                      {ηa , HP ECM } = 0

                       ´      31/95        ¹
Geodesic flow on GL(n, R)
Thus the surface on the phase space, determined by the
constraints
                         R
                        ηa = 0

defines the invariant submanifold. Using the relation be-
                                              R        L
tween left and right-invariant Killing fields ηa = Oab ηb we
find out that after projection to the constraint surface the
Hamiltonian reduces to
                3
                           α                                (ξa )2
                                                              R
   4 HP ECM =       p2 −
                     a       (p1 + p2 + p3 )2 +           2
                                                (abc) sinh 2(xb − xc )
                a          2

                            ´      32/95    ¹
Geodesic flow on GL(n, R)

Apart from the integrals η R the system possesses other inte-
grals. The integrals of motion corresponding to the geodesic
motion with respect to the bi-invariant metric on GL(n, R)
group are
                         Jab = (π T g)ab
 The algebra of this integrals realizes on the symplectic level
the GL(n, R) algebra

                   {Jab , Jcd } = δbc Jad − δad Jcb



                         ´       33/95    ¹
Geodesic flow on GL(n, R)
After transformation to the scalar and rotational variables
the expressions for the current J reads
                       3
                  1
               J=           RT (pa αa − ia αa − ja Ja ) R ,
                                   ¯
                  2   a=1

where
               1 R                        L  1 R
  ia =           ξa coth(xb − xc ) + Ram ηm + ξa tanh(xb − xc )
         (abc)
               2                             2

and
                                      L    R
                            ja = Ram ηm + ξa
                            ´       34/95   ¹
Geodesic flow on GL(n, R)

After performing the reduction to the surface defined by
the vanishing integrals

                         ja = 0



we again arrive at the same Pseudo-Euclidean version of
Euler-Calogero-Moser-Sutherland system.



                     ´    35/95   ¹
Geodesic flow on GL(n, R)

  Lax representation for the Pseudo-Euclidean
         Euler-Calogero-Moser model
The Hamiltonian equations of motion can be written in a
Lax form
                       ˙
                      L = [A, L] ,


where the 3 × 3 matrices are given explicitly as



                      ´     36/95   ¹
Geodesic flow on GL(n, R)

                                                                                             
      p1 −   α
             2   (p1 + p2 + p3 )                  L+ ,
                                                   3                          L−
                                                                               2
                                                                                             
L=               L− ,             p2 −   α
                                                                              L+
                                                                                             
                   3                      2    (p1 + p2 + p3 )                 1              
                                                                                             
                  L+ ,
                   2                              L− ,
                                                   1             p3 −   α
                                                                        2   (p1 + p2 + p3 )

                                                            
                                          0       −A3 , A2
                               1              
                         A=      A3 , 0, −A1 
                                              
                               4              
                                  −A2 , A1 , 0

                               ´              37/95      ¹
Geodesic flow on GL(n, R)

Entries Aa and L± are given as
                a

           1 R                          1 R
     L± = − ξa coth(xb − xc ) − Ram ηm + ξa tanh(xb − xc )
      a
                                     L
           2                            2
            L    R
     ± Ram ηm + ξa ,


          1         R
                   ξa         Ram ηm + 1 ξa
                                    L
                                        2
                                           R
     Aa =                   −
          2 sinh2 (xb − xc ) cosh2 (xb − xc )



                        ´      38/95   ¹
Geodesic flow on GL(n, R)

Singular orbits. The case of GL(3, R) and GL(4, R)
The motion on the Singular orbit is modified due to the
continuous isotropy group. This symmetry of dynamical
system is encoded in constraints on phase space variables
           1                     1
     ψ1 = √ (x2 − x3 ) ,   ψ2 = √ (p2 − p3 ) ,
            2                     2
           R    R                  R
     ψ3 = ξ2 − ξ3 ,         ψ4 = ξ1



                       ´   39/95   ¹
Geodesic flow on GL(n, R)
One can check that this surface represents the invariant
submanifold. These constraints are the second class in the
Dirac terminology hence we have to replace the Poisson
brackets by the Dirac ones
                                      1
     {x1 , p1 }D = 1 ,   {xi , pj }D =   ,       i, j = 2, 3 ,
                                      2
       R R
     {ξa , ξb }D = 0 ,      a, b = 1, 2, 3




                           ´      40/95      ¹
Geodesic flow on GL(n, R)
As a result we obtain

             (2)         1 2 1 2            g2
            HGL(3,R) =     p1 + p2 +
                         2     4     sinh2 (x1 − x2 )

This is an integrable mass deformation of the
IIA1 Calogero-Moser-Sutherland model.

The Lax pair for system can be obtained from the L and
A matrices letting η R = 0 and projecting on the constraint
shell

                         ´     41/95   ¹
Geodesic flow on GL(n, R)
                                                  
                     1
                      p,
                     2 1
                                R
                              −ξ2 L+ ,      R
                                          −ξ2 L+   
                                                  
  (2)            R −            1
 LGL(3,R)   =    ξ2 L ,           p
                                 2 2
                                            0
                                                   
                                                   
                                                  
                                                  
                    ξ2 L− ,
                     R
                                 0,        1
                                             p
                                           2 2

                                                  
                                       0 −1, 1 
                    R
 (2)               ξ2                  
AGL(3,R) =                    1, 0, 0 
                                       
                 2
             sinh (x1 − x2 ) 
                                       
                                        
                               −1, 0, 0

                ´        42/95        ¹
Geodesic flow on GL(n, R)

Here

       L− := (1 − coth(x1 − x2 )) ,
       L+ := (1 + coth(x1 − x2 ))




                          ´      43/95   ¹
Geodesic flow on GL(n, R)
Consider the case of GL(4, R) group restricted on the Sin-
gular orbit with equal eigenvalues x3 = x4 . The invariant
submanifold is fixed by the five constraints
             1
     ψ1 := √ (x3 − x4 ) ,
              2
             1
     ψ2 := √ (p3 − p4 ) ,
              2
            R
     ψ3 := l34 ,
            R     R
     ψ4 := l13 − l14 ,
            R     R
     ψ5 := l23 − l24

                      ´    44/95   ¹
Geodesic flow on GL(n, R)

The Poisson matrix {ψm , ψn } , m, n = 1, . . . , 5 is degenerate
with rank {ψm , ψn } = 4. To find out the proper gauge and
simplify the constraints it is useful to pass
        R
       lab = ya πb − yb πa ,       {ya , πb } = δab ,   a, b = 1, . . . , 4

and choose the following gauge-fixing condition
                              1
                        ψ := √ (y3 − y4 ) = 0
                               2


                               ´       45/95    ¹
Geodesic flow on GL(n, R)

Finally the reduced phase space corresponding to the Sin-
gular orbit is defined by the set of four second class con-
straints {ψ, Π, ψ, Π}
          1                                  1
     ψ := √ (x3 − x4 ) = 0 ,           Π := √ (p3 − p4 ) = 0 ,
           2                                  2
          1                                 1
     ψ := √ (y3 − y4 ) = 0 ,           Π := √ (π3 − π4 ) = 0 ,
           2                                  2




                       ´       46/95       ¹
Geodesic flow on GL(n, R)

This set of constraints form an invariant submanifold of the
phase space under the action of the discrete permutation
group S2
                                                                      
          xi          xS(i)                     yi          yS(i) 
                    →              ,                      →              ,
             pi            pS(i)                       πi            πS(i)

where i = 3, 4.



                              ´            47/95        ¹
Geodesic flow on GL(n, R)

These constraints form the canonical set of second class
constraints with non-vanishing Poisson brackets

                   {ψ, Π} = 1 ,              ¯
                                            {ψ, Π} = 1


and thus the fundamental Dirac brackets for canonical vari-
ables are
                       1                         1
       {xi , pj }D =     ,       {yi , πj }D =     ,     i, j = 1, 2
                       2                         2

                             ´      48/95     ¹
Geodesic flow on GL(n, R)
The system reduces to the following one

       (3)       1 2 1 2 1 2
     HGL(4,R) =     p + p + p
                 2 1 2 2 4 3
             (l12 )2
               R
                                   (l13 )2
                                     R
                                                        (l23 )2
                                                          R
     +                     +                    +
       16 sinh2 (x1 − x2 )   8 sinh2 (x1 − x3 )   8 sinh2 (x2 − x3 )

with the Poisson bracket algebra

     {xr , ps } = δrs ,
       R     R           R         R         R         R
     {lpq , lrs } = δps lqr − δpr lqs + δqs lpr − δqr lps , p, q, r, s = 1, 2, 3


                              ´       49/95     ¹
Geodesic flow on GL(n, R)

In this case L and A matrices are the well-known matrices
for the spin Calogero-Sutherland model
           1                    R
     Lij = pi δij − (1 − δij )lij Φ(xi − xj ) ,
           2
                       R
     Aij = −(1 − δij )lij V (xi − xj ) ,

where
                                                         1
           Φ(x) = coth(x) + 1 ,           V (x) =
                                                    2 sinh2 (x)

                           ´      50/95     ¹
Geodesic flow on GL(n, R)
After projection to the invariant submanifold correspond-
ing to the motion on the Singular orbits we arrive at the
Lax matrices

                                                                  
                          1          R          R          R
                           p,
                          2 1
                                   −l12 Φ12 , −l13 Φ13 , −l13 Φ13 
                                                                  
                        R            1            R          R
                     −l12 Φ12 ,       p,       −l23 Φ23 , −l23 Φ23 
                    
        (3)                          2 2                            
       LGL(4,R) =                                                 
                     −lR Φ ,        R              1
                                                                  
                     13 13        −l23 Φ23 ,         p,
                                                    2 3
                                                             0     
                                                                   
                                                                  
                          R          R                      1
                        −l13 Φ13 , −l23 Φ23 ,       0,        p
                                                            2 3



                            ´       51/95       ¹
Geodesic flow on GL(n, R)

                                                               
                              R              R         R
                0,          l12 V12 ,      l13 V13 , l13 V13   
                                                               
                 R                           R         R
              −l12 V12            0,       l23 V23 , l23 V23
                                                               
 (3)                                                            
AGL(4,R) =                                                     
              −lR V ,        R
                                                               
              13 13        −l23 V23 ,         0,       0       
                                                                
                                                               
                   R          R
                 −l13 V13 , −l23 V23 ,         0,       0




                  ´        52/95        ¹
Geodesic flow on gl(n, R)
Consider the Lagrangian represented by the left-invariant
metric
                 1    ˙ ˙
             L =  A , A , A ∈ GL(n, R)
                 2
which is defined on gl(n, R) algebra

           X , Y = Tr X T Y ,      X, Y ∈ gl(n, R)




                      ´      53/95   ¹
Geodesic flow on gl(n, R)

The obviously conserved angular momentum
                                    ˙
                           µ = [A , A]


leads to the possibility to integrate the equations of motion
 ¨
A = 0 in the form A = at + b. The canonical Hamiltonian cor-
responding to L is
                            1                2
                      H=      tr P T P
                            2

                       ´      54/95      ¹
Geodesic flow on gl(n, R)
The nonvanishing Poisson brackets between the fundamen-
tal phase space variables are

                      {Aab , Pcd } = δab δcd
Using the same machinery as in the previous case we obtain
the Hamiltonian
                                                              2
                                                   L   1 R
       1 3 2      1           (ξa )2
                                R             Rab ηb + 2 ξa
    H=       pa +                      +                          ,
       2 a=1      4   (abc)
                            (xb − xc )2 (abc)  (xb − xc )2

which is a generalization of the
rational Euler-Calogero-Moser-Sutherland model
                        ´      55/95    ¹
Geodesic flow on gl(n, R)

After reduction on the invariant submanifold defined by the
equations η R = 0 we obtain the Hamiltonian

         1 3 2      1                       1              1
      H=       pa +         (ξa )2
                              R
                                                   2
                                                     +
         2 a=1      4   (abc)
                                        (xb − xc )     (xb − xc )2


which coincides with the Hamiltonian of the
ID3 Euler-Calogero-Moser-Sutherland model


                        ´       56/95       ¹
Geodesic motion on GL(n, R)
Forty years after the famous papers of
M. Toda
Journal of Physical Society of Japan 20 (1967) 431
Journal of Physical Society of Japan 20 (1967) 2095
The Hamiltonian of the non-periodic Toda lattice is

                    1 n 2         n−1
         HN P T =        p + g2         exp [2(xa − xa+1 )] ,
                    2 a=1 a       a=1

and the Poisson bracket relations are
                     {xi , pj } = δij .

                        ´     57/95       ¹
Geodesic motion on GL(n, R)
The equations of motion for the non-periodic Toda lattice
are
     xa = pa , a = 1, 2, . . . , n ,
     ˙
     pa = −2 exp [2(xa − xa+1 )] + 2 exp [2(xa−1 − xa )] ,
     ˙
     p1 = −2 exp [2(x1 − x2 )] ,
     ˙
     pn = −2 exp [2(xn−1 − xn )] ,
     ˙

and for the periodic Toda lattice
     xa = p a ,
     ˙
     pa = 2 exp [2(xa−1 − xa )] − exp [2(xa − xa+1 )] .
     ˙


                          ´      58/95   ¹
Geodesic motion on GL(n, R)

Further for simplicity we put kab = 0 and α = 0.

We use the Gauss decomposition for the positive-definite
symmetric matrix S

                                     S = Z D ZT .




                      ´     59/95   ¹
Geodesic motion on GL(n, R)

Here D = diag x1 , x2 , . . . xn is a diagonal matrix with posi-
tive elements and Z is an upper triangular matrix
                                            
                           1 z12   . . . z1n 
                                             
                          0 1      . . . z2n 
                          
                                              
                     Z=   . .
                          
                                    .. .  .
                                              
                          . .          . . 
                          . .             . 
                                            
                              0 0 ... 1



                        ´       60/95    ¹
Geodesic motion on GL(n, R)
The differential of the symmetric matrix S is given by

               dS = Z dD + DΩ + (DΩ)T Z T ,

 where Ω is a matrix-valued right-invariant 1-form defined
by
                       Ω := dZZ −1 .

In the Lie algebra gl(n, R) of n×n real matrices we introduce
Weyl basis with elements

                       (eab )ij = δai δbj ,

                       ´       61/95    ¹
Geodesic motion on GL(n, R)
which are n × n matrices in the form
                       
                                  .
                                  .
                                     
                                 .                     
                                                       
                              . . .   ... ... 1   . . .
                                                       
                                                       
                                              .
                                               .
                                                        
                      eab =   
                                              .        
                                                           .
                                               .
                                                       
                              
                                              .
                                               .
                                                        
                                                        
                                                       
                                              .
                                               .
                                                        
                                               .
The scalar product in gl(n, R) is defined by
               (eab , ecd ) = tr(eT , ecd ) = δac δbd .
                                  ab


                            ´          62/95   ¹
Geodesic motion on GL(n, R)

Let us introduce also the matrices
                                              
                         0    ... ... ... 0
                         .                .
                         .    ...         .
                         .                .
                                           
                         .                .
                  αa =
                  ¯      .                .
                         .         1      .
                         .            .. . 
                                           
                         .                .
                                         . .
                         .
                                              
                             0 ... ... ... 0



                      ´        63/95    ¹
Geodesic motion on GL(n, R)

and           
                        .
                        .         .
                                  .
                                          
                       .         .         
                                           
              . . .   ... ...     1   . . .
                                           
                                           
                       .
                        .          .
                                   .
                                            
      αab =   
                       .          .        
                                               .
                                   .
                                           
                               ... .
                                           
              . . .    1          .   . . .
                                           
                       .
                        .          .
                                   .
                                            
                        .          .



          ´            64/95       ¹
Geodesic motion on GL(n, R)

with scalar product is defined by

     (¯ a , αb ) = tr(¯ a αb ) = δab ,
      α ¯             α ¯
     (αab , αcd ) = tr(αab αcd ) = 2 (δad δbc + δac δbd ) ,
     (¯ a , αbc ) = tr(¯ a αbc ) = 0 .
      α                α




                            ´      65/95    ¹
Geodesic motion on GL(n, R)

Now we can write the differential of the matrix S in the
form                                   
                      n                 n
          dS =   Z       dxa αa +
                              ¯              xa Ωab αab  Z T .
                  a=1                ab=1
Here Ωab are the coefficients of the matrix Ω

                          Ω=         Ωab eab .
                               ab




                          ´     66/95        ¹
Geodesic motion on GL(n, R)

In the case of Gauss decomposition of the symmetric matrix
S = ZDZ T the corresponding momenta we seek in the form
                                                     
                           n             n
          P = (Z T )−1        ¯ ¯
                               Pa αa +         Pab αab  Z −1 .
                       a=1               ab




                       ´         67/95       ¹
Geodesic motion on GL(n, R)
From the condition of invariance of the symplectic 1-form
                               n                 n
              tr (P dS) =          pa dxa +             pab dzab ,
                            i=1                 ab=1

 where the new canonical variables (xa , pa ) , (zab , pab ) obey
the Poisson bracket relations

             {xa , pb } = δab ,         {zab , pcd } = δac δbd ,

we obtain
                     ¯                               lab
                     Pa = pa ,               Pab =       .
                                                     2xa
                           ´         68/95       ¹
Geodesic motion on GL(n, R)

Here lab are right-invariant vector fields on the group of
upper triangular matrices with unities on the diagonal
                                    T
                    lab = Ω−1               pcd ,
                                    ab,cd

 where Ωab,cd are coefficients in the decompositions of the
1-forms Ωab in coordinate basis

                     Ωab = Ωab,cd dzcd ,



                      ´     69/95           ¹
Geodesic motion on GL(n, R)

The canonical Hamiltonian in the new variables takes the
form
                 1 n 2 2 1 n 2 xa
              H=      p x +        l     .
                 2 a=1 a a 4 ab=1 ab xb




                     ´    70/95   ¹
Geodesic motion on GL(n, R)

After the canonical transformation

                         xa = eya ,               pa = πa e−ya

 we arrive to Hamiltonian in the form of
spin nonperiodic Toda chain
                     n                    n
                 1                1
              H=            2
                           πa   +                lab eya −yb .
                                                  2
                 2   a=1          4      ab=1




                      ´          71/95        ¹
Geodesic motion on GL(n, R)
The explicit form of the generators of the group of upper
triangular matrices is
                         n                                       n
         l12 = p12 +          z2k p1k ,           l13 = p13 +         z2k p1k .
                        k=2                                     k=2

The internal variables satisfy the Poison bracket relations

    {lab , lcd } = C efab,cd lef                                                  (1)

with structure coefficients

    C efab,cd = δbc δae δdf .                                                     (2)
                                ´         72/95      ¹
1.     Homogeneous cosmological models

1.1.    Spacetime decomposition


Let (M, g) be a smooth four-dimensional paracompact and
Hausdorf manifold. In each point of the open set U ⊂ M we
propose that are defined the local basis of 1-forms and its
dual basis


         {ω µ , µ = 0, 1, 2, 3}           {eν , ν = 0, 1, 2, 3}
                         ´        73/95      ¹
such that
                         [eα , eβ ] = C µαβ eµ ,
where C µαβ   are the basis structure functions. The symmetric
metric is

               g = gµν ω µ ⊗ ω ν ,           g −1 = g µν eµ ⊗ eν


We suppose that on the manifold (M, g) is defined affine
connection

               Γµν = Γµνα ω α ⇐⇒ Γµβα = ω µ ,            eα eβ



In manifold with affine connection we can construct the
                            ´        74/95       ¹
bilinear antisymmetric mapping

              T (X, Y ) =   X   Y −     Y   X − [X , Y ]

The First Cartan structure equation is
                                             1 µ
                   dω µ + Γµα ∧ ω α =          T
                                             2
The tensor type (1, 3) defined by

             R(ω, Z, X, Y ) = ω, R( X, Y )Z

is called the curvature tensor, where

            R( X, Y ) =     X   Y   −   Y    X   −[   X,   Y]
                       ´        75/95       ¹
If we define the curvature 2-form Ωµν by

                  Ωµν = dΓµν + Γµα ∧ Γαν

one can obtain the Second structure Cartan equation
                          1 µ
                  Ωµν =    R    ωα ∧ ωβ
                          2 ναβ

In the Riemannian geometry the commutator of two vector
fields is given by

                  [X, Y ] =     X     Y −       Y   X

and for every vector field X we have the condition       Xg   = 0.
                      ´       76/95         ¹
The connection and the Riemann tensor in the noncoordi-
nate basis {eν } are given with

            1
     Γµαβ = g µσ (eα gβσ + eβ gασ − eσ gαβ )
            2
       1 µσ                        1
     − g (gαρ C ρβσ + gβρ C ρασ ) − C µαβ ,
       2                           2
     Rσαµν = eµ Γσαν − eν Γσαµ + Γραν Γσρµ − Γραµ Γσρν − Γσαρ C ρµν ,

where C µαβ = Γµβα − Γµαβ .

Hereinafter we suppose that

                          M = T1 × Σt
                         ´      77/95   ¹
Let us introduce the noncoordinate basis of vector fields
{e⊥ , ea }

     [e⊥ , ea ] = C ⊥ e⊥ + C d⊥a ed ,
                     ⊥a
                   d
     [ea , eb ] = C ab ed ,

with the structure functions

                                          1
         C ⊥ = ea lnN,
            ⊥a                  C d⊥a =     (N b C dab + ea N d )
                                          N

The metric in the corresponding dual basis {θ⊥ , θa }

                    g = −θ⊥ ⊗ θ⊥ + γab θa ⊗ θb ,
                           ´      78/95    ¹
where γ is the induced metric on the submanifold Σt . The
components of the vector field X0 in this basis

                       X0 = N e⊥ + N a ea

are the Lagrange multipliers in ADM scheme which can be
                                                  ∂     ∂
obtained if we pass to the coordinate basis {X0 = ∂t , ∂xa }

    g = − N 2 − N a Na dt ⊗ dt + 2Na dt ⊗ dxa + γab dxa ⊗ dxb


The second fundamental form characterizes the embeding
of
                        ´      79/95   ¹
Σt in (M, g)
                   K(X, Y ) : Tx M × Tx M → R
                1
      K(X, Y ) =  (Y. X e⊥ − X. Y e⊥ ) ,  X, Y ∈ T Σt
                2
The another representation for the extrinsic curvature is

                                     1
                              Kab = − Le⊥ γab
                                     2

To find the 3 + 1 decomposition we define the induced on
the Σt connection
                   3 c
                    Γ    ba   := Γc ba =     3 c 3
                                             θ,       ea e b   ,
                              ´      80/95        ¹
where 3 X is the covariant derivative with respect to γ and
corresponding curvature tensor is

          3
              R(X, Y ) = 3    X
                                  3
                                      Y   −3      Y
                                                      3
                                                           X   − [3   X,
                                                                           3
                                                                               Y]




In the basis {e⊥ , ea } we find the componets of the connection

                  Γ⊥⊥⊥ = 0,                               Γ⊥⊥i = 0,
                  Γj ⊥⊥ = cj ,                            Γj ⊥i = −K ji ,
                  Γ⊥i⊥ = ci ,                             Γ⊥ji = −Kji ,
     Γj i⊥ = −K ji +    3 j
                         θ , Le⊥ ei ,                     Γkij = 3 Γkij
                              ´           81/95           ¹
and of the Riemann tensor

                                          1 js3
     Rj ⊥k⊥ = K js Ksk + γ js Le⊥ Kks +     γ          ek
                                                            3
                                                                 es N   ,
                                          N
     R⊥ijk = 3 ek Kij − 3 ej Kik ,
     Rs ijk = 3Rs ijk + Kik Kj s − Kij Kk s

Finally the scalar curvature can be obtained in the form

                                      2 ab3
  R = 3R + Ka a Kb b − 3Kab K ab −      γ     ea
                                                   3
                                                       eb N     − 2γ ab Le⊥ Kab
                                      N

The classical behavior of the dynamical variables N , N a , γ
                          ´       82/95   ¹
is determined by the Hilbert-Einstein action
                                             t2
                     .   .         .
    L[N, Na , γab , N , Na , γ ab ] =             dt 3σN     3
                                                             R + Ka a Kb b − 3Kab K ab
                                            t1S
                              t2
                                                  2 ab
                         −             dt 3 σN      γ    3
                                                             ea
                                                                  3
                                                                      eb N   − 2γ ab Le⊥ Kab
                                                  N
                             t1S

              √ 1
where 3σ =     γ θ ∧ θ2 ∧ θ3 is the volume 3-form on Σt .




                                       ´     83/95    ¹
1.2.   Bianchi models

L. Bianchi 1897
Sugli spazii atre dimensioni du ammettono un gruppo continuo di
movimenti
Soc. Ital. della Sci. Mem. di Mat.
(Dei. XL) (3) 3 267

By definition, Bianchi models are manifolds with product
topology
                      M = R × G3
On the three dimensional Riemannnian manifold Σt γ there
                        ´     84/95   ¹
exist left-invariant 1-forms {χa } such that
                             1
                      dχa = − C abc χb ∧ χc
                             2
The dual vector fields {ξa } form a basis in the Lie algebra
of the group G3
                     [ξa , ξb ] = C dab ξd
with structure constants C dab = 2 dχd (ea , eb ). In the invariant
basis
           [e⊥ , ea ] = C d⊥a ed , [ea , eb ] = −C dab ed ,
with C d⊥a = N −1 N b C dab the metric takes the form

                   g = − θ⊥ ⊗ θ⊥ + γab θa ⊗ θb
                         ´      85/95   ¹
The preferable role of this choice for a coframe is that the
functions N, N a and γab depend on the time parameter t
only. Due to this simplification the initial variational prob-
lem for Bianchi A models is restricted to a variational prob-
lem of the “mechanical” system
                                t2
                                       √       3
    L (N, Na , γab , γab ) =
                     ˙               dt γN     R − Ka a Kb b + Kab K ab ,
                               t1


where 3R is the curvature scalar formed from the spatial
metric γ
                   1                  1
             3
              R = − γ ab C cda C dcb − γ ab γ cd γij C i ac C jbd ,
                   2      ´        86 4 ¹/95
and
                    1
          Kab = −       (γad C dbc + γbd C dac )N c + γab
                                                      ˙
                   2N
is the extrinsic curvature of the slice Σt defined by the re-
lation
                                  1
                       Kab = − Le⊥ γab
                                  2

In the theory we have four primary constraints

                     δL                            δL
              π :=      = 0,             π a :=        =0
                      ˙
                     δN                             ˙
                                                  δ Na
                          δL    √
               π ab :=         = γ(γab K i i − K ab )
                         δ γab
                           ˙
                           ´    87 /95  ¹
The symplectic structure on the phase space is defined by
the following non-vanishing Poisson brachets
                                                            1 r s
 {N, π} = 1,     {Na , π b } = δa ,
                                b
                                          {γcd , π rs } =            s r
                                                              δ δ + δc δd
                                                            2 c d

Due to the reparametrization symmetry of inherited from
the diffeomorphism invariance of the initial Hilbert-Einstein
action, the evolution of the system is unambiguous and it
is governed by the total Hamiltonian

               HT = N H + N a Ha + u0 P 0 + ua P a

with four arbitrary functions ua (t) and u0 (t). One can verify
                          ´       88/95    ¹
that the secondary constraints are first class and obey the
algebra
             {H, Hb } = 0, {Ha , Hb } = −C dab Hd

From the condition of time conservation of the primary
constaraints folllows four secondary constaraints
       1          1            √
  H = √ π ab πab − π aa π b b − γ 3R,      Ha = 2 C dab π bc γcd ,
        γ         2

which obey the algebra

            {H, Ha } = 0,    {Ha , Hb } = −C dab Hd

The Hamiltonian form of the action for the Bianchi A mod-
                       ´     89/95   ¹
els can be obtained in the form




                                          t2
                             a   ab
          L[N, Na , γab , π, π , π ] =         π ab dγab − HC dt
                                         t1




where the canonical Hamiltonian is a linear combination of
the secondary constraints HC = N H + N a Ha .
                         ´       90/95         ¹
1.3.   Hamiltonian reduction of Bianchi I cosmol-
       ogy

In the case of Bianchi I model the group which acts on
(Σt , γ) is T3 and the action takes the form
                                            t2
                              a   ab
          L[N, Na , γab , π, π , π ] =           π ab dγab − N Hdt .
                                           t1



Using the decomposition for arbitrary symmetric non-singular
matrix
                   γ = RT (χ)e2X R(χ) ,
                          ´        91/95         ¹
where X = diag x1 , x2 , x3 is diagonal matrix and

                    R(ψ, θ, φ) = eψJ3 eθJ1 eφJ3

we can pass to the new canonical variables

                 (γab , π ab ) =⇒ (χa , pchia ; xa , pa )

The corresponding momenta are

                              3               3
                      T
              π=R                 P s αs +         Ps αs R
                           s=1               s=1
                          ´         92/95     ¹
where

     P a = pa ,
             1      ξa
     Pa = −                   , (cyclic permutations a = b = c)
             4 sinh(xb − xc )

and the left-invariant basis of the action of the SO(3, R) in
the phase space with three dimensional orbits is given by

          sin ψ
     ξ1 =        pφ + cos ψ pθ − sin ψ cot θ pψ ,
          sin θ
            cos ψ
     ξ2 = −        pφ + sin ψ pθ + cos ψ cot θ pψ ,
             sin θ
     ξ3 = pψ
                         ´      93/95   ¹
In the new variables the Hamiltonian constraint reads
                  3                                            2
             1                                 1              ξc
        H=             p2 −
                        a           p a pb +
             2   a=1          ab              2 (abc) sinh2 (xa − xb )




                              ´        94/95      ¹
Many thanks

        TO THE ORGANIZERS

       for the nice Conference !!!
   Also many thanks to all of you !!!

      I hope we will see each other
in the next edition of the Conference . . .
               ´    95/95   2

Más contenido relacionado

La actualidad más candente

Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloClaudio Attaccalite
 
"When the top is not single: a theory overview from monotop to multitops" to...
"When the top is not single: a theory overview from monotop to multitops"  to..."When the top is not single: a theory overview from monotop to multitops"  to...
"When the top is not single: a theory overview from monotop to multitops" to...Rene Kotze
 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2SEENET-MTP
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocityRene Kotze
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...SEENET-MTP
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergySEENET-MTP
 
Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University Marco Frasca
 
Modeling biased tracers at the field level
Modeling biased tracers at the field levelModeling biased tracers at the field level
Modeling biased tracers at the field levelMarcel Schmittfull
 
Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...
Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...
Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...SEENET-MTP
 
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyfoxtrot jp R
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdfoxtrot jp R
 
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...SEENET-MTP
 
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Marco Frasca
 
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...Rene Kotze
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Claudio Attaccalite
 

La actualidad más candente (20)

Caldwellcolloquium
CaldwellcolloquiumCaldwellcolloquium
Caldwellcolloquium
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
Introduction to Quantum Monte Carlo
Introduction to Quantum Monte CarloIntroduction to Quantum Monte Carlo
Introduction to Quantum Monte Carlo
 
Serie de dyson
Serie de dysonSerie de dyson
Serie de dyson
 
"When the top is not single: a theory overview from monotop to multitops" to...
"When the top is not single: a theory overview from monotop to multitops"  to..."When the top is not single: a theory overview from monotop to multitops"  to...
"When the top is not single: a theory overview from monotop to multitops" to...
 
Dimen
DimenDimen
Dimen
 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2
 
Born reciprocity
Born reciprocityBorn reciprocity
Born reciprocity
 
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University
 
Modeling biased tracers at the field level
Modeling biased tracers at the field levelModeling biased tracers at the field level
Modeling biased tracers at the field level
 
Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...
Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...
Alexei Starobinsky "New results on inflation and pre-inflation in modified gr...
 
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copyOutgoing ingoingkleingordon spvmforminit1 - copy - copy
Outgoing ingoingkleingordon spvmforminit1 - copy - copy
 
PART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum ElectrodynamicsPART VII.3 - Quantum Electrodynamics
PART VII.3 - Quantum Electrodynamics
 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
 
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
 
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
 
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
NITheP WITS node seminar: Prof Jacob Sonnenschein (Tel Aviv University) TITLE...
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
 

Similar a D. Mladenov - On Integrable Systems in Cosmology

Group theory notes
Group theory notesGroup theory notes
Group theory notesmkumaresan
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorSebastian De Haro
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Sebastian De Haro
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationCemal Ardil
 
Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013Raffaele Rainone
 
Matrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial BackgroundsMatrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial BackgroundsUtrecht University
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法Computational Materials Science Initiative
 
Presentacion granada
Presentacion granadaPresentacion granada
Presentacion granadaRene García
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605ketanaka
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Brian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and SymmetryBrian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and SymmetryBrian Covello
 
On the proof theory for Description Logics
On the proof theory for Description LogicsOn the proof theory for Description Logics
On the proof theory for Description LogicsAlexandre Rademaker
 

Similar a D. Mladenov - On Integrable Systems in Cosmology (20)

Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
Igv2008
Igv2008Igv2008
Igv2008
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
 
PAFT10
PAFT10PAFT10
PAFT10
 
Crystallographic groups
Crystallographic groupsCrystallographic groups
Crystallographic groups
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
 
Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
Adc
AdcAdc
Adc
 
Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013
 
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
 
Matrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial BackgroundsMatrix Models of 2D String Theory in Non-trivial Backgrounds
Matrix Models of 2D String Theory in Non-trivial Backgrounds
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
 
Presentacion granada
Presentacion granadaPresentacion granada
Presentacion granada
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
02 asymp
02 asymp02 asymp
02 asymp
 
Brian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and SymmetryBrian Covello: Research in Mathematical Group Representation Theory and Symmetry
Brian Covello: Research in Mathematical Group Representation Theory and Symmetry
 
On the proof theory for Description Logics
On the proof theory for Description LogicsOn the proof theory for Description Logics
On the proof theory for Description Logics
 

Más de SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...SEENET-MTP
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"SEENET-MTP
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"SEENET-MTP
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...SEENET-MTP
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...SEENET-MTP
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"SEENET-MTP
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...SEENET-MTP
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"SEENET-MTP
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...SEENET-MTP
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"SEENET-MTP
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...SEENET-MTP
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...SEENET-MTP
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...SEENET-MTP
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...SEENET-MTP
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...SEENET-MTP
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"SEENET-MTP
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...SEENET-MTP
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"SEENET-MTP
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"SEENET-MTP
 

Más de SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Último

CapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapitolTechU
 
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...Nguyen Thanh Tu Collection
 
Education and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxEducation and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxraviapr7
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxDr. Asif Anas
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptxSandy Millin
 
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxAUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxiammrhaywood
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptxraviapr7
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfTechSoup
 
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptxPractical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptxKatherine Villaluna
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRATanmoy Mishra
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptxmary850239
 
Practical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxPractical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxKatherine Villaluna
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxraviapr7
 
How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17Celine George
 
The Singapore Teaching Practice document
The Singapore Teaching Practice documentThe Singapore Teaching Practice document
The Singapore Teaching Practice documentXsasf Sfdfasd
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17Celine George
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxEduSkills OECD
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.EnglishCEIPdeSigeiro
 

Último (20)

CapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptx
 
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
CHUYÊN ĐỀ DẠY THÊM TIẾNG ANH LỚP 11 - GLOBAL SUCCESS - NĂM HỌC 2023-2024 - HK...
 
Education and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxEducation and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptx
 
Ultra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptxUltra structure and life cycle of Plasmodium.pptx
Ultra structure and life cycle of Plasmodium.pptx
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
 
Finals of Kant get Marx 2.0 : a general politics quiz
Finals of Kant get Marx 2.0 : a general politics quizFinals of Kant get Marx 2.0 : a general politics quiz
Finals of Kant get Marx 2.0 : a general politics quiz
 
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxAUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
 
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptxPractical Research 1: Lesson 8 Writing the Thesis Statement.pptx
Practical Research 1: Lesson 8 Writing the Thesis Statement.pptx
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptx
 
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdfPersonal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
 
Practical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptxPractical Research 1 Lesson 9 Scope and delimitation.pptx
Practical Research 1 Lesson 9 Scope and delimitation.pptx
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptx
 
How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17
 
The Singapore Teaching Practice document
The Singapore Teaching Practice documentThe Singapore Teaching Practice document
The Singapore Teaching Practice document
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.
 

D. Mladenov - On Integrable Systems in Cosmology

  • 1. On Integrable Systems in Cosmology Dimitar Mladenov Theoretical Physics Department, Faculty of Physics, Sofia University • Dynamics on Lie groups • Geodesic flow on GL(n, R) group manifold • Homogeneous cosmological models Faculty of Science and Mathematics, University of Niˇ, s Niˇ, Serbia, 7 December 2011 s 2 1/95 ¹
  • 2. CMS models More than thirty five years after the famous paper of Francesco Calogero Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potentials Journal of Mathematical Physics 12 (1971) 419-436 Bill Sutherland Physical Review A 1971, 1972 J¨ rgen Moser u Adv. Math. 1975 ´ 2/95 ¹
  • 3. CMS models The Calogero-Sutherland-Moser type system which con- sists of n-particles on a line interacting with pairwise po- tential V (x) admits the following spin generalization 1 n 2 1 n HECM = p + fab fba V (xa − xb ) 2 a=1 a 2 a=b ´ 3/95 ¹
  • 4. CMS models The Euler-Calogero-Sutherland-Moser type systems are integrable in the following cases I. V(z) = z −2 Calogero II. V(z) = a2 sinh−2 az III. V(z) = a2 sin−2 az Sutherland IV. V(z) = a2 ℘(az) V. V(z) = z −2 + ωz 2 Calogero The nonvanishing Poisson bracket relations {xi , pj } = δij , {fab , fcd } = δbc fad − δad fcb ´ 4/95 ¹
  • 5. Dynamics on Lie groups Let G be a real Lie group and A(G) be its Lie algebra. The action of the Lie group G in its group manifold is given by the following diffeomorphisms Lg : G −→ G Lg h = gh Rg : G −→ G Rg h = hg h, g ∈ G The adjoint and coadjoint actions are Adg : A(G) −→ A(G) Adgh = Adg Adh Ad∗ : A(G) −→ A(G) g Ad∗ = Ad∗ Ad∗ gh h g ´ 5/95 ¹
  • 6. Dynamics on Lie groups The Lie-Poisson brackets are {F, H} = x, [ F (x), H(x)] , ∂F ∂H k {F, H} = Cij xk , x ∈ A∗ (G) ∂xi ∂xj The left and right invariant 1-forms obey the First structure Cartan equation dω L + ω L ∧ ω L = 0 , dω R − ω R ∧ ω R = 0 ´ 6/95 ¹
  • 7. Dynamics on Lie groups The geodesic flow on the matrix Lie group G is described by the map t −→ g(t) ∈ G and by the Lagrangian 1 L= ω, ω , ω ∈ A(G) 2 In local coordinates we have 1 L= Gµν X µ X ν 2 ´ 7/95 ¹
  • 8. Dynamics on Lie groups The phase space is the cotangent bundle T ∗ (G) with canonical symplectic structure Ω = d(Pµ dX µ ) {X µ , X ν } = 0 , {Pµ , Pν } = 0 , {X µ , Pν } = δν µ and Hamiltonian 1 µν H= G Pµ Pν 2 ´ 8/95 ¹
  • 9. Dynamics on Lie groups Let us define the functions ξµ = ΩL,R L,R ν µ Pν such that ξµ = Adν ξν R µ L with Poisson bracket relations R R γ R {ξα , ξβ } = − Cαβ ξγ , L L γ R {ξα , ξβ } = Cαβ ξγ , R R {ξα , ξβ } = 0 ´ 9/95 ¹
  • 10. Geodesic flow on GL(n, R) group manifold Let us consider the Lagrangian 1 L= ω, ω , ω ∈ gl(n, R) 2 which is defined by the following one parameter family of non-singular metrics on GL(n, R) group manifold α X , Y = TrXY − TrX TrY , αn − 2 where X, Y ∈ gl(n, R) and α ∈ [0, 1] ´ 10/95 ¹
  • 11. Geodesic flow on GL(n, R) Thus we have 1 2 α L= tr g −1 g ˙ − tr2 g −1 g = ˙ 2 2(αn − 2) 1 −1 = G gab gcd ˙ ˙ 2 ab,cd Here g ∈ GL(n, R) and α Gab,cd = gad gcb − gab gcd , 2 α G−1 ab,cd −1 −1 = gda gbc − g −1 g −1 αn − 2 ba dc ´ 11/95 ¹
  • 12. Geodesic flow on GL(n, R) The invariance of the Lagrangian under the left and right translations leads to the possibility of explicit integration of the dynamical equations d −1 g g = 0 ⇒ g(t) = g(0) exp (tJ) ˙ dt The canonical Hamiltonian corresponding to the bi-invariant Lagrangian L is 1 2 α 2 T 1 H= tr π T g − tr π g = Gab,cd πab πcd 2 4 2 ´ 12/95 ¹
  • 13. Geodesic flow on GL(n, R) The nonvanishing Poisson brackets between the fundamen- tal phase space variables are {gab , πcd } = δab δcd At first we would like to analyze the following symmetry action on SO(n, R) in GL(n, R) g → g = Rg It is convenient to use the polar decomposition for an arbi- trary element of GL(n, R) g = OS ´ 13/95 ¹
  • 14. Geodesic flow on GL(n, R) The orthogonal matrix O(φ) is parameterized by the Euler angles (φ1 , · · · , φ n(n−1) ) and S is a positive definite symmetric 2 matrix We can treat the polar decomposition as 1 − 1 transforma- tion from n2 variables g to a new set of Lagrangian variables: g −→ (Sab , φa ) , n(n−1) n(n+1) the 2 Euler angles and 2 symmetric matrix variables Sab ´ 14/95 ¹
  • 15. Geodesic flow on GL(n, R) In terms of these new variables the Lagrangian can be rewritten as 1 ˙ 2 LGL = tr ΘL + S S −1 2 The polar decomposition induces a canonical transforma- tion (g, π) −→ (Sab , Pab ; φa , Pa ) The canonical pairs obey the Poisson bracket relations 1 {Sab , Pcd } = (δac δbd + δad δbc ) , {φa , Pb } = δab 2 ´ 15/95 ¹
  • 16. Geodesic flow on GL(n, R) In the case of GL(3, R) the orthogonal matrix is given by O(φ1 , φ2 , φ3 ) = eφ1 J3 eφ2 J1 eφ3 J3 ∈ SO(3, R). The canonical trans- formation is given by (g, π) −→ (Sab , Pab ; φa , Pa ) , where π = O (P − ka Ja ) , −1 L ka = γab ηb − εbmn (SP )mn and γik = Sik − δik trS ´ 16/95 ¹
  • 17. Geodesic flow on GL(n, R) L Here ηa are three left-invariant vector fields on SO(3, R) L sin φ3 η1 = − P1 − cos φ3 P2 + cot φ2 sin φ3 P3 , sin φ2 L cos φ3 η2 = − P1 + sin φ3 P2 + cot φ2 cos φ3 P3 , sin φ2 L η3 = −P3 ´ 17/95 ¹
  • 18. Geodesic flow on GL(n, R) The right-invariant vector fields are R sin φ1 η1 = − sin φ1 cot φ2 P1 + cos φ1 P2 + P3 , sin φ2 R cos φ1 η2 = cos φ1 cot φ2 P1 + sin φ1 P2 − P3 , sin φ2 R η 3 = P1 ´ 18/95 ¹
  • 19. Geodesic flow on GL(n, R) In terms of the new variables the canonical Hamiltonian takes the form 1 α 1 H = tr (P S)2 − tr2 (P S) + tr (Ja SJb S) ka kb 2 4 2 The canonical variables (Sab , Pab ) are invariant while (φa , Pa ) undergo changes ´ 19/95 ¹
  • 20. Geodesic flow on GL(n, R) The configuration space S of the real symmetric 3 × 3 ma- trices can be endowed with the flat Riemannian metric ds2 = dQ , dQ = Tr dQ2 , whose group of isometry is formed by orthogonal trans- formations Q = RT Q R. The system is invariant under the orthogonal transformations S = RT S R. The orbit space is given as a quotient space S/SO(3, R) which is a stratified manifold ´ 20/95 ¹
  • 21. Geodesic flow on GL(n, R) (1) Principal orbit-type stratum, when all eigenvalues are unequal x1 x2 x3 with the smallest isotropy group Z2 ⊗ Z2 (2) Singular orbit-type strata forming the boundaries of orbit space with (a) two coinciding eigenvalues (e.g. x1 = x2 ) , when the isotropy group is SO(2) ⊗ Z2 (b) all three eigenvalues are equal (x1 = x2 = x3 ) , here the isotropy group coincides with the isometry group SO(3, R) ´ 21/95 ¹
  • 22. Geodesic flow on GL(n, R) Hamiltonian on the Principal orbit To write down the Hamiltonian describing the motion on the principal orbit stratum we use the main-axes decompo- sition in the form S = RT (χ)e2X R(χ) , where R(χ) ∈ SO(3, R) is parametrized by three Euler angles χ = (χ1 , χ2 , χ3 ) and e2X is a diagonal e2X = diag e2x1 , e2x2 , e2x3 ´ 22/95 ¹
  • 23. Geodesic flow on GL(n, R) The original physical momenta Pab are expressed in terms of the new canonical pairs (Sab , Pab ) −→ (xa , pa ; χa , Pχa ) , where 3 3 P = RT e−X ¯ ¯ Pa αa + Pa αa e−X R a=1 a=1 ´ 23/95 ¹
  • 24. Geodesic flow on GL(n, R) with ¯ 1 Pa = pa , 2 R 1 ξa Pa = − , (cyclic a = b = c) 4 sinh(xb − xc ) In the representation we introduce the orthogonal basis for the symmetric 3×3 matrices αA = (αi , αi ), i = 1, 2, 3 with the scalar product tr(¯ a αb ) = δab , α ¯ tr(αa αb ) = 2δab , tr(¯ a αb ) = 0 α ´ 24/95 ¹
  • 25. Geodesic flow on GL(n, R) In this case the SO(3, R) right-invariant Killing vector fields are R ξ1 = −pχ1 , R sin χ1 ξ2 = sin χ1 cot χ2 pχ1 − cos χ1 pχ2 − pχ , sin χ2 3 R cos χ1 ξ3 = − cos χ1 cot χ2 pχ1 − sin χ1 pχ2 + p χ3 sin χ2 ´ 25/95 ¹
  • 26. Geodesic flow on GL(n, R) After passing to these main-axes variables the canonical Hamiltonian reads 2 1 3 2 α 3 H= pa − pa 8 a=1 16 a=1 2 1 (ξa )2 R 1 Rab ηb + 1 ξa L 2 R + 2 − 16 (abc) sinh (xb − xc ) 4 (abc) cosh2 (xb − xc ) The integrable dynamical system describing the free motion on principal orbits represents the Generalized Euler-Calogero-Moser-Sutherland model ´ 26/95 ¹
  • 27. Geodesic flow on GL(n, R) Reduction to Pseudo-Euclidean Euler-Calogero-Moser model We demonstrate how IIA2 Euler-Calogero-Moser-Sutherland type model arises from the Hamiltonian after projection onto a certain invariant submanifold determined by dis- crete symmetries. Let us impose the condition of symmetry of the matrices g ∈ GL(n, R) (1) ψa = εabc gbc = 0 ´ 27/95 ¹
  • 28. Geodesic flow on GL(n, R) One can check that the invariant submanifold of T ∗ (GL(n, R)) is defined by (1) (2) ΨA = (ψa , ψa ) and the dynamics of the corresponding induced system is governed by the reduced Hamiltonian 1 α H|ΨA =0 = tr (P S)2 − tr2 (P S) 2 4 ´ 28/95 ¹
  • 29. Geodesic flow on GL(n, R) The matrices S and P are now symmetric and nondegener- ate. It can be shown that 3 α 1 (ξa )2 R HP ECM = p2 − a (p1 + p2 + p3 )2 + a=1 2 2 (abc) sinh2 (xb − xc ) which is a Pseudo-Euclidean version of the Euler-Calogero- Moser-Sutherland model. ´ 29/95 ¹
  • 30. Geodesic flow on GL(n, R) After the projection the Poisson structure is changed ac- cording to the Dirac prescription −1 {F, G}D = {F, G}P B − {F, ψA }CAB {ψB , G} To verify this statement it is necessary to note that the (1) (2) Poisson matrix CAB = {ψa , ψb } is not degenerate. The resulting fundamental Dirac brackets between the main- axes variables are 1 1 {xa , pb }D = δab , {χa , pχb }D = δab 2 2 ´ 30/95 ¹
  • 31. Geodesic flow on GL(n, R) The Dirac bracket algebra for the right-invariant vector fields on SO(3, R) reduces to R R 1 R {ξa , ξb }D = εabc ξc . 2 All angular variables are gathered in the Hamiltonian in L three left-invariant vector fields ηa . The corresponding right- R L invariant fields ηa = Oab ηb are the integrals of motion R {ηa , HP ECM } = 0 ´ 31/95 ¹
  • 32. Geodesic flow on GL(n, R) Thus the surface on the phase space, determined by the constraints R ηa = 0 defines the invariant submanifold. Using the relation be- R L tween left and right-invariant Killing fields ηa = Oab ηb we find out that after projection to the constraint surface the Hamiltonian reduces to 3 α (ξa )2 R 4 HP ECM = p2 − a (p1 + p2 + p3 )2 + 2 (abc) sinh 2(xb − xc ) a 2 ´ 32/95 ¹
  • 33. Geodesic flow on GL(n, R) Apart from the integrals η R the system possesses other inte- grals. The integrals of motion corresponding to the geodesic motion with respect to the bi-invariant metric on GL(n, R) group are Jab = (π T g)ab The algebra of this integrals realizes on the symplectic level the GL(n, R) algebra {Jab , Jcd } = δbc Jad − δad Jcb ´ 33/95 ¹
  • 34. Geodesic flow on GL(n, R) After transformation to the scalar and rotational variables the expressions for the current J reads 3 1 J= RT (pa αa − ia αa − ja Ja ) R , ¯ 2 a=1 where 1 R L 1 R ia = ξa coth(xb − xc ) + Ram ηm + ξa tanh(xb − xc ) (abc) 2 2 and L R ja = Ram ηm + ξa ´ 34/95 ¹
  • 35. Geodesic flow on GL(n, R) After performing the reduction to the surface defined by the vanishing integrals ja = 0 we again arrive at the same Pseudo-Euclidean version of Euler-Calogero-Moser-Sutherland system. ´ 35/95 ¹
  • 36. Geodesic flow on GL(n, R) Lax representation for the Pseudo-Euclidean Euler-Calogero-Moser model The Hamiltonian equations of motion can be written in a Lax form ˙ L = [A, L] , where the 3 × 3 matrices are given explicitly as ´ 36/95 ¹
  • 37. Geodesic flow on GL(n, R)   p1 − α 2 (p1 + p2 + p3 ) L+ , 3 L− 2   L= L− , p2 − α L+   3 2 (p1 + p2 + p3 ) 1    L+ , 2 L− , 1 p3 − α 2 (p1 + p2 + p3 )   0 −A3 , A2 1  A=  A3 , 0, −A1    4  −A2 , A1 , 0 ´ 37/95 ¹
  • 38. Geodesic flow on GL(n, R) Entries Aa and L± are given as a 1 R 1 R L± = − ξa coth(xb − xc ) − Ram ηm + ξa tanh(xb − xc ) a L 2 2 L R ± Ram ηm + ξa , 1 R ξa Ram ηm + 1 ξa L 2 R Aa = − 2 sinh2 (xb − xc ) cosh2 (xb − xc ) ´ 38/95 ¹
  • 39. Geodesic flow on GL(n, R) Singular orbits. The case of GL(3, R) and GL(4, R) The motion on the Singular orbit is modified due to the continuous isotropy group. This symmetry of dynamical system is encoded in constraints on phase space variables 1 1 ψ1 = √ (x2 − x3 ) , ψ2 = √ (p2 − p3 ) , 2 2 R R R ψ3 = ξ2 − ξ3 , ψ4 = ξ1 ´ 39/95 ¹
  • 40. Geodesic flow on GL(n, R) One can check that this surface represents the invariant submanifold. These constraints are the second class in the Dirac terminology hence we have to replace the Poisson brackets by the Dirac ones 1 {x1 , p1 }D = 1 , {xi , pj }D = , i, j = 2, 3 , 2 R R {ξa , ξb }D = 0 , a, b = 1, 2, 3 ´ 40/95 ¹
  • 41. Geodesic flow on GL(n, R) As a result we obtain (2) 1 2 1 2 g2 HGL(3,R) = p1 + p2 + 2 4 sinh2 (x1 − x2 ) This is an integrable mass deformation of the IIA1 Calogero-Moser-Sutherland model. The Lax pair for system can be obtained from the L and A matrices letting η R = 0 and projecting on the constraint shell ´ 41/95 ¹
  • 42. Geodesic flow on GL(n, R)   1  p, 2 1 R −ξ2 L+ , R −ξ2 L+    (2)  R − 1 LGL(3,R) =  ξ2 L , p 2 2 0       ξ2 L− , R 0, 1 p 2 2    0 −1, 1  R (2) ξ2   AGL(3,R) =  1, 0, 0    2 sinh (x1 − x2 )     −1, 0, 0 ´ 42/95 ¹
  • 43. Geodesic flow on GL(n, R) Here L− := (1 − coth(x1 − x2 )) , L+ := (1 + coth(x1 − x2 )) ´ 43/95 ¹
  • 44. Geodesic flow on GL(n, R) Consider the case of GL(4, R) group restricted on the Sin- gular orbit with equal eigenvalues x3 = x4 . The invariant submanifold is fixed by the five constraints 1 ψ1 := √ (x3 − x4 ) , 2 1 ψ2 := √ (p3 − p4 ) , 2 R ψ3 := l34 , R R ψ4 := l13 − l14 , R R ψ5 := l23 − l24 ´ 44/95 ¹
  • 45. Geodesic flow on GL(n, R) The Poisson matrix {ψm , ψn } , m, n = 1, . . . , 5 is degenerate with rank {ψm , ψn } = 4. To find out the proper gauge and simplify the constraints it is useful to pass R lab = ya πb − yb πa , {ya , πb } = δab , a, b = 1, . . . , 4 and choose the following gauge-fixing condition 1 ψ := √ (y3 − y4 ) = 0 2 ´ 45/95 ¹
  • 46. Geodesic flow on GL(n, R) Finally the reduced phase space corresponding to the Sin- gular orbit is defined by the set of four second class con- straints {ψ, Π, ψ, Π} 1 1 ψ := √ (x3 − x4 ) = 0 , Π := √ (p3 − p4 ) = 0 , 2 2 1 1 ψ := √ (y3 − y4 ) = 0 , Π := √ (π3 − π4 ) = 0 , 2 2 ´ 46/95 ¹
  • 47. Geodesic flow on GL(n, R) This set of constraints form an invariant submanifold of the phase space under the action of the discrete permutation group S2          xi   xS(i)   yi   yS(i)    →  ,   →  , pi pS(i) πi πS(i) where i = 3, 4. ´ 47/95 ¹
  • 48. Geodesic flow on GL(n, R) These constraints form the canonical set of second class constraints with non-vanishing Poisson brackets {ψ, Π} = 1 , ¯ {ψ, Π} = 1 and thus the fundamental Dirac brackets for canonical vari- ables are 1 1 {xi , pj }D = , {yi , πj }D = , i, j = 1, 2 2 2 ´ 48/95 ¹
  • 49. Geodesic flow on GL(n, R) The system reduces to the following one (3) 1 2 1 2 1 2 HGL(4,R) = p + p + p 2 1 2 2 4 3 (l12 )2 R (l13 )2 R (l23 )2 R + + + 16 sinh2 (x1 − x2 ) 8 sinh2 (x1 − x3 ) 8 sinh2 (x2 − x3 ) with the Poisson bracket algebra {xr , ps } = δrs , R R R R R R {lpq , lrs } = δps lqr − δpr lqs + δqs lpr − δqr lps , p, q, r, s = 1, 2, 3 ´ 49/95 ¹
  • 50. Geodesic flow on GL(n, R) In this case L and A matrices are the well-known matrices for the spin Calogero-Sutherland model 1 R Lij = pi δij − (1 − δij )lij Φ(xi − xj ) , 2 R Aij = −(1 − δij )lij V (xi − xj ) , where 1 Φ(x) = coth(x) + 1 , V (x) = 2 sinh2 (x) ´ 50/95 ¹
  • 51. Geodesic flow on GL(n, R) After projection to the invariant submanifold correspond- ing to the motion on the Singular orbits we arrive at the Lax matrices   1 R R R  p, 2 1 −l12 Φ12 , −l13 Φ13 , −l13 Φ13    R 1 R R  −l12 Φ12 , p, −l23 Φ23 , −l23 Φ23   (3) 2 2  LGL(4,R) =    −lR Φ , R 1    13 13 −l23 Φ23 , p, 2 3 0     R R 1 −l13 Φ13 , −l23 Φ23 , 0, p 2 3 ´ 51/95 ¹
  • 52. Geodesic flow on GL(n, R)   R R R  0, l12 V12 , l13 V13 , l13 V13    R R R  −l12 V12 0, l23 V23 , l23 V23   (3)  AGL(4,R) =    −lR V , R    13 13 −l23 V23 , 0, 0     R R −l13 V13 , −l23 V23 , 0, 0 ´ 52/95 ¹
  • 53. Geodesic flow on gl(n, R) Consider the Lagrangian represented by the left-invariant metric 1 ˙ ˙ L = A , A , A ∈ GL(n, R) 2 which is defined on gl(n, R) algebra X , Y = Tr X T Y , X, Y ∈ gl(n, R) ´ 53/95 ¹
  • 54. Geodesic flow on gl(n, R) The obviously conserved angular momentum ˙ µ = [A , A] leads to the possibility to integrate the equations of motion ¨ A = 0 in the form A = at + b. The canonical Hamiltonian cor- responding to L is 1 2 H= tr P T P 2 ´ 54/95 ¹
  • 55. Geodesic flow on gl(n, R) The nonvanishing Poisson brackets between the fundamen- tal phase space variables are {Aab , Pcd } = δab δcd Using the same machinery as in the previous case we obtain the Hamiltonian 2 L 1 R 1 3 2 1 (ξa )2 R Rab ηb + 2 ξa H= pa + + , 2 a=1 4 (abc) (xb − xc )2 (abc) (xb − xc )2 which is a generalization of the rational Euler-Calogero-Moser-Sutherland model ´ 55/95 ¹
  • 56. Geodesic flow on gl(n, R) After reduction on the invariant submanifold defined by the equations η R = 0 we obtain the Hamiltonian 1 3 2 1 1 1 H= pa + (ξa )2 R 2 + 2 a=1 4 (abc) (xb − xc ) (xb − xc )2 which coincides with the Hamiltonian of the ID3 Euler-Calogero-Moser-Sutherland model ´ 56/95 ¹
  • 57. Geodesic motion on GL(n, R) Forty years after the famous papers of M. Toda Journal of Physical Society of Japan 20 (1967) 431 Journal of Physical Society of Japan 20 (1967) 2095 The Hamiltonian of the non-periodic Toda lattice is 1 n 2 n−1 HN P T = p + g2 exp [2(xa − xa+1 )] , 2 a=1 a a=1 and the Poisson bracket relations are {xi , pj } = δij . ´ 57/95 ¹
  • 58. Geodesic motion on GL(n, R) The equations of motion for the non-periodic Toda lattice are xa = pa , a = 1, 2, . . . , n , ˙ pa = −2 exp [2(xa − xa+1 )] + 2 exp [2(xa−1 − xa )] , ˙ p1 = −2 exp [2(x1 − x2 )] , ˙ pn = −2 exp [2(xn−1 − xn )] , ˙ and for the periodic Toda lattice xa = p a , ˙ pa = 2 exp [2(xa−1 − xa )] − exp [2(xa − xa+1 )] . ˙ ´ 58/95 ¹
  • 59. Geodesic motion on GL(n, R) Further for simplicity we put kab = 0 and α = 0. We use the Gauss decomposition for the positive-definite symmetric matrix S S = Z D ZT . ´ 59/95 ¹
  • 60. Geodesic motion on GL(n, R) Here D = diag x1 , x2 , . . . xn is a diagonal matrix with posi- tive elements and Z is an upper triangular matrix    1 z12 . . . z1n    0 1 . . . z2n    Z= . .  .. .  .  . . . .  . . .    0 0 ... 1 ´ 60/95 ¹
  • 61. Geodesic motion on GL(n, R) The differential of the symmetric matrix S is given by dS = Z dD + DΩ + (DΩ)T Z T , where Ω is a matrix-valued right-invariant 1-form defined by Ω := dZZ −1 . In the Lie algebra gl(n, R) of n×n real matrices we introduce Weyl basis with elements (eab )ij = δai δbj , ´ 61/95 ¹
  • 62. Geodesic motion on GL(n, R) which are n × n matrices in the form  . .   .    . . . ... ... 1 . . .      . .  eab =   .   . .     . .      . .  . The scalar product in gl(n, R) is defined by (eab , ecd ) = tr(eT , ecd ) = δac δbd . ab ´ 62/95 ¹
  • 63. Geodesic motion on GL(n, R) Let us introduce also the matrices   0 ... ... ... 0 . . . ... . . .   . . αa = ¯ . . . 1 . . .. .    . . . . .   0 ... ... ... 0 ´ 63/95 ¹
  • 64. Geodesic motion on GL(n, R) and  . . . .   . .    . . . ... ... 1 . . .      . . . .  αab =   . .   . .   ... .   . . . 1 . . . .    . . . .  . . ´ 64/95 ¹
  • 65. Geodesic motion on GL(n, R) with scalar product is defined by (¯ a , αb ) = tr(¯ a αb ) = δab , α ¯ α ¯ (αab , αcd ) = tr(αab αcd ) = 2 (δad δbc + δac δbd ) , (¯ a , αbc ) = tr(¯ a αbc ) = 0 . α α ´ 65/95 ¹
  • 66. Geodesic motion on GL(n, R) Now we can write the differential of the matrix S in the form   n n dS = Z dxa αa + ¯ xa Ωab αab  Z T . a=1 ab=1 Here Ωab are the coefficients of the matrix Ω Ω= Ωab eab . ab ´ 66/95 ¹
  • 67. Geodesic motion on GL(n, R) In the case of Gauss decomposition of the symmetric matrix S = ZDZ T the corresponding momenta we seek in the form   n n P = (Z T )−1  ¯ ¯ Pa αa + Pab αab  Z −1 . a=1 ab ´ 67/95 ¹
  • 68. Geodesic motion on GL(n, R) From the condition of invariance of the symplectic 1-form n n tr (P dS) = pa dxa + pab dzab , i=1 ab=1 where the new canonical variables (xa , pa ) , (zab , pab ) obey the Poisson bracket relations {xa , pb } = δab , {zab , pcd } = δac δbd , we obtain ¯ lab Pa = pa , Pab = . 2xa ´ 68/95 ¹
  • 69. Geodesic motion on GL(n, R) Here lab are right-invariant vector fields on the group of upper triangular matrices with unities on the diagonal T lab = Ω−1 pcd , ab,cd where Ωab,cd are coefficients in the decompositions of the 1-forms Ωab in coordinate basis Ωab = Ωab,cd dzcd , ´ 69/95 ¹
  • 70. Geodesic motion on GL(n, R) The canonical Hamiltonian in the new variables takes the form 1 n 2 2 1 n 2 xa H= p x + l . 2 a=1 a a 4 ab=1 ab xb ´ 70/95 ¹
  • 71. Geodesic motion on GL(n, R) After the canonical transformation xa = eya , pa = πa e−ya we arrive to Hamiltonian in the form of spin nonperiodic Toda chain n n 1 1 H= 2 πa + lab eya −yb . 2 2 a=1 4 ab=1 ´ 71/95 ¹
  • 72. Geodesic motion on GL(n, R) The explicit form of the generators of the group of upper triangular matrices is n n l12 = p12 + z2k p1k , l13 = p13 + z2k p1k . k=2 k=2 The internal variables satisfy the Poison bracket relations {lab , lcd } = C efab,cd lef (1) with structure coefficients C efab,cd = δbc δae δdf . (2) ´ 72/95 ¹
  • 73. 1. Homogeneous cosmological models 1.1. Spacetime decomposition Let (M, g) be a smooth four-dimensional paracompact and Hausdorf manifold. In each point of the open set U ⊂ M we propose that are defined the local basis of 1-forms and its dual basis {ω µ , µ = 0, 1, 2, 3} {eν , ν = 0, 1, 2, 3} ´ 73/95 ¹
  • 74. such that [eα , eβ ] = C µαβ eµ , where C µαβ are the basis structure functions. The symmetric metric is g = gµν ω µ ⊗ ω ν , g −1 = g µν eµ ⊗ eν We suppose that on the manifold (M, g) is defined affine connection Γµν = Γµνα ω α ⇐⇒ Γµβα = ω µ , eα eβ In manifold with affine connection we can construct the ´ 74/95 ¹
  • 75. bilinear antisymmetric mapping T (X, Y ) = X Y − Y X − [X , Y ] The First Cartan structure equation is 1 µ dω µ + Γµα ∧ ω α = T 2 The tensor type (1, 3) defined by R(ω, Z, X, Y ) = ω, R( X, Y )Z is called the curvature tensor, where R( X, Y ) = X Y − Y X −[ X, Y] ´ 75/95 ¹
  • 76. If we define the curvature 2-form Ωµν by Ωµν = dΓµν + Γµα ∧ Γαν one can obtain the Second structure Cartan equation 1 µ Ωµν = R ωα ∧ ωβ 2 ναβ In the Riemannian geometry the commutator of two vector fields is given by [X, Y ] = X Y − Y X and for every vector field X we have the condition Xg = 0. ´ 76/95 ¹
  • 77. The connection and the Riemann tensor in the noncoordi- nate basis {eν } are given with 1 Γµαβ = g µσ (eα gβσ + eβ gασ − eσ gαβ ) 2 1 µσ 1 − g (gαρ C ρβσ + gβρ C ρασ ) − C µαβ , 2 2 Rσαµν = eµ Γσαν − eν Γσαµ + Γραν Γσρµ − Γραµ Γσρν − Γσαρ C ρµν , where C µαβ = Γµβα − Γµαβ . Hereinafter we suppose that M = T1 × Σt ´ 77/95 ¹
  • 78. Let us introduce the noncoordinate basis of vector fields {e⊥ , ea } [e⊥ , ea ] = C ⊥ e⊥ + C d⊥a ed , ⊥a d [ea , eb ] = C ab ed , with the structure functions 1 C ⊥ = ea lnN, ⊥a C d⊥a = (N b C dab + ea N d ) N The metric in the corresponding dual basis {θ⊥ , θa } g = −θ⊥ ⊗ θ⊥ + γab θa ⊗ θb , ´ 78/95 ¹
  • 79. where γ is the induced metric on the submanifold Σt . The components of the vector field X0 in this basis X0 = N e⊥ + N a ea are the Lagrange multipliers in ADM scheme which can be ∂ ∂ obtained if we pass to the coordinate basis {X0 = ∂t , ∂xa } g = − N 2 − N a Na dt ⊗ dt + 2Na dt ⊗ dxa + γab dxa ⊗ dxb The second fundamental form characterizes the embeding of ´ 79/95 ¹
  • 80. Σt in (M, g) K(X, Y ) : Tx M × Tx M → R 1 K(X, Y ) = (Y. X e⊥ − X. Y e⊥ ) , X, Y ∈ T Σt 2 The another representation for the extrinsic curvature is 1 Kab = − Le⊥ γab 2 To find the 3 + 1 decomposition we define the induced on the Σt connection 3 c Γ ba := Γc ba = 3 c 3 θ, ea e b , ´ 80/95 ¹
  • 81. where 3 X is the covariant derivative with respect to γ and corresponding curvature tensor is 3 R(X, Y ) = 3 X 3 Y −3 Y 3 X − [3 X, 3 Y] In the basis {e⊥ , ea } we find the componets of the connection Γ⊥⊥⊥ = 0, Γ⊥⊥i = 0, Γj ⊥⊥ = cj , Γj ⊥i = −K ji , Γ⊥i⊥ = ci , Γ⊥ji = −Kji , Γj i⊥ = −K ji + 3 j θ , Le⊥ ei , Γkij = 3 Γkij ´ 81/95 ¹
  • 82. and of the Riemann tensor 1 js3 Rj ⊥k⊥ = K js Ksk + γ js Le⊥ Kks + γ ek 3 es N , N R⊥ijk = 3 ek Kij − 3 ej Kik , Rs ijk = 3Rs ijk + Kik Kj s − Kij Kk s Finally the scalar curvature can be obtained in the form 2 ab3 R = 3R + Ka a Kb b − 3Kab K ab − γ ea 3 eb N − 2γ ab Le⊥ Kab N The classical behavior of the dynamical variables N , N a , γ ´ 82/95 ¹
  • 83. is determined by the Hilbert-Einstein action t2 . . . L[N, Na , γab , N , Na , γ ab ] = dt 3σN 3 R + Ka a Kb b − 3Kab K ab t1S t2 2 ab − dt 3 σN γ 3 ea 3 eb N − 2γ ab Le⊥ Kab N t1S √ 1 where 3σ = γ θ ∧ θ2 ∧ θ3 is the volume 3-form on Σt . ´ 83/95 ¹
  • 84. 1.2. Bianchi models L. Bianchi 1897 Sugli spazii atre dimensioni du ammettono un gruppo continuo di movimenti Soc. Ital. della Sci. Mem. di Mat. (Dei. XL) (3) 3 267 By definition, Bianchi models are manifolds with product topology M = R × G3 On the three dimensional Riemannnian manifold Σt γ there ´ 84/95 ¹
  • 85. exist left-invariant 1-forms {χa } such that 1 dχa = − C abc χb ∧ χc 2 The dual vector fields {ξa } form a basis in the Lie algebra of the group G3 [ξa , ξb ] = C dab ξd with structure constants C dab = 2 dχd (ea , eb ). In the invariant basis [e⊥ , ea ] = C d⊥a ed , [ea , eb ] = −C dab ed , with C d⊥a = N −1 N b C dab the metric takes the form g = − θ⊥ ⊗ θ⊥ + γab θa ⊗ θb ´ 85/95 ¹
  • 86. The preferable role of this choice for a coframe is that the functions N, N a and γab depend on the time parameter t only. Due to this simplification the initial variational prob- lem for Bianchi A models is restricted to a variational prob- lem of the “mechanical” system t2 √ 3 L (N, Na , γab , γab ) = ˙ dt γN R − Ka a Kb b + Kab K ab , t1 where 3R is the curvature scalar formed from the spatial metric γ 1 1 3 R = − γ ab C cda C dcb − γ ab γ cd γij C i ac C jbd , 2 ´ 86 4 ¹/95
  • 87. and 1 Kab = − (γad C dbc + γbd C dac )N c + γab ˙ 2N is the extrinsic curvature of the slice Σt defined by the re- lation 1 Kab = − Le⊥ γab 2 In the theory we have four primary constraints δL δL π := = 0, π a := =0 ˙ δN ˙ δ Na δL √ π ab := = γ(γab K i i − K ab ) δ γab ˙ ´ 87 /95 ¹
  • 88. The symplectic structure on the phase space is defined by the following non-vanishing Poisson brachets 1 r s {N, π} = 1, {Na , π b } = δa , b {γcd , π rs } = s r δ δ + δc δd 2 c d Due to the reparametrization symmetry of inherited from the diffeomorphism invariance of the initial Hilbert-Einstein action, the evolution of the system is unambiguous and it is governed by the total Hamiltonian HT = N H + N a Ha + u0 P 0 + ua P a with four arbitrary functions ua (t) and u0 (t). One can verify ´ 88/95 ¹
  • 89. that the secondary constraints are first class and obey the algebra {H, Hb } = 0, {Ha , Hb } = −C dab Hd From the condition of time conservation of the primary constaraints folllows four secondary constaraints 1 1 √ H = √ π ab πab − π aa π b b − γ 3R, Ha = 2 C dab π bc γcd , γ 2 which obey the algebra {H, Ha } = 0, {Ha , Hb } = −C dab Hd The Hamiltonian form of the action for the Bianchi A mod- ´ 89/95 ¹
  • 90. els can be obtained in the form t2 a ab L[N, Na , γab , π, π , π ] = π ab dγab − HC dt t1 where the canonical Hamiltonian is a linear combination of the secondary constraints HC = N H + N a Ha . ´ 90/95 ¹
  • 91. 1.3. Hamiltonian reduction of Bianchi I cosmol- ogy In the case of Bianchi I model the group which acts on (Σt , γ) is T3 and the action takes the form t2 a ab L[N, Na , γab , π, π , π ] = π ab dγab − N Hdt . t1 Using the decomposition for arbitrary symmetric non-singular matrix γ = RT (χ)e2X R(χ) , ´ 91/95 ¹
  • 92. where X = diag x1 , x2 , x3 is diagonal matrix and R(ψ, θ, φ) = eψJ3 eθJ1 eφJ3 we can pass to the new canonical variables (γab , π ab ) =⇒ (χa , pchia ; xa , pa ) The corresponding momenta are 3 3 T π=R P s αs + Ps αs R s=1 s=1 ´ 92/95 ¹
  • 93. where P a = pa , 1 ξa Pa = − , (cyclic permutations a = b = c) 4 sinh(xb − xc ) and the left-invariant basis of the action of the SO(3, R) in the phase space with three dimensional orbits is given by sin ψ ξ1 = pφ + cos ψ pθ − sin ψ cot θ pψ , sin θ cos ψ ξ2 = − pφ + sin ψ pθ + cos ψ cot θ pψ , sin θ ξ3 = pψ ´ 93/95 ¹
  • 94. In the new variables the Hamiltonian constraint reads 3 2 1 1 ξc H= p2 − a p a pb + 2 a=1 ab 2 (abc) sinh2 (xa − xb ) ´ 94/95 ¹
  • 95. Many thanks TO THE ORGANIZERS for the nice Conference !!! Also many thanks to all of you !!! I hope we will see each other in the next edition of the Conference . . . ´ 95/95 2