SlideShare una empresa de Scribd logo
1 de 28
Pulse Shaping
   Sy(w)=|P(w)|^2Sx(w)
   Last class:
    – Sx(w) is improved by the different line codes.
    – p(t) is assumed to be square
   How about improving p(t) and P(w)
    – Reduce the bandwidth
    – Reduce interferences to other bands
    – Remove Inter-symbol-interference (ISI)




          EE 541/451 Fall 2006
ISI Example
         sequence sent       1   0      1
         sequence received   1   1(!)   1


                                             Signal received

                                               Threshold




   0                                                            t


       -3T      -2T     -T   0   T      2T   3T    4T      5T

                Sequence of three pulses (1, 0, 1)
                       sent at a rate 1/T
EE 541/451 Fall 2006
Baseband binary data transmission system.
   ISI arises when the channel is dispersive
   Frequency limited -> time unlimited -> ISI
   Time limited -> bandwidth unlimited -> bandpass channel ->
    time unlimited -> ISI



                   p(t)




          EE 541/451 Fall 2006
ISI
   First term : contribution of the i-th transmitted bit.
   Second term : ISI – residual effect of all other transmitted bits.




   We wish to design transmit and receiver filters to minimize the
    ISI.
   When the signal-to-noise ratio is high, as is the case in a
    telephone system, the operation of the system is largely limited
    by ISI rather than noise.

          EE 541/451 Fall 2006
ISI
   Nyquist three criteria
     – Pulse amplitudes can be
       detected correctly despite pulse
       spreading or overlapping, if
       there is no ISI at the decision-
       making instants
         x   1: At sampling points, no
             ISI
         x   2: At threshold, no ISI
         x   3: Areas within symbol
             period is zero, then no ISI
     – At least 14 points in the finals
         x   4 point for questions
         x   10 point like the homework



             EE 541/451 Fall 2006
1st Nyquist Criterion: Time domain
p(t): impulse response of a transmission system (infinite length)
     p(t)
            1
                                                       shaping function




        0                                                      no ISI !
                                                           t
                             1
                                 =T
                            2 fN             t0      2t0


                    Equally spaced zeros,
            -1                      1
                    interval            =T
                                   2 fn

            EE 541/451 Fall 2006
1st Nyquist Criterion: Time domain

Suppose 1/T is the sample rate
The necessary and sufficient condition for p(t) to satisfy

                   1, ( n = 0 )
         p( nT ) = 
                   0, ( n ≠ 0 )
Is that its Fourier transform P(f) satisfy
          ∞

        ∑ P( f + m T ) = T
      m = −∞



   EE 541/451 Fall 2006
1st Nyquist Criterion: Frequency domain
                            ∞

                          ∑ P( f + m T ) = T
                          m = −∞




                                                         f
               0                   fa = 2 f N     4 fN
                                (limited bandwidth)
   EE 541/451 Fall 2006
Proof
                                                  ∞
Fourier Transform p( t ) = ∫ P ( f ) exp( j 2πft ) df
                                                  −∞
                                 ∞
At t=T          p( nT ) = ∫ P( f ) exp( j 2πfnT ) df
                                −∞
                      ∞      ( 2 m +1)
  p( nT ) =          ∑ ∫(                     P( f ) exp( j 2πfnT ) df
                                         2T

                             2 m −1) 2T
                  m = −∞
       ∞

     ∑∫                   P( f + m T ) exp( j 2πfnT ) df
               1 2T
 =
               −1 2T
     m = −∞
                 ∞

                ∑ P( f + m T ) exp( j 2πfnT ) df
      1 2T
 =∫
      −1 2T
              m = −∞
                                                                           ∞

 =∫
      1 2T
               B( f ) exp( j 2πfnT ) df                      B( f ) =    ∑ P( f + m T )
      −1 2T                                                              m = −∞

             EE 541/451 Fall 2006
Proof
             ∞                              ∞
B( f ) =   ∑ P( f + m T )      B( f ) =    ∑ b exp( j 2πnfT )
                                                   n
           m = −∞                         n = −∞

                                                  B ( f ) exp( − j 2πnfT )
                                          1 2T
                               bn = T ∫
                                          −1 2T



bn = Tp ( − nT )                 T               ( n = 0)
                            bn = 
                                 0              ( n ≠ 0)
                               ∞
 B( f ) = T                  ∑ P( f + m T ) = T
                             m = −∞




     EE 541/451 Fall 2006
Sample rate vs. bandwidth
   W is the bandwidth of P(f)
   When 1/T > 2W, no function to satisfy Nyquist condition.



                                 P(f)




          EE 541/451 Fall 2006
Sample rate vs. bandwidth
             When 1/T = 2W, rectangular function satisfy Nyquist
              condition

                        sin πt T        πt        T , ( f < W )
               p( t ) =          = sinc  P( f ) =                  ,
                           πt          T          0, ( otherwise )
                1


              0.8


              0.6


              0.4
    Spectra




              0.2


                0


              -0.2


              -0.4
                  0   1     2        3        4   5   6
                            S bcarrier N m k
                              u         u ber




                      EE 541/451 Fall 2006
Sample rate vs. bandwidth
   When 1/T < 2W, numbers of choices to satisfy Nyquist
    condition




   A typical one is the raised cosine function
          EE 541/451 Fall 2006
Cosine rolloff/Raised cosine filter
    Slightly notation different from the book. But it is the same
                                  sin(π T ) cos(rπ T )
                                         t              t
                     prc 0 (t ) =          ⋅
                                    π Tt
                                             1 − (2 r T ) 2
                                                      t



                           r : rolloff factor        0 ≤ r ≤1

                       1                                               f ≤ (1 − r ) 21T

Prc 0 ( j 2πf ) =      1
                       2
                           [1 + cos(   π
                                       2r   ( πTf + r − 1))   ]   if    1
                                                                       2T   (1 − r ) ≤ f ≤      1
                                                                                               2T   (1 + r )

                       0                                               f ≥      1
                                                                               2T   (1 + r )


            EE 541/451 Fall 2006
Raised cosine shaping
   Tradeoff: higher r, higher bandwidth, but smoother in time.
          P(ω)
                     π W                                   r=0
                                                        r = 0.25
                                                        r = 0.50
                                                        r = 0.75
                                                        r = 1.00


          p(t)
                                     W         2w             ω




                                 π                      π
                             −                      +
                                 W                      W
                 0

                                         0                     t

          EE 541/451 Fall 2006
Cosine rolloff filter: Bandwidth efficiency
   Vestigial spectrum
   Example 7.1
                         data rate    1/ T        2 bit/s
                 β rc =            =           =
                        bandwidth (1 + r ) / 2T 1 + r Hz


                               bit/s          2           bit/s
                             1         ≤              < 2
                                Hz         (1 + r )        Hz
                                                           
                     2nd Nyquist (r=1)                     r=0




          EE 541/451 Fall 2006
2nd Nyquist Criterion
   Values at the pulse edge are distortionless
   p(t) =0.5, when t= -T/2 or T/2; p(t)=0, when t=(2k-1)T/2, k≠0,1
    -1/T ≤ f ≤ 1/T
                      ∞
    Pr ( f ) = Re[ ∑( −1) n P ( f + n / T )] = T cos( fT / 2)
                    n =−∞
                      ∞
    PI ( f ) = Im[ ∑( −1) n P ( f + n / T )] = 0
                    n =−∞




          EE 541/451 Fall 2006
Example




EE 541/451 Fall 2006
3rd Nyquist Criterion
   Within each symbol period, the integration of signal (area) is
    proportional to the integration of the transmit signal (area)
                  ( wt ) / 2        π
                 sin( wT / 2) , w ≤ T
                 
        P ( w) = 
                  0,               π
                               w >
                                   T
                            π /T
                   1                 ( wt / 2)
         p (t ) =             ∫/ T sin( wT / 2) e dw
                                                 jwt

                  2π        −π


               2 n +1T
                                   1,   n=0
       A = ∫2 n−1        p(t )dt = 
                 2


                2
                    T
                                   0,   n≠0
          EE 541/451 Fall 2006
Cosine rolloff filter: Eye pattern


2nd Nyquist
    1st Nyquist:                                      1st Nyquist:

              
   2nd Nyquist:                                                   
                                                       2nd Nyquist:


1st Nyquist




    1st Nyquist:                                                 
                                                       1st Nyquist:


              
   2nd Nyquist:                                                   
                                                       2nd Nyquist:




               EE 541/451 Fall 2006
Example
   Duobinary Pulse
    – p(nTb)=1, n=0,1
    – p(nTb)=1, otherwise


   Interpretation of received signal
    – 2: 11
    – -2: 00
    – 0: 01 or 10 depends on the previous transmission




          EE 541/451 Fall 2006
Duobinary signaling
   Duobinary signaling (class I partial response)




          EE 541/451 Fall 2006
Duobinary signal and Nyguist Criteria
   Nyguist second criteria: but twice the bandwidth




          EE 541/451 Fall 2006
Differential Coding
   The response of a pulse is spread over more than one signaling
    interval.
   The response is partial in any signaling interval.
   Detection :
    – Major drawback : error propagation.
   To avoid error propagation, need deferential coding (precoding).




          EE 541/451 Fall 2006
Modified duobinary signaling
   Modified duobinary signaling
    – In duobinary signaling, H(f) is nonzero at the origin.
    – We can correct this deficiency by using the class IV partial
      response.




         EE 541/451 Fall 2006
Modified duobinary signaling
   Spectrum




         EE 541/451 Fall 2006
Modified duobinary signaling
   Time Sequency: interpretation of receiving 2, 0, and -2?




          EE 541/451 Fall 2006
Pulse Generation
   Generalized form of
correlative-level
coding
(partial response signaling)
Figure 7.18




         EE 541/451 Fall 2006

Más contenido relacionado

La actualidad más candente

Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
srkrishna341
 
PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )
vijidhivi
 
Comparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptxComparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptx
keshav11845
 

La actualidad más candente (20)

Source coding
Source coding Source coding
Source coding
 
Correlative level coding
Correlative level codingCorrelative level coding
Correlative level coding
 
UNIT-3 : CHANNEL CODING
UNIT-3 : CHANNEL CODINGUNIT-3 : CHANNEL CODING
UNIT-3 : CHANNEL CODING
 
Gmsk
GmskGmsk
Gmsk
 
Digital modulation techniques sys
Digital modulation techniques sysDigital modulation techniques sys
Digital modulation techniques sys
 
Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS Unit 3- OPTICAL SOURCES AND DETECTORS
Unit 3- OPTICAL SOURCES AND DETECTORS
 
BIT Error Rate
BIT Error RateBIT Error Rate
BIT Error Rate
 
wireless communications
wireless communications wireless communications
wireless communications
 
Phase Shift Keying & π/4 -Quadrature Phase Shift Keying
Phase Shift Keying & π/4 -Quadrature Phase Shift KeyingPhase Shift Keying & π/4 -Quadrature Phase Shift Keying
Phase Shift Keying & π/4 -Quadrature Phase Shift Keying
 
Vestigial side band (vsb)
Vestigial side band (vsb)Vestigial side band (vsb)
Vestigial side band (vsb)
 
PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )PSK (PHASE SHIFT KEYING )
PSK (PHASE SHIFT KEYING )
 
Digital communication systems unit 1
Digital communication systems unit 1Digital communication systems unit 1
Digital communication systems unit 1
 
Comparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptxComparsion of M-Ary psk,fsk,qapsk.pptx
Comparsion of M-Ary psk,fsk,qapsk.pptx
 
Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)Orthogonal Frequency Division Multiplexing (OFDM)
Orthogonal Frequency Division Multiplexing (OFDM)
 
Delta modulation
Delta modulationDelta modulation
Delta modulation
 
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMALOFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
OFDMA - Orthogonal Frequency Division Multiple Access PPT by PREM KAMAL
 
3.2 modulation formats bpsk, qpsk, oqpsk,
3.2 modulation formats   bpsk, qpsk, oqpsk,3.2 modulation formats   bpsk, qpsk, oqpsk,
3.2 modulation formats bpsk, qpsk, oqpsk,
 
Mimo tutorial by-fuyun_ling
Mimo tutorial by-fuyun_lingMimo tutorial by-fuyun_ling
Mimo tutorial by-fuyun_ling
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
OFDM for LTE
OFDM for LTEOFDM for LTE
OFDM for LTE
 

Destacado (7)

Matched filter
Matched filterMatched filter
Matched filter
 
Du binary signalling
Du binary signallingDu binary signalling
Du binary signalling
 
Eye diagram
Eye diagramEye diagram
Eye diagram
 
Sampling
SamplingSampling
Sampling
 
Pcm
PcmPcm
Pcm
 
Digital modulation techniques
Digital modulation techniquesDigital modulation techniques
Digital modulation techniques
 
Digital Communication Techniques
Digital Communication TechniquesDigital Communication Techniques
Digital Communication Techniques
 

Similar a Isi and nyquist criterion

Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1
Vin Voro
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tue
Vin Voro
 
Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wed
Vin Voro
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wed
Vin Voro
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
wtyru1989
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
Vin Voro
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
Vin Voro
 
Tele4653 l3
Tele4653 l3Tele4653 l3
Tele4653 l3
Vin Voro
 

Similar a Isi and nyquist criterion (20)

Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1
 
Tele3113 wk1tue
Tele3113 wk1tueTele3113 wk1tue
Tele3113 wk1tue
 
Tele3113 wk5wed
Tele3113 wk5wedTele3113 wk5wed
Tele3113 wk5wed
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wed
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
 
Dft
DftDft
Dft
 
Match.dft
Match.dftMatch.dft
Match.dft
 
00e isi
00e isi00e isi
00e isi
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
Rousseau
RousseauRousseau
Rousseau
 
Tele4653 l3
Tele4653 l3Tele4653 l3
Tele4653 l3
 
DISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.pptDISP-2003_L01B_20Feb03.ppt
DISP-2003_L01B_20Feb03.ppt
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slides
 
Hilbert
HilbertHilbert
Hilbert
 
Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,Numerical Technique, Initial Conditions, Eos,
Numerical Technique, Initial Conditions, Eos,
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
IVR - Chapter 3 - Basics of filtering II: Spectral filters
IVR - Chapter 3 - Basics of filtering II: Spectral filtersIVR - Chapter 3 - Basics of filtering II: Spectral filters
IVR - Chapter 3 - Basics of filtering II: Spectral filters
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 

Último

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Último (20)

Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 

Isi and nyquist criterion

  • 1. Pulse Shaping  Sy(w)=|P(w)|^2Sx(w)  Last class: – Sx(w) is improved by the different line codes. – p(t) is assumed to be square  How about improving p(t) and P(w) – Reduce the bandwidth – Reduce interferences to other bands – Remove Inter-symbol-interference (ISI) EE 541/451 Fall 2006
  • 2. ISI Example sequence sent 1 0 1 sequence received 1 1(!) 1 Signal received Threshold 0 t -3T -2T -T 0 T 2T 3T 4T 5T Sequence of three pulses (1, 0, 1) sent at a rate 1/T EE 541/451 Fall 2006
  • 3. Baseband binary data transmission system.  ISI arises when the channel is dispersive  Frequency limited -> time unlimited -> ISI  Time limited -> bandwidth unlimited -> bandpass channel -> time unlimited -> ISI p(t) EE 541/451 Fall 2006
  • 4. ISI  First term : contribution of the i-th transmitted bit.  Second term : ISI – residual effect of all other transmitted bits.  We wish to design transmit and receiver filters to minimize the ISI.  When the signal-to-noise ratio is high, as is the case in a telephone system, the operation of the system is largely limited by ISI rather than noise. EE 541/451 Fall 2006
  • 5. ISI  Nyquist three criteria – Pulse amplitudes can be detected correctly despite pulse spreading or overlapping, if there is no ISI at the decision- making instants x 1: At sampling points, no ISI x 2: At threshold, no ISI x 3: Areas within symbol period is zero, then no ISI – At least 14 points in the finals x 4 point for questions x 10 point like the homework EE 541/451 Fall 2006
  • 6. 1st Nyquist Criterion: Time domain p(t): impulse response of a transmission system (infinite length) p(t) 1  shaping function 0 no ISI ! t 1 =T 2 fN t0 2t0 Equally spaced zeros, -1 1 interval =T 2 fn EE 541/451 Fall 2006
  • 7. 1st Nyquist Criterion: Time domain Suppose 1/T is the sample rate The necessary and sufficient condition for p(t) to satisfy 1, ( n = 0 ) p( nT ) =  0, ( n ≠ 0 ) Is that its Fourier transform P(f) satisfy ∞ ∑ P( f + m T ) = T m = −∞ EE 541/451 Fall 2006
  • 8. 1st Nyquist Criterion: Frequency domain ∞ ∑ P( f + m T ) = T m = −∞ f 0 fa = 2 f N 4 fN (limited bandwidth) EE 541/451 Fall 2006
  • 9. Proof ∞ Fourier Transform p( t ) = ∫ P ( f ) exp( j 2πft ) df −∞ ∞ At t=T p( nT ) = ∫ P( f ) exp( j 2πfnT ) df −∞ ∞ ( 2 m +1) p( nT ) = ∑ ∫( P( f ) exp( j 2πfnT ) df 2T 2 m −1) 2T m = −∞ ∞ ∑∫ P( f + m T ) exp( j 2πfnT ) df 1 2T = −1 2T m = −∞ ∞ ∑ P( f + m T ) exp( j 2πfnT ) df 1 2T =∫ −1 2T m = −∞ ∞ =∫ 1 2T B( f ) exp( j 2πfnT ) df B( f ) = ∑ P( f + m T ) −1 2T m = −∞ EE 541/451 Fall 2006
  • 10. Proof ∞ ∞ B( f ) = ∑ P( f + m T ) B( f ) = ∑ b exp( j 2πnfT ) n m = −∞ n = −∞ B ( f ) exp( − j 2πnfT ) 1 2T bn = T ∫ −1 2T bn = Tp ( − nT ) T ( n = 0) bn =  0 ( n ≠ 0) ∞ B( f ) = T ∑ P( f + m T ) = T m = −∞ EE 541/451 Fall 2006
  • 11. Sample rate vs. bandwidth  W is the bandwidth of P(f)  When 1/T > 2W, no function to satisfy Nyquist condition. P(f) EE 541/451 Fall 2006
  • 12. Sample rate vs. bandwidth  When 1/T = 2W, rectangular function satisfy Nyquist condition sin πt T  πt  T , ( f < W ) p( t ) = = sinc  P( f ) =  , πt T  0, ( otherwise ) 1 0.8 0.6 0.4 Spectra 0.2 0 -0.2 -0.4 0 1 2 3 4 5 6 S bcarrier N m k u u ber EE 541/451 Fall 2006
  • 13. Sample rate vs. bandwidth  When 1/T < 2W, numbers of choices to satisfy Nyquist condition  A typical one is the raised cosine function EE 541/451 Fall 2006
  • 14. Cosine rolloff/Raised cosine filter  Slightly notation different from the book. But it is the same sin(π T ) cos(rπ T ) t t prc 0 (t ) = ⋅ π Tt 1 − (2 r T ) 2 t r : rolloff factor 0 ≤ r ≤1 1 f ≤ (1 − r ) 21T Prc 0 ( j 2πf ) = 1 2 [1 + cos( π 2r ( πTf + r − 1)) ] if 1 2T (1 − r ) ≤ f ≤ 1 2T (1 + r ) 0 f ≥ 1 2T (1 + r ) EE 541/451 Fall 2006
  • 15. Raised cosine shaping  Tradeoff: higher r, higher bandwidth, but smoother in time. P(ω) π W r=0 r = 0.25 r = 0.50 r = 0.75 r = 1.00 p(t) W 2w ω π π − + W W 0 0 t EE 541/451 Fall 2006
  • 16. Cosine rolloff filter: Bandwidth efficiency  Vestigial spectrum  Example 7.1 data rate 1/ T 2 bit/s β rc = = = bandwidth (1 + r ) / 2T 1 + r Hz bit/s 2 bit/s 1 ≤ < 2 Hz (1 + r ) Hz   2nd Nyquist (r=1) r=0 EE 541/451 Fall 2006
  • 17. 2nd Nyquist Criterion  Values at the pulse edge are distortionless  p(t) =0.5, when t= -T/2 or T/2; p(t)=0, when t=(2k-1)T/2, k≠0,1 -1/T ≤ f ≤ 1/T ∞ Pr ( f ) = Re[ ∑( −1) n P ( f + n / T )] = T cos( fT / 2) n =−∞ ∞ PI ( f ) = Im[ ∑( −1) n P ( f + n / T )] = 0 n =−∞ EE 541/451 Fall 2006
  • 19. 3rd Nyquist Criterion  Within each symbol period, the integration of signal (area) is proportional to the integration of the transmit signal (area)  ( wt ) / 2 π sin( wT / 2) , w ≤ T  P ( w) =   0, π  w >  T π /T 1 ( wt / 2) p (t ) = ∫/ T sin( wT / 2) e dw jwt 2π −π 2 n +1T 1, n=0 A = ∫2 n−1 p(t )dt =  2 2 T 0, n≠0 EE 541/451 Fall 2006
  • 20. Cosine rolloff filter: Eye pattern 2nd Nyquist 1st Nyquist: 1st Nyquist:  2nd Nyquist:  2nd Nyquist: 1st Nyquist 1st Nyquist:  1st Nyquist:  2nd Nyquist:  2nd Nyquist: EE 541/451 Fall 2006
  • 21. Example  Duobinary Pulse – p(nTb)=1, n=0,1 – p(nTb)=1, otherwise  Interpretation of received signal – 2: 11 – -2: 00 – 0: 01 or 10 depends on the previous transmission EE 541/451 Fall 2006
  • 22. Duobinary signaling  Duobinary signaling (class I partial response) EE 541/451 Fall 2006
  • 23. Duobinary signal and Nyguist Criteria  Nyguist second criteria: but twice the bandwidth EE 541/451 Fall 2006
  • 24. Differential Coding  The response of a pulse is spread over more than one signaling interval.  The response is partial in any signaling interval.  Detection : – Major drawback : error propagation.  To avoid error propagation, need deferential coding (precoding). EE 541/451 Fall 2006
  • 25. Modified duobinary signaling  Modified duobinary signaling – In duobinary signaling, H(f) is nonzero at the origin. – We can correct this deficiency by using the class IV partial response. EE 541/451 Fall 2006
  • 26. Modified duobinary signaling  Spectrum EE 541/451 Fall 2006
  • 27. Modified duobinary signaling  Time Sequency: interpretation of receiving 2, 0, and -2? EE 541/451 Fall 2006
  • 28. Pulse Generation  Generalized form of correlative-level coding (partial response signaling) Figure 7.18 EE 541/451 Fall 2006