Repaso:Repaso:
TransformacionesTransformaciones
IsométricasIsométricas
Miss Yanira Castro Lizana
APRENDIZAJES ESPERADOS
• Describir los cambios que presentan puntos o
figuras planas, al aplicar una traslación, rotación ...
2. Tipos de Tranf. Isométricas
Contenidos
1.1 Definición
1. Transformaciones Isométricas
2.2 Traslación
2.3 Rotación
3. Te...
PRINCIPIO DE ISOMETRIA
Cumplen con 4 principios:
 PRINCIPIO DE IDENTIDAD:PRINCIPIO DE IDENTIDAD: no altera elno altera ...
1. Transformaciones Isométricas
Definición
La palabra isometría, significa “igual medida”, por lo tanto,
en una transforma...
2.1 Simetría o Reflexión
Tipos de Simetrías:
Se puede considerar una simetría como aquel movimiento
que aplicado a una fig...
En una simetría axial:
Cada punto y su imagen o simétrico equidistan
del eje de simetría.
El trazo que une un punto con su...
1
2
3
4
2 3 4-1-2-3
1
5
A A’
Eje de Simetría: X=1
M
AM = MA’
La Simetría axial corresponde a una transformación geométrica...
Simetría Central:
O
O : centro de simetría
A A´
AO = OA’
Reflexión respecto de un punto.
O
La Simetría central corresponde a una transformación
isométrica de modo que el “simétrico” de un punto A, con
respecto a...
El centro de rotación es el punto medio del
trazo que une un punto con su simétrico.
OBS: Una simetría central equivale a ...
Resumiendo, las Simetrías en un sistema de
ejes coordenados:
En torno al eje X
El simétrico de
P(a,b) es P’(a,-b)
En torno...
Una línea que atraviesa una figura de tal
manera que cada lado es el espejo del
otro.
Si dobláramos la figura en la mitad ...
Un eje de simetría es una línea imaginaria que al dividir
una forma cualquiera, lo hace en dos partes cuyos puntos
opuesto...
2.2 Traslación
Se puede considerar una traslación como el movimiento que
se hace al deslizar una figura, en línea recta, m...
-1 1 2 3
3
1
2
4
y
x
4 5
-3
-2
-4
-5
P(2, 1)
T(3, -5)
P´(5, -4)
P
P´
La aplicación T(a, b) se denomina “VECTOR TRASLACIÓN”
Ejemplo 2:
El triángulo PQR, de vértices P(1,2), Q(3,1) y R(4,3) se
“traslada” al aplicar el vector traslación T(-4,2),
y ...
Gráficamente, el triángulo se traslada 4 unidades hacia la
izquierda y 2 unidades hacia arriba.
1
2
3
4
2 3 4-1-2-3
1
5
P(...
En una traslación:
Al deslizar la figura todos los puntos
describen líneas rectas paralelas entre sí.
En una traslación se distinguen tres
elementos:
Sentido (derecha, izquierda, arriba, abajo).
Magnitud del desplazamiento (...
Traslaciones en un sistema de ejes coordenados
En este caso se debe señalar las
coordenadas del vector de traslación.
Esta...
•
A(4,6)
•
A’ (2,3)
Traslación de A(4,6)
a través del vector v(-2,-3)
Traslación de B(-5,2)
a través del vector v(4,4)
•
B...
En la abscisa:
Signo positivo: desplazamiento hacia la
derecha.
Signo negativo: desplazamiento hacia la
izquierda.
En la o...
<
2.2 Rotación
Corresponde a un movimiento circular con respecto a un centro de
rotación y un ángulo.
La rotación es posit...
En una rotación se identifican tres elementos:
El punto de rotación (centro de rotación), punto en
torno al cual se efectú...
90° 180° 270° 360°
A(x,y)
Punto
Ángulo
Rotación en el plano cartesiano:
Si el punto A (x,y) gira con respecto al origen en...
A
1
2
3
4
2 3 4-1-2-3
1
5
Ejemplo 2:
Si el punto A (2,3) gira con respecto al origen en 90°,
se transforma en el punto A´(...
Importante:
Toda transformación isométrica,
mantiene la forma y tamaño de una
figura geométrica, por lo tanto el
perímetro...
3. Teselaciones
Una teselación es una regularidad o patrón de figuras que
cubre completamente una superficie plana, de man...
Teselación del plano por polígonos regulares
Los tres polígonos regulares que recubren el plano son:
Triángulo equilátero
...
Las teselaciones se crean usando Transformaciones isométricas
sobre una figura inicial.
Simetría
+ Traslación
Próxima SlideShare
Cargando en…5
×

Repaso transformaciones isometricas

3.128 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
3.128
En SlideShare
0
De insertados
0
Número de insertados
562
Acciones
Compartido
0
Descargas
75
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Repaso transformaciones isometricas

  1. 1. Repaso:Repaso: TransformacionesTransformaciones IsométricasIsométricas Miss Yanira Castro Lizana
  2. 2. APRENDIZAJES ESPERADOS • Describir los cambios que presentan puntos o figuras planas, al aplicar una traslación, rotación o simetría. • Resolver ejercicios que involucren transformaciones geométricas como: traslación, rotación y simetría.
  3. 3. 2. Tipos de Tranf. Isométricas Contenidos 1.1 Definición 1. Transformaciones Isométricas 2.2 Traslación 2.3 Rotación 3. Teselación 2.1 Simetría o reflexión - Simetría Axial - Simetría Central
  4. 4. PRINCIPIO DE ISOMETRIA Cumplen con 4 principios:  PRINCIPIO DE IDENTIDAD:PRINCIPIO DE IDENTIDAD: no altera elno altera el objeto.objeto.   PRINCIPIO DE COMPOSICIÓN:PRINCIPIO DE COMPOSICIÓN:  del producto de dos isometrías surge unadel producto de dos isometrías surge una nueva isometría.nueva isometría.  PRINCIPIO DE ORDEN:PRINCIPIO DE ORDEN:  el orden de las composiciones de isometríael orden de las composiciones de isometría no alteran al objeto.no alteran al objeto.   PRINCIPIO DE INVERSA DE UNAPRINCIPIO DE INVERSA DE UNA ISOMETRÍA:ISOMETRÍA:  si existe una isometría, también existe otrasi existe una isometría, también existe otra
  5. 5. 1. Transformaciones Isométricas Definición La palabra isometría, significa “igual medida”, por lo tanto, en una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura (figuras congruentes). 2) Sólo cambia la posición (orientación o sentido de ésta).
  6. 6. 2.1 Simetría o Reflexión Tipos de Simetrías: Se puede considerar una simetría como aquel movimiento que aplicado a una figura geométrica, produce el efecto de un espejo (refleja la figura). Simetría Axial: Reflexión respecto de un eje. Eje de Simetría 2. Tipos de Transformaciones Isométricas
  7. 7. En una simetría axial: Cada punto y su imagen o simétrico equidistan del eje de simetría. El trazo que une un punto con su simétrico es perpendicular al eje de simetría. A’ A
  8. 8. 1 2 3 4 2 3 4-1-2-3 1 5 A A’ Eje de Simetría: X=1 M AM = MA’ La Simetría axial corresponde a una transformación geométrica que hace corresponder a cada punto A del plano, otro A’, tal que la recta que los une, es perpendicular a una recta fija llamada Eje de Simetría. AA’ es perpendicular al eje de simetría
  9. 9. Simetría Central: O O : centro de simetría A A´ AO = OA’ Reflexión respecto de un punto.
  10. 10. O La Simetría central corresponde a una transformación isométrica de modo que el “simétrico” de un punto A, con respecto a un punto O, es A`, donde OA = OA` y A`pertenece a la recta AO. 1 2 3 4 2 3 4-1-2-3 1 5 Ejemplo: A A´ B B´ C C´ OA = OA´ OC = OC´ OB = OB´
  11. 11. El centro de rotación es el punto medio del trazo que une un punto con su simétrico. OBS: Una simetría central equivale a una rotación en torno al centro de simetría en un ángulo de 180º. O A’ A En una simetría central:
  12. 12. Resumiendo, las Simetrías en un sistema de ejes coordenados: En torno al eje X El simétrico de P(a,b) es P’(a,-b) En torno al eje Y El simétrico de P(a,b) es P’(-a,b) En torno al origen El simétrico de P(a,b) es P’(-a,-b) P P’ • • •• PP’ • P • P’
  13. 13. Una línea que atraviesa una figura de tal manera que cada lado es el espejo del otro. Si dobláramos la figura en la mitad a lo largo del Eje de Simetría, tendríamos que las dos mitades son iguales, quedarían parejas.  Eje de simetría
  14. 14. Un eje de simetría es una línea imaginaria que al dividir una forma cualquiera, lo hace en dos partes cuyos puntos opuestos son equidistantes entre sí, es decir, quedan simétricos. Una figura puede tener más de un eje de simetría
  15. 15. 2.2 Traslación Se puede considerar una traslación como el movimiento que se hace al deslizar una figura, en línea recta, manteniendo su forma y tamaño. Una traslación en el plano, corresponde a una aplicación T(a, b) que transforma un punto P(x,y), en otro P´(x + a, y + b ). P(x, y) T(a, b) P´( x + a, y + b ) Ejemplo 1: P(2, 1) T(3, -5) P´(2 + 3, 1 + -5) P´(5, -4)
  16. 16. -1 1 2 3 3 1 2 4 y x 4 5 -3 -2 -4 -5 P(2, 1) T(3, -5) P´(5, -4) P P´ La aplicación T(a, b) se denomina “VECTOR TRASLACIÓN”
  17. 17. Ejemplo 2: El triángulo PQR, de vértices P(1,2), Q(3,1) y R(4,3) se “traslada” al aplicar el vector traslación T(-4,2), y las coordenadas de sus nuevos vértices son: P´, Q´ y R´. P(1,2) T(-4,2) P´(-3,4) Q(3,1) Q´(-1,3) R(4,3) R´(0,5)
  18. 18. Gráficamente, el triángulo se traslada 4 unidades hacia la izquierda y 2 unidades hacia arriba. 1 2 3 4 2 3 4-1-2-3 1 5 P(1,2) P´(-3,4) Q(3,1) Q´(-1,3) R(4,3) R´(0,5)
  19. 19. En una traslación: Al deslizar la figura todos los puntos describen líneas rectas paralelas entre sí.
  20. 20. En una traslación se distinguen tres elementos: Sentido (derecha, izquierda, arriba, abajo). Magnitud del desplazamiento (distancia entre la posición inicial y final de cualquier punto) Dirección (horizontal, vertical u oblicua).
  21. 21. Traslaciones en un sistema de ejes coordenados En este caso se debe señalar las coordenadas del vector de traslación. Estas son un par ordenado de números (x,y), donde x representa el desplazamiento horizontalhorizontal e y representa el desplazamiento verticalvertical.
  22. 22. • A(4,6) • A’ (2,3) Traslación de A(4,6) a través del vector v(-2,-3) Traslación de B(-5,2) a través del vector v(4,4) • B(-5,2) • B’(-1,6) Traslaciones de puntos en el sistema cartesiano. Traslación de C(-4,-2) a través del vector v(7,1) • C(-4,-2) • C’(3,-1)
  23. 23. En la abscisa: Signo positivo: desplazamiento hacia la derecha. Signo negativo: desplazamiento hacia la izquierda. En la ordenada: Signo positivo: desplazamiento hacia arriba. Signo negativo: desplazamiento hacia abajo.
  24. 24. < 2.2 Rotación Corresponde a un movimiento circular con respecto a un centro de rotación y un ángulo. La rotación es positiva si es en sentido contrario a los punteros del reloj. 0 0: centro de rotación Una rotación es el movimiento que se efectúa al girar una figura en torno a un punto. Este movimiento mantiene la forma y el tamaño de la figura.
  25. 25. En una rotación se identifican tres elementos: El punto de rotación (centro de rotación), punto en torno al cual se efectúa la rotación. La magnitud de rotación, que corresponde al ángulo, éste está determinado por un punto cualquiera de la figura, el centro de rotación (vértice del ángulo) y el punto correspondiente de la figura obtenida después de la rotación. El sentido de giro, positivo (antihorario), negativo (horario)
  26. 26. 90° 180° 270° 360° A(x,y) Punto Ángulo Rotación en el plano cartesiano: Si el punto A (x,y) gira con respecto al origen en 90°, 180°, 270° ó en 360°; se transforma en otro punto, cuyas coordenadas se indican en la siguiente tabla: (-y,x) (-x,-y) (y,-x) (x,y) Ejemplo 1: 90° 180° 270° 360° A(5,-8) Punto Ángulo (8,5) (-5,8) (-8,-5) (5,-8) En la rotación negativa, 90º equivale a 270º.
  27. 27. A 1 2 3 4 2 3 4-1-2-3 1 5 Ejemplo 2: Si el punto A (2,3) gira con respecto al origen en 90°, se transforma en el punto A´(-3,2). A´
  28. 28. Importante: Toda transformación isométrica, mantiene la forma y tamaño de una figura geométrica, por lo tanto el perímetro y el área no sufren variación.
  29. 29. 3. Teselaciones Una teselación es una regularidad o patrón de figuras que cubre completamente una superficie plana, de manera que no queden espacios y no se superpongan las figuras. Ejemplos: M.C. Escher
  30. 30. Teselación del plano por polígonos regulares Los tres polígonos regulares que recubren el plano son: Triángulo equilátero Cuadrado Hexágono regular Sólo estas tres figuras teselan regularmente el plano.
  31. 31. Las teselaciones se crean usando Transformaciones isométricas sobre una figura inicial. Simetría + Traslación

×