SlideShare una empresa de Scribd logo
1 de 41
Dumitru   N. Vulcanov   The West University of Timisoara October 2009  Introduction to cosmology and numerical cosmology  (with the Cactus code)   First lecture
Timisoara   - my city  West University of Timisoara   main building and entrance  The orthodox cathedral  Bega   ...
Timisoara   - my city  Victory place  The Dome
Plan of the presentation  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction :  Why scalar fields ?  ,[object Object],[object Object],[object Object],[object Object]
Introduction :  Cosmic acceleration
Theoretical background - cosmology We are dealing with cosmologies based on Friedman- Robertson-Walker (   FRW   ) metric  Where R(t) is the scale factor and k=-1,0,1 for open, flat or closed cosmologies. Inserting FRW   metric in Einstein equations  Greek indices   run from 0 to 3, and we have geometrical units (G=c=1)
Theoretical background - cosmology   When only a scalar field is present as a matter field, the stress-energy can be written as  where  and, as usual  with
Theoretical background - cosmology   Thus Einstein equations are  where the Hubble function and the Gaussian curvature are
Theoretical background - cosmology Thus Einstein equations are  It is easy to see that these eqs   . are not independent. For example, a solution of the first two ones (called Friedman equations) satisfy the third one - which is the Klein-Gordon equation for the scalar   field.
Theoretical background - cosmology   Thus Einstein equations are  The current method is to solve these eqs   . by considering a certain potential (from some background physical suggestions) and then find the time behaviour   of the scale factor R(t) and Hubble function H(t).
Theoretical background - cosmology Thus Einstein equations are  Ellis and Madsen   proposed another method, today considered (Ellis et   .   al   , Padmanabhan   ...) more appropriate for modelling   the cosmic acceleration : consider "a priori   " a certain type of scale factor R(t), as possible as close to the astrophysical observations, then solve the above eqs   . for V and the scalar field.
Theoretical background - cosmology   Following this way, the above equations can be rewritten as  Solving these equations, for some initially prescribed scale factor functions, Ellis and Madsen   proposed the next potentials - we shall call from now one Ellis-   Madsen   potentials :
Theoretical background - cosmology where we denoted with an "0" index all values at the initial actual time. These are the Ellis-Madsen potentials.
Theoretical background - cosmology We shall test Cosmo and RealSF   thorns comparing the colomns   2 and 3 of the table with the respective values as are at the numerical output ! But first we shall describe how we adapted these thorn for our purposes.
Theoretical background  Numerical relativity Basically, Numerical Relativity (NR) is dealing with the problem of solving numerically the Einstein Equations ( EE ), namely :   where greek indices runs from 0 to 3 and  l  is the  cosmological constant The left hand of the above EE is the Einstein tensor; it can be constructed from a certain metric of the space-time  The right hand contains the stress-energy tensor wich describes the matter-fields contents of the spacetime .
Theoretical background  Numerical relativity 3+1 dimensioal split of spacetime : -Spacetime is foliated into a set of non-intersecting three-dimensional  spacelike hypersurfaces having a riemannian geometry. -Two kinematic objects describe the evolution between the hypersurfaces :  1. The " lapse " function,  a   which describes the rate of advance of time between two hypersurfaces along a timelike unit vector normal to a surface  n i   ;  2. The " shift " vector,  b i   describing how coordinates move between hypersurfaces .   Latin indices will run from 1 to 3 !!!
Theoretical background  Numerical relativity Two adjacent spacelike hypersurfaces.  The figure shows the definitions of the lapse function  a  and the shift vector  b i Foliation of spacetime into three-dimensional  spacelike hypersurfaces.
Theoretical background  Numerical relativity Then the 4-dimensional interval becomes :   Consequently, the 4-dimensional metric is split as  :
Theoretical background  Numerical relativity An important geometric object is the " extrinsic curvature " which  describes how the hypersurfaces are embedded in the four dimensional  spacetime ; it is defined as : where : " / " means three-dimensional covariant derivative (relative to the riemannian geometry of the hypersurfaces ,  " ,0 " means the time derivative;  all the latin indices  i,j,k,l,m,n.... runs between 1,2,3 !!
Theoretical background  Numerical relativity Finally, the EE are split in ADM standard form, namely into two sets of  equations; first we have the  dynamical equations  :
Theoretical background  Numerical relativity And a set of  constraint equations  : The Hamiltonian constraint The Momentum constraints
Theoretical background  Numerical relativity This is the so called " ADM formalism " (Arnowitt , Deser , Misner ) but slightly different from the orginal version ! Why?  Because here the  extrinsic curvature  plays a real dynamical role, instead of the ADM momenta, defined for initial use in canonical quatization of gravity... A long unfinished dream ! Nothing to do with  Numerical Relativity (NR) ! Doing NR means to  solve numerically  the above equations, mainly by finite differencing them.... Looks easy, but now comes the... real nightmare !
Numerical relativity First attemps : late '60's and '70's :  total failure !  Why ?  Because in even the must simple case, of a head-on collision of two identical black-holes that time computers where too small : thousand of terms in the equations and at least 1 GB of RAM to handle...  Only late '80's supercomputers (which became avaiable at that time to the scientific cummunity ) done the job !!!  So we are speaking of Numerical relativity only starting from around 1990 !
Numerical relativity It was a gradual development, of codes, numerical techniques and hardware too ...  Why new numerical techniques (as Bona - Masso or, more recently ADM_ BSSN method) ?  Because, the equations are  not standard ones  !  What's about hardware : now we are doing NR even on PC's ...or palmtops !!! And by remote, on internet connection !
Numerical relativity Early codes were uni-dimensional or bi-dimensional - see the Grand Challange project in USA (1990-1997).  Till today, only Cactus code is a  fully 3D  , high performance code for NR !!!  …Cactus + Globus + Portal ....  It's an entire community - hundred of people, dozens of institutes and groups allover the world  Grid-lab, EuroGrid , TerraGrid , and so on... all involves Cactus !
 
Numerical relativity and cosmology What’s the plan  ? We developped a new application for Cactus code to deal with cosmology numerically (Cosmo thorn) We used the theoretical recipes for cosmology before introduced for providing initial data for Cactus code Run the Cactus code for solving numerically EE in this context
The task of Numerical Relativity ,[object Object],[object Object],[object Object],[object Object]
The task of Numerical Relativity ,[object Object],[object Object],[object Object],[object Object]
The task of Numerical Relativity ,[object Object],[object Object],[object Object],[object Object]
The task of Numerical Relativity Waveforms : what happens in nature ...
Early simulations ...
Some recent simulations with Cactus code   Gravitational waves from the collision of two black-holes
Some recent simulations with Cactus code   Neutron stars collision
Some recent simulations with Cactus code   Where we one can find some of these nice vizualisations   ?  On :  http://jean-luc.aei.mpg.de  http://jean-luc.ncsa.uiuc.edu  Let's see now some of the movies done with numerical simulations with Cactus code !!!
Some recent simulations with Cactus code   Two neutron stars colliding
Some recent simulations with Cactus code   Two neutron stars colliding 2
Some recent simulations with Cactus code   Two black-holes stars colliding
 
End of Part I

Más contenido relacionado

La actualidad más candente

14.40 o1 i neupane
14.40 o1 i neupane14.40 o1 i neupane
14.40 o1 i neupaneNZIP
 
A Bianchi Type IV Viscous Model of The Early Universe
A Bianchi Type IV Viscous Model of The Early UniverseA Bianchi Type IV Viscous Model of The Early Universe
A Bianchi Type IV Viscous Model of The Early UniverseIkjyot Singh Kohli
 
Obtaining three-dimensional velocity information directly from reflection sei...
Obtaining three-dimensional velocity information directly from reflection sei...Obtaining three-dimensional velocity information directly from reflection sei...
Obtaining three-dimensional velocity information directly from reflection sei...Arthur Weglein
 
Diagrammatic Representation of Time - Storrs Mccall
Diagrammatic Representation of Time - Storrs MccallDiagrammatic Representation of Time - Storrs Mccall
Diagrammatic Representation of Time - Storrs MccallRupert Sully
 
Application of vector integration
Application of vector integration Application of vector integration
Application of vector integration Varuna Kapuge
 
Causality in special relativity
Causality in special relativityCausality in special relativity
Causality in special relativityMuhammad Ishaq
 
Some history of quantum groups
Some history of quantum groupsSome history of quantum groups
Some history of quantum groupsDaniel Tubbenhauer
 
Advantages of quadratic quantization techniques in the description of the pre...
Advantages of quadratic quantization techniques in the description of the pre...Advantages of quadratic quantization techniques in the description of the pre...
Advantages of quadratic quantization techniques in the description of the pre...Orchidea Maria Lecian
 
Metropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short TutorialMetropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short TutorialRalph Schlosser
 
Kgeppt spvm 0_try1
Kgeppt spvm 0_try1Kgeppt spvm 0_try1
Kgeppt spvm 0_try1foxtrot jp R
 
Markov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themMarkov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themPierre Jacob
 
Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsMarkov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsFrancesco Casalegno
 
Pre-newtonian calculus
Pre-newtonian calculusPre-newtonian calculus
Pre-newtonian calculusKeith Rodgers
 
Quaternions, Alexander Armstrong, Harold Baker, Owen Williams
Quaternions, Alexander Armstrong, Harold Baker, Owen WilliamsQuaternions, Alexander Armstrong, Harold Baker, Owen Williams
Quaternions, Alexander Armstrong, Harold Baker, Owen WilliamsHarold Baker
 

La actualidad más candente (19)

Statistical Physics Assignment Help
Statistical Physics Assignment HelpStatistical Physics Assignment Help
Statistical Physics Assignment Help
 
14.40 o1 i neupane
14.40 o1 i neupane14.40 o1 i neupane
14.40 o1 i neupane
 
A Bianchi Type IV Viscous Model of The Early Universe
A Bianchi Type IV Viscous Model of The Early UniverseA Bianchi Type IV Viscous Model of The Early Universe
A Bianchi Type IV Viscous Model of The Early Universe
 
Obtaining three-dimensional velocity information directly from reflection sei...
Obtaining three-dimensional velocity information directly from reflection sei...Obtaining three-dimensional velocity information directly from reflection sei...
Obtaining three-dimensional velocity information directly from reflection sei...
 
Diagrammatic Representation of Time - Storrs Mccall
Diagrammatic Representation of Time - Storrs MccallDiagrammatic Representation of Time - Storrs Mccall
Diagrammatic Representation of Time - Storrs Mccall
 
Application of vector integration
Application of vector integration Application of vector integration
Application of vector integration
 
Causality in special relativity
Causality in special relativityCausality in special relativity
Causality in special relativity
 
Temperley-Lieb times four
Temperley-Lieb times fourTemperley-Lieb times four
Temperley-Lieb times four
 
Linear response theory
Linear response theoryLinear response theory
Linear response theory
 
Some history of quantum groups
Some history of quantum groupsSome history of quantum groups
Some history of quantum groups
 
Advantages of quadratic quantization techniques in the description of the pre...
Advantages of quadratic quantization techniques in the description of the pre...Advantages of quadratic quantization techniques in the description of the pre...
Advantages of quadratic quantization techniques in the description of the pre...
 
Metropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short TutorialMetropolis-Hastings MCMC Short Tutorial
Metropolis-Hastings MCMC Short Tutorial
 
Kgeppt spvm 0_try1
Kgeppt spvm 0_try1Kgeppt spvm 0_try1
Kgeppt spvm 0_try1
 
Markov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themMarkov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing them
 
Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo MethodsMarkov Chain Monte Carlo Methods
Markov Chain Monte Carlo Methods
 
Pre-newtonian calculus
Pre-newtonian calculusPre-newtonian calculus
Pre-newtonian calculus
 
321 notes
321 notes321 notes
321 notes
 
Richard Everitt's slides
Richard Everitt's slidesRichard Everitt's slides
Richard Everitt's slides
 
Quaternions, Alexander Armstrong, Harold Baker, Owen Williams
Quaternions, Alexander Armstrong, Harold Baker, Owen WilliamsQuaternions, Alexander Armstrong, Harold Baker, Owen Williams
Quaternions, Alexander Armstrong, Harold Baker, Owen Williams
 

Similar a Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)

D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...SEENET-MTP
 
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic InflationG. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic InflationSEENET-MTP
 
Impacts of a New Spatial Variable on a Black Hole Metric Solution
Impacts of a New Spatial Variable on a Black Hole Metric SolutionImpacts of a New Spatial Variable on a Black Hole Metric Solution
Impacts of a New Spatial Variable on a Black Hole Metric SolutionIJSRED
 
PART VII.1 - Quantum Electrodynamics
PART VII.1 - Quantum ElectrodynamicsPART VII.1 - Quantum Electrodynamics
PART VII.1 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
Be2419772016
Be2419772016Be2419772016
Be2419772016IJMER
 
Black hole entropy leads to the non-local grid dimensions theory
Black hole entropy leads to the non-local grid dimensions theory Black hole entropy leads to the non-local grid dimensions theory
Black hole entropy leads to the non-local grid dimensions theory Eran Sinbar
 
assignment 1 page 1+2.pdf
assignment 1 page 1+2.pdfassignment 1 page 1+2.pdf
assignment 1 page 1+2.pdfSajidNadeem15
 
Quantum cosmologyjj halliwell
Quantum cosmologyjj halliwellQuantum cosmologyjj halliwell
Quantum cosmologyjj halliwellLívia Rezende
 
Quantum Geometry: A reunion of math and physics
Quantum Geometry: A reunion of math and physicsQuantum Geometry: A reunion of math and physics
Quantum Geometry: A reunion of math and physicsRafa Spoladore
 
Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...
Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...
Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...Wendy Belieu
 
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...SEENET-MTP
 

Similar a Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2) (20)

D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
 
PART II.1 - Modern Physics
PART II.1 - Modern PhysicsPART II.1 - Modern Physics
PART II.1 - Modern Physics
 
first research paper
first research paperfirst research paper
first research paper
 
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic InflationG. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
G. Djordjevic/ Lj. Nesic: Notes on Real and p-Adic Inflation
 
PART X.1 - Superstring Theory
PART X.1 - Superstring TheoryPART X.1 - Superstring Theory
PART X.1 - Superstring Theory
 
Impacts of a New Spatial Variable on a Black Hole Metric Solution
Impacts of a New Spatial Variable on a Black Hole Metric SolutionImpacts of a New Spatial Variable on a Black Hole Metric Solution
Impacts of a New Spatial Variable on a Black Hole Metric Solution
 
gravitywaves
gravitywavesgravitywaves
gravitywaves
 
PART VII.1 - Quantum Electrodynamics
PART VII.1 - Quantum ElectrodynamicsPART VII.1 - Quantum Electrodynamics
PART VII.1 - Quantum Electrodynamics
 
Be2419772016
Be2419772016Be2419772016
Be2419772016
 
Black hole entropy leads to the non-local grid dimensions theory
Black hole entropy leads to the non-local grid dimensions theory Black hole entropy leads to the non-local grid dimensions theory
Black hole entropy leads to the non-local grid dimensions theory
 
assignment 1 page 1+2.pdf
assignment 1 page 1+2.pdfassignment 1 page 1+2.pdf
assignment 1 page 1+2.pdf
 
Part III - Quantum Mechanics
Part III - Quantum MechanicsPart III - Quantum Mechanics
Part III - Quantum Mechanics
 
Quantum cosmologyjj halliwell
Quantum cosmologyjj halliwellQuantum cosmologyjj halliwell
Quantum cosmologyjj halliwell
 
Waves_Quantum.ppt and Pdf
Waves_Quantum.ppt and Pdf Waves_Quantum.ppt and Pdf
Waves_Quantum.ppt and Pdf
 
Fractals
Fractals Fractals
Fractals
 
Quantum Geometry: A reunion of math and physics
Quantum Geometry: A reunion of math and physicsQuantum Geometry: A reunion of math and physics
Quantum Geometry: A reunion of math and physics
 
Miao
MiaoMiao
Miao
 
Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...
Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...
Analyzing The Quantum Annealing Approach For Solving Linear Least Squares Pro...
 
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
D. Vulcanov: Symbolic Computation Methods in Cosmology and General Relativity...
 
An introduction to probability theory geiss
An introduction to probability theory   geissAn introduction to probability theory   geiss
An introduction to probability theory geiss
 

Más de SEENET-MTP

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...SEENET-MTP
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"SEENET-MTP
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"SEENET-MTP
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...SEENET-MTP
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...SEENET-MTP
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"SEENET-MTP
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...SEENET-MTP
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"SEENET-MTP
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...SEENET-MTP
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"SEENET-MTP
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...SEENET-MTP
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...SEENET-MTP
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...SEENET-MTP
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...SEENET-MTP
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...SEENET-MTP
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"SEENET-MTP
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...SEENET-MTP
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"SEENET-MTP
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"SEENET-MTP
 

Más de SEENET-MTP (20)

SEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 yearsSEENET-MTP Booklet - 15 years
SEENET-MTP Booklet - 15 years
 
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
Milan Milošević "The shape of Fe Kα line emitted from relativistic accretion ...
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
Dragoljub Dimitrijević "Tachyon Inflation in the RSII Framework"
 
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
Vesna Borka Jovanović "Constraining Scalar-Tensor gravity models by S2 star o...
 
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
Elena Mirela Babalic "Generalized alpha-attractor models for hyperbolic surfa...
 
Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"Dragan Huterer "Novi pogledi na svemir"
Dragan Huterer "Novi pogledi na svemir"
 
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
Mihai Visinescu "Action-angle variables for geodesic motion on resolved metri...
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
Predrag Milenović "Physics potential of HE/HL-LHC and future circular"
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
Zvonimir Vlah "Lagrangian perturbation theory for large scale structure forma...
 
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
Vitaly Vanchurin "General relativity from non-equilibrium thermodynamics of q...
 
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
Sergey Sibiryakov "Galactic rotation curves vs. ultra-light dark matter: Impl...
 
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
Radoslav Rashkov "Integrable structures in low-dimensional holography and cos...
 
Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"Nikola Godinović "The very high energy gamma ray astronomy"
Nikola Godinović "The very high energy gamma ray astronomy"
 
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
Miroljub Dugić "The concept of Local Time. Quantum-mechanical and cosmologica...
 
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"Cemsinan Deliduman "Astrophysics with Weyl Gravity"
Cemsinan Deliduman "Astrophysics with Weyl Gravity"
 
Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"Radu Constantinescu "Scientific research: Excellence in International context"
Radu Constantinescu "Scientific research: Excellence in International context"
 

Último

MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsRommel Regala
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 

Último (20)

MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World Politics
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 

Introduction to cosmology and numerical cosmology (with the Cactus code) (1/2)

  • 1. Dumitru N. Vulcanov The West University of Timisoara October 2009 Introduction to cosmology and numerical cosmology (with the Cactus code) First lecture
  • 2. Timisoara - my city West University of Timisoara main building and entrance The orthodox cathedral Bega ...
  • 3. Timisoara - my city Victory place The Dome
  • 4.
  • 5.
  • 6. Introduction : Cosmic acceleration
  • 7. Theoretical background - cosmology We are dealing with cosmologies based on Friedman- Robertson-Walker ( FRW ) metric Where R(t) is the scale factor and k=-1,0,1 for open, flat or closed cosmologies. Inserting FRW metric in Einstein equations Greek indices run from 0 to 3, and we have geometrical units (G=c=1)
  • 8. Theoretical background - cosmology When only a scalar field is present as a matter field, the stress-energy can be written as where and, as usual with
  • 9. Theoretical background - cosmology Thus Einstein equations are where the Hubble function and the Gaussian curvature are
  • 10. Theoretical background - cosmology Thus Einstein equations are It is easy to see that these eqs . are not independent. For example, a solution of the first two ones (called Friedman equations) satisfy the third one - which is the Klein-Gordon equation for the scalar field.
  • 11. Theoretical background - cosmology Thus Einstein equations are The current method is to solve these eqs . by considering a certain potential (from some background physical suggestions) and then find the time behaviour of the scale factor R(t) and Hubble function H(t).
  • 12. Theoretical background - cosmology Thus Einstein equations are Ellis and Madsen proposed another method, today considered (Ellis et . al , Padmanabhan ...) more appropriate for modelling the cosmic acceleration : consider "a priori " a certain type of scale factor R(t), as possible as close to the astrophysical observations, then solve the above eqs . for V and the scalar field.
  • 13. Theoretical background - cosmology Following this way, the above equations can be rewritten as Solving these equations, for some initially prescribed scale factor functions, Ellis and Madsen proposed the next potentials - we shall call from now one Ellis- Madsen potentials :
  • 14. Theoretical background - cosmology where we denoted with an "0" index all values at the initial actual time. These are the Ellis-Madsen potentials.
  • 15. Theoretical background - cosmology We shall test Cosmo and RealSF thorns comparing the colomns 2 and 3 of the table with the respective values as are at the numerical output ! But first we shall describe how we adapted these thorn for our purposes.
  • 16. Theoretical background Numerical relativity Basically, Numerical Relativity (NR) is dealing with the problem of solving numerically the Einstein Equations ( EE ), namely : where greek indices runs from 0 to 3 and l is the cosmological constant The left hand of the above EE is the Einstein tensor; it can be constructed from a certain metric of the space-time The right hand contains the stress-energy tensor wich describes the matter-fields contents of the spacetime .
  • 17. Theoretical background Numerical relativity 3+1 dimensioal split of spacetime : -Spacetime is foliated into a set of non-intersecting three-dimensional spacelike hypersurfaces having a riemannian geometry. -Two kinematic objects describe the evolution between the hypersurfaces : 1. The " lapse " function, a which describes the rate of advance of time between two hypersurfaces along a timelike unit vector normal to a surface n i ; 2. The " shift " vector, b i describing how coordinates move between hypersurfaces . Latin indices will run from 1 to 3 !!!
  • 18. Theoretical background Numerical relativity Two adjacent spacelike hypersurfaces. The figure shows the definitions of the lapse function a and the shift vector b i Foliation of spacetime into three-dimensional spacelike hypersurfaces.
  • 19. Theoretical background Numerical relativity Then the 4-dimensional interval becomes : Consequently, the 4-dimensional metric is split as :
  • 20. Theoretical background Numerical relativity An important geometric object is the " extrinsic curvature " which describes how the hypersurfaces are embedded in the four dimensional spacetime ; it is defined as : where : " / " means three-dimensional covariant derivative (relative to the riemannian geometry of the hypersurfaces , " ,0 " means the time derivative; all the latin indices i,j,k,l,m,n.... runs between 1,2,3 !!
  • 21. Theoretical background Numerical relativity Finally, the EE are split in ADM standard form, namely into two sets of equations; first we have the dynamical equations :
  • 22. Theoretical background Numerical relativity And a set of constraint equations : The Hamiltonian constraint The Momentum constraints
  • 23. Theoretical background Numerical relativity This is the so called " ADM formalism " (Arnowitt , Deser , Misner ) but slightly different from the orginal version ! Why? Because here the extrinsic curvature plays a real dynamical role, instead of the ADM momenta, defined for initial use in canonical quatization of gravity... A long unfinished dream ! Nothing to do with Numerical Relativity (NR) ! Doing NR means to solve numerically the above equations, mainly by finite differencing them.... Looks easy, but now comes the... real nightmare !
  • 24. Numerical relativity First attemps : late '60's and '70's : total failure ! Why ? Because in even the must simple case, of a head-on collision of two identical black-holes that time computers where too small : thousand of terms in the equations and at least 1 GB of RAM to handle... Only late '80's supercomputers (which became avaiable at that time to the scientific cummunity ) done the job !!! So we are speaking of Numerical relativity only starting from around 1990 !
  • 25. Numerical relativity It was a gradual development, of codes, numerical techniques and hardware too ... Why new numerical techniques (as Bona - Masso or, more recently ADM_ BSSN method) ? Because, the equations are not standard ones ! What's about hardware : now we are doing NR even on PC's ...or palmtops !!! And by remote, on internet connection !
  • 26. Numerical relativity Early codes were uni-dimensional or bi-dimensional - see the Grand Challange project in USA (1990-1997). Till today, only Cactus code is a fully 3D , high performance code for NR !!! …Cactus + Globus + Portal .... It's an entire community - hundred of people, dozens of institutes and groups allover the world Grid-lab, EuroGrid , TerraGrid , and so on... all involves Cactus !
  • 27.  
  • 28. Numerical relativity and cosmology What’s the plan ? We developped a new application for Cactus code to deal with cosmology numerically (Cosmo thorn) We used the theoretical recipes for cosmology before introduced for providing initial data for Cactus code Run the Cactus code for solving numerically EE in this context
  • 29.
  • 30.
  • 31.
  • 32. The task of Numerical Relativity Waveforms : what happens in nature ...
  • 34. Some recent simulations with Cactus code Gravitational waves from the collision of two black-holes
  • 35. Some recent simulations with Cactus code Neutron stars collision
  • 36. Some recent simulations with Cactus code Where we one can find some of these nice vizualisations ? On : http://jean-luc.aei.mpg.de http://jean-luc.ncsa.uiuc.edu Let's see now some of the movies done with numerical simulations with Cactus code !!!
  • 37. Some recent simulations with Cactus code Two neutron stars colliding
  • 38. Some recent simulations with Cactus code Two neutron stars colliding 2
  • 39. Some recent simulations with Cactus code Two black-holes stars colliding
  • 40.