SlideShare a Scribd company logo
1 of 29
Download to read offline
materiaIs
virtuaLab
First Principles Insights into
Nanoscale Phase Stability and
Charging Mechanisms 
inAlkali-O2 Batteries 	

ShinYoung Kang,Yifei Mo, Shyue Ping Ong,
Gerbrand Ceder
Aug 12, 2014
ACS 248th National Meeting
The promise of alkali-air batteries	

A+ + O2 + e− à AxOy AxOy è A+ + O2 + e−
Oxygen
Reduction
Reaction
Oxygen
Evolution
Reaction
Equilibrium potential
(V)
Theoretical specific
energy* (kWh/kg)
Theoretical energy
density* (kWh/L)
Li / Li2O2 2.96 3.46 7.99
Na / Na2O 1.96 1.70 3.86
Na / Na2O2 2.33 1.60 4.48
Na / NaO2 2.27 1.10 2.43
metal
anode
air cathode
*based on the mass and volume of discharge product only
Aug 12, 2014 ACS 248th National Meeting
Outline	

1.  Facile topotatic delithiation of
Li2O2 in Li-O2 batteries
2.  Nanoscale Phase Stability of
NaxOy
Aug 12, 2014 ACS 248th National Meeting
Outline	

1.  Facile topotatic delithiation of
Li2O2 in Li-O2 batteries
2.  Nanoscale Phase Stability of
NaxOy
Aug 12, 2014 ACS 248th National Meeting
Mizuno, Nakanishi, Kotani,Yokoishi, Iba,
50th Battery Symposium in Japan (2009)
T. Ogasawara,A. Debart, M. Holzapfel, P. Novak, P.G. Bruce, J.Am. Chem.
Soc. 2006
G. Girishkumar, B. McCloskey,AC. Luntz, S. Swanson,W.Wilcke, J. Phys.
Chem. Lett. 2010
K. Xu, Chem. Rev. 2004
Poor reversibility (~50 cycles)
Side reactions with electrolyte
(up to 99% Li2CO3)
Low power density
Low cyclic efficiency (~60%)
High charging overpotential (~1.1-1.5V)
Safety of Li metal anode
Aug 12, 2014 ACS 248th National Meeting
Challenges in Li-
Air Batteries
Recent experimental results reveal highly improved
performance	

Improved cyclability (~ 100 cycles)4,5
Higher rate (~ 3 mA/cm2)5
Lower discharging overpotential
Low charging overpotential at the initial stage of charging 4,5,6
More stable electrolyte (no carbonate!!)à less by-products4,5
Aug 12, 2014 ACS 248th National Meeting
McCloskey et al. JPCL (2012)
Potential	
  vs.	
  Li/Li+	
  (V)	
  
Capacity	
  (mAh)	
  
Peng et al. Science (2012)
Discharge	
  capacity	
  
(mAh/ggold)	
  
Cycle	
  
Evidence of LiO2 formation during discharge	

Aug 12, 2014 ACS 248th National Meeting
Peng et al. 8 observed
the formation of
metastable LiO2 using
in-situ surface
enhanced Raman
spectroscopy (SERS)
h
w
e
is
s,
2]
e
er
+
ct
À
n
is
e
e
V
of in situ SERS measurements are presented in Figure 3. A
background spectrum was collected before application of a
potential to the cell (OCV; open circuit voltage). The
Figure 3. In situ SERS during O2 reduction and re-oxidation on Au in
O2-saturated 0.1m LiClO4-CH3CN. Spectra collected at a series of
times and at the reducing potential of 2.2 V versus Li/Li+
followed by
other spectra at the oxidation potentials shown. The peaks are
assigned as follows: 1) CÀC stretch of CH3CN at 918 cmÀ1
, 2) OÀO
stretch of LiO2 at 1137 cmÀ1
, 3) OÀO stretch of Li2O2 at 808 cmÀ1
,
4) ClÀO stretch of ClO4
À
at 931 cmÀ1
.
Li2O2 LiO2
O2 + e−
Li+ + O2
−
2LiO2
*
→  O2
−,
→  LiO2
*,
→ Li2O2 + O2
(* indicates surface sites)
Proposed discharge mechanism
Is there a non-equilibrium,kinetically favored
pathway for delithiation with low overpotential?	

Li2O2 (LiLiO2) is isostructural
with P2 NaCoO2!
Aug 12, 2014 ACS 248th National Meeting
P2 NaCoO2 LiLiO2
De-sodiation
Na1-xCoO2 Li1-xLiO2
(Li2-xO2)
Topotactic
de-lithiation
Co
Na
O	
   Liinterlayer
O	
   Li2O2
Li2-xO2
Li, O2
Liintralayer
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
Determining the structure and energy of
LiO2	

Candidates: Known superoxides, XO2 peroxides, Li2O2 deriv., and NaCoO2
polymorphs
Aug 12, 2014 ACS 248th National Meeting
a b
c
a b
c
a b
c
a b
c
a b
c
P63/mmc
layered
P63/mmc
monomers
Li2O2
(P63/mmc = P2)
a b
c
P3m
disproportionated
R3m
(P3 layered)
Pnnm
I4/mmmC2/m PbcaPa3
Pyrite OrthorhombicLayered Bi-pyramidal
arrangement of
(LiO2)2
Marcasite
-2.7
-2.5
-2.3
-2.1
-1.9
ΔGform(eV/O2)
P3m
disproportionated
I4/mmm
Pa3
P bca
R3m
(P3 layered)
Pnnm
P63
/mmc layered
P63
/mmc monomers
C2/m
Calculated formation free energy of LiO2	

Aug 12, 2014 ACS 248th National Meeting
Derived from Li2O2
a b
c
Pnnm
−2.68 eV/O2
P3m
disproportionated
−2.63 eV/O2
1.50 Å
1.21 Åa b
c
P63/mmc-layered
−2.61 eV/O2
a b
c
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries,
Chem. Mater., 2013, 25, 3328–3336
Overpotential required for topotactic delithiation
of Li2O2 at the initial stage of charging	

Aug 12, 2014 ACS 248th National Meeting
0
−0.5
−1.0
−1.5
−2.0
−2.5
Mole fraction of Li
O2 Li
ΔHform(eV/atom)
LiO2
Li2O
Li2O2
Source: materialsproject.org
0 0.5 1.0
Equilibrium path:
Li2O2 2 Li+ + 2 e− + O2
φeq = −
ΔGf (Li2O2 )
2e
= 2.97 V
Non-equilibrium topotactic
delithiation path:
Li2O2 Li2-xO2 + x Li
+
φ =
ΔGf (Li2−x1
O2 )− ΔGf (Li2−x2
O2 )
(x1 − x2 )e
Delithiated Li2-xO2 x = 0.25,0.5,0.75	

Three intermediate states between Li2O2 and LiO2 are considered:
Li1.25O2, Li1.5O2, and Li1.75O2
Aug 12, 2014 ACS 248th National Meeting
…
…
Superoxide
Peroxide
2×1×1 supercell orderings 1×1×2 supercell orderings
“Layered”
configurations
Peroxide Superoxide
“Channel”
configurations
The	
  lowest	
  energy	
  structures	
  are	
  
layered	
  structures	
  for	
  all	
  Li2-­‐xO2	
  
Formation free energy of off-stoichiometric
phases Li2-xO2 referencing to the equil. path	

0.0
0.1
0.2
0.3
0.4
0.5
0.0 0.2 0.4 0.6 0.8 1.0
ΔGform–ΔGform(eV/O2)
x in Li2-xO2
equil
ΔGform-ΔGform(eV/
O2)	

equil	

x in Lix-2O2	

Li2O2	
   LiO2	
  
Pnnm LiO2	

½ Li2O2 + ½ O2	

P63/mmc
layered LiO2	

0.0	

 0.2	

 0.4	

 0.6	

 0.8	

 1.0	

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

à	
  Potential	
  continuous	
  topotactic	
  
delithiation	
  path	
  from	
  Li2O2	
  to	
  LiO2	
  
Li1.5O2	

Li1.75O2	

 Li1.25O2	

Li2O2	

P63/mmc
layered LiO2	

Aug 12, 2014 ACS 248th National Meeting
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging
Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
Voltage profile of kinetically favored non-
equilibrium topotactic delithiation path
Aug 12, 2014 ACS 248th National Meeting
2.5
2.7
2.9
3.1
3.3
3.5
0.0 0.5 1.0 1.5 2.0
3.34 3.34
3.27
3.40
2.61
Equil. decomposition path
(Li2O2 à 2Li+ + 2e− + O2)
Φeq= 2.97V
Voltagevs.Li/Li+(V)
x in Lix-2O2
Overpotential as low as
~0.3–0.4V
Predicted metastable voltage of 3.34V
consistent with experimentally observed
charging voltage plateau at 3.1−3.4V
Li2-xO2 can further decompose
through oxygen evolution reaction
or the ion dissolution in electrolyte
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
Conclusions
1.  Low-energy topotatic delithiation pathway exists
for Li2O2èLiO2
2.  Delithiation pathway likely to be kinetically favored
3.  Predicted overpotential of 0.3-0.4V consistent
with experimental observations
Aug 12, 2014 ACS 248th National Meeting
Li2O2 Li2-xO2 +
x(Li+ + e−)
2Li+ + 2e− + O2
Li+
O2 or
O2
−
Li+
Charging Mechanism 1:
Topotactic delithiation
Charging Mechanism 2:
??
Outline	

1.  Facile topotatic delithiation of
Li2O2 in Li-O2 batteries
2.  Nanoscale Phase Stability of
NaxOy
Aug 12, 2014 ACS 248th National Meeting
The promise of alkali-air batteries	

A+ + O2 + e− à AxOy AxOy è A+ + O2 + e−
Oxygen
Reduction
Reaction
Oxygen
Evolution
Reaction
Equilibrium potential
(V)
Theoretical specific
energy* (kWh/kg)
Theoretical energy
density* (kWh/L)
Li / Li2O2 2.96 3.46 7.99
Na / Na2O 1.96 1.70 3.86
Na / Na2O2 2.33 1.60 4.48
Na / NaO2 2.27 1.10 2.43
metal
anode
air cathode
*based on the mass and volume of discharge product only
Aug 12, 2014 ACS 248th National Meeting
Discharge product formed has huge impact
on Na-O2 battery performance	

Kim et al. PCCP 2013; Liu et al., ChemComm 2013; Li et al., ChemComm 2013
NaClO4/TEGDME
Not rechargeable
In NaPF6 or NaClO4/DME
Cathode: carbon or GNS
NaSO3CF3/DEGDME
Cathode: n-doped graphene
nanosheet (GNS)
Aug 12, 2014 ACS 248th National Meeting
Na2O2 as the dominant discharge product è
i.  High charging overpotentials (cf. ϕeq = 2.33V)
ii.  Negligible cyclability
When NaO2 is formed, charging overpotentials is
only  0.2V (cf. ϕeq = 2.27V)
Hartmann et al. Nature Mat. 2012
Question: Under what conditions (temperature,
oxygen partial pressure, particle size, etc.) would
NaO2 preferentially form instead of Na2O2?
To answer this question, we need to construct phase
diagram of Na-O system as a function of temperature,
pO2 and particle size.
Aug 12, 2014 ACS 248th National Meeting
(d) Pnnm NaO2
a
b
c
a
b
c
(a) Im3m Na
(c) P62m Na2O2
c
a b
a
b
c
(b) Fm3m Na2O
(g) Imm2 NaO3
(e) Pa3 NaO2
a
c
b
(f) R3m NaO2
b
c
a
a
c
b
Oxidation energy corrections for oxides,
peroxides,and superoxides	

Aug 12, 2014 ACS 248th National Meeting
Li2O
MgO
Al2O3
Na2O
K2O Li2O2, SrO2
K2O2
Na2O2
CaO
KO2
NaO2
RbO2
Correction
E (eV/O2)
Oxides 1.33
Peroxides 0.85
Superoxides 0.23
O=O bond is broken to
different degrees when
forming different oxides,
requiring different corrections
for DFT binding energy error.
Phase diagram of bulk Na-O compounds
as a function of temperature and pO2	

Aug 12, 2014 ACS 248th National Meeting
Disordered Pa-3 NaO2
Phase transition from Pnnm
NaO2 to Na2O2 at PO2= 1
atm, 230-240 K
Phase transition from
Fm-3m NaO2 to Na2O2 at
T= 300 K, 8.5 atm.
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of
sodium oxides: implications for Na-O2 batteries., Nano Lett.,
2014, 14, 1016–20
Calculated surface energy of Na2O2 as a
function of oxygen chemical potential	

Aug 12, 2014 ACS 248th National Meeting
O2	

 Na2O2	

 Na2O	

μO 	

NaO2	

 298 K, 1 atm	

Na	

~30−45 meV/Å2
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Calculated surface energy of Pa-3 NaO2 as
a function of oxygen chemical potential	

Aug 12, 2014 ACS 248th National Meeting
[010]
[001]
[100]
{100}
O2	

 Na2O2	

 Na2O	

μO 	

NaO2	

 298 K, 1 atm	

Na	

Stoichiometric {100} surface
has the lowest surface energy
of 12 meV/Å2
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Wulff shapes of Na2O2 and Pa-3 NaO2	

Aug 12, 2014 ACS 248th National Meeting
Na2O2	

 Pa3 NaO2	

μNa	

O2	

Na2O2	

Na2O	

Na	

μO 	

NaO2	

10
15
20
25
30
35
40
45
O2 limit	

{1100}	

{1120}	

{0001}	

O2 and Na2O2 limits	

10
15
20
25
30
35
40
45
{100}	

γ 	

(meV/Å2)	

10
15
20
25
30
35
40
45
Na2O limit	

 10
15
20
25
30
35
40
45
{1100}	

{1120}	

{0001}	

Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides:
implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Phase diagram of Na-O nanoparticles as a
function of PO2	

Aug 12, 2014 ACS 248th National Meeting
Surface energy + bulk energy à particle size-dependent ΔGform
* Particle size d = (V0)1/3,
where V0 is the total volume of the particle
Due to the low surface
energies, NaO2 nanoparticles
are stable over Na2O2 at
small particle size
When particle size bigger
than 6 nm, the low bulk
formation energy stabilizes
Na2O2 over NaO2
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Critical nucleation parameters of Na-O
nanoparticles as a function of pO2 and ϕ	

Aug 12, 2014 ACS 248th National Meeting
As a function of voltage at pO2 = 1atm As a function of pO2 at voltage = 2.1V
NaO2 particles are more likely to nucleate due to smaller
nucleation energy barrier and critical nucleus size
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Conclusions	

Bulk Na2O2 is stable
and NaO2 is metastable
at standard conditions.
NaO2 has significantly
lower surface energy
compared to Na2O2
O2 partial pressure
determine formation
and growth of a
particular sodium oxide
phase
Thermodynamic
equilibrium path leads
to Na2O2 formation
NaO2 stabilized in the
nanometer regime
where nucleation takes
place.
At higher O2 pressure,
NaO2 nucleation
barrier reduced and
remains stable up to
larger particle sizes
Aug 12, 2014 ACS 248th National Meeting
Acknowledgements and Publications	

Grant No.
EDCBEE,
DE-FG02-96ER45571
FE-PI0000012
Aug 12, 2014 ACS 248th National Meeting
Grant No.
TG-DMR97008S
Publications
i.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2
in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336, doi:
10.1021/cm401720n.
ii.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides:
implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20, doi:
10.1021/nl404557w.
materiaIs
virtuaLab
Thank you.	

Aug 12, 2014
ACS 248th National Meeting

More Related Content

What's hot

Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...Smart Villages
 
Insights into the electrochemical stability of ionic liquids from first princ...
Insights into the electrochemical stability of ionic liquids from first princ...Insights into the electrochemical stability of ionic liquids from first princ...
Insights into the electrochemical stability of ionic liquids from first princ...University of California, San Diego
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...University of California, San Diego
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingUniversity of California, San Diego
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsABDERRAHMANE REGGAD
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...ABDERRAHMANE REGGAD
 
Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.AnisimovABDERRAHMANE REGGAD
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?ABDERRAHMANE REGGAD
 
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryTheoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryABDERRAHMANE REGGAD
 
Strongly correlated electrons: LDA+U in practice
Strongly correlated electrons: LDA+U in practiceStrongly correlated electrons: LDA+U in practice
Strongly correlated electrons: LDA+U in practiceABDERRAHMANE REGGAD
 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesABDERRAHMANE REGGAD
 
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorThe Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorConcettina Sfienti
 
Electron-phonon coupling in graphene
Electron-phonon coupling in grapheneElectron-phonon coupling in graphene
Electron-phonon coupling in grapheneClaudio Attaccalite
 
Gw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon couplingGw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon couplingClaudio Attaccalite
 

What's hot (20)

Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...  Edinburgh | May-16 | Ions that can Hop, Skip and Jump:  Lithium Conduction ...
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
 
Insights into the electrochemical stability of ionic liquids from first princ...
Insights into the electrochemical stability of ionic liquids from first princ...Insights into the electrochemical stability of ionic liquids from first princ...
Insights into the electrochemical stability of ionic liquids from first princ...
 
NANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock ApproachNANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock Approach
 
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
 
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum MechanicsNANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical ModelingNANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott Insulators
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
 
Electronic structure of strongly correlated materials Part III V.Anisimov
 Electronic structure of strongly correlated materials Part III V.Anisimov Electronic structure of strongly correlated materials Part III V.Anisimov
Electronic structure of strongly correlated materials Part III V.Anisimov
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 
Ab initio md
Ab initio mdAb initio md
Ab initio md
 
Hybrid quantum systems
Hybrid quantum systemsHybrid quantum systems
Hybrid quantum systems
 
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theoryTheoretical picture: magnetic impurities, Zener model, mean-field theory
Theoretical picture: magnetic impurities, Zener model, mean-field theory
 
Strongly correlated electrons: LDA+U in practice
Strongly correlated electrons: LDA+U in practiceStrongly correlated electrons: LDA+U in practice
Strongly correlated electrons: LDA+U in practice
 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical Lattices
 
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI acceleratorThe Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
 
Electron-phonon coupling in graphene
Electron-phonon coupling in grapheneElectron-phonon coupling in graphene
Electron-phonon coupling in graphene
 
Gw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon couplingGw renormalization of the electron phonon coupling
Gw renormalization of the electron phonon coupling
 
Diluted Magnetic Semiconductors
Diluted Magnetic SemiconductorsDiluted Magnetic Semiconductors
Diluted Magnetic Semiconductors
 

Viewers also liked

Understanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II databaseUnderstanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II databaseJiahao Chen
 
Genomics data analysis in Julia
Genomics data analysis in JuliaGenomics data analysis in Julia
Genomics data analysis in JuliaJiahao Chen
 
Excitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesExcitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesJiahao Chen
 
Programming languages: history, relativity and design
Programming languages: history, relativity and designProgramming languages: history, relativity and design
Programming languages: history, relativity and designJiahao Chen
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designUniversity of California, San Diego
 
Python as number crunching code glue
Python as number crunching code gluePython as number crunching code glue
Python as number crunching code glueJiahao Chen
 
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUniversity of California, San Diego
 
Publish Your Papers In The Top Scientific Journals
Publish Your Papers In The Top Scientific JournalsPublish Your Papers In The Top Scientific Journals
Publish Your Papers In The Top Scientific Journalsguestd02fab
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1Dr. Abeer Kamal
 

Viewers also liked (17)

NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic StructuresNANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
 
NANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling TradeNANO266 - Lecture 9 - Tools of the Modeling Trade
NANO266 - Lecture 9 - Tools of the Modeling Trade
 
Understanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II databaseUnderstanding ECG signals in the MIMIC II database
Understanding ECG signals in the MIMIC II database
 
Genomics data analysis in Julia
Genomics data analysis in JuliaGenomics data analysis in Julia
Genomics data analysis in Julia
 
Excitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic MembranesExcitation Energy Transfer In Photosynthetic Membranes
Excitation Energy Transfer In Photosynthetic Membranes
 
Programming languages: history, relativity and design
Programming languages: history, relativity and designProgramming languages: history, relativity and design
Programming languages: history, relativity and design
 
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials design
 
Python as number crunching code glue
Python as number crunching code gluePython as number crunching code glue
Python as number crunching code glue
 
MAVRL Workshop 2014 - pymatgen-db & custodian
MAVRL Workshop 2014 - pymatgen-db & custodianMAVRL Workshop 2014 - pymatgen-db & custodian
MAVRL Workshop 2014 - pymatgen-db & custodian
 
NANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and InterfacesNANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and Interfaces
 
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal StructuresUCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
 
UCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffractionUCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffraction
 
Miller indecies
Miller indeciesMiller indecies
Miller indecies
 
Publish Your Papers In The Top Scientific Journals
Publish Your Papers In The Top Scientific JournalsPublish Your Papers In The Top Scientific Journals
Publish Your Papers In The Top Scientific Journals
 
Solid state physics lec 1
Solid state physics lec 1Solid state physics lec 1
Solid state physics lec 1
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 

Similar to Insights into nanoscale phase stability and charging mechanisms in alkali o2 batteries from first principles calculations

Electrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxElectrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxMabrook Saleh Amer
 
15. Energy Applications II. Batteries.ppt
15.  Energy Applications II.   Batteries.ppt15.  Energy Applications II.   Batteries.ppt
15. Energy Applications II. Batteries.pptSwaathi8
 
15. Energy Applications II. Batteries.ppt
15.  Energy Applications II.   Batteries.ppt15.  Energy Applications II.   Batteries.ppt
15. Energy Applications II. Batteries.pptssuser0680bd
 
2014 Journal of Power Sources 247 (2014) 572-578
2014 Journal of Power Sources 247 (2014) 572-5782014 Journal of Power Sources 247 (2014) 572-578
2014 Journal of Power Sources 247 (2014) 572-578Alexis B. B
 
FYP Report-Xing Dan
FYP Report-Xing DanFYP Report-Xing Dan
FYP Report-Xing Dan#Xing Dan#
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redoxRawat DA Greatt
 
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytesElectrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytesRatnakaram Venkata Nadh
 
7th Lecture on Electrochemistry | Chemistry Part I | 12th Std
7th Lecture on Electrochemistry | Chemistry Part I | 12th Std7th Lecture on Electrochemistry | Chemistry Part I | 12th Std
7th Lecture on Electrochemistry | Chemistry Part I | 12th StdAnsari Usama
 
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18ENGINEERING CHEMISTRY- Solved Model question paper,2017-18
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18rashmi m rashmi
 
CTW Final Poster
CTW Final PosterCTW Final Poster
CTW Final PosterCharles Wan
 
Removal of Heavy Metals from Water using Electrocoagulation
Removal of Heavy Metals from Water using ElectrocoagulationRemoval of Heavy Metals from Water using Electrocoagulation
Removal of Heavy Metals from Water using ElectrocoagulationIRJET Journal
 
11.the estimation of the oxide ion polarizability using the electronegativity...
11.the estimation of the oxide ion polarizability using the electronegativity...11.the estimation of the oxide ion polarizability using the electronegativity...
11.the estimation of the oxide ion polarizability using the electronegativity...Alexander Decker
 
The estimation of the oxide ion polarizability using the electronegativity fo...
The estimation of the oxide ion polarizability using the electronegativity fo...The estimation of the oxide ion polarizability using the electronegativity fo...
The estimation of the oxide ion polarizability using the electronegativity fo...Alexander Decker
 
Walker Electrochemical Paper
Walker Electrochemical PaperWalker Electrochemical Paper
Walker Electrochemical PaperPatrick Walker
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...LandimarMendesDuarte
 

Similar to Insights into nanoscale phase stability and charging mechanisms in alkali o2 batteries from first principles calculations (20)

Electrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxElectrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptx
 
15. Energy Applications II. Batteries.ppt
15.  Energy Applications II.   Batteries.ppt15.  Energy Applications II.   Batteries.ppt
15. Energy Applications II. Batteries.ppt
 
15. Energy Applications II. Batteries.ppt
15.  Energy Applications II.   Batteries.ppt15.  Energy Applications II.   Batteries.ppt
15. Energy Applications II. Batteries.ppt
 
2014 Journal of Power Sources 247 (2014) 572-578
2014 Journal of Power Sources 247 (2014) 572-5782014 Journal of Power Sources 247 (2014) 572-578
2014 Journal of Power Sources 247 (2014) 572-578
 
FYP Report-Xing Dan
FYP Report-Xing DanFYP Report-Xing Dan
FYP Report-Xing Dan
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redox
 
final ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptxfinal ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptx
 
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytesElectrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes
 
7th Lecture on Electrochemistry | Chemistry Part I | 12th Std
7th Lecture on Electrochemistry | Chemistry Part I | 12th Std7th Lecture on Electrochemistry | Chemistry Part I | 12th Std
7th Lecture on Electrochemistry | Chemistry Part I | 12th Std
 
ncomms13869
ncomms13869ncomms13869
ncomms13869
 
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18ENGINEERING CHEMISTRY- Solved Model question paper,2017-18
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18
 
CTW Final Poster
CTW Final PosterCTW Final Poster
CTW Final Poster
 
Removal of Heavy Metals from Water using Electrocoagulation
Removal of Heavy Metals from Water using ElectrocoagulationRemoval of Heavy Metals from Water using Electrocoagulation
Removal of Heavy Metals from Water using Electrocoagulation
 
4602E1213045
4602E12130454602E1213045
4602E1213045
 
11.the estimation of the oxide ion polarizability using the electronegativity...
11.the estimation of the oxide ion polarizability using the electronegativity...11.the estimation of the oxide ion polarizability using the electronegativity...
11.the estimation of the oxide ion polarizability using the electronegativity...
 
The estimation of the oxide ion polarizability using the electronegativity fo...
The estimation of the oxide ion polarizability using the electronegativity fo...The estimation of the oxide ion polarizability using the electronegativity fo...
The estimation of the oxide ion polarizability using the electronegativity fo...
 
Walker Electrochemical Paper
Walker Electrochemical PaperWalker Electrochemical Paper
Walker Electrochemical Paper
 
d2ta09922e1.pdf
d2ta09922e1.pdfd2ta09922e1.pdf
d2ta09922e1.pdf
 
apchapt17.ppt
apchapt17.pptapchapt17.ppt
apchapt17.ppt
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
 

More from University of California, San Diego

UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUniversity of California, San Diego
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...University of California, San Diego
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...University of California, San Diego
 

More from University of California, San Diego (12)

UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
UCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in MaterialsUCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 10 - Bonding in Materials
 
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and ElasticityUCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
 
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation QuadricsUCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
 
UCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensorsUCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensors
 
UCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space GroupsUCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 06 - Plane and Space Groups
 
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point GroupsUCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
 
UCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in CrystallographyUCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 04 - Symmetry in Crystallography
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
 
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice ComputationsUCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
 
UCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to CrystallographyUCSD NANO106 - 01 - Introduction to Crystallography
UCSD NANO106 - 01 - Introduction to Crystallography
 
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...The Materials Project Ecosystem - A Complete Software and Data Platform for M...
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
 

Recently uploaded

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 

Recently uploaded (20)

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 

Insights into nanoscale phase stability and charging mechanisms in alkali o2 batteries from first principles calculations

  • 1. materiaIs virtuaLab First Principles Insights into Nanoscale Phase Stability and Charging Mechanisms inAlkali-O2 Batteries ShinYoung Kang,Yifei Mo, Shyue Ping Ong, Gerbrand Ceder Aug 12, 2014 ACS 248th National Meeting
  • 2. The promise of alkali-air batteries A+ + O2 + e− à AxOy AxOy è A+ + O2 + e− Oxygen Reduction Reaction Oxygen Evolution Reaction Equilibrium potential (V) Theoretical specific energy* (kWh/kg) Theoretical energy density* (kWh/L) Li / Li2O2 2.96 3.46 7.99 Na / Na2O 1.96 1.70 3.86 Na / Na2O2 2.33 1.60 4.48 Na / NaO2 2.27 1.10 2.43 metal anode air cathode *based on the mass and volume of discharge product only Aug 12, 2014 ACS 248th National Meeting
  • 3. Outline 1.  Facile topotatic delithiation of Li2O2 in Li-O2 batteries 2.  Nanoscale Phase Stability of NaxOy Aug 12, 2014 ACS 248th National Meeting
  • 4. Outline 1.  Facile topotatic delithiation of Li2O2 in Li-O2 batteries 2.  Nanoscale Phase Stability of NaxOy Aug 12, 2014 ACS 248th National Meeting
  • 5. Mizuno, Nakanishi, Kotani,Yokoishi, Iba, 50th Battery Symposium in Japan (2009) T. Ogasawara,A. Debart, M. Holzapfel, P. Novak, P.G. Bruce, J.Am. Chem. Soc. 2006 G. Girishkumar, B. McCloskey,AC. Luntz, S. Swanson,W.Wilcke, J. Phys. Chem. Lett. 2010 K. Xu, Chem. Rev. 2004 Poor reversibility (~50 cycles) Side reactions with electrolyte (up to 99% Li2CO3) Low power density Low cyclic efficiency (~60%) High charging overpotential (~1.1-1.5V) Safety of Li metal anode Aug 12, 2014 ACS 248th National Meeting Challenges in Li- Air Batteries
  • 6. Recent experimental results reveal highly improved performance Improved cyclability (~ 100 cycles)4,5 Higher rate (~ 3 mA/cm2)5 Lower discharging overpotential Low charging overpotential at the initial stage of charging 4,5,6 More stable electrolyte (no carbonate!!)à less by-products4,5 Aug 12, 2014 ACS 248th National Meeting McCloskey et al. JPCL (2012) Potential  vs.  Li/Li+  (V)   Capacity  (mAh)   Peng et al. Science (2012) Discharge  capacity   (mAh/ggold)   Cycle  
  • 7. Evidence of LiO2 formation during discharge Aug 12, 2014 ACS 248th National Meeting Peng et al. 8 observed the formation of metastable LiO2 using in-situ surface enhanced Raman spectroscopy (SERS) h w e is s, 2] e er + ct À n is e e V of in situ SERS measurements are presented in Figure 3. A background spectrum was collected before application of a potential to the cell (OCV; open circuit voltage). The Figure 3. In situ SERS during O2 reduction and re-oxidation on Au in O2-saturated 0.1m LiClO4-CH3CN. Spectra collected at a series of times and at the reducing potential of 2.2 V versus Li/Li+ followed by other spectra at the oxidation potentials shown. The peaks are assigned as follows: 1) CÀC stretch of CH3CN at 918 cmÀ1 , 2) OÀO stretch of LiO2 at 1137 cmÀ1 , 3) OÀO stretch of Li2O2 at 808 cmÀ1 , 4) ClÀO stretch of ClO4 À at 931 cmÀ1 . Li2O2 LiO2 O2 + e− Li+ + O2 − 2LiO2 * →  O2 −, →  LiO2 *, → Li2O2 + O2 (* indicates surface sites) Proposed discharge mechanism
  • 8. Is there a non-equilibrium,kinetically favored pathway for delithiation with low overpotential? Li2O2 (LiLiO2) is isostructural with P2 NaCoO2! Aug 12, 2014 ACS 248th National Meeting P2 NaCoO2 LiLiO2 De-sodiation Na1-xCoO2 Li1-xLiO2 (Li2-xO2) Topotactic de-lithiation Co Na O   Liinterlayer O   Li2O2 Li2-xO2 Li, O2 Liintralayer Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 9. Determining the structure and energy of LiO2 Candidates: Known superoxides, XO2 peroxides, Li2O2 deriv., and NaCoO2 polymorphs Aug 12, 2014 ACS 248th National Meeting a b c a b c a b c a b c a b c P63/mmc layered P63/mmc monomers Li2O2 (P63/mmc = P2) a b c P3m disproportionated R3m (P3 layered) Pnnm I4/mmmC2/m PbcaPa3 Pyrite OrthorhombicLayered Bi-pyramidal arrangement of (LiO2)2 Marcasite
  • 10. -2.7 -2.5 -2.3 -2.1 -1.9 ΔGform(eV/O2) P3m disproportionated I4/mmm Pa3 P bca R3m (P3 layered) Pnnm P63 /mmc layered P63 /mmc monomers C2/m Calculated formation free energy of LiO2 Aug 12, 2014 ACS 248th National Meeting Derived from Li2O2 a b c Pnnm −2.68 eV/O2 P3m disproportionated −2.63 eV/O2 1.50 Å 1.21 Åa b c P63/mmc-layered −2.61 eV/O2 a b c Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 11. Overpotential required for topotactic delithiation of Li2O2 at the initial stage of charging Aug 12, 2014 ACS 248th National Meeting 0 −0.5 −1.0 −1.5 −2.0 −2.5 Mole fraction of Li O2 Li ΔHform(eV/atom) LiO2 Li2O Li2O2 Source: materialsproject.org 0 0.5 1.0 Equilibrium path: Li2O2 2 Li+ + 2 e− + O2 φeq = − ΔGf (Li2O2 ) 2e = 2.97 V Non-equilibrium topotactic delithiation path: Li2O2 Li2-xO2 + x Li + φ = ΔGf (Li2−x1 O2 )− ΔGf (Li2−x2 O2 ) (x1 − x2 )e
  • 12. Delithiated Li2-xO2 x = 0.25,0.5,0.75 Three intermediate states between Li2O2 and LiO2 are considered: Li1.25O2, Li1.5O2, and Li1.75O2 Aug 12, 2014 ACS 248th National Meeting … … Superoxide Peroxide 2×1×1 supercell orderings 1×1×2 supercell orderings “Layered” configurations Peroxide Superoxide “Channel” configurations
  • 13. The  lowest  energy  structures  are   layered  structures  for  all  Li2-­‐xO2   Formation free energy of off-stoichiometric phases Li2-xO2 referencing to the equil. path 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.8 1.0 ΔGform–ΔGform(eV/O2) x in Li2-xO2 equil ΔGform-ΔGform(eV/ O2) equil x in Lix-2O2 Li2O2   LiO2   Pnnm LiO2 ½ Li2O2 + ½ O2 P63/mmc layered LiO2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 à  Potential  continuous  topotactic   delithiation  path  from  Li2O2  to  LiO2   Li1.5O2 Li1.75O2 Li1.25O2 Li2O2 P63/mmc layered LiO2 Aug 12, 2014 ACS 248th National Meeting Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 14. Voltage profile of kinetically favored non- equilibrium topotactic delithiation path Aug 12, 2014 ACS 248th National Meeting 2.5 2.7 2.9 3.1 3.3 3.5 0.0 0.5 1.0 1.5 2.0 3.34 3.34 3.27 3.40 2.61 Equil. decomposition path (Li2O2 à 2Li+ + 2e− + O2) Φeq= 2.97V Voltagevs.Li/Li+(V) x in Lix-2O2 Overpotential as low as ~0.3–0.4V Predicted metastable voltage of 3.34V consistent with experimentally observed charging voltage plateau at 3.1−3.4V Li2-xO2 can further decompose through oxygen evolution reaction or the ion dissolution in electrolyte Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 15. Conclusions 1.  Low-energy topotatic delithiation pathway exists for Li2O2èLiO2 2.  Delithiation pathway likely to be kinetically favored 3.  Predicted overpotential of 0.3-0.4V consistent with experimental observations Aug 12, 2014 ACS 248th National Meeting Li2O2 Li2-xO2 + x(Li+ + e−) 2Li+ + 2e− + O2 Li+ O2 or O2 − Li+ Charging Mechanism 1: Topotactic delithiation Charging Mechanism 2: ??
  • 16. Outline 1.  Facile topotatic delithiation of Li2O2 in Li-O2 batteries 2.  Nanoscale Phase Stability of NaxOy Aug 12, 2014 ACS 248th National Meeting
  • 17. The promise of alkali-air batteries A+ + O2 + e− à AxOy AxOy è A+ + O2 + e− Oxygen Reduction Reaction Oxygen Evolution Reaction Equilibrium potential (V) Theoretical specific energy* (kWh/kg) Theoretical energy density* (kWh/L) Li / Li2O2 2.96 3.46 7.99 Na / Na2O 1.96 1.70 3.86 Na / Na2O2 2.33 1.60 4.48 Na / NaO2 2.27 1.10 2.43 metal anode air cathode *based on the mass and volume of discharge product only Aug 12, 2014 ACS 248th National Meeting
  • 18. Discharge product formed has huge impact on Na-O2 battery performance Kim et al. PCCP 2013; Liu et al., ChemComm 2013; Li et al., ChemComm 2013 NaClO4/TEGDME Not rechargeable In NaPF6 or NaClO4/DME Cathode: carbon or GNS NaSO3CF3/DEGDME Cathode: n-doped graphene nanosheet (GNS) Aug 12, 2014 ACS 248th National Meeting Na2O2 as the dominant discharge product è i.  High charging overpotentials (cf. ϕeq = 2.33V) ii.  Negligible cyclability When NaO2 is formed, charging overpotentials is only 0.2V (cf. ϕeq = 2.27V) Hartmann et al. Nature Mat. 2012
  • 19. Question: Under what conditions (temperature, oxygen partial pressure, particle size, etc.) would NaO2 preferentially form instead of Na2O2? To answer this question, we need to construct phase diagram of Na-O system as a function of temperature, pO2 and particle size. Aug 12, 2014 ACS 248th National Meeting (d) Pnnm NaO2 a b c a b c (a) Im3m Na (c) P62m Na2O2 c a b a b c (b) Fm3m Na2O (g) Imm2 NaO3 (e) Pa3 NaO2 a c b (f) R3m NaO2 b c a a c b
  • 20. Oxidation energy corrections for oxides, peroxides,and superoxides Aug 12, 2014 ACS 248th National Meeting Li2O MgO Al2O3 Na2O K2O Li2O2, SrO2 K2O2 Na2O2 CaO KO2 NaO2 RbO2 Correction E (eV/O2) Oxides 1.33 Peroxides 0.85 Superoxides 0.23 O=O bond is broken to different degrees when forming different oxides, requiring different corrections for DFT binding energy error.
  • 21. Phase diagram of bulk Na-O compounds as a function of temperature and pO2 Aug 12, 2014 ACS 248th National Meeting Disordered Pa-3 NaO2 Phase transition from Pnnm NaO2 to Na2O2 at PO2= 1 atm, 230-240 K Phase transition from Fm-3m NaO2 to Na2O2 at T= 300 K, 8.5 atm. Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 22. Calculated surface energy of Na2O2 as a function of oxygen chemical potential Aug 12, 2014 ACS 248th National Meeting O2 Na2O2 Na2O μO NaO2 298 K, 1 atm Na ~30−45 meV/Å2 Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 23. Calculated surface energy of Pa-3 NaO2 as a function of oxygen chemical potential Aug 12, 2014 ACS 248th National Meeting [010] [001] [100] {100} O2 Na2O2 Na2O μO NaO2 298 K, 1 atm Na Stoichiometric {100} surface has the lowest surface energy of 12 meV/Å2 Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 24. Wulff shapes of Na2O2 and Pa-3 NaO2 Aug 12, 2014 ACS 248th National Meeting Na2O2 Pa3 NaO2 μNa O2 Na2O2 Na2O Na μO NaO2 10 15 20 25 30 35 40 45 O2 limit {1100} {1120} {0001} O2 and Na2O2 limits 10 15 20 25 30 35 40 45 {100} γ (meV/Å2) 10 15 20 25 30 35 40 45 Na2O limit 10 15 20 25 30 35 40 45 {1100} {1120} {0001} Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 25. Phase diagram of Na-O nanoparticles as a function of PO2 Aug 12, 2014 ACS 248th National Meeting Surface energy + bulk energy à particle size-dependent ΔGform * Particle size d = (V0)1/3, where V0 is the total volume of the particle Due to the low surface energies, NaO2 nanoparticles are stable over Na2O2 at small particle size When particle size bigger than 6 nm, the low bulk formation energy stabilizes Na2O2 over NaO2 Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 26. Critical nucleation parameters of Na-O nanoparticles as a function of pO2 and ϕ Aug 12, 2014 ACS 248th National Meeting As a function of voltage at pO2 = 1atm As a function of pO2 at voltage = 2.1V NaO2 particles are more likely to nucleate due to smaller nucleation energy barrier and critical nucleus size Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 27. Conclusions Bulk Na2O2 is stable and NaO2 is metastable at standard conditions. NaO2 has significantly lower surface energy compared to Na2O2 O2 partial pressure determine formation and growth of a particular sodium oxide phase Thermodynamic equilibrium path leads to Na2O2 formation NaO2 stabilized in the nanometer regime where nucleation takes place. At higher O2 pressure, NaO2 nucleation barrier reduced and remains stable up to larger particle sizes Aug 12, 2014 ACS 248th National Meeting
  • 28. Acknowledgements and Publications Grant No. EDCBEE, DE-FG02-96ER45571 FE-PI0000012 Aug 12, 2014 ACS 248th National Meeting Grant No. TG-DMR97008S Publications i.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336, doi: 10.1021/cm401720n. ii.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20, doi: 10.1021/nl404557w.
  • 29. materiaIs virtuaLab Thank you. Aug 12, 2014 ACS 248th National Meeting