SlideShare una empresa de Scribd logo
1 de 72
TEXTILE 
A Textile was originally a woven fabric but now the term textile and its 
plural textiles are also applied to fibers, filaments, yarn and most 
products for which these are a principle raw material. The product 
includes threads, cords, ropes, braids woven, knitted, non-woven fabrics, 
nets, household textile, geo-textile, medical textiles etc. 
WEAVING 
Weaving is the action of producing fabric by the interlacing of warp and 
weft thread. The warp threads are placed along the length of the fabric 
and the weft threads are placed along the width of the fabric. 
Example of Different Textile- 
Geo-Textile: Embankment 
Medical Textile: Non-alginate fabric, Bandage tape etc. 
Non-woven Fabric: Tea bag, Tissue paper. 
House Hold Textile: Curtain, Cover of soffa set. 
Southeast University – Department of Textile Engineering 
1
FLOW CHART OF WEAVING 
Yarn 
(In the form of spinner’s package) 
Warp Preparation Weft Preparation 
Winding (cone, cheese) Winding (Cop, Pirn, 
Cone, Cheese) 
Warping (Pre beam/ Warper’s 
beam/ back beam) Weaving (Fabric) 
Sizing (weaver’s beam) 
Drafting, Drawing, Pinning 
Denting, Looming 
Weaving (Fabric) 
Three types of yarn package are mention bellow 
Cone Flange bobbin Cheese 
Southeast University – Department of Textile Engineering 
2
TYPES OF FABRICS 
1. Woven fabric (Shirt) 
2. Knitted fabric (T-shirt) 
3. Non-woven fabric (Tea pack) 
4. Special fabric (Fire proof fabric, water proof fabric) 
OBJECTS OF YARN PREPARATION 
Yarn preparation is important to facilitate the next processes of weaving. 
The objects of yarn preparation are mentioned bellow: 
 To remove yarn faults ( there are 23 types of yarn faults) 
 To transfer the yarn from spinner’s package to a convenient form of 
package which will facilitate weaving. 
 To have desired length of yarn on a package. 
 To clean the yarn for better appearance and performance. 
 To make good quality fabric. 
 To reduce labour cost. 
FAULTS TO BE REMOVED DURING YARN-PREPARATION 
1. Thick place 
2. Thin place 
3. Slubs Place 
4. Loose fibers 
5. Count variation 
Southeast University – Department of Textile Engineering 
3 
Intentional 
Unintentional
6. Foreign particles (seed, leaf, dust, bollworm, honeydew) 
7. Neps 
QUALITY OF GOOD WARP 
The essential features of good warp is mentioned bellow- 
 The yarn must be uniform, clean and free from knots as much as 
possible. 
 The yarn must be sufficiently strong with withstand the stress and 
friction without end breakage. 
 Knots should be a standard size and type. So that they can pass the 
heald eye, dropper, read easily. 
 The warp must be uniformly sized and size coating should be thick 
enough to protect the yarn various function. 
 The ends of warp must be parallel and each must be wound onto a 
weaver’s beam at an even and equal tension. 
 All warp yarn should of same size in length. 
Southeast University – Department of Textile Engineering 
4
TYPES OF PACKAGE 
 Cone (for warp yarn) 
 Cheese (for warp yarn) 
 Spool (for silk, jute warp yarn) 
 Flanged bobbin (for warp yarn) 
 Cop (for jute weft) 
 Pirn (for cotton weft) 
 Spinner package 
TYPES OF PACKAGE WINDING 
There are three types of package winding available. 
1. Parallel wound package 
2. Near parallel wound package 
3. Cross wound package 
1. Parallel Wound Package Features 
a) Many yarn can be wound at a time. 
b) No need of traversing motion. 
c) Side withdrawal is possible. 
d) The density of yarn is more. 
e) No change of twist/inch. 
Southeast University – Department of Textile Engineering 
5 
PACKAGE
f) For yarn unwinding separate mechanism is needed. 
g) Two side of the package needed flanged. 
2. Near Parallel Wound Package Features 
a) No need flange here. 
b) Both side and overend withdrawal is possible. 
c) Twist/inch can be changed. 
d) Traversing motion is needed. 
3. Cross-Wound Package Features 
a) Here no flange is required. 
b) Traversing mechanism is must. 
c) Twist/inch changes. 
d) Only overend withdrawal is possible. 
e) Yarn ballooning occurs during unwinding. 
f) This package is very stable. 
Southeast University – Department of Textile Engineering 
6
TYPES OF PACKAGE DRIVING 
There are three types of package driving system. 
A. surface contact driving (indirect system) 
B. direct driving at constant angular speed 
C. Direct Driving At Variable Angular Speed 
A. SURFACE CONTACT DRIVING (INDIRECT SYSTEM) 
In this system, the yarn package is placed with a surface contact of a 
drum. The drum is driven by a motor and some gear. When it rotates the 
package also rotate is reverse direction. 
Southeast University – Department of Textile Engineering 
7 
PACKAGE DRIVING
B. DIRECT DRIVING AT CONSTANT ANGULAR SPEED 
In this system, the package is placed on a spindle. The spindle is driven 
by a motor and some gears. So the package gets a constant angular 
speed. Here yarn take up rate is directly proportional to the package dia. 
C. DIRECT DRIVING AT VARIABLE ANGULAR SPEED 
In this system, yarn package is directly driven at a variable angular speed 
to give a constant yarn speed. Here the package speed is inversely 
proportional to the package radius, 
I.e. Package speed 
Southeast University – Department of Textile Engineering 
8 
1 
Package radius
The appearance of the curved path of running yarn during unwinding or 
overend withdrawl from package under appropriate winding condition 
through a guide, placed above and in line with the axis of the package at 
an adequate distance from it, the yarn assumes the appearance of a 
balloon shape. This circumstance of assuming balloon shape of yarn is 
called ballooning. 
Southeast University – Department of Textile Engineering 
9 
BALLOONING
FACTORS EFFECTING THE SHAPE AND SIZE OF BALLOON 
 Package size Ballooning 
 Yarn guide distance Ballooning 
 Lift the package Ballooning 
 Count of yarn Ballooning 
 Air resistance Ballooning 
 Unwinding rate. Ballooning 
The unwinding process of yarn from package is called yarn withdrawal. 
There are two types of yarn withdrawal system: 
1. Side Withdrawal 
2. Overend Withdrawal 
1) Side Withdrawal 
The features of side withdrawl of yarn are given bellow; 
a) Package will rotate in side withdrawal. 
b) Yarn twist will be unchanged. 
c) No formation of balloon occurs. 
d) It is applied to flanged bobbin. 
e) The rate and speed of unwinding is slow. 
Southeast University – Department of Textile Engineering 
10 
YARN WITHDRAWAL OR UNWINDING
2) Overend Withdrawal 
The features of overend withdrawl are given bellow; 
a) Package remains stationary during unwinding. 
b) Formation of balloon occurs. 
c) Twist/inch of yarn changed. 
d) Generally cop, pirn, cone, chess are packages used for overend 
withdrawl. 
e) The rate of unwinding is high. 
In winding and unwinding some small component control yarn path which 
is very necessary, yarn guide is used to perform this job. 
TYPES OF YARN GUIDE 
There are two types of yarn guide 
a) Yarn Guide For The Yarn Whose Ends Are Required For 
Threading; 
Southeast University – Department of Textile Engineering 
11 
YARN GUIDE
For this type of yarn guide extra time is needed for threading. So speed of 
operation is decreased. The yarn which passes through this guide faces 
more friction. 
Like Ceramic, Tumpet, Bust 
b) Yarn Guide For The Yarn Whose Ends Are Not Required For 
Threading; 
Here threading is very easy. So the speed of the operation is high. Yarn 
passes through this guide faces less friction. 
During winding, we have to impart proper tension to yarn, so that we can 
get a stable and undamaged package. So we pass the yarn through a 
device called tension device. 
Types of Tension Device 
There are four types of tension device as follow; 
a) Capstan Tensioner. 
Southeast University – Department of Textile Engineering 
12 
Figure: Yarn Guide 
TENSION DEVICE
b) Additive Tensioner. 
c) Combined Tensioner. 
d) Automatic Tensioner. 
A. CAPSTAN TENSIONER 
It is the simplest type of yarn tensioner. It works only by deflecting the 
yarn around fixed posts. This includes a capstan effect on yarn. It works 
by the following formula: 
Output Tension = Input Tension × eμθ 
or, T2 = T1 eμθ 
Where, 
T2 = Output tension. 
T1 = Input tension. 
e = Constant tension = 2.78 
μ = Co-efficient of friction. 
θ = θ1+θ2+θ3 = Angle of lap. 
B. ADDITIVE TENSIONER 
This is also a simple technique of applying tension on yarn. In this device 
a dead weight or spring is used in the middle of the two surfaces in 
Southeast University – Department of Textile Engineering 
13
contact and the force is applied to give suitable tension to the yarn. 
Hence the output tension is expressed by, 
T2 = T1 + 2μF 
Where, 
T1 = Input tension. 
T2 = Output tension. 
μ = Co-efficient of friction. 
F = Applied force. 
C. COMBINED TENSIONER 
It is the combined form of additive and capstan tensioner. The device 
permits the tension level to be raised to any desired level, but doesn’t 
permit a reduction of tension. Here output tension is expressed as follow: 
T2 = T1 + 2μF + T1 eμθ 
Where, 
T1 = Input tension. 
T2 = Output tension. 
μ = Co-efficient of friction. 
F = Applied force. 
θ = Angle of lap. 
D. AUTOMATIC TENSIONER 
It is a simple tensioner in which yarn tension is controlled automatically. 
It has a lever with spring loaded disc in one side and applied load in 
Southeast University – Department of Textile Engineering 
14
another side. The device is designed in such a way that if applied tension 
is too high. The pressure on disc is reduced to bring the tension back to 
its proper level. 
There are some effects of tension to the yarn or package: They are 
a) If tension is too high. 
Southeast University – Department of Textile Engineering 
15 
EFFECT OF TENSIONING
b) If tension is too low. 
c) If tension varies. 
a) If Tension is Too High 
 Hard package. 
 Breakage rate increases. 
 Elongation of yarn 
 Shade variation. 
 Weak the thin place. 
c) If Tension Varies 
 Problem during unwinding. 
 Package unstable. 
 Irregularity among yarn. 
Auxiliary Function in Winding 
 Creeling. 
 Piecing. 
 Doffing. 
CHOICE OF TENSIONING DEVICE 
 It must be reliable. 
 It must be easily threaded. 
 It must neither introduce nor magnify tension variation. 
 It must not change the twist of yarn. 
 It must not be affected by wear. 
 It must be easily adjustable. 
 It must not be affected by the presence of oil and dirt. 
 It must not encourage the collection of dirt and lint. 
 It must be easy cleaning. 
 The operating surface must be smooth. 
Southeast University – Department of Textile Engineering 
16 
b) If Tension is Too Low 
 Loose package. 
 Unstable package. 
 Slough off.
 It must be cheap. 
 It must not cause any type of damage to yarn i.e. shade variation, 
elongation yarn breakage. 
PRECISION WINDING FEATURES 
 Packages are wound with reciprocating traverse. 
 Package contains more yarn. 
 Low stability of package. 
 Hard and more compact package. 
 Low unwinding rate. 
 The wound coils are arranged parallely or near parallely. 
FEATURES OF NON-PRECESSION WINDING 
 Coils are cross wound. 
 Package is of low density. 
 Less amount of yarn is stored in package. 
 High stability of package can be obtained. 
 Flange is not necessary. 
 Unwinding rate is very high. 
Difference between Precession and Non-Precession Winding 
Precession winding Non-Precession winding 
1. The wound coil arranged parallel 
or near parallel. 
1. The coil is cross wise wound. 
2. The yarn density of the package 
is high. 
2. The yarn density of a package is 
low. 
3. Flanged bobbin may be used. 3. Not use of flanged. 
4. The yarn package is hard and 
more compact. 
4. The yarn package is soft and less 
compact. 
5. Low stability of the package. 5. High stability of the package. 
6. Winding angle is 90° or near 90° 6. Winding angle is less than 80° 
7. The bobbin is wound with one or 
more threads 
7. The bobbin is wound with single 
thread. 
Southeast University – Department of Textile Engineering 
17 
WINDING
8. Yarn tension is comparatively 
high. 
8. Yarn tension is comparatively low 
9. Unwinding rate is low. 9. Unwinding rate is high. 
MATH-1 
Calculate the time required to wind 500 lbs of 24 Ne cotton yarn on 15 
drums, where the actual production per drum per minute is 560 yds. 
Given 
Production= 560yd/min/drum, 24 Ne, yarn= 500lb, time=? 
Solution 
24 Ne means, 
1 lb. of yarn contains = 24X840 yds. yarn 
500 lbs. of yarn contains = (24X840X500) yds. yarn 
560 yds. of yarn to wind in 1 drum needs =1 min 
1 yd. “ “ “ 15 drum “ =1/ (560X15) min. 
(24X840X500) yd “ “ 15 drum = (24X840X500) / (560X15) min. 
=1200 min. 
=20 hr.(ans.) 
Math-2 
Calculate the drum required to wind 900 lbs of 25 Ne cotton during the 
time 28 hrs, where the actual production per drum per minute is 600 
yds 
Given, 
Production=600yd/min/drum 
25 Ne, Yarn=900 lbs, time=28 hr., Find number of drum. 
Solution 
25 Ne of yarns means, 
1 lb of yarn contains = 25X840 yd yarns. 
500 lb of yarn contains =(25X840X900) yd yarns. 
600 yds. of yarn to wind in 1 min in = 1 drum 
1 yd ’’ ’’ ’’ (60X28) min in = 1 / (600X60X28) drum. 
Southeast University – Department of Textile Engineering 
18
(25X840X900) yds. ’’ (60X28) min = (25X840X900) / (600X28X600) 
drum 
= 18.75 drum 
= 19 drum (ans.) 
Winding is a part of total number of ends of a warp in full width on to a 
back beam from cone or cheese is known as warping. 
OBJECTS OF WARPING 
 To prepare a beam to make a fabric. 
 To increase the wave ability of fabric. 
 To make a convenient yarn sheet for sizing. 
 To wound up required length of yarn onto a warp beam. 
 To facilate the weaving of complex color pattern. 
 To make reusable small packages 
REQUIREMENT OF WARPING 
During warping the following requirements should be fulfilled. 
1. The tension of all wound end must be uniform and possibly constant 
throughout the withdrwal process. 
2. Warping should not impair the physical and mechanical properties of 
yarn. 
3. The surface of warping package must be cylindrical. 
4. A pre-determined length of yarn should be wound on beam from every 
package. 
5. The production rate of warping should be as high as possible. 
6. If possible, yarn faults should be removed. 
TYPES OF WARPING 
Mainly there are two types of warping, 
a) Direct/ high speed warping 
b) Sectional warping. 
Southeast University – Department of Textile Engineering 
19 
WARPIN
Some Other Special Types of Warping Are Available 
a) Ball warping 
b) Chain warping 
c) Cross warping 
A. SECTIONAL WARPING 
Sectional warping is a process of preparing warp beam over two stages. 
In first stage yarns are wound in narrow tapes on a large drum. Then in 
the second stage the rewinding of the warp onto a beam is performed. 
This process is slow but suitable for complex color pattern. 
B. DIRECT/HIGH SPEED WARPING 
High speed warping is a process of preparing warp beam directly from 
yarn package. Here all the yarns are wound on a simple flange beam at a 
time. This process is suitable for single color pattern. 
FEATURES OF SECTIONAL WARPING 
 Sectional warping is suitable for producing color fabrics with different 
pattern. 
 Production is less in sectional warping. So it is a costly process. 
 In sectional warping, tension cannot be kept uniform. 
 Here tapered drum is used as drum. 
 Hand weaving is necessary to produce sample fabric for bulk 
production. 
FEATURES OF HIGH SPEED WARPING 
 High speed warping is suitable for producing fabric with same count 
and same color yarn. 
 Higher amount of yarn is required here. 
 The speed and production of a high speed warping is very high. 
 Here simple flanged bobbin is used as beam. 
Southeast University – Department of Textile Engineering 
20
Difference between Sectional Warping and High Speed Warping 
High Speed Warping Sectional Warping 
1. Used to produce common fabric. 1. Used to produce fancy fabrics. 
2. Production is high. 2. Production is low. 
3. Large amount of yarn is required. 3. Small amount of yarn is required. 
4. Weavers beam is produced after 
4. Weavers beam is directly 
sizing. 
produced. 
5. Cone and Cheese is used. 5. Flanged bobbin or drum is used. 
6. The process is cheap. 6. The process is expensive. 
7. High creel capacity. 7. Low creel capacity. 
8. Most commonly use. 8. Rarely used. 
Control System in Warping 
 Tension control 
 Balloon control 
 Stop motion 
 Yarn cleaner 
Southeast University – Department of Textile Engineering 
21 
Faults in Warping 
 Off center warp 
 Reged or uneven warp 
 Cross end 
 Snarl formation 
 Hard/soft beam 
 End missing
 Length control 
 Surface speed control 
 Proper yarn density 
 Static electricity 
 Traverse control 
 Fly control 
Description of Different Control Systems in Warping 
1. Tension Control: Tension should not be low or high during warping. 
Because due to lower tension package will be unstable, entangled and 
snarling will occur. Whereas high tension will cause yarn breakage. The 
tension should be just and uniform throughout the process. 
2. Balloon Control: Balloon controlling is necessary so that the yarns 
does not entangled with one another. For this, yarn guides should be 
placed at right positions. 
3. Stop Motion: The m/c should stop itself if any yarn breakage occurs 
at any point. So stop motion system is necessary to control. 
4. Yarn Cleaner: Proper setting should be maintained to remove yarn 
faults. 
5. Length Control: the Length of warp sheet should be controlled. It is 
done with a measuring roller in combination with a suitable counting 
device by stopping the device machine after winding pre-determined 
length of warp yarn onto the beam. 
6. Surface Speed: The surface speed of beam should be controlled 
specially when a large change in warp diameter is involved. 
Southeast University – Department of Textile Engineering 
22
7. Proper Yarn Density: In warp sheet the yarn ends/inch, means yarn 
density, is to be controlled. Because without proper yarn density the 
fabric will be uneven. 
8. Static Electricity: It is specially required in case of man-made fibres. 
It is controlled to avoid yarn entanglement. It is done by: 
i. Chemical fiber finishes 
ii. Ionization of air. 
iii. Humidification of air. 
9. Traverse Control: In sectional warping traverse rate of beam should 
be controlled. 
10. Fly Control: In staple fibres lints, small trashes may cause problem 
by flying around the working area. So this fly should be controlled to have 
a pleasant working atmosphere. 
Description of Different Faults in Warping and Their Remedies: 
1. Off Centre Warp: If beam or wraith is not set properly i.e. it is not 
centric due to carelessness this type of fault occurs. 
Remedy: Beam or wraith should be placed proper 
2. Rigid or Uneven Warp Surface: This may occur if 
i. Yarn density [ends/inch] is very low. 
ii. Different counts of yarns is wound on beam/ 
iii. Yarn density is uneven. 
Remedy: yarn density and count should be maintained properly. 
3. Cross Ends: If occurs due to faulty knotting after end breakage. 
(Joining broken end with wrong end) 
Remedy: Knotting and tension should be done carefully. 
4. Snarl Formation: Snarl form due to over tension, highly twisted yarn 
and careless operation. 
Remedy: Tension should be kept proper and yarn twist should be as 
required. 
5. Hard/Soft Beam: If during winding yarn on being yarn tension is low 
or high soft and hard beam forms. It may also occur due to uneven 
pressure on drum or beam. 
Southeast University – Department of Textile Engineering 
23
Remedy: Tension and pressure should be maintained even. 
6. End Missing: If yarn breakage occurs m/c should be stopped 
immediately. If such cannot be done the broken end of yarn cannot be 
found out. This is end missing problem. 
Remedy: Stop motion system should be very active and m/c should be 
stopped immediately after end breakage. 
7. Haphazard Knotting: if various length of yarn is wound in creel 
packages then during beaming different end will finished in different time. 
So knotting would be in various places of the warp. This will haphazard 
knotting. 
Remedy: In creel packages same length of yarns should be present so 
that all yarn finish at a certain place of warp. 
8. Length Variation: It may occur due to fault stop motion. It means if 
the stop motion system stops the m/c before winding required length of 
yarn on beam length variation occurs. 
Remedy: Stop motion should be checked carefully. 
Let, s = traverse length. 
L = Axis at length of warp on drum. 
d = empty beam dia. 
D = full beam dia. 
dm = = mean dia. 
X = tape distance 
α = taper angle 
v = volume of yarn stored on beam. 
Let, 
Southeast University – Department of Textile Engineering 
24 
Relation between Taper Angle and Amount of Yarn on a Beam
s >x, so as to maintain stability. 
V = - = ( - ) = (D+d) (D-d) = πL ( ) ( ) 
From figure, we can see that, 
dm = , mean dia and = x tan α 
So , V = π L dm (x tan α) 
or, V > π L dm (S tan α) if, x > s 
or, V < π L dm (S tan α) if, x < s 
So, V S tan α 
if α = 90° then V = s tan 90°= α 
So unlimited amount of yarns can be wound if flange stays perpendicular 
to beam barrel. Practically this is impossible. But this type of package 
permit’s to wind high amount of yarn. 
The method of applying a gelatinous film forming substance of starch on 
warp yarn before weaving is known as sizing. 
Object of Sizing 
 To protect the yarn from abrasion with heald eye, back rest, reed etc. 
during weaving. 
 To improve breaking strength of cellulosic yarn. 
 To increase yarn smoothness. 
 To reduce yarn hairness. 
 To increase yarn elasticity and stiffness. 
 To decrease yarn extensibility. 
 To hinder generation of static electricity for synthetic and blended 
yarn. 
 To increase yarn weight. 
Sizing Ingredients and Their Functions 
Some important size ingradients and their functions are mentioned below- 
Southeast University – Department of Textile Engineering 
25 
Π2 
4 
D + d 
2 
D - d 
2 
SIZING
1. Adhesive 
2. Lubricants or softeners 
3. Antiseptic or antimildew agent 
4. Deliquescent or Hygroscopic agent 
5. Weighting agent 
6. Anti-foaming agent 
7. Tinting agent 
8. Wetting agent 
1. ADHESIVE 
Adhesives are mixed with water in granular form and heated to form a 
paste which ultimately becomes a viscous fluid. The followings do as 
adhesives in a size: 
 Maize, corn, wheat, rice, potato starch. 
 CMC (carboxyl methyl cellulose). 
 PVA (poly vinyl alcohol). 
 PVC (poly vinyl chloride). 
The functions of adhesives are as follows; 
 To increase yarn strength. 
 To reduce yarn hairiness. 
 To increase elasticity and stiffness. 
 To increase smoothness. 
2. LUBRICANTS OR SOFTENERS 
Mineral waxex, vegetable waxes, animal fats; mineral oils, vegetable oils, 
tallow, Japan wax etc. are used as lubricants or softeners. 
Function 
Southeast University – Department of Textile Engineering 
26
If softeners are not present in sizes the yarns will not be sufficiently 
extensible. Then the size would crack and particles would drop away from 
the yarn .And this, in turn, would create local stress concentration. 
3. ANTISEPTIC OR ANTIMILDEW AGENT 
ZnCl₂, phenol, carboxylic acid, salicylic acid are used as antiseptic or 
antimildew agent. 
Function 
i. It helps to store the sized yarn protect it from bacteria and fungi. 
ii. It prevents the growth of mildew on yarn during storage. 
4. DELIQUESCENT OR HYGROSCOPIC AGENT 
Hygroscopic agents present in size absorb moisture from air glycerin, 
CaCl₂ are some deliquescent agent. 
Function 
a) To prevent the brittleness of size. 
b) To absorb moisture from air. 
c) To prevent excessive dyeing of yarn. 
5. WEIGHTING AGENT 
China clay, CaCO₃, Na₃, PO₄, France chal etc. are used as weighting 
agent. These are to be used specially for those fabrics that are to be solid 
in grey state. 
Function 
a) To increase the weight of yarn hen fabric. 
b) To impart fullness and feel to fabric. 
Southeast University – Department of Textile Engineering 
27
6. ANTI-FOAMING AGENT 
Pyridine, benzene etc.as used as anti-foaming agent. 
Function: To prevent the formation foam 
7. TINTING AGENT 
Blue is used as tinting agent. 
Function: 
a) To increase luster or brightness. 
b) To produce a pale color in dyeing. 
8. WETTING AGENT 
Sulphanol A, soap, avirol, MgCl2 etc. are used as wetting agent in a size. 
Their drawbacks are their high and very stable foaming ability. 
Function: 
a) To ensure the uniform distribution of the sizing solution on yarn 
surface. 
b) Reduce surface tension of the liquor. 
c) Increase size absorbency. 
TECHNOLOGICAL CHANGES OCCURE DUE TO SIZING 
The following technological changes of a yarn/fabric occurs due to sizing – 
1. INCREASE IN BREAKING STRENGTH 
2. INCREASE ABRASION RESISTANCE 
3. INCREASE IN STIFFNESS 
4. INCREASE IN ELASTICITY 
5. INCREASE IN FRICTIONAL RISISTANCE 
6. INCREASE IN YARN DIAMETER 
7. DECREASE IN YARN HAIRINESS 
8. DECREASE IN STATIC ELECTRICITY FORMATION 
DESCRIPTION 
1. INCREASE IN BREAKING STRENGTH 
Southeast University – Department of Textile Engineering 
28
During sizing adhesive materials create bonds between fibers to fiber 
which, as a result, increase the breaking strength of the yarn. It increases 
20-40% breaking strength of the fiber. 
2. INCREASE ABRASION RESISTANCE 
After sizing the gap between fibers are filled with size due to the coating 
of size on the outer surface of the yarn. So their resistance against 
abrasion is increased. 
3. INCREASE IN STIFFNESS 
After sizing flexibility or pliability of a yarn is decreased and stiffness is 
increased. 
4. INCREASE IN ELASTICITY 
As extensibility of the sized yarn decreases, more force is to be applied 
to extend the yarn. This is means, elasticity of the yarn increases. 
5. INCREASE IN FRICTIONAL RISISTANCE 
Sizing produces smooth yarn surface and so less friction occurs. 
Again size coating increases the frictional resistance of yarn 
6. INCREASE IN YARN DIAMETER 
Due to coating of size ingredients the yarn diameter increase but yarn’s 
apparent diameter is decreased. 
7. DECREASE IN YARN HAIRINESS 
By sizing protruding hairs of yarn fix with yarn and so yarn hairiness 
decreases mentionably. 
8. DECREASE IN STATIC ELECTRICITY FORMATION 
Size materials contain hygroscopic agent and water which hinder the 
formation of static change on yarn surface. Again due to mass frictional 
resistance the formation of static electricity becomes less. 
SIZE TAKE-UP PERCENTAGE 
Southeast University – Department of Textile Engineering 
29 
Wt. of size material on yarn × 100%
Size take up % = 
Size Take up Percentage Depends on the Following Factors 
 Twist S.T 
 Yarn count S.T 
 Viscosity of size material S.T 
 speed of yarn passing through m/c S.T 
 Pressure of squeezing roller. S.T 
 Amorphousness of fiber in yarn. S.T 
 Flexibility of yarn S.T 
 Nature of adhesive. S.T 
 Time and Temperature. S.T 
SIZE CALCULATION 
MATH-1: A beam of wt. 260 lbs. contains 4000 sized warp of 1200 yds 
length. It the unsized yarn count is 30 Ne and empty beam wt. 50 lbs., 
then calculate - 
i. Wt. of size on yarn. 
ii. Count of sized yarn. 
iii. Size take-up percentage. 
Soln: 4000×1200 
Weight of unsized yarn = yds 
840×30 
= 190.47 lb. 
Southeast University – Department of Textile Engineering 
30 
Wt. of unsized yarn
Wt. of sized Yarn = (260 – 50) lbs. 
= 210 lbs. 
Wt. of size material = (210 - 190.47) lbs 
= 19.53 lb. (Ans) 
4000×1200 
Wt. of sized yarn = yds. 
840×C 
4800000 
or, 210 = 
840×C 
4800000 
or, C = = 27.21 = 27 Ne (Ans) 
840 × 210 
Size take up percentage (%) = (wt. of size material on yarn / wt. of 
unsized Yarn) x 100 % 
= 19.53/190.47 x 100 % 
= 10.25 % (Ans) 
The loom is the contact point of the whole process of cloth production, 
ginning, opening, carding, spinning, winding, warping, sizing and beaming 
are done before weaving. A loom cannot be said a machine but it is a 
Southeast University – Department of Textile Engineering 
31 
LOOM
device which is used to produce woven fabric. Looms are generally driven 
either by line shaft or by individual motors fitted with it. 
Weaving Mechanism / Basic Principle of Weaving 
Weaving is the process of interlacement between the warp and weft in 
fabric according to a design of fabric. 
Basic principle or weaving mechanism is: 
 The yarn from the weavers beam passes round the back rest 
and comes forward through the drop wire of the warp stop motion to 
the heald eye of heald shaft which is responsible for the purpose of 
shade formation. 
 It then passes through the dent of reed which holds the thread at 
uniform spacing and it is also performed the beating up the weft 
thread that has been left in the triangle warp sheet form by the two 
warp sheet and reed. 
 In this way, weft yarn is meshes with last pick of fabric or cloth. 
Temple holds the cloth firm at the feed position and assist in the 
formation of a uniform fabric width. Then fabric passes over the front 
rest, take up roller, pressure roller and finally wind on to the cloth 
roller. 
DRIVING MOTION 
Southeast University – Department of Textile Engineering 
32
 It is seen that the figure that, two tappet mounted with the one 
bottom shaft and it passed the treadle lever by treadle bowl to 
down direction. 
 There is a fulcrum at the end of treadle lever and another end of 
lever is joined with heald shaft by yarn. 
 Top roller acts as intermediate of two rope of heald shaft from 
which rope passes over the top roller. 
 When shedding cam or tappet pressed on the treadle lever by 
treadle bowl, then one heald shaft is down while another is up and 
shedding is formed. Such way, 2nd shedding tappet reverses full 
motion i.e. upper heald shaft is down and down heald shaft is up. 
 The mechanism of a power loom receives their motion from shaft 
that traverses from side to side in the loom and is driver from 
another. Their relative speeds are of importance since they give the 
mechanism that they drive. 
 The crank shaft being driven by the motor moves one revolution per 
picks. The motion of the teeth of the gear wheels connecting this 
shaft to the bottom shaft is always 2:1, so that the bottom shaft will 
move one revolution in ever two picks. 
Southeast University – Department of Textile Engineering 
33
CLASSIFICATION 
Southeast University – Department of Textile Engineering 
34 
Loom 
Hand Loom Power Loom 
Ordinary 
Power Loom 
Automatic 
Power Loom 
Modern or 
Shuttle less Loom 
Hand Loom 
1. Primitive or Vertical loom. 
2. Pit loom 
(a) Throw shuttle loom. 
(b) Fly shuttle loom. 
3. Frame loom 
(a) Throw shuttle loom. 
(b) Fly shuttle loom. 
4. Chitttaranjan loom. 
5. Hattersley loom 
Ordinary Motor 
1. Common Motor. 
2. Individual motor. 
Modern or Shuttle 
less Loom 
1. Projectile Loom. 
2. Rapier Loom. 
3. Air jet Loom. 
4. Multiphase.
LOOM MOTION 
Southeast University – Department of Textile Engineering 
35 
Loom 
Primary Motion Secondary Motion Tertiary Motion 
Primary motion 
1. Shedding: 
(a) Tappet 
(b) Dobby. 
(c) Jacquard. 
2. Picking: 
(a) Over pick 
(b) Under pick. 
(c) Modern pick. 
3. Beating: 
(a) Single 
(b) Multiple 
(c)Variable. 
Secondary Motion 
1. Take up 
(a) Positive 
(b) Negative. 
2. Let off 
(a) Positive 
(b) Negative. 
(5 wheel, 7 wheel) 
Tertiary Motion 
1. Warp stop motion 
2. Weft stop motion (Centre, side) 
3. Reed stop motion (Loose, fast) 
4. Temple motion (Roller, reed) 
5. Weft replenish
1. Primary Motion 
In order to interlace warp and weft thread to produce fabric on any type 
of weaving machine 3 primary motion is necessary: 
I) Shedding: 
It is the process of separating the warp thread into two layers to 
form a tunnel called shed (through which shuttle carrying weft 
passes) is known as shedding. During shedding some yarns are 
raised up and some are depressed down create a tunnel. 
II) Picking: 
The method of passing the weft threads which traverse across the 
fabric through shed is called picking. The inserted weft is called a 
pick. 
III) Beating: 
It is the process of pushing the pick into the already woven fabric at 
a point known as fell of the cloth .By pressure of wraith to jointed 
feed side of the cloth is called beating. 
2. Secondary Motion 
I) Take up motion: 
The motion which with draw (wound up) fabric from the weaving 
area at a constant rate and thus give required pick spacings and 
winds the fabric on to a roller is called cloth control or Take up 
motion. Positive Take up motions is mechanically driven. Negative 
Take up motions is spring drive. 
II) Let off motion: 
The motion which deliver warp to the weaving at the required rate 
and at a suitable constant tension by unwinding it from a flanged 
known as weavers beam is called let off motion. 
Southeast University – Department of Textile Engineering 
36
3. Tertiary Motion 
Tertiary motion is not must for fabric production but it is used for higher 
production. 
1. Warp Stop Motion: Machine will be stopped electrically or 
mechanically. 
2. Weft stop motion: It may be two types- 
(a) Side weft motion & (b) Centre weft motion. 
3. Reed stop motion: Two types- 
(a) Fast reed motion. 
(b) Loose reed motion. 
SHEDDING 
Dividation of warp threads into two parts for insertion of weft threads is 
called shed and the mechanism of shed is called shedding, it is the first 
primary motion of weaving 
Types of Shed 
1. Bottom close shed 
2. Centre close shed 
3. semi-open shed 
4. Open shed 
Southeast University – Department of Textile Engineering 
37
Primitive Loom /Vertical Loom 
Warp yarn is taken in a roller instead of beam and hanged in a wall and 
shed is produced by a piece of wood. In this loom the vertical frame is 
used to hold the warp in stretched condition. Weft is passed through the 
shed by hand. Beating is done by the pressure of hand. Take off action 
was done in a separate roller by hand. Let off was also by hand. 
Picking Beating One weaving 
cycle 
Shedding 
Primary motion 
Throw Shuttle Pit Loom 
In this loom, the frame was laid on a pit. Shedding was obtained by giving 
the pressure to the treadle levers suited inside of the pit by feet. The 
weaver throws the shuttle across the width of the cloth by one hand and 
catches it by another hand. 
Chittarajan Loom 
It is constructed by iron and wood. The principle characteristics of this 
loom is – 
 The two wheels upon a shaft connect the sley two ends with the help 
of two levers. Regulating the sweep of sley and force of beat up 
allowing less strain to weaver and uniform force to beat up. 
 The positive take up motion by the five wheels to regulate the picks 
per inch. The alternation of picks per inch is positive by changing the 
wheel to take up motion. 
 Negative let off motion with chain, lever and dead weights has been 
adopted in this loom to ensure uniform let off warp cloth is taken up 
by positive means. 
Southeast University – Department of Textile Engineering 
38
 Shedding and picking motion work in the same manner as in the fly 
shuttle loom but the loom speed is greater than hand loom. 
 Shedding motions are generated manually but secondary motions like 
let off and take up are done automatically. So this loom may be called 
semi-automatic loom. 
Southeast University – Department of Textile Engineering 
39
JUTE LOOM 
Hessian Loom 
 Used for comparatively fine fabrics 
 Larger loom width 
 2 heald shaft, one yarn/ heald eye 
 Finer reed 
 Two tappet and tappet are on bottom shaft 
 Small pinion on pin roller 
 Suitable for plain weave(1 up1 down) 
 Yarn count—7.5 lb/spindle 
 Backrest attach with frame 
Sacking Loom 
 Comparatively coarse fabric 
 Loom width is less 
 3 heald shaft,3 yarn/heald eye 
 Coarse reed 
 Larger pin on pin roller 
 Suitable for twill weave(2 up,1 down) 
 Yarn count (8-10), around 8.5 lb/spindle 
 Separate back rest 
 Tappets are on counter shaft. 
Advantages of Fly Shuttle Loom/ Reason for Choice of Fly Shuttle 
Loom 
 Higher m/c speed or weaving speed(60-80rpm) 
Maximum speed of Pit loom-60 rpm 
Hand through Pit loom-20 rpm 
Vertical loom-1 ppm 
 No. of heald shaft is higher 
 In fly shuttle loom, higher width fabric is possible 
 In Pit loom, only narrow width fabric can be woven 
 Solid and compact structure with minimum vibration 
Fly shuttle loom- more compact and solid structure 
-minimum vibration 
Southeast University – Department of Textile Engineering 
40
-less space 
Pit loom-higher vibration 
-more space 
 Flanged weavers beam provided better selvedge 
Fly shuttle loom-wooden flanged weavers beam ensure better selvedge 
Pit loom- without flanged weavers loom 
 Adjustable back rest to suit quality fabric 
 Pit loom- fixed back rest 22 
 Let-off with lever arrangement 
-Uniform let-off of yarn is possible. 
 Adjustable sweep of sley –suit quality fabric. 
Pit loom-over hanging sley assembly 
-sweep of sley is not adjustable. 
Fly shuttle loom-sley assembly is supported by sley sword 
 More freely operated treadles. 
 More cloth on cloth roller is possible. 
 Positive take-up can be fitted. 
 Free picker 
 Dobby and jacquard can be fitted. 
 Suitable for both fine and coarse fabric. 
Difference between Hand Loom and Power Loom 
Southeast University – Department of Textile Engineering 
41 
Hand Loom Power Loom 
1. Operating system is 
manual. 
1. Operating by electric 
power. 
2. Shedding is done by 
paddle and Picking, 
Beating is done by 
hand. 
2. Shedding and Picking 
is done automatically. 
3. Less production. 3. High production. 
4. Slow running speed. 4. High running speed. 
5. Check and striped 
fabrics are produced. 
5. One color fabrics is 
produced.
10 01 
Construction 
10 Plain 
20 Twill 
30 Satin 
0101 00 
Lifting pattern of 
the first warp 
yarn 
No. of adjacent 
warp yarns 
with identical 
lifting pattern 
Move 
number 
Difference between Hesian and Sacking Loom 
Hesian Loom Sacking Loom 
1. One up one down plain 
weave. 
1. Two up one down twill 
weave. 
2. It has two heald shafts. 2. It has 3 eald shafts. 
3. No of tappet 2. 3. No of tappet 3 
4. No auxiliary shaft. 4. Need of auxiliary shaft 
due to more 2 tappet is 
called counter shaft. 
5. A single yarn is passed 
through a heald eye. 
5. Two yarns are passed 
through a heald eye. 
6. Less spacing between 
warp yarns. 
6. More spacing between 
warp yarns. 
7. Finer thread is used. 7. Coarser thread is used. 
New condensed notation (DIN 61 101) 
Southeast University – Department of Textile Engineering 
42
DEFINITION 
Knitting is the method of creating fabric by transforming continuous 
strands of yarn into a series of interlocking loops, each row of such loop 
hanging by the one immediately preceding it. The basic element of knit 
fabric structure is the loop intermeshed with the loops adjacent to it on 
both side and above and below it. 
TERMS 
 Kink of Yarn: Per loop from a single yarn. 
 Knitted Loop: two loops intermeshed. 
 Knitted Stitch: Three loops intermeshed. 
 Top Arc: Loop Head 
 Bottom Half Arc 
 Leg/ Side Limber 
 Needle Loop 
 Sinker Loop 
 Close Loop 
 Open Loop 
Southeast University – Department of Textile Engineering 
43 
Fig: knitting structure
 Wale: Vertical column of needle loop. 
 Course: Horizontal row of needle loop. 
 Stitch Density: Wales per Inch × Course per Inch. 
 Stitch length: Needle loop + Sinker loop 
 Extended sinker loop 
 Face loop 
 Back loop 
 Needle: 
Southeast University – Department of Textile Engineering 
44 
United Needle 
Independent Needle
 Knitting M/C: there are three types of knitting M/C – 
1. Warp knitting: Gives vertical movement of yarn. 
2. Weft knitting: Gives horizontal movement of yarn. 
3. Other loop forming and combined M/C: Tri-axial. 
 Needle Carrier: Which carries needle. 
 Number of Feed System: The number of feeder by course. 
 Working Diameter: In circular knitting m/c, the distance from one 
needle exact to the other needle is known as working dia. 
 Working Width: In flat knitting m/c, the distance from first needle to 
the last needle is known as working width. 
 Gauge: Number of needle per inch. 
 Pitch: The distance the center from one needle to the center of 
another needle is known as pitch. 
 There Are Three Types Of Knitted Fabric 
 Selvage fabric 
Southeast University – Department of Textile Engineering 
45
 Cut edge fabric 
 Tubular fabric 
 Open lap 
 Close lap 
DIAL 
Dial is the upper steel needle bed used in double knit machines. Into the 
grooves of the dial, the needles are mounted horizontally and are allowed 
to move radially in and out by their dial cams. The number of grooves per 
unit space conforms to the cylinder gauge in most of the cases. 
CYLINDER 
Southeast University – Department of Textile Engineering 
46 
O = over lap 
U = under lap 
 Over lap 
 Under lap 
Fig: Dial
The cylinder is a steel circular bed having grooves/tricks/cuts on its outer 
periphery into which the needles are mounted. With reference to the 
tricks, the needles move vertically up and down by their butt being in 
contact with the cam track. The number of tricks per inch i.e., number of 
needles per inch decides the gauge of the machine. Machines are built as 
low as 4 NPI to as high 
as 32 NPI. Based on the machine gauge, the fineness of the yarn to be 
knitted can be varied. The diameter of the cylinder also varied based on 
the type and width of the fabric and a maximum of 75 cm diameter 
machines are available. 
FEEDERS/STRIPPERS 
Feeders are the yarn guides placed close to the needles to the full 
circumference of the knitting zone. The feeders feed the yarn into the 
needle hooks and control the needle latches in their open position while 
the needle attain their clearing position. They consist of a yarn guiding 
hole and a bevel edge to guard the latches of the approaching needles. 
They are slightly curved to the corresponding curvature of the needle bed. 
Feeders may have two holes also for the purpose of plating. 
Yarn feeders can be divided into “positive” or “negative” types depending 
on the possibility of controlling the yarn feeding speed and uniformity. 
Southeast University – Department of Textile Engineering 
47 
Fig: Cylinder
The feeder brackets can be adjusted to set their distance from the needle 
and to ensure yarn feed into needle hooks. Stripers are the feeders 
designed to deliver two or more yarns individually to the same feed. They 
can be considered as moving guide replacing the holes of fixed guides. In 
a two color stripe, two different colored yarns are supplied by two stripper 
fingers and their engagement is controlled by an endless control chain 
which governs the guide change at the appropriate feeds. At each 
revolution, a counter may select the movement of all the striper chains. 
The stripes are used on both single and double bed machines. 
MACHINE DESCRIPTION 
Southeast University – Department of Textile Engineering 
48 
Fig: Feeders/Stripers 
Circular Knitting
Frame 
The circular knitting machine consists three major sections viz., yarn 
supply, knitting elements and fabric take-down. The Fig. 2.3 shows the 
machine frame, indicating its various parts. The knitting elements such as 
needles, sinkers, cylinder, cams and feeders are supported at the center 
called as knitting zone. Yarn packages are mounted at the overhead 
creels and yarns are fed to knitting zone through yarn guides, stop 
motions and feeders. The knitted fabric goes down inside the cylinder 
towards the centre of the machine, drawn into the take down device and 
finally collected on a roll winding mechanism. A fabric spreader gradually 
converts the tubular fabric into a double layer folded fabric by preventing 
the formation of pleats or creases. At the knitting zone, single knit plain 
machines are fitted with a cylinder and sinker ring, whereas the double 
knit machines have cylinder and dial. 
Drive 
The drive to the knitting machine is simple and direct. The motor imparts 
rotary motion to the rotating needle beds, such as cylinder and dial and 
also to the take-down and cloth winding mechanisms. 
Basic Elements of Knitting 
Southeast University – Department of Textile Engineering 
49 
1. Legs 
2. Cylinder 
3. Dial 
4. Needle 
5. Cam Parts 
6. Feeder guide 
7. Cam 
8. Supply Package 
9. Creel 
10. Top Stop Motion 
11. Anti Snarl Device 
12. Tensioner 
MECHANICAL PRINCIPAL OF KNITTING TECHNOLOGY
1. Needle 
2. Sinker 
3. Cam 
1.NEEDLE: There are various types of needle are available in market 
which can be divided in the following group. 
a. Spring Bearded Needle 
b. Latch Needle 
c. Compound Needle 
SPRING BEARDED NEEDLE 
Stem: The stem around which the needle loop is 
formed. 
Beard: To create new loop. 
Eye/groove: To receive the beard. 
Shank or butt: To support and give strength to 
the needle. And control the movement of needle. 
Tip: To receive the latch spoon. 
Head: To open and close the latch. 
Stem: It around which the needle loop is 
formed. 
Southeast University – Department of Textile Engineering 
50
LATCH NEEDLE 
Hook: It draws and retains the new loop. 
Latch blade: To give support and strength the 
latch. 
Latch spoon: To open and close the needle. 
Stem: This carries the loops in the clearing or 
rest position. 
Rivet: It works like a screw. 
Butt: Which serving to displace the needle 
along the needle bed slot. 
COMPOUND NEEDLE 
Tip: To receive the latch spoon. 
Hook: To form a new loop’ 
Sliding latch: To open and close the needle 
and help to form new loop. 
Dead weight: To give downward motion of the 
sliding latch. 
Lead: It works like a butt. 
Southeast University – Department of Textile Engineering 
51
The sinker is the second primary knitting element. It is a thin metal plate 
with an individual or a collective action operating approximately at right 
angles from the hook side of the needle bed, between adjacent needles. 
Sinkers capable of producing loop fabric are well known in the knitting 
industry. In such machines the sinkers generally include a blade having 
an upper edge which defines a lower knitting level and a nib having an 
upper edge which is at an upper knitting level. Long loops are formed at 
the upper knitting level of the sinkers with a loop yarn and a base yarn is 
knitted over the blade. The sinkers may be formed and their movement 
controlled to cause either the loop yarn to appear on one side of a fabric 
and the base yarn on the other or the loop yarn to appear on both sides. 
FUNCTION 
Butt: To fix the sinker with the sinker bed. 
Shank: To give strength and support the sinker 
Buldge: To gives strength and support. 
Lower shank: To give strength and support to the sinker. 
Throat: To form new sinker loop. 
Clearence: To hold the sinker loop. 
Southeast University – Department of Textile Engineering 
52 
2. SINKER
FUNCTION OF SINKER 
There are three function of sinker. 
1. Loop formation 
2. Holding down 
3. Knocking over 
1. Loop Formation: On bearded needle weft knitting macShine’s of 
straight bar frame and sinker wheel type, the loop forming action is 
performed. The purpose of a sinker is to kink the newly laid yarn into 
loop as its forward edge of advance between two adjoining needle. 
2. Holding down Sinker: The second function is hold down the old loop 
a lower level on the needle stem, then the new loop which are being 
formed and prevent to old loops from being lifted as the needles rise to 
clear from their hooks. 
3. Knocking Over Sinker: The third function of the sinker is to knock 
over the old loops on the neck of the new loops. 
Sinker’s Operation 
1. The held loop is positioned in the throat of the sinker when the sinker 
moves forward and the needle moves upward for clearing. The held loop 
is held by the throat and hence its movement along the needle is 
restricted. 
Southeast University – Department of Textile Engineering 
53
2. The sinker remains at its forward position when the needle attains its 
clearing position. 
3. The sinker retracts when the needle comes down after feeding. At this 
stage, due to sinkers retraction, fabric or held loop is eased out. Also the 
sinker belly supported the fabric or held loop and hence its movements 
along the needle is prevented. 
4. Sinker remains in backward position and the needle descends to its 
lowest position drawing the new loop through the old one. 
5. Before the needle ascends, the sinker moves forward to push the 
knitted fabric a little and to hold the old loop away from the head of the 
needle and to be in a position to control the fabric. 
Southeast University – Department of Textile Engineering 
54
The knitting cams are hardened steels and they are the assembly of 
different cam plates so that a track for butt can be arranged. Each needle 
movement is obtained by means of cams acting on the needle butts. 
The knitting cams are divided in to three groups. Such as 
1) Knit cam 
2) Tuck cam 
3) Miss cam 
The upward movement of the needle is obtained by the rising cams or 
clearing cams. The rising cam places the needle at a certain level as it 
approaches the yarn area. Cams controlling the downward movement of 
the needles are called stitch cams. The lowest point to which the needle 
is drawn by the stitch cam is called the “cast-off” position. Guard cams 
keep the needle butts in their race-way. Running cams or [up throw 
Southeast University – Department of Textile Engineering 
55 
3. CAM
cams] the needle butts at a low level until they meet the next rising 
cam. 
Knitting Action of Latch Needle of Knit Loop 
6. Knock over Position 
a. The old is falling on the neck 
Figure 
Description 
Southeast University – Department of Textile Engineering 
56 
of new loop. 
b. Thus the knit loop is formed. 
c. The latch is closed. 
1. Rest Position 
a. The previously formed loops is 
in the hook. 
b. The needle which now starts to 
ascend. 
c. The latch is closed. 
2. Tuck Position 
a. In this position the loop is on 
the latch. 
b. The latch is opened. 
3. Clearing Position 
a. In this clearing position latch 
is opened. 
b. The loop is under the latch. 
4. Feed Position 
a. New loop is on the hook. 
b. The old loop is under the 
latch. 
5. Custom Position 
a. The latch is starting to close. 
b. The old loop is on the latch. 
c. The new loop is in the hook.
Knitting Action for Tuck Loop in Latch Needle 
Southeast University – Department of Textile Engineering 
57 
7. a. The latch is closed. 
b. The loop is in the hook. 
8. a. The latch is close. 
b. The loop is in the hook. 
9. a. The latch is open. 
b. The loops are on the latch. 
10. a. The latch is open. 
b. The new loop is in the hook. 
11. a. The new loop is in the 
hook. 
b. The latch is open. 
c. The old loops are in the hook. 
12. a. The latch is open. 
b. The loops are in the hook. 
14. a. The loops are under the hook. 
b. The latch is open. 
13. a. The loop is on the latch. 
b. The latch is open. 
Figure description 
(Fig: 002)
Southeast University – Department of Textile Engineering 
58 
15. a. The loops are on the latch. 
b. The latch is close. 
16. a. The old loop joins to the new 
loop. 
Knitting Action of Spring Bearded Needle (Knit Loop)
FIGURE DESCRIPTION 
1. YARN FEEDING 
a. Beard is open. 
b. New yarn feed in the beard. 
c. Old loop is in the stem. 
Southeast University – Department of Textile Engineering 
59 
2. YARN KINKING 
a. Beard is open. 
b. Old loop is in the stem. 
c. Sinker kink the newly feed 
yarn. 
4. PRESSING 
a. The beard is closed by 
pressure. 
b. The old loop is on the stem. 
c. The new loop is in the hook. 
3. UNDER LAPPING 
a. The beard is open. 
b. The old loop is on the stem. 
c. The sinker takes the new loop 
to the front. 
5. LANDING 
a. The beard is closed by 
pressure. 
b. The old loop start to going on 
the beard. 
c. The new loop start to going 
6. JOINING AND CASTING 
OFF 
a. The beard is closed. 
b. The old loop is falling on the 
neck of the new loop. 
7. CLEARING 
a. The beard is open. 
b. The loop is in the stem. 
(Fig: 002)
Jersey fabric is a type of knit textile made from cotton or a cotton and 
synthetic blend. Some common uses for jersey fabric include t-shirts and 
winter bedding. The fabric is warm, flexible, stretchy, and very insulating, 
making it a popular choice for the layer worn closest to the body. Jersey 
also tends to be soft, making it very comfortable. 
The textile is named for the island of Jersey. Jersey is the largest of a 
group of islands known as the Channel Islands, located between England 
and France. The island has a long history of human occupation, and is 
also well known for Jersey cows, typically raised for their rich, creamy 
milk. 
A knitting machine is used to make jersey, since it can create the small, 
even, close grained stitches associated with jersey fabric. Like many other 
knit fabrics, jersey fabric has a right side and a wrong side. The right side 
of the material is marked by a series of very small lines which run 
vertically, and the wrong side has a horizontal grain. In most cases, a 
garment made from jersey fabric is sewn with the right side facing out, 
unless the seamstress is making a deliberate stylistic choice. 
One of the reasons many people like to wear jersey fabric is the stretch 
factor. The fabric can stretch up to 25% percent along its grain. Garments 
made from the material have plenty of give as their wearers move, and 
also tend to cling to the body, since the fabric contracts as well as 
expanding. Knit dresses are usually made from jersey fabric, exploiting 
the clingy characteristic of the fabric. Jersey fabric is also available in a 
large assortment of colors and patterns to suit all tastes. 
Care directions for jersey fabric vary, depending on whether the fabric is 
entirely natural or partially synthetic. As a general rule, jersey fabric can 
be washed in warm water with like colors, and tumble dried on a medium 
setting. Bright colors will stay brighter longer if they are washed on a cold 
setting and dried on low. Try to avoid mixing bright colors and whites in 
the wash, as the colors may bleed. 
When sewing jersey fabric, it is recommended that the fabric be washed 
first, especially if it is cotton. All knits tend to shrink when they are 
washed, and washing beforehand eliminates shrinkage issues. It is also 
Southeast University – Department of Textile Engineering 
60 
What is Jersey fabric?
important to use a pattern specifically designed for knit fabrics, as the 
pattern will account for the stretch factor of the material. Most 
seamstresses also use a double layer of stitching or an overlock stitch on 
jersey fabric, to prevent unraveling. 
Knitting Fabric Structure 
1. Plain structure 
2. Rib structure 
3. Interlock structure 
4. Purl structure 
1. PLAIN STRUCTURE 
Plain is produce by the needles knitting as a single set, drawing the loops 
from technical back and towards the technical face side of the fabric. 
Example: jersey blister, jersey lily, stocknitte etc. 
Features of Plain Single Jersey Fabric 
1. Used only one set of needle to produce fabric. 
2. Simplest and most economical production. 
3. 40% potential recovery stretching. 
4. Probability of curling of yarn. 
5. Technical face is smooth and v-shape can be seen through the Wales. 
6. Technical back is rough and wave shape appeared at the back thought 
the course. 
7. It one yarn breaks, the needle loops successively unmosh through 
course, this effect is called laddering. 
Southeast University – Department of Textile Engineering 
61 
PRIMARY BASIC STRUCTURES
8. Unroving of yarn can be prevented by binding off. 
Features of Plain Circular Knitting M/C 
1. Single jersey is produce by plain circular knitting m/c. 
2. One set of latch needle is used here. 
3. Latch needle, sinker, cylinder, sinker ring revolve around the 
stationary knitting cam system. 
4. Yarn supplied from cone placed either on end integral overhead 
bobbin stand or on a free standing side creel through tensioner, stop 
motion guide eyes down to the yarn guide. 
5. Stationary yarn feeder are situated at a regular interval around the 
circumference of the cylinder. 
6. The fabric in tubular form is drawn downward from inside the needle 
cylinder by tension roller and is wound onto the fabric batching roller 
of winding frame. 
7. The winding down mechanism revolves along with the fabric tube. 
8. As the sinker cam plate is placed outside on the needle circle, the 
center of the cylinder is open and the m/c is referred as open top or 
sinker top m/c. 
2. RIB STRUCTURE 
The structure which requires 2 sets of needle operating in between each 
other so that wales of face side and wales of back side are knitting on 
each side of fabric is called rib structure. 
Features of Structure 
1. It is normally knitting with 2 sets of latch needle. 
2. Rib has vertical card appearance. 
3. 1×1 rib has the appearance of technical face of plane fabric. 
Southeast University – Department of Textile Engineering 
62
4. Relaxed 1×1 rib is theoretically twice as thick and 1/2 the width of an 
equivalent plain fabric. 
5. It is more expensive fabric to produce than plain. 
6. It can be unravel from the end knitted last by the free loop’s head 
through to the back of each stitch. 
7. It is a heavier structure. 
8. It has no curling tendency. 
9. Rib structures are elastic, form fitting and retain wormth better than 
plain structure. 
Uses: Rib is suitable particularly for the top of the socks, cuff, collar rib 
border of garments, gloves etc. 
FEATURES OF CIRCULAR RIB M/C 
1. In this m/c, one set of needle is arranged vertically in the cylinder and 
another set of needle is arranged in the dial of the m/c. 
2. Here both dial and cylinder rotates where cam with yarn feeder remain 
stationary. 
3. The needle of dial and cylinder are arranged in different position 
alternatively. 
4. No sinker is required for this m/c. 
5. Not more than 2 cam tracks are possible for dial of this m/c. 
FEATURES OF INTERLOCKING STRUCTURE 
1. Interlocking has the technical face of plain fabric on both sides. 
2. Interlock course requires 2-feeder per course. 
3. Reverse loop cannot be seen. 
Southeast University – Department of Textile Engineering 
63
4. Interlocking relaxes by about 30-40% or more compared with its 
knitting width. 
5. This is balance, smooth, stable, structure. 
6. Fabric is thicker, heavier and narrower than rib of equivalent gauge. 
7. Finer, better, more expensive yarn is required. 
8. Bath horizontal and vertical stripe can be produced. 
9. Production is lass. 
FEATURE OF PURL STRUCTURE 
1. It has the similar appearance to pearl droplets. 
2. Purl structure have one or more wales which contain both and back 
loop. 
3. Both sides’ needle and sinker loops are prominent. 
4. The tricks of the two needle bed in purl m/c are exactly opposite to 
each other and in same plane. 
5. Double ended batch needles are used in purl m/c. 
6. Two types of m/c are available for purl structure. 
a. Flat m/c 
b. Circular m/c 
7. The simple purl structure is 1×1 purl. 
8. Purl fabric is twice as thick as plain fabric. 
Southeast University – Department of Textile Engineering 
64 
KNITTING ACTION OF RIB CIRCULAR M/C
1. REST POSITION 
In this position, both the dial and cylinder needles are in stationary 
position. And the latch is closed. 
2. TUCKING POSITION FOR DIAL 
In this position, the needle of dial comes forward and the loop falls on the 
opened latch of the needle. And the cylinder’s needle remains stationary. 
3. TUCKING POSITION FOR CYLINDER 
Southeast University – Department of Textile Engineering 
65 
FIGURE DESCRIPTION
In this position, the needle of cylinder comes forward while the needle of 
dial is on the forward position. The loop falls on the opened latch of the 
dial needle. 
4. CLEARING POSITION FOR DIAL 
In this position, the dial’s needle goes more forward and the loop goes 
under the opened latch of the needle. 
5. CLEARING POSITION FOR CYLINDER 
In this position, the cylinder’s needle goes more forward and the loop 
goes under the opened latch of the needle. 
6. YARN PRESENTING POSITION 
In this position, the newly presented yarn is laid in the open needle hooks 
of both the needle. 
7. CAST ON POSITION 
In this position, the both needles catch the new yarn on their head and 
start to come in backward position. Then the old loops close the latch of 
the both needle. 
8. KNOCK OVER POSITION 
In this last position, the both dial and cylinder needles come to their 
backward position. The old loops knock over the newly made loops. 
Formulas 
No. of feeder=No. of cam= No. of course. 
= 
Southeast University – Department of Textile Engineering 
66 
Knitting Calculation 
Production × 1000 × 1000 × 1000 
RPM of cylinder × π × Cylinder dia × gauge × loop length (mm) × Tex × 8 × 60 × 
efficiency %
No. of sinker= No. of needle= No. of loop = π D’’ G mm 
Number of needle = m 
= m 
= gm. 
Production = = kg/shift 
Here, D’’ = cylinder dia 
G = gauge 
L = stitch length 
F = No. of feeder 
T = tex number 
For single jersey: 
Production in weight, 
= kg/shift 
Southeast University – Department of Textile Engineering 
67 
Π D’’ G × l 
1000 
Π D’’ G l ×N ×F 
1000 
Π D’’ G l ×N ×F ×T 
1000×1000 
Π D’’ G l ×N ×F ×T × 60 × 8 
1000×1000 × 1000 
RPM of Cylinder × No. of feeder × π × Cylinder dia × gauge × 
loop length (mm) × Tex × 60 × 8 × efficiency % 
1000 × 1000 × 1000
Production in length, 
= yards/shift 
For Double Jersey 
Production in length = yds/shift 
Production in weight = Single jersey production in weight × 2 kg/shift 
Southeast University – Department of Textile Engineering 
68 
CPM 
CPI 
RPM of cylinder × No of feeder × 60 × 8 × efficiency % 
CPI × 36 
Single jersey production in length 
2
Given, 
Southeast University – Department of Textile Engineering 
69 
Math-1
CPI = 66 
Cylinder dia = 25’’ 
Cylinder RPM = 20 
Loop length = 2.2 mm 
Yarn count = 70 tex 
Gauge = 22 
No. of feeder = 90 
Efficiency =90 % 
Find the production of the m/c in weight and production in length. 
(Both single and double jersey) and find no. of needle. 
SOLUTION 
For single jersey; 
20 × 90 × 3.14 × 25 × 22 × 2.2 × 70 × 60 × 8 × 90% 
Production in weight = 
= 229.79 × 0.9 
= 206.8 kg/shift (Ans) 
No. of needle = π D’’ G 
= 3.14 × 25 x 22 = 1727 (Ans) 
Southeast University – Department of Textile Engineering 
70 
1000 × 1000 × 1000
Production in length = yds/shift 
= 327.27 yds/shift (Ans) 
For double jersey; 
Production in length = = 163.6 yds/shift (Ans) 
Production in weight = 206.8 × 2 = 413.6 kg/shift (Ans) 
Here, 
PROOF 
GSM = lb/inc2 
= lb/inch2 
= × gm/m2 
Southeast University – Department of Textile Engineering 
71 
20 × 90 × 60 × 8 × 90% 
66 × 36 
327.27 
2 
W × C × l 
25.4 × 36 × 840 × Ne 
W × C × l 
768096 × Ne 
W × C × l 
768096 × Ne 
453 
1 2 
39.37 
1m= 39.37 inch. 
1 inch= 1/39.37 
1 lb= 453 gm
= × 453 × (39.37)2 gm/m2 
= × 702148.5957 gm/m2 
= gm/m2 
GSM = gm/m2 (Proved) 
Southeast University – Department of Textile Engineering 
72 
W × C × l 
768096 × Ne 
W × C × l 
768096 × Ne 
W × C × l ×0.915 
Ne 
W × C × l ×0.915 
Ne

Más contenido relacionado

La actualidad más candente

Square jammed fabric
Square jammed fabricSquare jammed fabric
Square jammed fabricSanjit Jana
 
Study on Flat Bed Knitting Machine
Study on Flat Bed Knitting MachineStudy on Flat Bed Knitting Machine
Study on Flat Bed Knitting MachineNazmulHasanAnan
 
Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...
Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...
Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...Md. Mazadul Hasan Shishir
 
Warp stop motion
Warp stop motion Warp stop motion
Warp stop motion ARAINALISHA
 
Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)KEVSER CARPET
 
Presentation on single jersey fabrics
Presentation on single jersey fabrics Presentation on single jersey fabrics
Presentation on single jersey fabrics Musa Kalimullah
 
Fabric Structure & Design
Fabric Structure & DesignFabric Structure & Design
Fabric Structure & DesignMd Nurunnabi
 
ROTOR SPINNING PROCESS
ROTOR SPINNING PROCESSROTOR SPINNING PROCESS
ROTOR SPINNING PROCESSMazbah Uddin
 
Comber and combing action
Comber and combing action Comber and combing action
Comber and combing action Shafiqul Islam
 
A comprehensive study on interlock circular knitting machine.
A comprehensive study on interlock circular knitting machine.A comprehensive study on interlock circular knitting machine.
A comprehensive study on interlock circular knitting machine.Hasanuzzaman Hasan
 

La actualidad más candente (20)

Square jammed fabric
Square jammed fabricSquare jammed fabric
Square jammed fabric
 
Study on Flat Bed Knitting Machine
Study on Flat Bed Knitting MachineStudy on Flat Bed Knitting Machine
Study on Flat Bed Knitting Machine
 
Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...
Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...
Effect of stitch length on Lycra And Without Lycra plain Single jersey fabric...
 
Warp stop motion
Warp stop motion Warp stop motion
Warp stop motion
 
Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)Keighley Dobby (negative- double lift)
Keighley Dobby (negative- double lift)
 
Textile calculations
Textile calculationsTextile calculations
Textile calculations
 
Terry-a pile fabric
Terry-a pile fabricTerry-a pile fabric
Terry-a pile fabric
 
Carding note
Carding noteCarding note
Carding note
 
Spinning Process
Spinning Process Spinning Process
Spinning Process
 
Yarn lea strength tester.
Yarn lea strength tester.Yarn lea strength tester.
Yarn lea strength tester.
 
Presentation on single jersey fabrics
Presentation on single jersey fabrics Presentation on single jersey fabrics
Presentation on single jersey fabrics
 
Fibrefiness
FibrefinessFibrefiness
Fibrefiness
 
Blowroom
BlowroomBlowroom
Blowroom
 
Textile Calculations and Equations
Textile  Calculations and EquationsTextile  Calculations and Equations
Textile Calculations and Equations
 
Fabric Structure & Design
Fabric Structure & DesignFabric Structure & Design
Fabric Structure & Design
 
ROTOR SPINNING PROCESS
ROTOR SPINNING PROCESSROTOR SPINNING PROCESS
ROTOR SPINNING PROCESS
 
Comber and combing action
Comber and combing action Comber and combing action
Comber and combing action
 
A comprehensive study on interlock circular knitting machine.
A comprehensive study on interlock circular knitting machine.A comprehensive study on interlock circular knitting machine.
A comprehensive study on interlock circular knitting machine.
 
Yarn Manufacturing Process : Drawframe
Yarn Manufacturing Process : DrawframeYarn Manufacturing Process : Drawframe
Yarn Manufacturing Process : Drawframe
 
Water Jet loom
Water Jet loomWater Jet loom
Water Jet loom
 

Destacado

Fabric manufacturing (Weaving preparation)
Fabric manufacturing (Weaving preparation)Fabric manufacturing (Weaving preparation)
Fabric manufacturing (Weaving preparation)Azmir Latif Beg
 
Industrial attachment of Olio apparels ltd (envoy group)
Industrial attachment of Olio apparels ltd (envoy group)Industrial attachment of Olio apparels ltd (envoy group)
Industrial attachment of Olio apparels ltd (envoy group)Md. Mazadul Hasan Shishir
 
Industrial attachment of Sadma fashion wear ltd
Industrial attachment of Sadma fashion wear ltdIndustrial attachment of Sadma fashion wear ltd
Industrial attachment of Sadma fashion wear ltdMd. Mazadul Hasan Shishir
 
Industrial attachment of divine group of industries limited (dgi).
Industrial attachment of divine group of industries limited (dgi).Industrial attachment of divine group of industries limited (dgi).
Industrial attachment of divine group of industries limited (dgi).Md. Mazadul Hasan Shishir
 
Quality control in the knitting process
Quality control in the knitting processQuality control in the knitting process
Quality control in the knitting processdrskathirrvelu
 
Fabric - Performance Framework
Fabric - Performance FrameworkFabric - Performance Framework
Fabric - Performance FrameworkPaul Askew
 

Destacado (20)

Industrial attachment of urmi garments ltd
Industrial attachment of urmi garments ltdIndustrial attachment of urmi garments ltd
Industrial attachment of urmi garments ltd
 
Fabric manufacturing (Weaving preparation)
Fabric manufacturing (Weaving preparation)Fabric manufacturing (Weaving preparation)
Fabric manufacturing (Weaving preparation)
 
Weaving
WeavingWeaving
Weaving
 
Take up mechanism
Take up mechanismTake up mechanism
Take up mechanism
 
Apparel merchandising southeast university
Apparel merchandising southeast universityApparel merchandising southeast university
Apparel merchandising southeast university
 
Industrial attachment of mitali fasions ltd
Industrial attachment of mitali fasions ltdIndustrial attachment of mitali fasions ltd
Industrial attachment of mitali fasions ltd
 
Industrial attachment of tusuka group
Industrial attachment of tusuka groupIndustrial attachment of tusuka group
Industrial attachment of tusuka group
 
INDUSTRIAL ATTACHMENT OF rupa fabrics ltd.
INDUSTRIAL ATTACHMENT OF rupa fabrics ltd. INDUSTRIAL ATTACHMENT OF rupa fabrics ltd.
INDUSTRIAL ATTACHMENT OF rupa fabrics ltd.
 
Industrial attachment of Olio apparels ltd (envoy group)
Industrial attachment of Olio apparels ltd (envoy group)Industrial attachment of Olio apparels ltd (envoy group)
Industrial attachment of Olio apparels ltd (envoy group)
 
Industrial attachment of Sadma fashion wear ltd
Industrial attachment of Sadma fashion wear ltdIndustrial attachment of Sadma fashion wear ltd
Industrial attachment of Sadma fashion wear ltd
 
Industrial attachment of divine group of industries limited (dgi).
Industrial attachment of divine group of industries limited (dgi).Industrial attachment of divine group of industries limited (dgi).
Industrial attachment of divine group of industries limited (dgi).
 
Weaving, loom
Weaving, loomWeaving, loom
Weaving, loom
 
Quality control in the knitting process
Quality control in the knitting processQuality control in the knitting process
Quality control in the knitting process
 
Presentation of sayeed
Presentation of sayeedPresentation of sayeed
Presentation of sayeed
 
INTRODUCTION Knitting
INTRODUCTION KnittingINTRODUCTION Knitting
INTRODUCTION Knitting
 
Weaving calculation
Weaving calculationWeaving calculation
Weaving calculation
 
Bonian Knit Fashions Ltd.
Bonian Knit Fashions Ltd.Bonian Knit Fashions Ltd.
Bonian Knit Fashions Ltd.
 
Fabric - Performance Framework
Fabric - Performance FrameworkFabric - Performance Framework
Fabric - Performance Framework
 
Santex Capabilities
Santex CapabilitiesSantex Capabilities
Santex Capabilities
 
Santex rimar
Santex rimarSantex rimar
Santex rimar
 

Similar a fabric manufacturing technology-1

Similar a fabric manufacturing technology-1 (20)

Textile 140830124-phpapp0
Textile 140830124-phpapp0Textile 140830124-phpapp0
Textile 140830124-phpapp0
 
Textile 140830124846-phpapp
Textile 140830124846-phpappTextile 140830124846-phpapp
Textile 140830124846-phpapp
 
weaving.pptx
weaving.pptxweaving.pptx
weaving.pptx
 
Winding and details
Winding and detailsWinding and details
Winding and details
 
Presentation winding complete
Presentation winding completePresentation winding complete
Presentation winding complete
 
Winding by mim and groupmates
Winding by mim and groupmatesWinding by mim and groupmates
Winding by mim and groupmates
 
Warp winding
Warp winding Warp winding
Warp winding
 
Basics of Fabric Manufacturing
Basics of Fabric ManufacturingBasics of Fabric Manufacturing
Basics of Fabric Manufacturing
 
Study on Winding Process
Study on Winding ProcessStudy on Winding Process
Study on Winding Process
 
Fabric Manufacturing Technology for Shoe Upper
Fabric Manufacturing Technology for Shoe UpperFabric Manufacturing Technology for Shoe Upper
Fabric Manufacturing Technology for Shoe Upper
 
Winding process
Winding processWinding process
Winding process
 
Winding process2010
Winding process2010Winding process2010
Winding process2010
 
Knitting Technology | Study On Knitting Technology | Sweater/ V-bed Flat Knit...
Knitting Technology | Study On Knitting Technology | Sweater/ V-bed Flat Knit...Knitting Technology | Study On Knitting Technology | Sweater/ V-bed Flat Knit...
Knitting Technology | Study On Knitting Technology | Sweater/ V-bed Flat Knit...
 
Winding machine 1
Winding machine 1Winding machine 1
Winding machine 1
 
Yarn spining...
Yarn spining...Yarn spining...
Yarn spining...
 
Count variation Effect on physical properties of Single jersey Cotton-elastan...
Count variation Effect on physical properties of Single jersey Cotton-elastan...Count variation Effect on physical properties of Single jersey Cotton-elastan...
Count variation Effect on physical properties of Single jersey Cotton-elastan...
 
spinning
spinningspinning
spinning
 
Tx 203 lecture 7 monday 02 12-2013
Tx 203 lecture 7 monday 02 12-2013Tx 203 lecture 7 monday 02 12-2013
Tx 203 lecture 7 monday 02 12-2013
 
Warp Knitting
Warp KnittingWarp Knitting
Warp Knitting
 
Warping
WarpingWarping
Warping
 

Más de Md. Mazadul Hasan Shishir

Handbook of garments manufacturing technology
Handbook of garments manufacturing technologyHandbook of garments manufacturing technology
Handbook of garments manufacturing technologyMd. Mazadul Hasan Shishir
 
project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...
project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...
project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...Md. Mazadul Hasan Shishir
 
PROJECT : REACTION MECHANISM OF REACTIVE DYES IN ON CELLULOSE FIBER.
PROJECT  : REACTION MECHANISM OF  REACTIVE DYES IN  ON CELLULOSE FIBER.PROJECT  : REACTION MECHANISM OF  REACTIVE DYES IN  ON CELLULOSE FIBER.
PROJECT : REACTION MECHANISM OF REACTIVE DYES IN ON CELLULOSE FIBER.Md. Mazadul Hasan Shishir
 
Industrial attachment of sea moss knitwear ltd
Industrial attachment of sea moss knitwear ltdIndustrial attachment of sea moss knitwear ltd
Industrial attachment of sea moss knitwear ltdMd. Mazadul Hasan Shishir
 
Industrial attachment of newtex composite textiles ltd.
Industrial attachment of newtex composite textiles ltd. Industrial attachment of newtex composite textiles ltd.
Industrial attachment of newtex composite textiles ltd. Md. Mazadul Hasan Shishir
 
Industrial attachment of givensee group of industries ltd.
Industrial attachment of givensee group of industries ltd.Industrial attachment of givensee group of industries ltd.
Industrial attachment of givensee group of industries ltd.Md. Mazadul Hasan Shishir
 

Más de Md. Mazadul Hasan Shishir (20)

A note of textile terms and definitions
A note of textile terms and definitionsA note of textile terms and definitions
A note of textile terms and definitions
 
Handbook of garments manufacturing technology
Handbook of garments manufacturing technologyHandbook of garments manufacturing technology
Handbook of garments manufacturing technology
 
carbon fibre
carbon fibrecarbon fibre
carbon fibre
 
Acrylic fiber
Acrylic fiber   Acrylic fiber
Acrylic fiber
 
Elastomeric Fiber
Elastomeric Fiber Elastomeric Fiber
Elastomeric Fiber
 
project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...
project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...
project on Application of Disperse & Reactive Dyes In a P/C Blended Fabric of...
 
PROJECT : REACTION MECHANISM OF REACTIVE DYES IN ON CELLULOSE FIBER.
PROJECT  : REACTION MECHANISM OF  REACTIVE DYES IN  ON CELLULOSE FIBER.PROJECT  : REACTION MECHANISM OF  REACTIVE DYES IN  ON CELLULOSE FIBER.
PROJECT : REACTION MECHANISM OF REACTIVE DYES IN ON CELLULOSE FIBER.
 
INTERSTOFF APPARELS LTD
INTERSTOFF APPARELS LTDINTERSTOFF APPARELS LTD
INTERSTOFF APPARELS LTD
 
INDUSTRIAL ATTACHMENT OF GTA SPORTS LTD
INDUSTRIAL ATTACHMENT OF GTA SPORTS LTD INDUSTRIAL ATTACHMENT OF GTA SPORTS LTD
INDUSTRIAL ATTACHMENT OF GTA SPORTS LTD
 
Apex weaving & finishing mills limited
Apex weaving & finishing mills limitedApex weaving & finishing mills limited
Apex weaving & finishing mills limited
 
Industrial Attachment of GTA Sports Ltd.
Industrial Attachment of GTA Sports Ltd. Industrial Attachment of GTA Sports Ltd.
Industrial Attachment of GTA Sports Ltd.
 
Reactive Dye
Reactive Dye Reactive Dye
Reactive Dye
 
Weaving
Weaving Weaving
Weaving
 
Apparel Merchandising
Apparel MerchandisingApparel Merchandising
Apparel Merchandising
 
Industrial attachment of sea moss knitwear ltd
Industrial attachment of sea moss knitwear ltdIndustrial attachment of sea moss knitwear ltd
Industrial attachment of sea moss knitwear ltd
 
Industrial attachment of cotton club bd ltd
Industrial attachment of cotton club bd ltdIndustrial attachment of cotton club bd ltd
Industrial attachment of cotton club bd ltd
 
Industrial attachment of APS group ltd
Industrial attachment of APS group ltdIndustrial attachment of APS group ltd
Industrial attachment of APS group ltd
 
INDUSTRIAL ATTACHMENT OF BISWAS GROUP LTD
INDUSTRIAL ATTACHMENT OF BISWAS GROUP LTDINDUSTRIAL ATTACHMENT OF BISWAS GROUP LTD
INDUSTRIAL ATTACHMENT OF BISWAS GROUP LTD
 
Industrial attachment of newtex composite textiles ltd.
Industrial attachment of newtex composite textiles ltd. Industrial attachment of newtex composite textiles ltd.
Industrial attachment of newtex composite textiles ltd.
 
Industrial attachment of givensee group of industries ltd.
Industrial attachment of givensee group of industries ltd.Industrial attachment of givensee group of industries ltd.
Industrial attachment of givensee group of industries ltd.
 

Último

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 

Último (20)

(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 

fabric manufacturing technology-1

  • 1. TEXTILE A Textile was originally a woven fabric but now the term textile and its plural textiles are also applied to fibers, filaments, yarn and most products for which these are a principle raw material. The product includes threads, cords, ropes, braids woven, knitted, non-woven fabrics, nets, household textile, geo-textile, medical textiles etc. WEAVING Weaving is the action of producing fabric by the interlacing of warp and weft thread. The warp threads are placed along the length of the fabric and the weft threads are placed along the width of the fabric. Example of Different Textile- Geo-Textile: Embankment Medical Textile: Non-alginate fabric, Bandage tape etc. Non-woven Fabric: Tea bag, Tissue paper. House Hold Textile: Curtain, Cover of soffa set. Southeast University – Department of Textile Engineering 1
  • 2. FLOW CHART OF WEAVING Yarn (In the form of spinner’s package) Warp Preparation Weft Preparation Winding (cone, cheese) Winding (Cop, Pirn, Cone, Cheese) Warping (Pre beam/ Warper’s beam/ back beam) Weaving (Fabric) Sizing (weaver’s beam) Drafting, Drawing, Pinning Denting, Looming Weaving (Fabric) Three types of yarn package are mention bellow Cone Flange bobbin Cheese Southeast University – Department of Textile Engineering 2
  • 3. TYPES OF FABRICS 1. Woven fabric (Shirt) 2. Knitted fabric (T-shirt) 3. Non-woven fabric (Tea pack) 4. Special fabric (Fire proof fabric, water proof fabric) OBJECTS OF YARN PREPARATION Yarn preparation is important to facilitate the next processes of weaving. The objects of yarn preparation are mentioned bellow:  To remove yarn faults ( there are 23 types of yarn faults)  To transfer the yarn from spinner’s package to a convenient form of package which will facilitate weaving.  To have desired length of yarn on a package.  To clean the yarn for better appearance and performance.  To make good quality fabric.  To reduce labour cost. FAULTS TO BE REMOVED DURING YARN-PREPARATION 1. Thick place 2. Thin place 3. Slubs Place 4. Loose fibers 5. Count variation Southeast University – Department of Textile Engineering 3 Intentional Unintentional
  • 4. 6. Foreign particles (seed, leaf, dust, bollworm, honeydew) 7. Neps QUALITY OF GOOD WARP The essential features of good warp is mentioned bellow-  The yarn must be uniform, clean and free from knots as much as possible.  The yarn must be sufficiently strong with withstand the stress and friction without end breakage.  Knots should be a standard size and type. So that they can pass the heald eye, dropper, read easily.  The warp must be uniformly sized and size coating should be thick enough to protect the yarn various function.  The ends of warp must be parallel and each must be wound onto a weaver’s beam at an even and equal tension.  All warp yarn should of same size in length. Southeast University – Department of Textile Engineering 4
  • 5. TYPES OF PACKAGE  Cone (for warp yarn)  Cheese (for warp yarn)  Spool (for silk, jute warp yarn)  Flanged bobbin (for warp yarn)  Cop (for jute weft)  Pirn (for cotton weft)  Spinner package TYPES OF PACKAGE WINDING There are three types of package winding available. 1. Parallel wound package 2. Near parallel wound package 3. Cross wound package 1. Parallel Wound Package Features a) Many yarn can be wound at a time. b) No need of traversing motion. c) Side withdrawal is possible. d) The density of yarn is more. e) No change of twist/inch. Southeast University – Department of Textile Engineering 5 PACKAGE
  • 6. f) For yarn unwinding separate mechanism is needed. g) Two side of the package needed flanged. 2. Near Parallel Wound Package Features a) No need flange here. b) Both side and overend withdrawal is possible. c) Twist/inch can be changed. d) Traversing motion is needed. 3. Cross-Wound Package Features a) Here no flange is required. b) Traversing mechanism is must. c) Twist/inch changes. d) Only overend withdrawal is possible. e) Yarn ballooning occurs during unwinding. f) This package is very stable. Southeast University – Department of Textile Engineering 6
  • 7. TYPES OF PACKAGE DRIVING There are three types of package driving system. A. surface contact driving (indirect system) B. direct driving at constant angular speed C. Direct Driving At Variable Angular Speed A. SURFACE CONTACT DRIVING (INDIRECT SYSTEM) In this system, the yarn package is placed with a surface contact of a drum. The drum is driven by a motor and some gear. When it rotates the package also rotate is reverse direction. Southeast University – Department of Textile Engineering 7 PACKAGE DRIVING
  • 8. B. DIRECT DRIVING AT CONSTANT ANGULAR SPEED In this system, the package is placed on a spindle. The spindle is driven by a motor and some gears. So the package gets a constant angular speed. Here yarn take up rate is directly proportional to the package dia. C. DIRECT DRIVING AT VARIABLE ANGULAR SPEED In this system, yarn package is directly driven at a variable angular speed to give a constant yarn speed. Here the package speed is inversely proportional to the package radius, I.e. Package speed Southeast University – Department of Textile Engineering 8 1 Package radius
  • 9. The appearance of the curved path of running yarn during unwinding or overend withdrawl from package under appropriate winding condition through a guide, placed above and in line with the axis of the package at an adequate distance from it, the yarn assumes the appearance of a balloon shape. This circumstance of assuming balloon shape of yarn is called ballooning. Southeast University – Department of Textile Engineering 9 BALLOONING
  • 10. FACTORS EFFECTING THE SHAPE AND SIZE OF BALLOON  Package size Ballooning  Yarn guide distance Ballooning  Lift the package Ballooning  Count of yarn Ballooning  Air resistance Ballooning  Unwinding rate. Ballooning The unwinding process of yarn from package is called yarn withdrawal. There are two types of yarn withdrawal system: 1. Side Withdrawal 2. Overend Withdrawal 1) Side Withdrawal The features of side withdrawl of yarn are given bellow; a) Package will rotate in side withdrawal. b) Yarn twist will be unchanged. c) No formation of balloon occurs. d) It is applied to flanged bobbin. e) The rate and speed of unwinding is slow. Southeast University – Department of Textile Engineering 10 YARN WITHDRAWAL OR UNWINDING
  • 11. 2) Overend Withdrawal The features of overend withdrawl are given bellow; a) Package remains stationary during unwinding. b) Formation of balloon occurs. c) Twist/inch of yarn changed. d) Generally cop, pirn, cone, chess are packages used for overend withdrawl. e) The rate of unwinding is high. In winding and unwinding some small component control yarn path which is very necessary, yarn guide is used to perform this job. TYPES OF YARN GUIDE There are two types of yarn guide a) Yarn Guide For The Yarn Whose Ends Are Required For Threading; Southeast University – Department of Textile Engineering 11 YARN GUIDE
  • 12. For this type of yarn guide extra time is needed for threading. So speed of operation is decreased. The yarn which passes through this guide faces more friction. Like Ceramic, Tumpet, Bust b) Yarn Guide For The Yarn Whose Ends Are Not Required For Threading; Here threading is very easy. So the speed of the operation is high. Yarn passes through this guide faces less friction. During winding, we have to impart proper tension to yarn, so that we can get a stable and undamaged package. So we pass the yarn through a device called tension device. Types of Tension Device There are four types of tension device as follow; a) Capstan Tensioner. Southeast University – Department of Textile Engineering 12 Figure: Yarn Guide TENSION DEVICE
  • 13. b) Additive Tensioner. c) Combined Tensioner. d) Automatic Tensioner. A. CAPSTAN TENSIONER It is the simplest type of yarn tensioner. It works only by deflecting the yarn around fixed posts. This includes a capstan effect on yarn. It works by the following formula: Output Tension = Input Tension × eμθ or, T2 = T1 eμθ Where, T2 = Output tension. T1 = Input tension. e = Constant tension = 2.78 μ = Co-efficient of friction. θ = θ1+θ2+θ3 = Angle of lap. B. ADDITIVE TENSIONER This is also a simple technique of applying tension on yarn. In this device a dead weight or spring is used in the middle of the two surfaces in Southeast University – Department of Textile Engineering 13
  • 14. contact and the force is applied to give suitable tension to the yarn. Hence the output tension is expressed by, T2 = T1 + 2μF Where, T1 = Input tension. T2 = Output tension. μ = Co-efficient of friction. F = Applied force. C. COMBINED TENSIONER It is the combined form of additive and capstan tensioner. The device permits the tension level to be raised to any desired level, but doesn’t permit a reduction of tension. Here output tension is expressed as follow: T2 = T1 + 2μF + T1 eμθ Where, T1 = Input tension. T2 = Output tension. μ = Co-efficient of friction. F = Applied force. θ = Angle of lap. D. AUTOMATIC TENSIONER It is a simple tensioner in which yarn tension is controlled automatically. It has a lever with spring loaded disc in one side and applied load in Southeast University – Department of Textile Engineering 14
  • 15. another side. The device is designed in such a way that if applied tension is too high. The pressure on disc is reduced to bring the tension back to its proper level. There are some effects of tension to the yarn or package: They are a) If tension is too high. Southeast University – Department of Textile Engineering 15 EFFECT OF TENSIONING
  • 16. b) If tension is too low. c) If tension varies. a) If Tension is Too High  Hard package.  Breakage rate increases.  Elongation of yarn  Shade variation.  Weak the thin place. c) If Tension Varies  Problem during unwinding.  Package unstable.  Irregularity among yarn. Auxiliary Function in Winding  Creeling.  Piecing.  Doffing. CHOICE OF TENSIONING DEVICE  It must be reliable.  It must be easily threaded.  It must neither introduce nor magnify tension variation.  It must not change the twist of yarn.  It must not be affected by wear.  It must be easily adjustable.  It must not be affected by the presence of oil and dirt.  It must not encourage the collection of dirt and lint.  It must be easy cleaning.  The operating surface must be smooth. Southeast University – Department of Textile Engineering 16 b) If Tension is Too Low  Loose package.  Unstable package.  Slough off.
  • 17.  It must be cheap.  It must not cause any type of damage to yarn i.e. shade variation, elongation yarn breakage. PRECISION WINDING FEATURES  Packages are wound with reciprocating traverse.  Package contains more yarn.  Low stability of package.  Hard and more compact package.  Low unwinding rate.  The wound coils are arranged parallely or near parallely. FEATURES OF NON-PRECESSION WINDING  Coils are cross wound.  Package is of low density.  Less amount of yarn is stored in package.  High stability of package can be obtained.  Flange is not necessary.  Unwinding rate is very high. Difference between Precession and Non-Precession Winding Precession winding Non-Precession winding 1. The wound coil arranged parallel or near parallel. 1. The coil is cross wise wound. 2. The yarn density of the package is high. 2. The yarn density of a package is low. 3. Flanged bobbin may be used. 3. Not use of flanged. 4. The yarn package is hard and more compact. 4. The yarn package is soft and less compact. 5. Low stability of the package. 5. High stability of the package. 6. Winding angle is 90° or near 90° 6. Winding angle is less than 80° 7. The bobbin is wound with one or more threads 7. The bobbin is wound with single thread. Southeast University – Department of Textile Engineering 17 WINDING
  • 18. 8. Yarn tension is comparatively high. 8. Yarn tension is comparatively low 9. Unwinding rate is low. 9. Unwinding rate is high. MATH-1 Calculate the time required to wind 500 lbs of 24 Ne cotton yarn on 15 drums, where the actual production per drum per minute is 560 yds. Given Production= 560yd/min/drum, 24 Ne, yarn= 500lb, time=? Solution 24 Ne means, 1 lb. of yarn contains = 24X840 yds. yarn 500 lbs. of yarn contains = (24X840X500) yds. yarn 560 yds. of yarn to wind in 1 drum needs =1 min 1 yd. “ “ “ 15 drum “ =1/ (560X15) min. (24X840X500) yd “ “ 15 drum = (24X840X500) / (560X15) min. =1200 min. =20 hr.(ans.) Math-2 Calculate the drum required to wind 900 lbs of 25 Ne cotton during the time 28 hrs, where the actual production per drum per minute is 600 yds Given, Production=600yd/min/drum 25 Ne, Yarn=900 lbs, time=28 hr., Find number of drum. Solution 25 Ne of yarns means, 1 lb of yarn contains = 25X840 yd yarns. 500 lb of yarn contains =(25X840X900) yd yarns. 600 yds. of yarn to wind in 1 min in = 1 drum 1 yd ’’ ’’ ’’ (60X28) min in = 1 / (600X60X28) drum. Southeast University – Department of Textile Engineering 18
  • 19. (25X840X900) yds. ’’ (60X28) min = (25X840X900) / (600X28X600) drum = 18.75 drum = 19 drum (ans.) Winding is a part of total number of ends of a warp in full width on to a back beam from cone or cheese is known as warping. OBJECTS OF WARPING  To prepare a beam to make a fabric.  To increase the wave ability of fabric.  To make a convenient yarn sheet for sizing.  To wound up required length of yarn onto a warp beam.  To facilate the weaving of complex color pattern.  To make reusable small packages REQUIREMENT OF WARPING During warping the following requirements should be fulfilled. 1. The tension of all wound end must be uniform and possibly constant throughout the withdrwal process. 2. Warping should not impair the physical and mechanical properties of yarn. 3. The surface of warping package must be cylindrical. 4. A pre-determined length of yarn should be wound on beam from every package. 5. The production rate of warping should be as high as possible. 6. If possible, yarn faults should be removed. TYPES OF WARPING Mainly there are two types of warping, a) Direct/ high speed warping b) Sectional warping. Southeast University – Department of Textile Engineering 19 WARPIN
  • 20. Some Other Special Types of Warping Are Available a) Ball warping b) Chain warping c) Cross warping A. SECTIONAL WARPING Sectional warping is a process of preparing warp beam over two stages. In first stage yarns are wound in narrow tapes on a large drum. Then in the second stage the rewinding of the warp onto a beam is performed. This process is slow but suitable for complex color pattern. B. DIRECT/HIGH SPEED WARPING High speed warping is a process of preparing warp beam directly from yarn package. Here all the yarns are wound on a simple flange beam at a time. This process is suitable for single color pattern. FEATURES OF SECTIONAL WARPING  Sectional warping is suitable for producing color fabrics with different pattern.  Production is less in sectional warping. So it is a costly process.  In sectional warping, tension cannot be kept uniform.  Here tapered drum is used as drum.  Hand weaving is necessary to produce sample fabric for bulk production. FEATURES OF HIGH SPEED WARPING  High speed warping is suitable for producing fabric with same count and same color yarn.  Higher amount of yarn is required here.  The speed and production of a high speed warping is very high.  Here simple flanged bobbin is used as beam. Southeast University – Department of Textile Engineering 20
  • 21. Difference between Sectional Warping and High Speed Warping High Speed Warping Sectional Warping 1. Used to produce common fabric. 1. Used to produce fancy fabrics. 2. Production is high. 2. Production is low. 3. Large amount of yarn is required. 3. Small amount of yarn is required. 4. Weavers beam is produced after 4. Weavers beam is directly sizing. produced. 5. Cone and Cheese is used. 5. Flanged bobbin or drum is used. 6. The process is cheap. 6. The process is expensive. 7. High creel capacity. 7. Low creel capacity. 8. Most commonly use. 8. Rarely used. Control System in Warping  Tension control  Balloon control  Stop motion  Yarn cleaner Southeast University – Department of Textile Engineering 21 Faults in Warping  Off center warp  Reged or uneven warp  Cross end  Snarl formation  Hard/soft beam  End missing
  • 22.  Length control  Surface speed control  Proper yarn density  Static electricity  Traverse control  Fly control Description of Different Control Systems in Warping 1. Tension Control: Tension should not be low or high during warping. Because due to lower tension package will be unstable, entangled and snarling will occur. Whereas high tension will cause yarn breakage. The tension should be just and uniform throughout the process. 2. Balloon Control: Balloon controlling is necessary so that the yarns does not entangled with one another. For this, yarn guides should be placed at right positions. 3. Stop Motion: The m/c should stop itself if any yarn breakage occurs at any point. So stop motion system is necessary to control. 4. Yarn Cleaner: Proper setting should be maintained to remove yarn faults. 5. Length Control: the Length of warp sheet should be controlled. It is done with a measuring roller in combination with a suitable counting device by stopping the device machine after winding pre-determined length of warp yarn onto the beam. 6. Surface Speed: The surface speed of beam should be controlled specially when a large change in warp diameter is involved. Southeast University – Department of Textile Engineering 22
  • 23. 7. Proper Yarn Density: In warp sheet the yarn ends/inch, means yarn density, is to be controlled. Because without proper yarn density the fabric will be uneven. 8. Static Electricity: It is specially required in case of man-made fibres. It is controlled to avoid yarn entanglement. It is done by: i. Chemical fiber finishes ii. Ionization of air. iii. Humidification of air. 9. Traverse Control: In sectional warping traverse rate of beam should be controlled. 10. Fly Control: In staple fibres lints, small trashes may cause problem by flying around the working area. So this fly should be controlled to have a pleasant working atmosphere. Description of Different Faults in Warping and Their Remedies: 1. Off Centre Warp: If beam or wraith is not set properly i.e. it is not centric due to carelessness this type of fault occurs. Remedy: Beam or wraith should be placed proper 2. Rigid or Uneven Warp Surface: This may occur if i. Yarn density [ends/inch] is very low. ii. Different counts of yarns is wound on beam/ iii. Yarn density is uneven. Remedy: yarn density and count should be maintained properly. 3. Cross Ends: If occurs due to faulty knotting after end breakage. (Joining broken end with wrong end) Remedy: Knotting and tension should be done carefully. 4. Snarl Formation: Snarl form due to over tension, highly twisted yarn and careless operation. Remedy: Tension should be kept proper and yarn twist should be as required. 5. Hard/Soft Beam: If during winding yarn on being yarn tension is low or high soft and hard beam forms. It may also occur due to uneven pressure on drum or beam. Southeast University – Department of Textile Engineering 23
  • 24. Remedy: Tension and pressure should be maintained even. 6. End Missing: If yarn breakage occurs m/c should be stopped immediately. If such cannot be done the broken end of yarn cannot be found out. This is end missing problem. Remedy: Stop motion system should be very active and m/c should be stopped immediately after end breakage. 7. Haphazard Knotting: if various length of yarn is wound in creel packages then during beaming different end will finished in different time. So knotting would be in various places of the warp. This will haphazard knotting. Remedy: In creel packages same length of yarns should be present so that all yarn finish at a certain place of warp. 8. Length Variation: It may occur due to fault stop motion. It means if the stop motion system stops the m/c before winding required length of yarn on beam length variation occurs. Remedy: Stop motion should be checked carefully. Let, s = traverse length. L = Axis at length of warp on drum. d = empty beam dia. D = full beam dia. dm = = mean dia. X = tape distance α = taper angle v = volume of yarn stored on beam. Let, Southeast University – Department of Textile Engineering 24 Relation between Taper Angle and Amount of Yarn on a Beam
  • 25. s >x, so as to maintain stability. V = - = ( - ) = (D+d) (D-d) = πL ( ) ( ) From figure, we can see that, dm = , mean dia and = x tan α So , V = π L dm (x tan α) or, V > π L dm (S tan α) if, x > s or, V < π L dm (S tan α) if, x < s So, V S tan α if α = 90° then V = s tan 90°= α So unlimited amount of yarns can be wound if flange stays perpendicular to beam barrel. Practically this is impossible. But this type of package permit’s to wind high amount of yarn. The method of applying a gelatinous film forming substance of starch on warp yarn before weaving is known as sizing. Object of Sizing  To protect the yarn from abrasion with heald eye, back rest, reed etc. during weaving.  To improve breaking strength of cellulosic yarn.  To increase yarn smoothness.  To reduce yarn hairness.  To increase yarn elasticity and stiffness.  To decrease yarn extensibility.  To hinder generation of static electricity for synthetic and blended yarn.  To increase yarn weight. Sizing Ingredients and Their Functions Some important size ingradients and their functions are mentioned below- Southeast University – Department of Textile Engineering 25 Π2 4 D + d 2 D - d 2 SIZING
  • 26. 1. Adhesive 2. Lubricants or softeners 3. Antiseptic or antimildew agent 4. Deliquescent or Hygroscopic agent 5. Weighting agent 6. Anti-foaming agent 7. Tinting agent 8. Wetting agent 1. ADHESIVE Adhesives are mixed with water in granular form and heated to form a paste which ultimately becomes a viscous fluid. The followings do as adhesives in a size:  Maize, corn, wheat, rice, potato starch.  CMC (carboxyl methyl cellulose).  PVA (poly vinyl alcohol).  PVC (poly vinyl chloride). The functions of adhesives are as follows;  To increase yarn strength.  To reduce yarn hairiness.  To increase elasticity and stiffness.  To increase smoothness. 2. LUBRICANTS OR SOFTENERS Mineral waxex, vegetable waxes, animal fats; mineral oils, vegetable oils, tallow, Japan wax etc. are used as lubricants or softeners. Function Southeast University – Department of Textile Engineering 26
  • 27. If softeners are not present in sizes the yarns will not be sufficiently extensible. Then the size would crack and particles would drop away from the yarn .And this, in turn, would create local stress concentration. 3. ANTISEPTIC OR ANTIMILDEW AGENT ZnCl₂, phenol, carboxylic acid, salicylic acid are used as antiseptic or antimildew agent. Function i. It helps to store the sized yarn protect it from bacteria and fungi. ii. It prevents the growth of mildew on yarn during storage. 4. DELIQUESCENT OR HYGROSCOPIC AGENT Hygroscopic agents present in size absorb moisture from air glycerin, CaCl₂ are some deliquescent agent. Function a) To prevent the brittleness of size. b) To absorb moisture from air. c) To prevent excessive dyeing of yarn. 5. WEIGHTING AGENT China clay, CaCO₃, Na₃, PO₄, France chal etc. are used as weighting agent. These are to be used specially for those fabrics that are to be solid in grey state. Function a) To increase the weight of yarn hen fabric. b) To impart fullness and feel to fabric. Southeast University – Department of Textile Engineering 27
  • 28. 6. ANTI-FOAMING AGENT Pyridine, benzene etc.as used as anti-foaming agent. Function: To prevent the formation foam 7. TINTING AGENT Blue is used as tinting agent. Function: a) To increase luster or brightness. b) To produce a pale color in dyeing. 8. WETTING AGENT Sulphanol A, soap, avirol, MgCl2 etc. are used as wetting agent in a size. Their drawbacks are their high and very stable foaming ability. Function: a) To ensure the uniform distribution of the sizing solution on yarn surface. b) Reduce surface tension of the liquor. c) Increase size absorbency. TECHNOLOGICAL CHANGES OCCURE DUE TO SIZING The following technological changes of a yarn/fabric occurs due to sizing – 1. INCREASE IN BREAKING STRENGTH 2. INCREASE ABRASION RESISTANCE 3. INCREASE IN STIFFNESS 4. INCREASE IN ELASTICITY 5. INCREASE IN FRICTIONAL RISISTANCE 6. INCREASE IN YARN DIAMETER 7. DECREASE IN YARN HAIRINESS 8. DECREASE IN STATIC ELECTRICITY FORMATION DESCRIPTION 1. INCREASE IN BREAKING STRENGTH Southeast University – Department of Textile Engineering 28
  • 29. During sizing adhesive materials create bonds between fibers to fiber which, as a result, increase the breaking strength of the yarn. It increases 20-40% breaking strength of the fiber. 2. INCREASE ABRASION RESISTANCE After sizing the gap between fibers are filled with size due to the coating of size on the outer surface of the yarn. So their resistance against abrasion is increased. 3. INCREASE IN STIFFNESS After sizing flexibility or pliability of a yarn is decreased and stiffness is increased. 4. INCREASE IN ELASTICITY As extensibility of the sized yarn decreases, more force is to be applied to extend the yarn. This is means, elasticity of the yarn increases. 5. INCREASE IN FRICTIONAL RISISTANCE Sizing produces smooth yarn surface and so less friction occurs. Again size coating increases the frictional resistance of yarn 6. INCREASE IN YARN DIAMETER Due to coating of size ingredients the yarn diameter increase but yarn’s apparent diameter is decreased. 7. DECREASE IN YARN HAIRINESS By sizing protruding hairs of yarn fix with yarn and so yarn hairiness decreases mentionably. 8. DECREASE IN STATIC ELECTRICITY FORMATION Size materials contain hygroscopic agent and water which hinder the formation of static change on yarn surface. Again due to mass frictional resistance the formation of static electricity becomes less. SIZE TAKE-UP PERCENTAGE Southeast University – Department of Textile Engineering 29 Wt. of size material on yarn × 100%
  • 30. Size take up % = Size Take up Percentage Depends on the Following Factors  Twist S.T  Yarn count S.T  Viscosity of size material S.T  speed of yarn passing through m/c S.T  Pressure of squeezing roller. S.T  Amorphousness of fiber in yarn. S.T  Flexibility of yarn S.T  Nature of adhesive. S.T  Time and Temperature. S.T SIZE CALCULATION MATH-1: A beam of wt. 260 lbs. contains 4000 sized warp of 1200 yds length. It the unsized yarn count is 30 Ne and empty beam wt. 50 lbs., then calculate - i. Wt. of size on yarn. ii. Count of sized yarn. iii. Size take-up percentage. Soln: 4000×1200 Weight of unsized yarn = yds 840×30 = 190.47 lb. Southeast University – Department of Textile Engineering 30 Wt. of unsized yarn
  • 31. Wt. of sized Yarn = (260 – 50) lbs. = 210 lbs. Wt. of size material = (210 - 190.47) lbs = 19.53 lb. (Ans) 4000×1200 Wt. of sized yarn = yds. 840×C 4800000 or, 210 = 840×C 4800000 or, C = = 27.21 = 27 Ne (Ans) 840 × 210 Size take up percentage (%) = (wt. of size material on yarn / wt. of unsized Yarn) x 100 % = 19.53/190.47 x 100 % = 10.25 % (Ans) The loom is the contact point of the whole process of cloth production, ginning, opening, carding, spinning, winding, warping, sizing and beaming are done before weaving. A loom cannot be said a machine but it is a Southeast University – Department of Textile Engineering 31 LOOM
  • 32. device which is used to produce woven fabric. Looms are generally driven either by line shaft or by individual motors fitted with it. Weaving Mechanism / Basic Principle of Weaving Weaving is the process of interlacement between the warp and weft in fabric according to a design of fabric. Basic principle or weaving mechanism is:  The yarn from the weavers beam passes round the back rest and comes forward through the drop wire of the warp stop motion to the heald eye of heald shaft which is responsible for the purpose of shade formation.  It then passes through the dent of reed which holds the thread at uniform spacing and it is also performed the beating up the weft thread that has been left in the triangle warp sheet form by the two warp sheet and reed.  In this way, weft yarn is meshes with last pick of fabric or cloth. Temple holds the cloth firm at the feed position and assist in the formation of a uniform fabric width. Then fabric passes over the front rest, take up roller, pressure roller and finally wind on to the cloth roller. DRIVING MOTION Southeast University – Department of Textile Engineering 32
  • 33.  It is seen that the figure that, two tappet mounted with the one bottom shaft and it passed the treadle lever by treadle bowl to down direction.  There is a fulcrum at the end of treadle lever and another end of lever is joined with heald shaft by yarn.  Top roller acts as intermediate of two rope of heald shaft from which rope passes over the top roller.  When shedding cam or tappet pressed on the treadle lever by treadle bowl, then one heald shaft is down while another is up and shedding is formed. Such way, 2nd shedding tappet reverses full motion i.e. upper heald shaft is down and down heald shaft is up.  The mechanism of a power loom receives their motion from shaft that traverses from side to side in the loom and is driver from another. Their relative speeds are of importance since they give the mechanism that they drive.  The crank shaft being driven by the motor moves one revolution per picks. The motion of the teeth of the gear wheels connecting this shaft to the bottom shaft is always 2:1, so that the bottom shaft will move one revolution in ever two picks. Southeast University – Department of Textile Engineering 33
  • 34. CLASSIFICATION Southeast University – Department of Textile Engineering 34 Loom Hand Loom Power Loom Ordinary Power Loom Automatic Power Loom Modern or Shuttle less Loom Hand Loom 1. Primitive or Vertical loom. 2. Pit loom (a) Throw shuttle loom. (b) Fly shuttle loom. 3. Frame loom (a) Throw shuttle loom. (b) Fly shuttle loom. 4. Chitttaranjan loom. 5. Hattersley loom Ordinary Motor 1. Common Motor. 2. Individual motor. Modern or Shuttle less Loom 1. Projectile Loom. 2. Rapier Loom. 3. Air jet Loom. 4. Multiphase.
  • 35. LOOM MOTION Southeast University – Department of Textile Engineering 35 Loom Primary Motion Secondary Motion Tertiary Motion Primary motion 1. Shedding: (a) Tappet (b) Dobby. (c) Jacquard. 2. Picking: (a) Over pick (b) Under pick. (c) Modern pick. 3. Beating: (a) Single (b) Multiple (c)Variable. Secondary Motion 1. Take up (a) Positive (b) Negative. 2. Let off (a) Positive (b) Negative. (5 wheel, 7 wheel) Tertiary Motion 1. Warp stop motion 2. Weft stop motion (Centre, side) 3. Reed stop motion (Loose, fast) 4. Temple motion (Roller, reed) 5. Weft replenish
  • 36. 1. Primary Motion In order to interlace warp and weft thread to produce fabric on any type of weaving machine 3 primary motion is necessary: I) Shedding: It is the process of separating the warp thread into two layers to form a tunnel called shed (through which shuttle carrying weft passes) is known as shedding. During shedding some yarns are raised up and some are depressed down create a tunnel. II) Picking: The method of passing the weft threads which traverse across the fabric through shed is called picking. The inserted weft is called a pick. III) Beating: It is the process of pushing the pick into the already woven fabric at a point known as fell of the cloth .By pressure of wraith to jointed feed side of the cloth is called beating. 2. Secondary Motion I) Take up motion: The motion which with draw (wound up) fabric from the weaving area at a constant rate and thus give required pick spacings and winds the fabric on to a roller is called cloth control or Take up motion. Positive Take up motions is mechanically driven. Negative Take up motions is spring drive. II) Let off motion: The motion which deliver warp to the weaving at the required rate and at a suitable constant tension by unwinding it from a flanged known as weavers beam is called let off motion. Southeast University – Department of Textile Engineering 36
  • 37. 3. Tertiary Motion Tertiary motion is not must for fabric production but it is used for higher production. 1. Warp Stop Motion: Machine will be stopped electrically or mechanically. 2. Weft stop motion: It may be two types- (a) Side weft motion & (b) Centre weft motion. 3. Reed stop motion: Two types- (a) Fast reed motion. (b) Loose reed motion. SHEDDING Dividation of warp threads into two parts for insertion of weft threads is called shed and the mechanism of shed is called shedding, it is the first primary motion of weaving Types of Shed 1. Bottom close shed 2. Centre close shed 3. semi-open shed 4. Open shed Southeast University – Department of Textile Engineering 37
  • 38. Primitive Loom /Vertical Loom Warp yarn is taken in a roller instead of beam and hanged in a wall and shed is produced by a piece of wood. In this loom the vertical frame is used to hold the warp in stretched condition. Weft is passed through the shed by hand. Beating is done by the pressure of hand. Take off action was done in a separate roller by hand. Let off was also by hand. Picking Beating One weaving cycle Shedding Primary motion Throw Shuttle Pit Loom In this loom, the frame was laid on a pit. Shedding was obtained by giving the pressure to the treadle levers suited inside of the pit by feet. The weaver throws the shuttle across the width of the cloth by one hand and catches it by another hand. Chittarajan Loom It is constructed by iron and wood. The principle characteristics of this loom is –  The two wheels upon a shaft connect the sley two ends with the help of two levers. Regulating the sweep of sley and force of beat up allowing less strain to weaver and uniform force to beat up.  The positive take up motion by the five wheels to regulate the picks per inch. The alternation of picks per inch is positive by changing the wheel to take up motion.  Negative let off motion with chain, lever and dead weights has been adopted in this loom to ensure uniform let off warp cloth is taken up by positive means. Southeast University – Department of Textile Engineering 38
  • 39.  Shedding and picking motion work in the same manner as in the fly shuttle loom but the loom speed is greater than hand loom.  Shedding motions are generated manually but secondary motions like let off and take up are done automatically. So this loom may be called semi-automatic loom. Southeast University – Department of Textile Engineering 39
  • 40. JUTE LOOM Hessian Loom  Used for comparatively fine fabrics  Larger loom width  2 heald shaft, one yarn/ heald eye  Finer reed  Two tappet and tappet are on bottom shaft  Small pinion on pin roller  Suitable for plain weave(1 up1 down)  Yarn count—7.5 lb/spindle  Backrest attach with frame Sacking Loom  Comparatively coarse fabric  Loom width is less  3 heald shaft,3 yarn/heald eye  Coarse reed  Larger pin on pin roller  Suitable for twill weave(2 up,1 down)  Yarn count (8-10), around 8.5 lb/spindle  Separate back rest  Tappets are on counter shaft. Advantages of Fly Shuttle Loom/ Reason for Choice of Fly Shuttle Loom  Higher m/c speed or weaving speed(60-80rpm) Maximum speed of Pit loom-60 rpm Hand through Pit loom-20 rpm Vertical loom-1 ppm  No. of heald shaft is higher  In fly shuttle loom, higher width fabric is possible  In Pit loom, only narrow width fabric can be woven  Solid and compact structure with minimum vibration Fly shuttle loom- more compact and solid structure -minimum vibration Southeast University – Department of Textile Engineering 40
  • 41. -less space Pit loom-higher vibration -more space  Flanged weavers beam provided better selvedge Fly shuttle loom-wooden flanged weavers beam ensure better selvedge Pit loom- without flanged weavers loom  Adjustable back rest to suit quality fabric  Pit loom- fixed back rest 22  Let-off with lever arrangement -Uniform let-off of yarn is possible.  Adjustable sweep of sley –suit quality fabric. Pit loom-over hanging sley assembly -sweep of sley is not adjustable. Fly shuttle loom-sley assembly is supported by sley sword  More freely operated treadles.  More cloth on cloth roller is possible.  Positive take-up can be fitted.  Free picker  Dobby and jacquard can be fitted.  Suitable for both fine and coarse fabric. Difference between Hand Loom and Power Loom Southeast University – Department of Textile Engineering 41 Hand Loom Power Loom 1. Operating system is manual. 1. Operating by electric power. 2. Shedding is done by paddle and Picking, Beating is done by hand. 2. Shedding and Picking is done automatically. 3. Less production. 3. High production. 4. Slow running speed. 4. High running speed. 5. Check and striped fabrics are produced. 5. One color fabrics is produced.
  • 42. 10 01 Construction 10 Plain 20 Twill 30 Satin 0101 00 Lifting pattern of the first warp yarn No. of adjacent warp yarns with identical lifting pattern Move number Difference between Hesian and Sacking Loom Hesian Loom Sacking Loom 1. One up one down plain weave. 1. Two up one down twill weave. 2. It has two heald shafts. 2. It has 3 eald shafts. 3. No of tappet 2. 3. No of tappet 3 4. No auxiliary shaft. 4. Need of auxiliary shaft due to more 2 tappet is called counter shaft. 5. A single yarn is passed through a heald eye. 5. Two yarns are passed through a heald eye. 6. Less spacing between warp yarns. 6. More spacing between warp yarns. 7. Finer thread is used. 7. Coarser thread is used. New condensed notation (DIN 61 101) Southeast University – Department of Textile Engineering 42
  • 43. DEFINITION Knitting is the method of creating fabric by transforming continuous strands of yarn into a series of interlocking loops, each row of such loop hanging by the one immediately preceding it. The basic element of knit fabric structure is the loop intermeshed with the loops adjacent to it on both side and above and below it. TERMS  Kink of Yarn: Per loop from a single yarn.  Knitted Loop: two loops intermeshed.  Knitted Stitch: Three loops intermeshed.  Top Arc: Loop Head  Bottom Half Arc  Leg/ Side Limber  Needle Loop  Sinker Loop  Close Loop  Open Loop Southeast University – Department of Textile Engineering 43 Fig: knitting structure
  • 44.  Wale: Vertical column of needle loop.  Course: Horizontal row of needle loop.  Stitch Density: Wales per Inch × Course per Inch.  Stitch length: Needle loop + Sinker loop  Extended sinker loop  Face loop  Back loop  Needle: Southeast University – Department of Textile Engineering 44 United Needle Independent Needle
  • 45.  Knitting M/C: there are three types of knitting M/C – 1. Warp knitting: Gives vertical movement of yarn. 2. Weft knitting: Gives horizontal movement of yarn. 3. Other loop forming and combined M/C: Tri-axial.  Needle Carrier: Which carries needle.  Number of Feed System: The number of feeder by course.  Working Diameter: In circular knitting m/c, the distance from one needle exact to the other needle is known as working dia.  Working Width: In flat knitting m/c, the distance from first needle to the last needle is known as working width.  Gauge: Number of needle per inch.  Pitch: The distance the center from one needle to the center of another needle is known as pitch.  There Are Three Types Of Knitted Fabric  Selvage fabric Southeast University – Department of Textile Engineering 45
  • 46.  Cut edge fabric  Tubular fabric  Open lap  Close lap DIAL Dial is the upper steel needle bed used in double knit machines. Into the grooves of the dial, the needles are mounted horizontally and are allowed to move radially in and out by their dial cams. The number of grooves per unit space conforms to the cylinder gauge in most of the cases. CYLINDER Southeast University – Department of Textile Engineering 46 O = over lap U = under lap  Over lap  Under lap Fig: Dial
  • 47. The cylinder is a steel circular bed having grooves/tricks/cuts on its outer periphery into which the needles are mounted. With reference to the tricks, the needles move vertically up and down by their butt being in contact with the cam track. The number of tricks per inch i.e., number of needles per inch decides the gauge of the machine. Machines are built as low as 4 NPI to as high as 32 NPI. Based on the machine gauge, the fineness of the yarn to be knitted can be varied. The diameter of the cylinder also varied based on the type and width of the fabric and a maximum of 75 cm diameter machines are available. FEEDERS/STRIPPERS Feeders are the yarn guides placed close to the needles to the full circumference of the knitting zone. The feeders feed the yarn into the needle hooks and control the needle latches in their open position while the needle attain their clearing position. They consist of a yarn guiding hole and a bevel edge to guard the latches of the approaching needles. They are slightly curved to the corresponding curvature of the needle bed. Feeders may have two holes also for the purpose of plating. Yarn feeders can be divided into “positive” or “negative” types depending on the possibility of controlling the yarn feeding speed and uniformity. Southeast University – Department of Textile Engineering 47 Fig: Cylinder
  • 48. The feeder brackets can be adjusted to set their distance from the needle and to ensure yarn feed into needle hooks. Stripers are the feeders designed to deliver two or more yarns individually to the same feed. They can be considered as moving guide replacing the holes of fixed guides. In a two color stripe, two different colored yarns are supplied by two stripper fingers and their engagement is controlled by an endless control chain which governs the guide change at the appropriate feeds. At each revolution, a counter may select the movement of all the striper chains. The stripes are used on both single and double bed machines. MACHINE DESCRIPTION Southeast University – Department of Textile Engineering 48 Fig: Feeders/Stripers Circular Knitting
  • 49. Frame The circular knitting machine consists three major sections viz., yarn supply, knitting elements and fabric take-down. The Fig. 2.3 shows the machine frame, indicating its various parts. The knitting elements such as needles, sinkers, cylinder, cams and feeders are supported at the center called as knitting zone. Yarn packages are mounted at the overhead creels and yarns are fed to knitting zone through yarn guides, stop motions and feeders. The knitted fabric goes down inside the cylinder towards the centre of the machine, drawn into the take down device and finally collected on a roll winding mechanism. A fabric spreader gradually converts the tubular fabric into a double layer folded fabric by preventing the formation of pleats or creases. At the knitting zone, single knit plain machines are fitted with a cylinder and sinker ring, whereas the double knit machines have cylinder and dial. Drive The drive to the knitting machine is simple and direct. The motor imparts rotary motion to the rotating needle beds, such as cylinder and dial and also to the take-down and cloth winding mechanisms. Basic Elements of Knitting Southeast University – Department of Textile Engineering 49 1. Legs 2. Cylinder 3. Dial 4. Needle 5. Cam Parts 6. Feeder guide 7. Cam 8. Supply Package 9. Creel 10. Top Stop Motion 11. Anti Snarl Device 12. Tensioner MECHANICAL PRINCIPAL OF KNITTING TECHNOLOGY
  • 50. 1. Needle 2. Sinker 3. Cam 1.NEEDLE: There are various types of needle are available in market which can be divided in the following group. a. Spring Bearded Needle b. Latch Needle c. Compound Needle SPRING BEARDED NEEDLE Stem: The stem around which the needle loop is formed. Beard: To create new loop. Eye/groove: To receive the beard. Shank or butt: To support and give strength to the needle. And control the movement of needle. Tip: To receive the latch spoon. Head: To open and close the latch. Stem: It around which the needle loop is formed. Southeast University – Department of Textile Engineering 50
  • 51. LATCH NEEDLE Hook: It draws and retains the new loop. Latch blade: To give support and strength the latch. Latch spoon: To open and close the needle. Stem: This carries the loops in the clearing or rest position. Rivet: It works like a screw. Butt: Which serving to displace the needle along the needle bed slot. COMPOUND NEEDLE Tip: To receive the latch spoon. Hook: To form a new loop’ Sliding latch: To open and close the needle and help to form new loop. Dead weight: To give downward motion of the sliding latch. Lead: It works like a butt. Southeast University – Department of Textile Engineering 51
  • 52. The sinker is the second primary knitting element. It is a thin metal plate with an individual or a collective action operating approximately at right angles from the hook side of the needle bed, between adjacent needles. Sinkers capable of producing loop fabric are well known in the knitting industry. In such machines the sinkers generally include a blade having an upper edge which defines a lower knitting level and a nib having an upper edge which is at an upper knitting level. Long loops are formed at the upper knitting level of the sinkers with a loop yarn and a base yarn is knitted over the blade. The sinkers may be formed and their movement controlled to cause either the loop yarn to appear on one side of a fabric and the base yarn on the other or the loop yarn to appear on both sides. FUNCTION Butt: To fix the sinker with the sinker bed. Shank: To give strength and support the sinker Buldge: To gives strength and support. Lower shank: To give strength and support to the sinker. Throat: To form new sinker loop. Clearence: To hold the sinker loop. Southeast University – Department of Textile Engineering 52 2. SINKER
  • 53. FUNCTION OF SINKER There are three function of sinker. 1. Loop formation 2. Holding down 3. Knocking over 1. Loop Formation: On bearded needle weft knitting macShine’s of straight bar frame and sinker wheel type, the loop forming action is performed. The purpose of a sinker is to kink the newly laid yarn into loop as its forward edge of advance between two adjoining needle. 2. Holding down Sinker: The second function is hold down the old loop a lower level on the needle stem, then the new loop which are being formed and prevent to old loops from being lifted as the needles rise to clear from their hooks. 3. Knocking Over Sinker: The third function of the sinker is to knock over the old loops on the neck of the new loops. Sinker’s Operation 1. The held loop is positioned in the throat of the sinker when the sinker moves forward and the needle moves upward for clearing. The held loop is held by the throat and hence its movement along the needle is restricted. Southeast University – Department of Textile Engineering 53
  • 54. 2. The sinker remains at its forward position when the needle attains its clearing position. 3. The sinker retracts when the needle comes down after feeding. At this stage, due to sinkers retraction, fabric or held loop is eased out. Also the sinker belly supported the fabric or held loop and hence its movements along the needle is prevented. 4. Sinker remains in backward position and the needle descends to its lowest position drawing the new loop through the old one. 5. Before the needle ascends, the sinker moves forward to push the knitted fabric a little and to hold the old loop away from the head of the needle and to be in a position to control the fabric. Southeast University – Department of Textile Engineering 54
  • 55. The knitting cams are hardened steels and they are the assembly of different cam plates so that a track for butt can be arranged. Each needle movement is obtained by means of cams acting on the needle butts. The knitting cams are divided in to three groups. Such as 1) Knit cam 2) Tuck cam 3) Miss cam The upward movement of the needle is obtained by the rising cams or clearing cams. The rising cam places the needle at a certain level as it approaches the yarn area. Cams controlling the downward movement of the needles are called stitch cams. The lowest point to which the needle is drawn by the stitch cam is called the “cast-off” position. Guard cams keep the needle butts in their race-way. Running cams or [up throw Southeast University – Department of Textile Engineering 55 3. CAM
  • 56. cams] the needle butts at a low level until they meet the next rising cam. Knitting Action of Latch Needle of Knit Loop 6. Knock over Position a. The old is falling on the neck Figure Description Southeast University – Department of Textile Engineering 56 of new loop. b. Thus the knit loop is formed. c. The latch is closed. 1. Rest Position a. The previously formed loops is in the hook. b. The needle which now starts to ascend. c. The latch is closed. 2. Tuck Position a. In this position the loop is on the latch. b. The latch is opened. 3. Clearing Position a. In this clearing position latch is opened. b. The loop is under the latch. 4. Feed Position a. New loop is on the hook. b. The old loop is under the latch. 5. Custom Position a. The latch is starting to close. b. The old loop is on the latch. c. The new loop is in the hook.
  • 57. Knitting Action for Tuck Loop in Latch Needle Southeast University – Department of Textile Engineering 57 7. a. The latch is closed. b. The loop is in the hook. 8. a. The latch is close. b. The loop is in the hook. 9. a. The latch is open. b. The loops are on the latch. 10. a. The latch is open. b. The new loop is in the hook. 11. a. The new loop is in the hook. b. The latch is open. c. The old loops are in the hook. 12. a. The latch is open. b. The loops are in the hook. 14. a. The loops are under the hook. b. The latch is open. 13. a. The loop is on the latch. b. The latch is open. Figure description (Fig: 002)
  • 58. Southeast University – Department of Textile Engineering 58 15. a. The loops are on the latch. b. The latch is close. 16. a. The old loop joins to the new loop. Knitting Action of Spring Bearded Needle (Knit Loop)
  • 59. FIGURE DESCRIPTION 1. YARN FEEDING a. Beard is open. b. New yarn feed in the beard. c. Old loop is in the stem. Southeast University – Department of Textile Engineering 59 2. YARN KINKING a. Beard is open. b. Old loop is in the stem. c. Sinker kink the newly feed yarn. 4. PRESSING a. The beard is closed by pressure. b. The old loop is on the stem. c. The new loop is in the hook. 3. UNDER LAPPING a. The beard is open. b. The old loop is on the stem. c. The sinker takes the new loop to the front. 5. LANDING a. The beard is closed by pressure. b. The old loop start to going on the beard. c. The new loop start to going 6. JOINING AND CASTING OFF a. The beard is closed. b. The old loop is falling on the neck of the new loop. 7. CLEARING a. The beard is open. b. The loop is in the stem. (Fig: 002)
  • 60. Jersey fabric is a type of knit textile made from cotton or a cotton and synthetic blend. Some common uses for jersey fabric include t-shirts and winter bedding. The fabric is warm, flexible, stretchy, and very insulating, making it a popular choice for the layer worn closest to the body. Jersey also tends to be soft, making it very comfortable. The textile is named for the island of Jersey. Jersey is the largest of a group of islands known as the Channel Islands, located between England and France. The island has a long history of human occupation, and is also well known for Jersey cows, typically raised for their rich, creamy milk. A knitting machine is used to make jersey, since it can create the small, even, close grained stitches associated with jersey fabric. Like many other knit fabrics, jersey fabric has a right side and a wrong side. The right side of the material is marked by a series of very small lines which run vertically, and the wrong side has a horizontal grain. In most cases, a garment made from jersey fabric is sewn with the right side facing out, unless the seamstress is making a deliberate stylistic choice. One of the reasons many people like to wear jersey fabric is the stretch factor. The fabric can stretch up to 25% percent along its grain. Garments made from the material have plenty of give as their wearers move, and also tend to cling to the body, since the fabric contracts as well as expanding. Knit dresses are usually made from jersey fabric, exploiting the clingy characteristic of the fabric. Jersey fabric is also available in a large assortment of colors and patterns to suit all tastes. Care directions for jersey fabric vary, depending on whether the fabric is entirely natural or partially synthetic. As a general rule, jersey fabric can be washed in warm water with like colors, and tumble dried on a medium setting. Bright colors will stay brighter longer if they are washed on a cold setting and dried on low. Try to avoid mixing bright colors and whites in the wash, as the colors may bleed. When sewing jersey fabric, it is recommended that the fabric be washed first, especially if it is cotton. All knits tend to shrink when they are washed, and washing beforehand eliminates shrinkage issues. It is also Southeast University – Department of Textile Engineering 60 What is Jersey fabric?
  • 61. important to use a pattern specifically designed for knit fabrics, as the pattern will account for the stretch factor of the material. Most seamstresses also use a double layer of stitching or an overlock stitch on jersey fabric, to prevent unraveling. Knitting Fabric Structure 1. Plain structure 2. Rib structure 3. Interlock structure 4. Purl structure 1. PLAIN STRUCTURE Plain is produce by the needles knitting as a single set, drawing the loops from technical back and towards the technical face side of the fabric. Example: jersey blister, jersey lily, stocknitte etc. Features of Plain Single Jersey Fabric 1. Used only one set of needle to produce fabric. 2. Simplest and most economical production. 3. 40% potential recovery stretching. 4. Probability of curling of yarn. 5. Technical face is smooth and v-shape can be seen through the Wales. 6. Technical back is rough and wave shape appeared at the back thought the course. 7. It one yarn breaks, the needle loops successively unmosh through course, this effect is called laddering. Southeast University – Department of Textile Engineering 61 PRIMARY BASIC STRUCTURES
  • 62. 8. Unroving of yarn can be prevented by binding off. Features of Plain Circular Knitting M/C 1. Single jersey is produce by plain circular knitting m/c. 2. One set of latch needle is used here. 3. Latch needle, sinker, cylinder, sinker ring revolve around the stationary knitting cam system. 4. Yarn supplied from cone placed either on end integral overhead bobbin stand or on a free standing side creel through tensioner, stop motion guide eyes down to the yarn guide. 5. Stationary yarn feeder are situated at a regular interval around the circumference of the cylinder. 6. The fabric in tubular form is drawn downward from inside the needle cylinder by tension roller and is wound onto the fabric batching roller of winding frame. 7. The winding down mechanism revolves along with the fabric tube. 8. As the sinker cam plate is placed outside on the needle circle, the center of the cylinder is open and the m/c is referred as open top or sinker top m/c. 2. RIB STRUCTURE The structure which requires 2 sets of needle operating in between each other so that wales of face side and wales of back side are knitting on each side of fabric is called rib structure. Features of Structure 1. It is normally knitting with 2 sets of latch needle. 2. Rib has vertical card appearance. 3. 1×1 rib has the appearance of technical face of plane fabric. Southeast University – Department of Textile Engineering 62
  • 63. 4. Relaxed 1×1 rib is theoretically twice as thick and 1/2 the width of an equivalent plain fabric. 5. It is more expensive fabric to produce than plain. 6. It can be unravel from the end knitted last by the free loop’s head through to the back of each stitch. 7. It is a heavier structure. 8. It has no curling tendency. 9. Rib structures are elastic, form fitting and retain wormth better than plain structure. Uses: Rib is suitable particularly for the top of the socks, cuff, collar rib border of garments, gloves etc. FEATURES OF CIRCULAR RIB M/C 1. In this m/c, one set of needle is arranged vertically in the cylinder and another set of needle is arranged in the dial of the m/c. 2. Here both dial and cylinder rotates where cam with yarn feeder remain stationary. 3. The needle of dial and cylinder are arranged in different position alternatively. 4. No sinker is required for this m/c. 5. Not more than 2 cam tracks are possible for dial of this m/c. FEATURES OF INTERLOCKING STRUCTURE 1. Interlocking has the technical face of plain fabric on both sides. 2. Interlock course requires 2-feeder per course. 3. Reverse loop cannot be seen. Southeast University – Department of Textile Engineering 63
  • 64. 4. Interlocking relaxes by about 30-40% or more compared with its knitting width. 5. This is balance, smooth, stable, structure. 6. Fabric is thicker, heavier and narrower than rib of equivalent gauge. 7. Finer, better, more expensive yarn is required. 8. Bath horizontal and vertical stripe can be produced. 9. Production is lass. FEATURE OF PURL STRUCTURE 1. It has the similar appearance to pearl droplets. 2. Purl structure have one or more wales which contain both and back loop. 3. Both sides’ needle and sinker loops are prominent. 4. The tricks of the two needle bed in purl m/c are exactly opposite to each other and in same plane. 5. Double ended batch needles are used in purl m/c. 6. Two types of m/c are available for purl structure. a. Flat m/c b. Circular m/c 7. The simple purl structure is 1×1 purl. 8. Purl fabric is twice as thick as plain fabric. Southeast University – Department of Textile Engineering 64 KNITTING ACTION OF RIB CIRCULAR M/C
  • 65. 1. REST POSITION In this position, both the dial and cylinder needles are in stationary position. And the latch is closed. 2. TUCKING POSITION FOR DIAL In this position, the needle of dial comes forward and the loop falls on the opened latch of the needle. And the cylinder’s needle remains stationary. 3. TUCKING POSITION FOR CYLINDER Southeast University – Department of Textile Engineering 65 FIGURE DESCRIPTION
  • 66. In this position, the needle of cylinder comes forward while the needle of dial is on the forward position. The loop falls on the opened latch of the dial needle. 4. CLEARING POSITION FOR DIAL In this position, the dial’s needle goes more forward and the loop goes under the opened latch of the needle. 5. CLEARING POSITION FOR CYLINDER In this position, the cylinder’s needle goes more forward and the loop goes under the opened latch of the needle. 6. YARN PRESENTING POSITION In this position, the newly presented yarn is laid in the open needle hooks of both the needle. 7. CAST ON POSITION In this position, the both needles catch the new yarn on their head and start to come in backward position. Then the old loops close the latch of the both needle. 8. KNOCK OVER POSITION In this last position, the both dial and cylinder needles come to their backward position. The old loops knock over the newly made loops. Formulas No. of feeder=No. of cam= No. of course. = Southeast University – Department of Textile Engineering 66 Knitting Calculation Production × 1000 × 1000 × 1000 RPM of cylinder × π × Cylinder dia × gauge × loop length (mm) × Tex × 8 × 60 × efficiency %
  • 67. No. of sinker= No. of needle= No. of loop = π D’’ G mm Number of needle = m = m = gm. Production = = kg/shift Here, D’’ = cylinder dia G = gauge L = stitch length F = No. of feeder T = tex number For single jersey: Production in weight, = kg/shift Southeast University – Department of Textile Engineering 67 Π D’’ G × l 1000 Π D’’ G l ×N ×F 1000 Π D’’ G l ×N ×F ×T 1000×1000 Π D’’ G l ×N ×F ×T × 60 × 8 1000×1000 × 1000 RPM of Cylinder × No. of feeder × π × Cylinder dia × gauge × loop length (mm) × Tex × 60 × 8 × efficiency % 1000 × 1000 × 1000
  • 68. Production in length, = yards/shift For Double Jersey Production in length = yds/shift Production in weight = Single jersey production in weight × 2 kg/shift Southeast University – Department of Textile Engineering 68 CPM CPI RPM of cylinder × No of feeder × 60 × 8 × efficiency % CPI × 36 Single jersey production in length 2
  • 69. Given, Southeast University – Department of Textile Engineering 69 Math-1
  • 70. CPI = 66 Cylinder dia = 25’’ Cylinder RPM = 20 Loop length = 2.2 mm Yarn count = 70 tex Gauge = 22 No. of feeder = 90 Efficiency =90 % Find the production of the m/c in weight and production in length. (Both single and double jersey) and find no. of needle. SOLUTION For single jersey; 20 × 90 × 3.14 × 25 × 22 × 2.2 × 70 × 60 × 8 × 90% Production in weight = = 229.79 × 0.9 = 206.8 kg/shift (Ans) No. of needle = π D’’ G = 3.14 × 25 x 22 = 1727 (Ans) Southeast University – Department of Textile Engineering 70 1000 × 1000 × 1000
  • 71. Production in length = yds/shift = 327.27 yds/shift (Ans) For double jersey; Production in length = = 163.6 yds/shift (Ans) Production in weight = 206.8 × 2 = 413.6 kg/shift (Ans) Here, PROOF GSM = lb/inc2 = lb/inch2 = × gm/m2 Southeast University – Department of Textile Engineering 71 20 × 90 × 60 × 8 × 90% 66 × 36 327.27 2 W × C × l 25.4 × 36 × 840 × Ne W × C × l 768096 × Ne W × C × l 768096 × Ne 453 1 2 39.37 1m= 39.37 inch. 1 inch= 1/39.37 1 lb= 453 gm
  • 72. = × 453 × (39.37)2 gm/m2 = × 702148.5957 gm/m2 = gm/m2 GSM = gm/m2 (Proved) Southeast University – Department of Textile Engineering 72 W × C × l 768096 × Ne W × C × l 768096 × Ne W × C × l ×0.915 Ne W × C × l ×0.915 Ne