La Regla de Cramer es un método utilizado para resolver
sistemas de ecuaciones por determinantes.
Ejemplo:
2x + 3y + 4z = ...
Para resolver un sistema utilizando la Regla
de Cramer:
Paso 1:
Hallar la determinante del sistema la cual
denominaremos
U...
De esta manera la determinante del sistema
nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2 3 4
= 2 ...
Paso 2 :
Resolver la determinante del sistema ( )
El valor de una determinante de tercer orden
se halla aplicando la Regla...
Se multiplican entre si los tres números por que
pasan las diagonales principales y secundarias
2 3 4
= 2 6 8
4 9 -4
2 3 4...
Se multiplican los términos de las diagonales
principales.
2 3 4
= 2 6 8 = - 48 + 72 + 96
4 9 -4
2 3 4
2 6 8
Los productos...
Se multiplican los términos de las diagonales
secundarias.
2 3 4
= 2 6 8 = - 48+72+96-96-144+24
4 9 -4
2 3 4
2 6 8
Los pro...
2 3 4
= 2 6 8 = - 48+72+96-96-144+24
4 9 -4
2 3 4
2 6 8
Finalmente se efectúa la operación
correspondiente.
24 -120
-96
Si...
Paso 3 :
Hallar la
determinante de x
la cual
denominaremos
La determinante de
x equivale a
colocar en la
columna de los
co...
De esta manera nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
3 3 4
= 5 6 8
4 9 -4
En este caso los ...
Paso 4 :
Resolver
3 3 4
= 5 6 8 = - 72 + 180 + 96
4 9 -4
3 3 4
5 6 8
Se multiplican los
términos de las
diagonales
princip...
3 3 4
= 5 6 8 = -72+180+96-96-216+60
4 9 -4
3 3 4
5 6 8
Luego se multiplican
los términos de las
diagonales
secundarias y ...
3 3 4
= 5 6 8 = -72+180+96-96-216+60
4 9 -4
3 3 4
5 6 8
108 - 156
- 48
Se realiza la operación
la cual dio como
resultado ...
Paso 5 :
Hallar la
determinante de y
la cual
denominaremos
La determinante de
y equivale a colocar
en la columna de los
co...
De esta manera nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2 3 4
= 2 5 8
4 4 -4
Aquí los coeficie...
Paso 6 :
Resolver
2 3 4
= 2 5 8 = - 40 + 32 + 96
4 4 -4
2 3 4
2 5 8
Se multiplican los
términos de las
diagonales
principa...
2 3 4
= 2 5 8 = - 40+32+96-80-64+24
4 4 -4
2 3 4
2 5 8
Se multiplican los
términos de las
diagonales
secundarias y al
resu...
2 3 4
= 2 5 8 = - 40+32+96-80-64+24
4 4 -4
2 3 4
2 5 8
- 8 +16 - 40
8 - 40
- 32
Se realiza la operación la cual dio
como r...
Paso 7:
Hallar la
determinante de z
la cual
denominaremos
La determinante de z
equivale a colocar
en la columna de los
coe...
De esta manera nos quedaría así:
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y – 4z = 4
2 3 3
= 2 6 5
4 9 4
Aquí los coeficien...
Paso 8 :
Resolver
2 3 3
= 2 6 5 = 48 + 54 + 60
4 9 4
2 3 3
2 6 5
Se multiplican los
términos de las
diagonales
principales.
2 3 3
= 2 6 5 = 48+54+60-72-90-24
4 9 4
2 3 3
2 6 5
Se multiplican los
términos de las
diagonales
secundarias y al
resulta...
2 3 3
= 2 6 5 = 48+54+60-72-90-24
4 9 4
2 3 3
2 6 5
102 -12 - 114
102 - 126
- 24
Se realiza la operación la cual dio
como ...
Paso 9:
Hallar el valor de x.
El valor de x se obtiene dividendo el valor de
la determinante de x ( ) entre el valor de la...
De esta manera
=
Se reemplazan y
por sus valores
correspondientes y
se simplifican los
términos.
= Siendo éste el valor
de...
Paso 10:
Hallar el valor de y.
El valor de y se obtiene dividendo el valor de
la determinante de y ( ) entre el valor de l...
De esta manera
=
Se reemplazan y
por sus valores
correspondientes y
se simplifican los
términos.
= Siendo éste el valor
de...
Paso 11:
Hallar el valor de z.
El valor de z se obtiene dividendo el valor de
la determinante de z ( ) entre el valor de l...
De esta manera
=
Se reemplazan y
por sus valores
correspondientes y
se simplifican los
términos.
=
Siendo éste el valor
de...
Paso 12:
Reemplazar los valores de x,y y z en la
primera ecuación del sistema.
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y –...
Paso 13:
Reemplazar los valores de x,y y z en la
segunda ecuación del sistema.
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y –...
Paso 14:
Reemplazar los valores de x,y y z en la
tercera ecuación del sistema.
2x + 3y + 4z = 3
2x + 6y + 8z = 5
4x + 9y –...
Luego de comprobar vemos que los valores
hallados para x, y y z satisfacen todas las
ecuaciones
Por lo tanto para el
siste...
Cramer
Próxima SlideShare
Cargando en…5
×

Cramer

212 visualizaciones

Publicado el

como resolver un sistema de cramer

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
212
En SlideShare
0
De insertados
0
Número de insertados
76
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Cramer

  1. 1. La Regla de Cramer es un método utilizado para resolver sistemas de ecuaciones por determinantes. Ejemplo: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4
  2. 2. Para resolver un sistema utilizando la Regla de Cramer: Paso 1: Hallar la determinante del sistema la cual denominaremos Una determinante es una expresión numérica en la que se toman los coeficientes de x, y y de z, las cuales se escriben dentro de dos barras de la siguiente manera:
  3. 3. De esta manera la determinante del sistema nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2 3 4 = 2 6 8 4 9 -4 Vemos que los números dentro de las barras son los coeficientes correspondientes a x, y y z. Esta expresión es una determinante de tercer orden porque tiene tres filas y tres columnas.
  4. 4. Paso 2 : Resolver la determinante del sistema ( ) El valor de una determinante de tercer orden se halla aplicando la Regla de Sarrus. 2 3 4 = 2 6 8 4 9 -4 2 3 4 2 6 8 Debajo de la tercera fila horizontal se repiten las dos primeras filas horizontales.
  5. 5. Se multiplican entre si los tres números por que pasan las diagonales principales y secundarias 2 3 4 = 2 6 8 4 9 -4 2 3 4 2 6 8 2 3 4 = 2 6 8 4 9 -4 2 3 4 2 6 8 Diagonales Principales Diagonales
  6. 6. Se multiplican los términos de las diagonales principales. 2 3 4 = 2 6 8 = - 48 + 72 + 96 4 9 -4 2 3 4 2 6 8 Los productos de los números que hay en las diagonales principales se escriben con su propio signo.
  7. 7. Se multiplican los términos de las diagonales secundarias. 2 3 4 = 2 6 8 = - 48+72+96-96-144+24 4 9 -4 2 3 4 2 6 8 Los productos de los números que hay en las diagonales secundarias se escriben con el signo cambiado.
  8. 8. 2 3 4 = 2 6 8 = - 48+72+96-96-144+24 4 9 -4 2 3 4 2 6 8 Finalmente se efectúa la operación correspondiente. 24 -120 -96 Siendo éste el valor de la determinante de todo el sistema.
  9. 9. Paso 3 : Hallar la determinante de x la cual denominaremos La determinante de x equivale a colocar en la columna de los coeficientes de x los términos independientes de las ecuaciones.
  10. 10. De esta manera nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 3 3 4 = 5 6 8 4 9 -4 En este caso los coeficientes de x fueron sustituidos por los términos independientes de las ecuaciones.
  11. 11. Paso 4 : Resolver 3 3 4 = 5 6 8 = - 72 + 180 + 96 4 9 -4 3 3 4 5 6 8 Se multiplican los términos de las diagonales principales.
  12. 12. 3 3 4 = 5 6 8 = -72+180+96-96-216+60 4 9 -4 3 3 4 5 6 8 Luego se multiplican los términos de las diagonales secundarias y al resultado se le cambia el signo.
  13. 13. 3 3 4 = 5 6 8 = -72+180+96-96-216+60 4 9 -4 3 3 4 5 6 8 108 - 156 - 48 Se realiza la operación la cual dio como resultado -48 que será el valor de la determinante de x.
  14. 14. Paso 5 : Hallar la determinante de y la cual denominaremos La determinante de y equivale a colocar en la columna de los coeficientes de y los términos independientes de las ecuaciones.
  15. 15. De esta manera nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2 3 4 = 2 5 8 4 4 -4 Aquí los coeficientes de y fueron sustituidos por los términos independientes de las ecuaciones.
  16. 16. Paso 6 : Resolver 2 3 4 = 2 5 8 = - 40 + 32 + 96 4 4 -4 2 3 4 2 5 8 Se multiplican los términos de las diagonales principales.
  17. 17. 2 3 4 = 2 5 8 = - 40+32+96-80-64+24 4 4 -4 2 3 4 2 5 8 Se multiplican los términos de las diagonales secundarias y al resultado se le cambia el signo.
  18. 18. 2 3 4 = 2 5 8 = - 40+32+96-80-64+24 4 4 -4 2 3 4 2 5 8 - 8 +16 - 40 8 - 40 - 32 Se realiza la operación la cual dio como resultado – 32 el cual será el valor de la determinante de y.
  19. 19. Paso 7: Hallar la determinante de z la cual denominaremos La determinante de z equivale a colocar en la columna de los coeficientes de z los términos independientes de las ecuaciones.
  20. 20. De esta manera nos quedaría así: 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2 3 3 = 2 6 5 4 9 4 Aquí los coeficientes de z fueron sustituidos por los términos independientes de las ecuaciones.
  21. 21. Paso 8 : Resolver 2 3 3 = 2 6 5 = 48 + 54 + 60 4 9 4 2 3 3 2 6 5 Se multiplican los términos de las diagonales principales.
  22. 22. 2 3 3 = 2 6 5 = 48+54+60-72-90-24 4 9 4 2 3 3 2 6 5 Se multiplican los términos de las diagonales secundarias y al resultado se le cambia el signo.
  23. 23. 2 3 3 = 2 6 5 = 48+54+60-72-90-24 4 9 4 2 3 3 2 6 5 102 -12 - 114 102 - 126 - 24 Se realiza la operación la cual dio como resultado –24 el cual será el valor de la determinante de z.
  24. 24. Paso 9: Hallar el valor de x. El valor de x se obtiene dividendo el valor de la determinante de x ( ) entre el valor de la determinante del sistema ( ). Es decir
  25. 25. De esta manera = Se reemplazan y por sus valores correspondientes y se simplifican los términos. = Siendo éste el valor de x.
  26. 26. Paso 10: Hallar el valor de y. El valor de y se obtiene dividendo el valor de la determinante de y ( ) entre el valor de la determinante del sistema ( ). Es decir
  27. 27. De esta manera = Se reemplazan y por sus valores correspondientes y se simplifican los términos. = Siendo éste el valor de y.
  28. 28. Paso 11: Hallar el valor de z. El valor de z se obtiene dividendo el valor de la determinante de z ( ) entre el valor de la determinante del sistema ( ). Es decir
  29. 29. De esta manera = Se reemplazan y por sus valores correspondientes y se simplifican los términos. = Siendo éste el valor de z.
  30. 30. Paso 12: Reemplazar los valores de x,y y z en la primera ecuación del sistema. 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2( )+3( )+4( ) 1 + 1 + 1 = 3 Luego de reemplazar los valores de x,y y z resolver la ecuación, vemos que el resultado es el mismo.
  31. 31. Paso 13: Reemplazar los valores de x,y y z en la segunda ecuación del sistema. 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 2( )+6( )+8( ) 1 + 2 + 2 = 5 Luego de reemplazar los valores de x,y y z resolver la ecuación, vemos que el resultado es el mismo.
  32. 32. Paso 14: Reemplazar los valores de x,y y z en la tercera ecuación del sistema. 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 4( )+9( )-4( ) 2 + 3 - 1= 4 Luego de reemplazar los valores de x,y y z resolver la ecuación, vemos que el resultado es el mismo.
  33. 33. Luego de comprobar vemos que los valores hallados para x, y y z satisfacen todas las ecuaciones Por lo tanto para el sistema 2x + 3y + 4z = 3 2x + 6y + 8z = 5 4x + 9y – 4z = 4 La solución es: x = y = z =

×