SlideShare una empresa de Scribd logo
1 de 79
Descargar para leer sin conexión
Prospects  for  Slepton  Searches
in  Future  Experiments
(将来実験におけるスレプトン探索索の展望)
Presented  by  Takahiro  Yoshinaga
博⼠士論論⽂文審査会
Based  on
    T.  Kitahara  and  T.Y    JHEP  05  035  (2013)
    M.  Endo,  K.  Hamaguchi,  T.  Kitahara,  and  T.Y    JHEP  11  013  (2013)
    M.  Endo,  T.  Kitahara,  and  T.Y    JHEP  04  139  (2014)
45  Slides
  博⼠士論論⽂文の概要 2
「Muon  g-‐‑‒2を説明する超対称模型の現象論論」
Muon  g-‐‑‒2
>3σ  dev.
eB e`L
e`R
eg eq fW ···
⇡
≫1TeV
O(100)GeV
“Minimal”  SUSY  model
LHC
ILC
LFV
EDM
mee
=
m eµ
=
m e⌧
m
ee =
m
eµ ⌧
m
e⌧
①  massに制限
②  相補的に探索索可能
  博⼠士論論⽂文の内容 3
1.  Introduction
2.  Foundation  (Review)
3.  Supersymmetric  Standard  Model  (Review)
4.  Prospects  for  Slepton  Searches  (Main)
5.  Conclusion
4.1  Foundation  :  Model  &  Mass  Bound
4.2  Selectron/Smuon
4.3  Stau
  本⽇日の内容 4
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  本⽇日の内容 5
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
ミューオンの異異常磁気モーメント  (Muon  g-‐‑‒2)
Muon g-2
✓ g = 2 at tree level (Dirac equation)
✓ g ≠ 2 by radiative corrections
Magnetic moment
g-factor
  Muon  g-‐‑‒2 6
l  ミューオンの磁気モーメント
l  g-‐‑‒factor
H = !m ·
!
B , !m =
Ç
e
2mµ
å
!sg
-‐‑‒  g  =  2  :  Tree  Level
-‐‑‒  g  ≠  2  :  Radiative  Correction
aµ ⌘
g 2
2
  Muon  g-‐‑‒2 7
SM  Prediction
Contributions Value  (10-‐‑‒10)
QED  (O(α5)) 11658471.8951  (0.0080)
EW  (NLO) 15.36  (0.1)
Hadronic
(LO)
[HLMNT] 694.91  (4.27)
[DHMZ] 692.3  (4.2)
Hadronic  (HO) -‐‑‒9.84  (0.07)
Hadronic
(LbL)
[RdRV] 10.5  (2.6)
[NJN] 11.6  (3.9)
Total  SM [HLMNT] 11659182.8  (4.9)
CHAPTER 2. FOUNDATION
µ µ
γ
(A)
µ
(B
Figure 2.1: (A) The Feynman diagram which c
of the muon. (B) The hadronic vacuum-polariz
hadronic light-by-light contributions to the mu
The amplitude can be interpreted as th
electron from a potential (For detail, see textb
corresponds to such potential is given by
Hint = −〈−→µ
where
〈−→µ 〉 = 2 F1(0) + F2(0
The factor ξ′†
(−→σ /2)ξ can be interpreted as the
with Eqs. (2.3) and (2.4), the coefficient 2 F1(
2 F1(0) + F2(0) =
It is just the g-value.
2.2.2 The Standard Model predictio
The SM prediction of the muon g − 2 has bee
several groups of theorists. Fig. 2.1 (A) shows
muon g − 2. The theoretical uncertainty reach
review the SM prediction of the muon g − 2.
QED Contribution
The quantum electromagnetic dynamics (QED
to the muon g − 2 (99.993%), and come from
CHAPTER 2. FOUNDATION
µ µ
γ
(A)
µ µ
γ
(B)
µ
Figure 2.1: (A) The Feynman diagram which contributes to the ano
of the muon. (B) The hadronic vacuum-polarization contributions to
hadronic light-by-light contributions to the muon g − 2.
The amplitude can be interpreted as the Born approximatio
electron from a potential (For detail, see textbook [19]). The intera
corresponds to such potential is given by
Hint = −〈−→µ 〉 ·
−→
B ,
where
〈−→µ 〉 = 2 F1(0) + F2(0) ×
eQℓ
2mℓ
ξ′†
−→σ
2
ξ.
CHAPTER 2. FOUNDATION 23
µ µ
γ
(A)
µ µ
γ
(B)
µ µ
γ
(C)
Figure 2.1: (A) The Feynman diagram which contributes to the anomalous magnetic moment
of the muon. (B) The hadronic vacuum-polarization contributions to the muon g −2. (C) The
hadronic light-by-light contributions to the muon g − 2.
The amplitude can be interpreted as the Born approximation to the scattering of the
electron from a potential (For detail, see textbook [19]). The interaction Hamiltonian which
had
QED,  EW
had
Experiment
[E821  Muon  g-‐‑‒2実験のHome  pageより]
11659208.9  (6.3)  ×  10-‐‑‒10aexp
µ =
>3σの不不⼀一致が観測
26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp
µ ath
µ =
  Muon  g-‐‑‒2 8
>3σの不不⼀一致が観測
26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp
µ ath
µ =
Status of the muon g-2
SM Value
experiment
DHMZ (11)
The latest result of the muon g-2
[Hagiwara,Liao,Martin,Nomura,Teubner,J. Phys. G 38 (2011)085033]
[Davier,Hoecker,Malaescu,Zhang,Eur. Phys. J. C 71(2011)1515]
3.3 σ
3.6 σ
aμ  ×  1010  -‐‑‒  11659000
SM
Exp
[Hagiwara,  Liao,  Martin,  Nomura,  Teubner,  ʼ’11]
  Muon  g-‐‑‒2 9
Future
35
26
25
40
Fermilab  &  JPARC
Next  3-‐‑‒5  years
e+e-‐‑‒→hadrons実験
中⼼心値が変わらなければ
近い将来>5σの感度度が期待
[Snowmass  white  paperより]
SMXX
181.5±3.5
  Muon  g-‐‑‒2 10
中⼼心値が変わらなければ
近い将来>5σの感度度が期待
>3σの不不⼀一致が観測
26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp
µ ath
µ =
「今」Muon  g-‐‑‒2の不不⼀一致の原因
を調べることは⾮非常に重要
博⼠士論論⽂文での⽴立立場
  Muon  g-‐‑‒2 11
博⼠士論論⽂文での⽴立立場
/21Dec 2, 2013 SUSY: Model-building and Phenomenology Teppei KITAHARA -The Univ. of Tokyo
Status of the muon g-2
SM Value
experiment
DHMZ (11)
The latest result of the muon g-2
[Hagiwara,Liao,Martin,Nomura,Teubner,J. Phys. G 38 (2011)085033]
[Davier,Hoecker,Malaescu,Zhang,Eur. Phys. J. C 71(2011)1515]
3.3 σ
3.6 σ
(possibly a signal of new physics)muon g-2 anomaly
3
SM+NP
Exp
Muon  g-‐‑‒2の不不⼀一致は新しい物理理(NP)の寄与が原因
新しい物理理
-‐‑‒  博⼠士論論⽂文では超対称模型を仮定
-‐‑‒  model-‐‑‒independentにSUSYの寄与を確かめる
CHAPTER 2. FOUNDATION
µ µ
γ
(A)
µ µ
γ
(B)
µ
Figure 2.1: (A) The Feynman diagram which contributes to the anom
of the muon. (B) The hadronic vacuum-polarization contributions to
hadronic light-by-light contributions to the muon g − 2.
The amplitude can be interpreted as the Born approximation
electron from a potential (For detail, see textbook [19]). The intera
corresponds to such potential is given by
Hint = −〈−→µ 〉 ·
−→
B ,
where
〈−→µ 〉 = 2 F1(0) + F2(0) ×
eQℓ
2mℓ
ξ′†
−→σ
2
ξ.
The factor ξ′†
(−→σ /2)ξ can be interpreted as the spin of the leptons,
−→
S
with Eqs. (2.3) and (2.4), the coefficient 2 F1(0) + F2(0) becomes
2 F1(0) + F2(0) = 2(1 + aℓ) = gℓ.
It is just the g-value.
2.2.2 The Standard Model prediction of the muon g −
The SM prediction of the muon g − 2 has been precisely evaluated
NP
  本⽇日の内容 12
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  Supersymmetry 13
「BosonとFermionの間の対称性」
MSSM=Minimal  Supersymmetric  Standard  Model
SM粒粒⼦子のパートナー(superparticle)を予⾔言
  Supersymmetry 14
SUSY  contribution  to  the  muon  g-‐‑‒2
aSUSY
µ ⇠
↵2 tan
4⇡
m2
µ
m2
SUSY
46 Dissertation / Takahiro Yosh
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
W0
H0
d
γ
(c)
µL µR
µL
B H0
d
γ
(d)
µL µR
µR
H0
d
B
γ
(e)
Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigen
The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–(
from the neutralino–smuon diagram.
∆aχ0
µ
= −
mµ
48π2
6
X=1
4
A=1
1
m2
ℓX
mµ
4
N
L(e)
2AX
2
+ N
R(e)
2AX
2
FN
1
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠
+
mχ0
A
2
ℜ N
L(e)∗
2AX N
R(e)
2AX FN
2
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠ ,
where FC
1,2
and FN
1,2
are the loop functions.
FC
1
(x) =
2
(1 − x)4
2 + 2x − 6x2
+ x3
+ 6x log x ,
FC
(x) =
3
−3 + 4x − x2
− 2log x ,
fW eH
Chargino-‐‑‒sneutrino Neutralino-‐‑‒smuon
Ç
⇠ 150 ⇥ 10 10
⇥
✓
100GeV
mSUSY
◆2
⇥
✓
tan
10
◆å
mSUSY  :  典型的なSUSY粒粒⼦子の質量量,    tanβ  :  Higgsの真空期待値の⽐比
mSUSY  =  O(100)GeV,  tanβ  =  O(10)のとき
超対称模型の寄与によりMuon  g-‐‑‒2の不不⼀一致を説明可能
[Lopez,  Nanopoulos,  Wang,  ʼ’93]
[Chattopadhyay,  Nath,  ʼ’95]
[Moroi,  ʼ’95]
26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp
µ ath
µ =
  Supersymmetry 15
Representative  SUSY  contributions
Contributions O(100)GeV  particles Diagram
Chagino-‐‑‒
sneutrino
Wino,  Higgsinos,  
(Bino),  smuons,  
Neutralino-‐‑‒
smuon
Bino,  smuons
46 Dissertation / Takah
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL
µL
W0
H
(c)
µL µR
µL
B H0
d
γ
µL µR
µR
H0
d
B
γ
fW eH
46
µL µR
W±
νµ
γ
(a)
µL
µL µR
B
(b)
µL µR
µL
B H0
d
γ
(d)
Figure 3.4: The diagrams of the SUSY contributio
The diagram (a) comes from the chargino–muon s
from the neutralino–smuon diagram.
6 4
fW eH
l  Muon  g-‐‑‒2を説明するminimalな解の⼀一つ
l  特徴的な性質を持つ
  Supersymmetry 16
博⼠士論論⽂文での⽴立立場
/21Dec 2, 2013 SUSY: Model-building and Phenomenology Teppei KITAHARA -The Univ. of Tokyo
Status of the muon g-2
SM Value
experiment
DHMZ (11)
The latest result of the muon g-2
[Hagiwara,Liao,Martin,Nomura,Teubner,J. Phys. G 38 (2011)085033]
[Davier,Hoecker,Malaescu,Zhang,Eur. Phys. J. C 71(2011)1515]
3.3 σ
3.6 σ
(possibly a signal of new physics)muon g-2 anomaly
3
SM+SUSY
Exp
Muon  g-‐‑‒2の不不⼀一致は                                            の寄与が原因
知りたいこと
-‐‑‒  どのような性質を持つか
-‐‑‒  実験で検証できるか
46 Dissertation / Takahiro Yoshinaga
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
W0
H0
d
γ
(c)
µL µR
µL
B H0
d
γ
(d)
µL µR
µR
H0
d
B
γ
(e)
Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigenstates.
The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–(e) are
from the neutralino–smuon diagram.
∆aχ0
µ
= −
mµ
48π2
6
X=1
4
A=1
1
m2
ℓX
mµ
4
N
L(e)
2AX
2
+ N
R(e)
2AX
2
FN
1
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠
+
mχ0
A
2
ℜ N
L(e)∗
2AX N
R(e)
2AX FN
2
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠ , (3.33)
where FC
1,2
and FN
1,2
are the loop functions.
fW eH
46 Dissertation / Takahiro Yoshinaga
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
W0
H0
d
γ
(c)
µL µR
µL
B H0
d
γ
(d)
µL µR
µR
H0
d
B
γ
(e)
Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigenstates.
The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–(e) are
from the neutralino–smuon diagram.
∆aχ0
µ
= −
mµ
48π2
6
X=1
4
A=1
1
m2
ℓX
mµ
4
N
L(e)
2AX
2
+ N
R(e)
2AX
2
FN
1
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠
+
mχ0
A
2
ℜ N
L(e)∗
2AX N
R(e)
2AX FN
2
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠ , (3.33)
where FC
1,2
and FN
1,2
are the loop functions.
FC
1
(x) =
2
(1 − x)4
2 + 2x − 6x2
+ x3
+ 6x log x , (3.34)
FC
2
(x) =
3
2(1 − x)3
−3 + 4x − x2
− 2log x , (3.35)
FN
1
(x) =
2
(1 − x)4
1 − 6x + 3x2
+ 2x3
− 6x2
log x , (3.36)
fW eH
  本⽇日の内容 17
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  Minimal  SUSY  model 18
Mass  spectrum
eB e`L
e`R
eg eq fW ···
⇡
≫1TeV
O(100)GeV
46 Dissertation /
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL W
µL
γ
µR
γ
fW eH
l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons
l  他の超対称粒粒⼦子  :  Decoupled*
*  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾
  Minimal  SUSY  model 19
Mass  spectrum
eB e`L
e`R
eg eq fW ···
⇡
≫1TeV
O(100)GeV
46 Dissertation / Takahiro Yos
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
W0
H0
d
γ
(c)
µL µR
µL
0
γ
µL µR
µR
0
γ
fW eH
l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons
l  他の超対称粒粒⼦子  :  Decoupled*
*  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾
[GeV]0m
0 1000 2000 3000 4000 5000 6000
[GeV]1/2m
300
400
500
600
700
800
900
1000
(2400GeV)q~
(1600GeV)
q~
(1000 GeV)
g
~
(1400 GeV)g
~
h(122GeV)
h(124GeV)
h(126GeV)
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
> 0µ,0= -2m
0
) = 30, AβMSUGRA/CMSSM: tan( Status: ICHEP 2014
ATLAS Preliminary
= 8 TeVs,
-1
L dt = 20.1 - 20.7 fb∫
τ∼
LSP
not included.theory
SUSY
σ95% CL limits.
0-lepton, 2-6 jets
0-lepton, 7-10 jets
0-1 lepton, 3 b-jets
1-lepton + jets + MET
1-2 taus + 0-1 lept. + jets + MET
3 b-jets≥2SS/3 leptons, 0 -
arXiv: 1405.7875
arXiv: 1308.1841
arXiv: 1407.0600
ATLAS-CONF-2013-062
arXiv: 1407.0603
arXiv: 1404.2500
[GeV]g~m
600 700 800 900 1000 1100 1200 1300 1400 1500 1600
[GeV]
1
0
χ∼m
200
400
600
800
1000
forbidden
1
0
χ∼tt
→g~
= 8 TeVs),g~) >> m(q~, m(1
0
χ∼tt→g~production,g~g~ ICHEP 2014
ATLAS
Preliminary
Expected
Observed
Expected
Observed
Observed
Expected
10 jets≥0-lepton, 7 -
3 b-jets≥0-1 lepton,
3 b-jets≥2SS/3 leptons, 0 -
arXiv: 1308.1841
arXiv: 1407.0600
arXiv: 1404.2500
]-1
= 20.3 fb
int
[L
]-1
= 20.1 fb
int
[L
]-1
= 20.3 fb
int
[L
not included.theory
SUSY
σ95% CL limits.
Colored  superparticles  >  ~∼1TeV
[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#Summary_̲plots_̲status_̲July_̲2014]
  Minimal  SUSY  model 20
Mass  spectrum
eB e`L
e`R
eg eq fW ···
⇡
≫1TeV
O(100)GeV
46 Dissertation / Takahiro Yos
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
W0
H0
d
γ
(c)
µL µR
µL
0
γ
µL µR
µR
0
γ
fW eH
l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons
l  他の超対称粒粒⼦子  :  Decoupled*
*  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾
Scalar  top  >>  1TeV
[Hahn,  Heinemeyer,  Hollik,  Rzehak,  Weiglein,  ʼ’13]
3
FD approach in the
e leading and sub-
her up to a certain
btained in the RGE
all terms of Eq. (4)
n terms of mt; the
ven by
3αt)/(16π))] (5)
e are no logarithmic
MMS
S and MOS
S .
beyond 2-loop order
tion MA ≫ MZ, to
ons can be incorpo-
he φ2φ2 self-energy
t 1/ sin2
β). In this
ons enter not only
other Higgs sector
nHiggs. The latest
0, which is available
roved predictions as
etical uncertainties
ns. Taking into ac-
garithmic contribu-
certainty of the re-
tions. Accordingly,
ng from corrections
p sector is adjusted
running top-quark
s evaluated only for
er than for the full
5000 10000 15000 20000
MS
[GeV]
115
120
125
130
135
140
145
150
155
Mh
[GeV]
FH295
3-loop
4-loop
5-loop
6-loop
7-loop
LL+NLL
FeynHiggs 2.10.0
Xt
= 0
Xt
/MS
= 2
5000 10000 15000 20000
MS
[GeV]
115
120
125
130
135
140
145
150
155
Mh
[GeV]
3-loop, O(αt
αs
2
)
3-loop full
LL+NLL
H3m
FeynHiggs 2.10.0
A0
= 0, tanβ = 10
FIG. 1. Upper plot: Mh as a function of MS for Xt = 0 (solid)
and Xt/MS = 2 (dashed). The full result (“LL+NLL”) is
compared with results containing the logarithmic contribu-
tions up to the 3-loop, . . . 7-loop level and with the fixed-order
FD result (“FH295”). Lower plot: comparison of FeynHiggs
(red) with H3m (blue). In green we show the FeynHiggs 3-loop
2
Mh  :  Higgs  mass
Ms  :  Scalar  top  mass
  Minimal  SUSY  model 21
Mass  spectrum
eB e`L
e`R
eg eq fW ···
⇡
≫1TeV
O(100)GeV
l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons
l  他の超対称粒粒⼦子  :  Decoupled*
*  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾
46 Dissertation /
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL W
µL
γ
µR
γ
fW eH
  Minimal  SUSY  model 22
Dissertation / Takahi
µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL
µL
W0
H0
d
(c)
µ µ
µL
0
γ
µ µ
µR
0
γ
fW eH eµL eµR
m2
e`LR
Neutralino-‐‑‒smuon  contribution
右巻きと左巻きsleptonの混合に⽐比例例
  Minimal  SUSY  model 23
右巻きと左巻きsmuonの混合に⽐比例例  
-‐‑‒  Large  μ×tanβ  :  enhanced
-‐‑‒  Large  smuon  mass  :  suppressed
46 Dis
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
B H0
d
γ
(d)
µL
µR
H0
d
(e)
Figure 3.4: The diagrams of the SUSY contributions to the mu
The diagram (a) comes from the chargino–muon sneutrino diag
from the neutralino–smuon diagram.
∆aχ0
µ
= −
mµ
2
6 4
1
2
mµ
N
L(e)
2AX
2
+ N
R
2
fW eH eµL eµR
m2
e`LR
SmuonがO(1)TeVでも極端に⼤大きな混合を
取ればMuon  g-‐‑‒2の不不⼀一致を説明できてしまう
Muon  g-‐‑‒2
1σ
2σ
加速器実験の探索索可能領領域を超えてしまう!? [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
Neutralino-‐‑‒smuon  contribution
  Minimal  SUSY  model 24
右巻きと左巻きsmuonの混合に⽐比例例  
-‐‑‒  Large  μ×tanβ  :  enhanced
-‐‑‒  Large  smuon  mass  :  suppressed
46 Dis
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
B H0
d
γ
(d)
µL
µR
H0
d
(e)
Figure 3.4: The diagrams of the SUSY contributions to the mu
The diagram (a) comes from the chargino–muon sneutrino diag
from the neutralino–smuon diagram.
∆aχ0
µ
= −
mµ
2
6 4
1
2
mµ
N
L(e)
2AX
2
+ N
R
2
fW eH eµL eµR
m2
e`LR
SmuonがO(1)TeVでも極端に⼤大きな混合を
取ればMuon  g-‐‑‒2の不不⼀一致を説明できてしまう
Muon  g-‐‑‒2
1σ
2σ
加速器実験の探索索可能領領域を超えてしまう!? [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
Neutralino-‐‑‒smuon  contribution
  スカラーポテンシャルの安定性条件
  により上限が存在する
  Minimal  SUSY  model 25
まとめとこれから議論論すること
SmuonがO(1)TeVでも極端に⼤大きな混合
を取ればMuon  g-‐‑‒2の不不⼀一致を説明できてしまう
                                                がMuon  g-‐‑‒2の不不⼀一致の原因
46 Dissertation / Takahiro Yoshinaga
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
W0
H0
d
γ
(c)
µL µR
µL
B H0
d
γ
(d)
µL µR
µR
H0
d
B
γ
(e)
Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigenstates.
The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–(e) are
from the neutralino–smuon diagram.
∆aχ0
µ
= −
mµ
48π2
6
X=1
4
A=1
1
m2
ℓX
mµ
4
N
L(e)
2AX
2
+ N
R(e)
2AX
2
FN
1
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠
+
mχ0
A
2
ℜ N
L(e)∗
2AX N
R(e)
2AX FN
2
⎛
⎝
m2
χ0
A
m2
ℓX
⎞
⎠ , (3.33)
where FC
1,2
and FN
1,2
are the loop functions.
FC
1
(x) =
2
(1 − x)4
2 + 2x − 6x2
+ x3
+ 6x log x , (3.34)
FC
(x) =
3
−3 + 4x − x2
− 2log x , (3.35)
fW eH eµL eµR
m2
e`LR
極端に⼤大きな混合は
スカラーポテンシャルの安定性条件により制限
Muon  g-‐‑‒2の不不⼀一致を説明するという
条件と合わせるとsmuonのmassに上限
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
  本⽇日の内容 26
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  Slepton  Mass  Bound 27
真空の安定性条件
-‐‑‒  SleptonとHiggsの3点結合
v  :  真空期待値,  h  :  SM  Higgs,  混合はμ>0のときnegative  
EW  vacuumの寿命  >  宇宙年年齢とすると
混合の⼤大きさに上限が付く
EW  vacuum Charge-‐‑‒breaking  minima
⼤大きすぎる混合
  Slepton  Mass  Bound 28
真空の安定性条件
-‐‑‒  数値公式*
Slepton  mass  bound
[Kitahara,  TY,  ʻ‘13]
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
*  Calculated  by  CosmoTransitions
      η~∼1,  (leptonのフレーバーに弱く依存)  
Muon  g-‐‑‒2の不不⼀一致を説明するという
条件と合わせるとsmuonのmassに上限
(すべて縮退)のとき
Stau-‐‑‒Higgsポテンシャルで強く制限
Vacuum  bound
〜~400GeV
  Slepton  Mass  Bound 29
Stau  mass  dependence
Massの制限はstauとsmuonのmassの⽐比に依存
Vacuum  bound
〜~400GeV 〜~600GeV
me⌧/meµ = 1 me⌧/meµ = 2 me⌧/meµ 1
stauによって制限
(3点結合はYukawaに⽐比例例)
meµ Æ 500GeV
smuonによって制限
(stauがdecoupleしたとき)
meµ Æ 2TeV
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
stauが重くなると
制限が弱くなる
  Slepton  Mass  Bound 30
まとめとこれから議論論すること
Universal Non-‐‑‒Universal
Spectrum
Vacuum Severe  (stau) Mild  (smuon)
Mass  Bound Tight  (<500GeV) Loose  (<2TeV)
Collider LHC,  ILC ✕
Flavor/CP GIM Sensitive
まとめ
これから
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  本⽇日の内容 31
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  Universal  Case 32
-‐‑‒  Mass
-‐‑‒  混合
-‐‑‒  LHC
mee = meµ = me⌧ (縮退)
真空の安定性条件を満たす
中で最⼤大の値を各点で選ぶ
LHC  Status
e`e`
e0
1e0
1
` `
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
Smuon  mass  <  500GeVに制限される
g-‐‑‒2
1σ
2σ
Excluded  by
  long-‐‑‒lived  stau  search
pp ! e`e`⇤
! `+
` + Emiss
T
  Universal  Case 33
-‐‑‒  Mass
-‐‑‒  混合
-‐‑‒  LHC
mee = meµ = me⌧ (縮退)
真空の安定性条件を満たす
中で最⼤大の値を各点で選ぶ
LHC  Status
e`e`
e0
1e0
1
` `
(Dilepton  search)が有効
[ATLAS  Collaboration,  JHEP  05  (2014)  035]
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
pp ! e`e`⇤
! `+
` + Emiss
T
pp ! e`e`⇤
! `+
` + Emiss
T
  Universal  Case 34
-‐‑‒  Mass
-‐‑‒  混合
-‐‑‒  LHC
mee = meµ = me⌧ (縮退)
真空の安定性条件を満たす
中で最⼤大の値を各点で選ぶ
LHC  Status
e`e`
e0
1e0
1
` `
Muon  g-‐‑‒2を1σで説明できる領領域  (1σ  Region)
のほとんどは現在のLHCのデータですでに排除
Excluded
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
pp ! e`e`⇤
! `+
` + Emiss
T
  Universal  Case 35
-‐‑‒  Cross  section  (LO)
Future  Prospects
Smuonの質量量がNeutralinoの質量量より
⼗十分⼤大きい領領域は14TeV  LHCで探索索可能
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
(eµ1 eµ1) =
8
>><
>>:
1fb  (√s  =  8TeV,                                          のとき)meµ = 330GeV
meµ = 450GeV1fb  (√s  =  14TeV,                                          のとき)
↔  現在のLHCの制限
↔  (Naïveな)将来の感度度
LHC
  Universal  Case 36
Future  Prospects
Smuonの質量量とNeutralinoの質量量が
近い領領域は1TeV  ILCで探索索可能
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
-‐‑‒  ILC
kinematicalに許される質量量領領域ならば探索索可能
Closing the loopholes
At the ILC, a systematic search for the NLSP is possible without leaving loopholes, covering even the cases
that may be very difficult to test at the LHC.
In the case of a very small mass difference between the LSP and the NLSP - less than a few GeV - the
clean environment at the ILC nevertheless allows for a good detection efficiency. If
√
s is much larger than
the threshold for the NLSP-pair production, the NLSPs themselves will be highly boosted in the detector
frame, and most of the spectrum of the decay products will be easily detected. In this case, the precise
knowledge of the initial state at the ILC is of paramount importance to recognize the signal, by the slight
discrepancy in energy, momentum and acolinearity between signal and background from pair production
of the NLSP’s SM partner. In the case the threshold is not much below
√
s, the background to fight is
γγ → f ¯f where the γ’s are virtual ones radiated off the beam-electrons. The beam-electrons themselves
are deflected so little that they leave the detector undetected through the outgoing beam-pipes. Under the
clean conditions at the ILC, this background can be kept under control by demanding that there is a visible
ISR photon accompanying the soft NLSP decay products. If such an ISR is present in a γγ event, the
beam-remnant will also be detected, and the event can be rejected.
If the LSP is unstable due to R-parity violation, the ILC reach would be better or equal to the R-
conserving case, both for long-lived and short-lived LSP’s and whether the LSP is charged or neutral.
Also in the case of an NLSP which is a mass-state mixed between the hyper-charge states, the procedure
is viable. One will have one more parameter - the mixing angle. However, as the couplings to the Z of both
states are known from the SUSY principle, so is the coupling with any mixed state. There will then be
one mixing-angle that represents a possible “worst case”, which allows to determine the reach whatever the
mixing is - namely the reach in this “worst case”.
Finally, the case of “several” NLSPs– i.e. a group of near-degenerate sparticles– can be disentangled due
to the possibility to precisely choose the beam energy at the ILC. This will make it possible to study the
“real” NLSP below the threshold of its nearby partner.
0
50
100
150
200
250
0 50 100 150 200 250
Exclusion
Discovery
Excludable
at95%
C
L
NLSP : µ˜R
MNLSP [GeV]
MLSP[GeV]
0
50
100
150
200
250
240 242 244 246 248 250
Exclusion
Discovery
NLSP : µ˜R
MNLSP [GeV]
MLSP[GeV]
Figure 3: Discovery reach for a ˜µR NLSP after collecting 500 fb−1
at
√
s = 500 GeV. Left: full scale, Right:
zoom to last few GeV before the kinematic limit.
The strategy
At an e+
e−
-collider, the following typical features of NLSP production and decay can be exploited: missing
[Baer,  et.al.,  ʻ‘13]
ex)  √s  =  500GeV  
Δm=O(10-‐‑‒100)MeV
Massの差はO(10)GeV
ILCで探索索可能
  Universal  Case 37
Muon  g-‐‑‒2を1σで説明できる領領域  (1σ  Region)
のほとんどは現在のLHCのデータですでに排除
残りの質量量領領域も将来のLHC,  ILC実験
で探索索可能な⾒見見通し*
Stau-‐‑‒Higgsポテンシャルの安定性条件から
slepton  mass  <  500GeVに制限される
まとめ
*  ILCにおけるStau探索索に関して、HiggsとDiphotonの結合の情報も有効
[Kitahara,  TY,  ʻ‘13]
[Endo,  Kitahara,  TY,  ʻ‘14]
  本⽇日の内容 38
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  Non-‐‑‒Universal  Case 39
Smuon  mass  bound
500 1000 1500 2000
500
1500
2500
3500
meµ < me0
1
Smuon-‐‑‒Higgsポテンシャルの安定性条件から  
smuon  mass  <  2TeVに制限される
-‐‑‒  Mass
-‐‑‒  混合
mee = meµ ⌧ me⌧ (stauはdecouple)
meµL
= meµR
, tan = 40
真空の安定性条件を満たす
中で最⼤大の値を各点で選ぶ
Smuon  mass  <2TeVは
加速器実験の探索索可能領領域を超えている
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
  Non-‐‑‒Universal  Case 40
Fermionを対⾓角にする基底で
Slepton質量量⾏行行列列に⾮非対⾓角項が出現
Sleptonの質量量が縮退していない場合、
GIM機構が働かないため、LFV/CPVを誘発
LFV/CPV
                        (対⾓角)  である模型でも
Fermionを対⾓角にする基底とは⼀一般に揃わない
⇣
m2
e`
⌘
i j
= diag
⇣
m2
ee , m2
eµ, m2
e⌧
⌘
LFV/CPVはSlepton質量量⾏行行列列の⾮非対⾓角項に敏感
  Non-‐‑‒Universal  Case 41
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
ex)  μ→eγ崩壊
Br(µ ! e )
⇣
aNeutralino
µ
⌘2
'
1
(µ ! all)
↵mµ
16
13 23
2
Ç
m⌧
mµ
å2
+ (higher order)
l  Stauは1,2世代のSleptonより重い:
l  SelectronとSmuonは縮退:1-‐‑‒2世代間の混合の寄与はsuppress
mee = meµ ⌧ me⌧
仮定
Stauが1,2世代のSleptonより⼗十分重い場合
μ→eγとMuon  g-‐‑‒2の⽐比はBino,  slepton  massと独⽴立立
Flavor  mixingの定義
46 Diss
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL µR
µL
B H0
γ
µL
µR
H0
fW eH eµL eµReeR
eR
  Non-‐‑‒Universal  Case 42
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
ex)  μ→eγ崩壊
SleptonがLHC,  ILCで発⾒見見されなくても
レプトンフレーバー実験から⾼高感度度で探索索可能
=Non-‐‑‒Universality
現在の
Bound
将来の
感度度
-‐‑‒  Mass
-‐‑‒  Formula
mee = meµ ⌧ me⌧
Br(µ ! e )
Br(µ ! e )
⇣
aNeutralino
µ
⌘2
'
1
(µ ! all)
↵mµ
16
13 23
2
Ç
m⌧
mµ
å2
+ (higher order)
Stauが⼗十分重い(R≫1)とき
L 13 R
⇤
23 Æ 3 ⇥ 10 6
L 13 R
⇤
23 Æ 10 7⇠8
(Current)
(Future)
VubVcb ⇠ 10 4
cf)  CKM-‐‑‒like
  Non-‐‑‒Universal  Case 43
Sleptonのmassが縮退していない場合、
⼀一般に⼤大きなLFV/CPVを誘発
Smuon-‐‑‒Higgsポテンシャルの安定性条件から
smuon  mass  <  2TeVに制限される
まとめ
SleptonがLHC,  ILCで発⾒見見されなくても
レプトンフレーバー実験から⾼高感度度で探索索可能
  本⽇日の内容 44
Intro.
Muon  g-‐‑‒2
Supersymmetric  Standard  Model
Main
“Minimal”  SUSY  model
Slepton  Mass  Bound
Conc. Summary
mee = meµ = me⌧ mee = meµ ⌧ me⌧
  まとめ 45
「Muon  g-‐‑‒2を説明する超対称模型の現象論論」
Muon  g-‐‑‒2
>3σ  dev.
eB e`L
e`R
eg eq fW ···
⇡
≫1TeV
O(100)GeV
“Minimal”  SUSY  model
LHC
ILC
LFV
EDM
mee
=
m eµ
=
m e⌧
m
ee =
m
eµ ⌧
m
e⌧
①  massに制限
②  相補的に探索索可能
  補⾜足パート 46
Backup
  Muon  g-‐‑‒2 47
測り⽅方
磁場中でのMuonの歳差運動の周波数から求める
①  ⼀一様磁場中に偏極した(反)muonを⼊入れる
②  サイクロトロン運動(磁場)&歳差運動(スピン)
③  g=2  :  歳差運動はサイクロトロン運動に追従
g≠2  :  歳差運動の⽅方がわずかに速くなる(異異常歳差運動)
④  崩壊先の陽電⼦子の数の時間変動の測定から歳差運動の振動数を求める
⑤  歳差運動の振動数からg-‐‑‒2を読み取る
!a '
e
mµ
aµ
!
B
  Muon  g-‐‑‒2 48
BNLとJPARCの違い*
l  BNL:Magic  momentum
l  JPARC:電場ゼロ
電場速度度
Lorentz因⼦子
異異常歳差運動の振動数
γ=29.4  (p  =  3.094GeV/c)  のとき、第⼆二項が無視できる
*  Fermilab  (FNAL)  はBNLと同じsetup  
極冷冷muonを⽤用いることで、収束電場を不不要にする
EDMの観測も⽬目標
!a =
e
mµ
2
4aµ
!
B
✓
aµ
1
2 1
◆ !
⇥
!
E
c
⌘
2
⇣!
⇥
!
B
⌘
3
5
EDM(無視)
  Muon  g-‐‑‒2 49
(Naive)  NP  contribution
aNP
µ ⇠
↵NP
4⇡
mµ
m2
NP
✓ g = 2 at tree level (Dirac equation)
✓ g ≠ 2 by radiative corrections
Magnetic moment
g-factor
gNP gNP
mNP
条件:SM  EW  contributionと同程度度
26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp
µ ath
µ =
aSM EW
µ ⇠
↵2
4⇡
m2
µ
m2
W
= 15.36  (0.1)  ×  10-‐‑‒10
αNP,  mNP  ~∼  O(EWボソンの結合,  質量量)
そのような粒粒⼦子が存在したら既に発⾒見見されているはず…
  Muon  g-‐‑‒2 50
(Naive)  NP  contribution
aNP
µ ⇠
↵NP
4⇡
mµ
m2
NP
✓ g = 2 at tree level (Dirac equation)
✓ g ≠ 2 by radiative corrections
Magnetic moment
g-factor
gNP gNP
mNP
2種類の可能性
l  αNP~∼  O(10-‐‑‒6)  (weak),  mNP~∼  O(100)MeV  (small)
l  αNP~∼  O(0.1-‐‑‒1)  (strong),  mNP~∼  O(100-‐‑‒1000)GeV  (heavy)
e.g.  Hidden  Photon
e.g.  Supersymmetry
  Supersymmetry 51
Higgs  mass
l  Tree  level  :  
l  Large  top-‐‑‒stop  correction
mtree
h ' mZ
m2
h ⇠ m2
Z cos2
2 +
3
4⇡2
Y 2
t sin2
ñ
m2
t log
M2
S
m2
t
+
X2
t
M2
S
Ç
1
X2
t
12M2
S
å
+ ···
ô
Ms =
p
met1
met2
, Xt = At µcot
-‐‑‒  Heavy  stop  :  Ms  ≫  1TeV,  Xt  =  0
-‐‑‒  Maximal  mixing  :  Ms  ~∼  1TeV,  Xt  =  √6Ms  
Scalar  top  >  1TeV
  Supersymmetry 52
CMSSM  (mSUGRA)
m0
A0
m1/2
sgn(µ) tan
Scalar  mass
Scalar  coupling
m0
Masses  of  Hu,d
Gaugino  mass
Other  parameters  :  
  Supersymmetry 53
Muon  g-‐‑‒2  vs  CMSSM
CMSSMの枠組では現在のLHCの制限とHiggs  massと
Muon  g-‐‑‒2を同時に説明することができない
[Endo,  Hamaguchi,  Iwamoto,  Nakayama,  Yokozaki  ʻ‘11]
[GeV]0m
0 1000 2000 3000 4000 5000 6000
[GeV]1/2
m
300
400
500
600
700
800
900
1000
(2400GeV)q~
(1600GeV)
q~
(1000 GeV)
g
~
(1400 GeV)g
~
h(122GeV)
h(124GeV)
h(126GeV)
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
Expected
Observed
> 0µ,0= -2m
0
) = 30, AβMSUGRA/CMSSM: tan( Status: ICHEP 2014
ATLAS Preliminary
= 8 TeVs,
-1
L dt = 20.1 - 20.7 fb∫
τ∼
LSP
not included.theory
SUSY
σ95% CL limits.
0-lepton, 2-6 jets
0-lepton, 7-10 jets
0-1 lepton, 3 b-jets
1-lepton + jets + MET
1-2 taus + 0-1 lept. + jets + MET
3 b-jets≥2SS/3 leptons, 0 -
arXiv: 1405.7875
arXiv: 1308.1841
arXiv: 1407.0600
ATLAS-CONF-2013-062
arXiv: 1407.0603
arXiv: 1404.2500
mh  ~∼126GeV*
g-‐‑‒2
tanβ=20
m0[GeV]
m1/2[GeV]
*  Higgs  massは  (b→sγの制限を満たす範囲で)  A-‐‑‒termを調節して説明
  Supersymmetry 54
Muon  g-‐‑‒2  vs  Higgs  mass  and  LHC  (model)
l  Messenger  sectorを拡張
l  Extra  vector-‐‑‒like  matterを加える
l  新しいgauge対称性を加える
[Endo,  Hamaguchi,  Iwamoto,  Yokozaki,    ʼ’11,12]
[Endo,  Hamaguchi,  Ishikawa,  Iwamoto,  Yokozaki,    ʼ’12]
[Moroi,  Sato,  Yanagida,  ʼ’12]
[Evans,  Ibe,  Yanagida,  ʼ’11]
[Evans,  Ibe,  Shirai,  Yanagida,  ʼ’11]
[Ibe,  Matsumoto,  Yanagida,  Yokozaki,  ʼ’12]
[Bhattacharyya,  Bhattacherjee,  Yanagida,  Yokozaki  ʼ’13]  
[Endo,  Hamaguchi,  Iwamoto,  Nakayama,  Yokozaki,    ʼ’11]
  Supersymmetry 55
Electron  g-‐‑‒2  
11596521807.3(2.8)×10-‐‑‒13
aexp
e =
ath
e = 11596521818.7(0.6)(0.4)(0.2)(7.6)(0.1)×10-‐‑‒13
ae = aexp
e ath
e = -‐‑‒11.4  (8.1)  ×  10-‐‑‒13
l  実験値と理理論論値はConsistent  (1.4σ)
l  新しい物理理の寄与
ae =
✓
aµ
3 ⇥ 10 9
◆
0.7 ⇥ 10 13 (NaïveにYukawaでスケール)
-‐‑‒  SUSYでSleptonが縮退している場合はMuon  g-‐‑‒2に⽐比べて感度度が弱い
-‐‑‒  Non-‐‑‒universalの場合はElectron,  Muon  g-‐‑‒2の両⽅方がenhanceし得る
(符号逆&LFV/CPVを誘発するのでちと厳しいが…)
ae ⇠ 2 ⇥ 10 12
ex.)                                                                      のときmee = 100GeV, tan = 30
  Minimal  SUSY  model 56
Muon  g-‐‑‒2  (Higher  order  corr.  1,  ~∼10%)
l  QEDのLeading  Log  correction  
l  Bino  couplingに重い粒粒⼦子がdecoupleした効果
1 + 2loop
=
Ç
1
4↵
⇡
ln
msoft
mµ
å
1 +
1
4⇡
✓
2↵Y b +
9
4
↵2
◆
ln
Msoft
msoft
egL = gY + egL ' gY

1 +
1
4⇡
✓
↵Y b +
9
4
↵2
◆
ln
Msoft
msoft
egR = gY + egR ' gY

1 +
↵Y
4⇡
b ln
Msoft
msoft
aµ = (1 + 2loop
) ⇥ a1loop
µ
Leading  Log Bino  coupling
重い粒粒⼦子のスケール
軽い粒粒⼦子のスケール
b =
41
6
(# of the generations of light sleptons)
  Minimal  SUSY  model 57
Muon  g-‐‑‒2  (Higher  order  corr.  2,  ~∼10%)
l  Yukawaの補正  (Non-‐‑‒Holomorphic  Yukawa)
-‐‑‒  MSSMのYukawaとSMのYukawaのmatchingの際に出現
m` =
`L
`R
+
hHdi hHui
`L
`R
SUSYSUSY
Y MSSM
` =
m`
v cos
1
1 + `
`
  Minimal  SUSY  model 58
Bino  coupling
SUSY  limitではU(1)Y  ゲージ結合と等しい
(重い粒粒⼦子の)  SUSY  breakingの効果でズレが発⽣生
Coupling
EnergyMsoftmsoft
egBino = gY
gY
egBino
egBino
重い粒粒⼦子
decouple
  くりこみ群の
runが変化
Lint =
1
p
2
egL
eB`L
e`⇤
L +
p
2egR
eB`R
e`⇤
R + h.c.
-‐‑‒  Interaction
-‐‑‒  Bino  coupling
egL = gY + egL ' gY

1 +
1
4⇡
✓
↵Y b +
9
4
↵2
◆
ln
Msoft
msoft
egR = gY + egR ' gY

1 +
↵Y
4⇡
b ln
Msoft
msoft
b =
41
6
(# of the generations of light sleptons)
  Slepton  Mass  Bound 59
スカラーポテンシャル
l  Up-‐‑‒type  HiggsとSlepton
l  Slepton-‐‑‒Higgsの3点相互作⽤用
l  Sleptonの4点相互作⽤用
V = (m2
Hu
+ µ2
)|Hu|2
+ m2
e`L
|e`L|2
+ m2
e`R
|e`R|2
(Y`µH⇤
u
e`⇤
L
e`R + h.c.) + Y 2
` |e`⇤
L
e`R|2
+
g2
8
(|e`L|2
+ |Hu|2
)2
+
g2
Y
8
(|e`L|2
2|e`R|2
|Hu|2
)2
+
g2
+ g2
Y
8
H |Hu|4
mixing Flavor  dep.
-‐‑‒  Sleptonの混合に⽐比例例
-‐‑‒  極端に⼤大きいとEW  vacuumが不不安定になる
-‐‑‒  LeptonのYukawaに⽐比例例  (=tanβが⼤大きい極限でにtanβに⽐比例例)
-‐‑‒  tanβを⼤大きくすると真空の安定性条件をゆるくする⽅方向に働く
-‐‑‒  Stauの場合は若若⼲干依存、Selectron/Smuonは依存性無視できる
  Slepton  Mass  Bound 60
真空崩壊
l  Decay  rate
/(Volume) = A· e B
~∼(100GeV)4
Bounce解から評価
-‐‑‒  偽の真空の基底状態のエネルギーの虚部から出現
-‐‑‒  境界条件
-‐‑‒  境界条件のもとでの運動⽅方程式の解:Bounce解
= 2ImE0, E0 = lim
T!1
1
T
ln
ÇZ
[D ]exp( SE[ ])
å
Φ=Up-‐‑‒type  Higgs,  Sleptons,  SE  はユークリッド作⽤用
lim
T!1
✓
!x ,±
T
2
◆
= f
¯
B = SE[ ¯] SE[ f
]
偽の真空での場の配位
[Coleman,  ʻ‘77]
[Callan,  Coleman,  ʻ‘77]
  Slepton  Mass  Bound 61
真空崩壊
l  Bounce解  (Path  deformation  method)
-‐‑‒  運動⽅方程式  (O(4)  symmetric,  zero  temp.  :  α  =  3)
-‐‑‒  最初にPathにあたりをつける
-‐‑‒  Pathを変形させて運動⽅方程式の解になるものを探す
!
guess =
!
(x),
d
!
dx
= 1 (仮定)
Figure 4: Path deformation in two dimensions. The normal force exerted on
path (blue straight line) pushes it in the direction of the true tunneling so
curved line).
[CosmoTransitions,  ʻ‘11]
d2 !
d⇢2
+
↵
⇢
d
!
d⇢
= rV(
!
)
d2
x
d⇢2
+
↵
⇢
dx
d⇢
=
@
@ x
V(
!
)
d2 !
d⇢2
✓
dx
d⇢
◆2
= r?V(
!
)
(Path⽅方向)
(垂直⽅方向)
V
true
false
cf.)  Overshoot/Undershoot  method
Multi-‐‑‒dimensionだと⼀一意に求められない
  Slepton  Mass  Bound 62
Fitting  Formula  
200 300 400 500 600
200
300
400
500
600
l  Stauの場合
µtan , tan = 70
30
20TeV
40
50
60
70
90
80
[Kitahara,  TY,  ʻ‘13]
[Endo,  Kitahara,  TY,  ʻ‘14]
  Slepton  Mass  Bound 63
Fitting  Formula  
l  tanβ依存性
20 40 60 80 100
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
-‐‑‒  スカラーの4点はYukawaに依存  (                                            )
-‐‑‒  tanβが⼤大きい極限で(tanβ)2に⽐比例例
-‐‑‒  tanβを⼤大きくするとVacuumの制限が若若⼲干改善*
[Kitahara,  TY,  ʻ‘13]
改善悪化
ここで1に規格化
*  1,2世代のsleptonの場合は、Yukawaが⼩小さいため、tanβ依存性は無視できる
  Universal  Case 64
ILC  (smuon)
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
Smuonにmassの差がある場合はILCが有効
偏極ビームを⽤用いることで断⾯面積がenhance
p
s = 1TeV
p
s = 1TeV
Polarization
  Universal  Case 65
ILC  (selectron)
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
t-‐‑‒channel  Bino  exchangeのため断⾯面積がenhance
Bino  couplingの測定にも有効
p
s = 1TeV
-‐‑‒  Diagram  (t-‐‑‒channel)
-‐‑‒  Bino  coupling
eB
ee
ee⇤
e+
e
ü  重い粒粒⼦子の効果でO(%)変化
ü  ⾼高精度度のCouplingの測定から重いスケールを探れるかも
[Nojiri,  Fujii,  Tsukamoto,  ʻ‘96]
[Nojiri,  Pierce,  Yamada,  ʼ’97]
  Non-‐‑‒Universal  Case 66
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
Non-‐‑‒Universality
Smuonが重いほどMuon  g-‐‑‒2の説明のために
⼤大きなNon-‐‑‒Universalityが要求される
  Non-‐‑‒Universal  Case 67
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
Flavor  mixingの定義
l  SleptonがFlavor  diagonalである基底でのYukawa:
l  Fermion  massを対⾓角にする基底でのYukawa:
l  Mixing  matrix:世代間の混合をparameterize
Mixing  matrix  :  基底間のズレ
  Non-‐‑‒Universal  Case 68
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
ex)  Lepton  FCNCs
l  Effective  operator  (双極⼦子型)
l  Wilson係数
l  Flavor  mixing
Leff ⌘ e
m`i
2
`i µ⌫
⇣
AL
i j PL + AR
i j PR
⌘
`j Fµ⌫
+ h.c.
Higher-‐‑‒order  
correction
Loop  function
AL
i j = (1 + 2loop
)
↵Y
8⇡
M1µtan
m`j
X
a,b=1,2,3
h
UR
i
ib
h
M`
i
ba
h
U†
L
i
aj
Fa,b
AR
i j = (1 + 2loop
)
↵Y
8⇡
M1µtan
m`j
X
a,b=1,2,3
h
UL
i
ia
h
M†
`
i
ab
h
U†
R
i
bj
Fa,b
h
UL
i
1a
h
M†
`
i
ab
h
U†
R
i
b2
Fa,b =
mµ
1 + µ
( L)12
Ä
F1,2 F2,2
ä
+
m⌧
1 + ⌧
( L)13( R)⇤
23
Ä
F1,2 F1,3 F3,2 + F3,3
ä
SelectronとSmuonが縮退
していればキャンセル
Sleptonが全て縮退
していればキャンセル
46 Dissertation
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL W
µL µR
µL
B H0
d
γ
(d)
µL µR
µR
H0
d
B
γ
(e)
Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2
The diagram (a) comes from the chargino–muon sneutrino diagram, the
from the neutralino–smuon diagram.
χ0 mµ
6 4
1 mµ L(e)
2
R(e)
2
N
fW eH eµL eµReeR
eR
  Non-‐‑‒Universal  Case 69
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
ex)  Lepton  FCNCs
l  μ→eγ崩壊
l  電⼦子の電気双極⼦子モーメント
l  Muon  g-‐‑‒2との相関
46 Dissertation
µL µR
W±
νµ
γ
(a)
µL µR
µL µR
B
γ
(b)
µL W
µL µR
µL
B H0
d
γ
(d)
µL µR
µR
H0
d
B
γ
(e)
Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2
The diagram (a) comes from the chargino–muon sneutrino diagram, the
from the neutralino–smuon diagram.
χ0 mµ
6 4
1 mµ L(e)
2
R(e)
2
N
fW eH eµL eµReeR
eR
de
e
=
me
2
Im
î
AL
11 AR
11
ó
B(µ ! e ) '
48⇡3
↵
G2
F
Ä
|AL
12|2
+ |AR
12|2
ä
Br(µ ! e )
⇣
aNeutralino
µ
⌘2
'
1
(µ ! all)
↵mµ
16
13 23
2
Ç
m⌧
mµ
å2
+ (higher order)
de/e
aNeutralino
µ
'
1
2mµ
Im[( R)13( L)⇤
13]
m⌧
mµ
+ (higher order)
Stauが⼗十分重いとき、SUSY粒粒⼦子の質量量と独⽴立立
  Non-‐‑‒Universal  Case 70
[Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
SleptonがLHC,  ILCで発⾒見見されなくても
レプトンフレーバー実験から⾼高感度度で探索索可能
=Non-‐‑‒Universality
現在の
Bound
将来の
感度度
-‐‑‒  Mass
-‐‑‒  Formula
mee = meµ ⌧ me⌧
Stauが⼗十分重い(R≫1)とき
(Current)
(Future)
ex)  電⼦子の電気双極⼦子モーメント
de/e
aNeutralino
µ
'
1
2mµ
Im[( R)13( L)⇤
13]
m⌧
mµ
+ (higher order)
Im L 13 R
⇤
13 Æ 6 ⇥ 10 8
Im L 13 R
⇤
13 Æ 6 ⇥ 10 9⇠10
de/e
  Extra-‐‑‒Slides 71
Future  Prospects
for  Stau
博⼠士論論⽂文  Sec.4.3
Based  on
    T.  Kitahara  and  T.Y    JHEP  05  035  (2013)
    M.  Endo,  T.  Kitahara,  and  T.Y    JHEP  04  139  (2014)
  Stau 72
Higgs  Oblique  Correction  
l  Loop-‐‑‒induced  Higgs  coupling
l  新しい物理理にsensitive
-‐‑‒  Higgs  to  digluon,  diphoton,  Zγ
-‐‑‒  間接的に新しい物理理を制限
-‐‑‒  SM:tree  levelで出現しない
-‐‑‒  新しい物理理の影響を受けやすい
NPh
V
V制限
予⾔言
実験 新しい物理理
  Stau 73
Higgs  coupling  to  diphoton  κγ
l  Current  accuracy  (LHC)
l  Joint  analysis
 ⌘
gh
gh (SM)
= 1 +  ,  ⇠ 15%
-‐‑‒  Br(h→γγ)/Br(h→ZZ)はHL-‐‑‒LHCで精密測定  (3.6%と仮定)
-‐‑‒  Br(h→ZZ)は初期ステージでのILCで精密測定  (sub%  level)
-‐‑‒  両者の結果を合わせると単体での測定よりもκγを精密に決定可能
 ⇠ 1 2%
[Peskin,  ʻ‘13]
5%
4%
3%
2%
1%
γ
CMS-1
CMS-2
ILC
ILC +
LHC BR
ratio
CMS 250 500 500up 1000up1000
6%
7%

-‐‑‒  HL-‐‑‒LHC,  ILC単体だとO(1-‐‑‒10)%
-‐‑‒  Joint  analysis
  Stau 74
Higgs  coupling  to  diphoton  κγ
l  Loop-‐‑‒induced  Higgs  coupling
l  新しい物理理にsensitive
l  HL-‐‑‒LHCと初期のILCから1-‐‑‒2%の決定精度度が期待
将来excessが⾒見見えた場合に分かる
新しい物理理の性質を考察しておくことは重要
l  博⼠士論論⽂文では超対称模型を仮定
l  Muon  g-‐‑‒2を考慮すると、軽いStauが予想
l  初期のILCまでで数%のexcessが観測されたと仮定
新しい物理理
l  Stau  :  κγのみに⼤大きな寄与
l  3つのParameterでcontroll  (mass,  mixing  angle)
  
l  Stauが軽い&⼤大きな混合を持つ場合にenhance  (O(10)%)
l  極端に⼤大きな混合は真空の安定性条件により制限
  Stau 75
Stau  contribution  to  κγ
Dissertation / Takahiro Yoshinaga
τR
τL
h
γ
γ
gure 3.6: Feynman diagram of the stau contribution to the Higgs coupling to di-photon.
re OL,R are the unitary matrices, which diagonalize the chargino mass matrix, as seen in
3.3.1. δm2
fLL,RR
and δm2
fLR
are defined as
m2
e⌧LR
=
1
2
⇣
m2
e⌧1
m2
e⌧2
⌘
sin2✓e⌧
m2
e⌧1
, m2
e⌧2
, ✓e⌧
Ue⌧Me⌧U†
e⌧
= diag(m2
e⌧1
, me⌧2
)
Ue⌧ =
✓
cos✓e⌧ sin✓e⌧
sin✓e⌧ cos✓e⌧
◆
cf.)  Stauの質量量⾏行行列列
  Stau 76
Stau  contribution  to  κγ
[Endo,  Kitahara,  TY,  ʻ‘13]
真空の安定性条件からκγの⼤大きさは制限
10-‐‑‒15%が取りうるexcessの最⼤大値
Large  mixing  angle:真空の安定性条件で制限
  Stau 77
Stau  mass  region
[Endo,  Kitahara,  TY,  ʻ‘13]
δκγ>4%ならば、      250GeVに制限
√s  =500GeV  ILCまでで発⾒見見可能
me⌧1
<
Higgs  coupling  to  diphoton
sin2✓e⌧ = 1
真空の安定性条件を満たす
なかで最⼤大の値を選択tan = 20
l  仮定
l  Sample  point
l  Reconstruction  (ILC  at  √s  =  500GeV)
  Stau 78
Stau  searches  (Reconstruction)
-‐‑‒  Stau1,2,  mixing  angle全てがILC  (√s  =  500GeV)で観測
-‐‑‒  κγは数%のexcessが観測、測定精度度は2%と仮定
88 Dissertation / Takahiro Yoshinaga
Table 4.3: Model parameters at our sample point. In addition, tanβ = 5 and Aτ = 0 are set,
though the results are almost independent of them.
Parameters mτ1
mτ2
sin2θτ mχ0
1
δκγ
Values 100 GeV 230 GeV 0.92 90 GeV 3.6%
4.3 Stau
So far, we studied the prospects for the selection/smuon searches. In this section, we discuss
the stau searches. If the staus have masses of (100)GeV and large left-right mixing, the
Higgs coupling to the di-photon κγ is deviated from the SM prediction. Such a large left-right
mixing is constrained by the vacuum meta-stability condition of the stau-Higgs potential, as
mentioned in Sec 4.1.3. Then, we discussed that once the deviation from the SM prediction of
κγ were observed, the mass region for the staus were determined by the condition in Sec. 4.1.4.
Once the stau is discovered at ILC, its properties including the mass are determined. Par-
ticularly, it is important to measure the mixing angle of the stau θτ. When sin2θτ is sizable,
[Endo,  Kitahara,  TY,  ʻ‘13]
me⌧1
⇠ 0.1 GeV, me⌧2
⇠ 6 GeV,
sin2✓e⌧
sin2✓e⌧
⇠ 2%
 ⇠ 0.5%
excessがStau起源かcheck可能
l  仮定
l  Sample  point  (stau2は√s  =  500GeVでは未発⾒見見)
l  Prediction  for  stau2  (ILC  at  √s  =  1TeV)
  Stau 79
Stau  searches  (Prediction)
-‐‑‒  Stau1,  mixing  angleがILC  (√s  =  500GeV)で観測、stau2は未発⾒見見
-‐‑‒  κγは数%のexcessが観測、測定精度度は2%と仮定
[Endo,  Kitahara,  TY,  ʻ‘13]
Table 1: Model parameters at our sample point. In addition, tanβ = 5 and Aτ = 0 are set,
though the results are almost independent of them.
Parameters mτ1
mτ2
sin2θτ mχ0
1
δκγ
Values 150 GeV 400 GeV 0.91 140 GeV 5.6%
me⌧1
⇠ 0.1 GeV,
sin2✓e⌧
sin2✓e⌧
⇠ 2.5%,  ⇠ 2%
√s  =  1TeV  ILCで発⾒見見が期待、ビームエネルギーを調節するためのヒントを与える
me⌧2
= 400 ± 53 GeV

Más contenido relacionado

La actualidad más candente

よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理Masatoshi Yoshida
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3までYahoo!デベロッパーネットワーク
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践智之 村上
 
距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知NU_I_TODALAB
 
21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)Toru Imai
 
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出hoxo_m
 
Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-Joe Suzuki
 
自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211Masatoshi Yoshida
 
A3Cという強化学習アルゴリズムで遊んでみた話
A3Cという強化学習アルゴリズムで遊んでみた話A3Cという強化学習アルゴリズムで遊んでみた話
A3Cという強化学習アルゴリズムで遊んでみた話mooopan
 
CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1
CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1
CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1Masashi Shibata
 
クラシックな機械学習の入門  9. モデル推定
クラシックな機械学習の入門  9. モデル推定クラシックな機械学習の入門  9. モデル推定
クラシックな機械学習の入門  9. モデル推定Hiroshi Nakagawa
 
【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH
【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH
【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCHDeep Learning JP
 
集中不等式のすすめ [集中不等式本読み会#1]
集中不等式のすすめ [集中不等式本読み会#1]集中不等式のすすめ [集中不等式本読み会#1]
集中不等式のすすめ [集中不等式本読み会#1]Kentaro Minami
 
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライドMasatoshi Yoshida
 
Non-autoregressive text generation
Non-autoregressive text generationNon-autoregressive text generation
Non-autoregressive text generationnlab_utokyo
 
深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについてryosuke-kojima
 

La actualidad más candente (20)

ビッグデータから人々のムードを捉える #yjtc
ビッグデータから人々のムードを捉える #yjtcビッグデータから人々のムードを捉える #yjtc
ビッグデータから人々のムードを捉える #yjtc
 
よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理よくわかるフリストンの自由エネルギー原理
よくわかるフリストンの自由エネルギー原理
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
 
距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知距離学習を導入した二値分類モデルによる異常音検知
距離学習を導入した二値分類モデルによる異常音検知
 
21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)
 
BERT入門
BERT入門BERT入門
BERT入門
 
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
非制約最小二乗密度比推定法 uLSIF を用いた外れ値検出
 
Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-Bayes Independence Test - HSIC と性能を比較する-
Bayes Independence Test - HSIC と性能を比較する-
 
ゼロから作るDeepLearning 5章 輪読
ゼロから作るDeepLearning 5章 輪読ゼロから作るDeepLearning 5章 輪読
ゼロから作るDeepLearning 5章 輪読
 
自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211自由エネルギー原理(FEP)とはなにか 20190211
自由エネルギー原理(FEP)とはなにか 20190211
 
A3Cという強化学習アルゴリズムで遊んでみた話
A3Cという強化学習アルゴリズムで遊んでみた話A3Cという強化学習アルゴリズムで遊んでみた話
A3Cという強化学習アルゴリズムで遊んでみた話
 
CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1
CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1
CMA-ESサンプラーによるハイパーパラメータ最適化 at Optuna Meetup #1
 
クラシックな機械学習の入門  9. モデル推定
クラシックな機械学習の入門  9. モデル推定クラシックな機械学習の入門  9. モデル推定
クラシックな機械学習の入門  9. モデル推定
 
Use_coot_ver.1.0
Use_coot_ver.1.0Use_coot_ver.1.0
Use_coot_ver.1.0
 
【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH
【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH
【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH
 
集中不等式のすすめ [集中不等式本読み会#1]
集中不等式のすすめ [集中不等式本読み会#1]集中不等式のすすめ [集中不等式本読み会#1]
集中不等式のすすめ [集中不等式本読み会#1]
 
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
 
Non-autoregressive text generation
Non-autoregressive text generationNon-autoregressive text generation
Non-autoregressive text generation
 
深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて
 

Similar a 博士論文審査

NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...Rene Kotze
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distributionmathsjournal
 
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...Daisuke Satow
 
Muon g-2 and Physics Beyond Standard Model
Muon g-2 and Physics Beyond Standard ModelMuon g-2 and Physics Beyond Standard Model
Muon g-2 and Physics Beyond Standard ModelAtanu Nath
 
Soliton optical fibers supercontinuum generation near the zero dispersion
Soliton optical fibers supercontinuum generation near the zero dispersionSoliton optical fibers supercontinuum generation near the zero dispersion
Soliton optical fibers supercontinuum generation near the zero dispersionIAEME Publication
 
3.magnetic materials 1dkr
3.magnetic materials 1dkr3.magnetic materials 1dkr
3.magnetic materials 1dkrDevyani Gera
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_correctedAndy Hone
 
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...SEENET-MTP
 
Cross sections calculation for the process
Cross sections calculation for the processCross sections calculation for the process
Cross sections calculation for the processAlexander Decker
 
Global QCD analysis and dark photons
Global QCD analysis and dark photonsGlobal QCD analysis and dark photons
Global QCD analysis and dark photonsSérgio Sacani
 
Thermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit ChainThermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit Chainijrap
 
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...Sérgio Sacani
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Alexander Decker
 
Textures and topological defects in nematic phases
Textures and topological defects in nematic phasesTextures and topological defects in nematic phases
Textures and topological defects in nematic phasesAmit Bhattacharjee
 

Similar a 博士論文審査 (20)

selection (1)
selection (1)selection (1)
selection (1)
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
 
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
Nambu-Goldstone mode for supersymmetry breaking in QCD and Bose-Fermi cold at...
 
Muon g-2 and Physics Beyond Standard Model
Muon g-2 and Physics Beyond Standard ModelMuon g-2 and Physics Beyond Standard Model
Muon g-2 and Physics Beyond Standard Model
 
Soliton optical fibers supercontinuum generation near the zero dispersion
Soliton optical fibers supercontinuum generation near the zero dispersionSoliton optical fibers supercontinuum generation near the zero dispersion
Soliton optical fibers supercontinuum generation near the zero dispersion
 
3.magnetic materials 1dkr
3.magnetic materials 1dkr3.magnetic materials 1dkr
3.magnetic materials 1dkr
 
20320130406030
2032013040603020320130406030
20320130406030
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
 
15 16
15 1615 16
15 16
 
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
 
Cross sections calculation for the process
Cross sections calculation for the processCross sections calculation for the process
Cross sections calculation for the process
 
Global QCD analysis and dark photons
Global QCD analysis and dark photonsGlobal QCD analysis and dark photons
Global QCD analysis and dark photons
 
6. Proton Spin and Tensorgluons
6. Proton Spin and Tensorgluons6. Proton Spin and Tensorgluons
6. Proton Spin and Tensorgluons
 
Thermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit ChainThermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit Chain
 
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
High resolution alma_observations_of_sdp81_the_innermost_mass_profile_of_the_...
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
 
Textures and topological defects in nematic phases
Textures and topological defects in nematic phasesTextures and topological defects in nematic phases
Textures and topological defects in nematic phases
 

Más de Takahiro Yoshinaga

トポロジカルデータ解析(仮)
トポロジカルデータ解析(仮)トポロジカルデータ解析(仮)
トポロジカルデータ解析(仮)Takahiro Yoshinaga
 
A Deep Reinforcement Learning Chatbot
A Deep Reinforcement Learning ChatbotA Deep Reinforcement Learning Chatbot
A Deep Reinforcement Learning ChatbotTakahiro Yoshinaga
 
Groups-Keeping Solution Path Algorithm For Sparse Regression
Groups-Keeping Solution Path Algorithm For Sparse RegressionGroups-Keeping Solution Path Algorithm For Sparse Regression
Groups-Keeping Solution Path Algorithm For Sparse RegressionTakahiro Yoshinaga
 
「予測にいかす統計モデリングの基本」勉強会 第二章
「予測にいかす統計モデリングの基本」勉強会 第二章「予測にいかす統計モデリングの基本」勉強会 第二章
「予測にいかす統計モデリングの基本」勉強会 第二章Takahiro Yoshinaga
 
「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章Takahiro Yoshinaga
 

Más de Takahiro Yoshinaga (8)

ICLR 2018
ICLR 2018ICLR 2018
ICLR 2018
 
WSDM2018 presentation
WSDM2018 presentationWSDM2018 presentation
WSDM2018 presentation
 
Rainbow
RainbowRainbow
Rainbow
 
トポロジカルデータ解析(仮)
トポロジカルデータ解析(仮)トポロジカルデータ解析(仮)
トポロジカルデータ解析(仮)
 
A Deep Reinforcement Learning Chatbot
A Deep Reinforcement Learning ChatbotA Deep Reinforcement Learning Chatbot
A Deep Reinforcement Learning Chatbot
 
Groups-Keeping Solution Path Algorithm For Sparse Regression
Groups-Keeping Solution Path Algorithm For Sparse RegressionGroups-Keeping Solution Path Algorithm For Sparse Regression
Groups-Keeping Solution Path Algorithm For Sparse Regression
 
「予測にいかす統計モデリングの基本」勉強会 第二章
「予測にいかす統計モデリングの基本」勉強会 第二章「予測にいかす統計モデリングの基本」勉強会 第二章
「予測にいかす統計モデリングの基本」勉強会 第二章
 
「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章
 

Último

GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxuniversity
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomyDrAnita Sharma
 
Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicAditi Jain
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 

Último (20)

GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
basic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomybasic entomology with insect anatomy and taxonomy
basic entomology with insect anatomy and taxonomy
 
Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by Petrovic
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 

博士論文審査

  • 1. Prospects  for  Slepton  Searches in  Future  Experiments (将来実験におけるスレプトン探索索の展望) Presented  by  Takahiro  Yoshinaga 博⼠士論論⽂文審査会 Based  on    T.  Kitahara  and  T.Y    JHEP  05  035  (2013)    M.  Endo,  K.  Hamaguchi,  T.  Kitahara,  and  T.Y    JHEP  11  013  (2013)    M.  Endo,  T.  Kitahara,  and  T.Y    JHEP  04  139  (2014) 45  Slides
  • 2.   博⼠士論論⽂文の概要 2 「Muon  g-‐‑‒2を説明する超対称模型の現象論論」 Muon  g-‐‑‒2 >3σ  dev. eB e`L e`R eg eq fW ··· ⇡ ≫1TeV O(100)GeV “Minimal”  SUSY  model LHC ILC LFV EDM mee = m eµ = m e⌧ m ee = m eµ ⌧ m e⌧ ①  massに制限 ②  相補的に探索索可能
  • 3.   博⼠士論論⽂文の内容 3 1.  Introduction 2.  Foundation  (Review) 3.  Supersymmetric  Standard  Model  (Review) 4.  Prospects  for  Slepton  Searches  (Main) 5.  Conclusion 4.1  Foundation  :  Model  &  Mass  Bound 4.2  Selectron/Smuon 4.3  Stau
  • 4.   本⽇日の内容 4 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 5.   本⽇日の内容 5 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 6. ミューオンの異異常磁気モーメント  (Muon  g-‐‑‒2) Muon g-2 ✓ g = 2 at tree level (Dirac equation) ✓ g ≠ 2 by radiative corrections Magnetic moment g-factor   Muon  g-‐‑‒2 6 l  ミューオンの磁気モーメント l  g-‐‑‒factor H = !m · ! B , !m = Ç e 2mµ å !sg -‐‑‒  g  =  2  :  Tree  Level -‐‑‒  g  ≠  2  :  Radiative  Correction aµ ⌘ g 2 2
  • 7.   Muon  g-‐‑‒2 7 SM  Prediction Contributions Value  (10-‐‑‒10) QED  (O(α5)) 11658471.8951  (0.0080) EW  (NLO) 15.36  (0.1) Hadronic (LO) [HLMNT] 694.91  (4.27) [DHMZ] 692.3  (4.2) Hadronic  (HO) -‐‑‒9.84  (0.07) Hadronic (LbL) [RdRV] 10.5  (2.6) [NJN] 11.6  (3.9) Total  SM [HLMNT] 11659182.8  (4.9) CHAPTER 2. FOUNDATION µ µ γ (A) µ (B Figure 2.1: (A) The Feynman diagram which c of the muon. (B) The hadronic vacuum-polariz hadronic light-by-light contributions to the mu The amplitude can be interpreted as th electron from a potential (For detail, see textb corresponds to such potential is given by Hint = −〈−→µ where 〈−→µ 〉 = 2 F1(0) + F2(0 The factor ξ′† (−→σ /2)ξ can be interpreted as the with Eqs. (2.3) and (2.4), the coefficient 2 F1( 2 F1(0) + F2(0) = It is just the g-value. 2.2.2 The Standard Model predictio The SM prediction of the muon g − 2 has bee several groups of theorists. Fig. 2.1 (A) shows muon g − 2. The theoretical uncertainty reach review the SM prediction of the muon g − 2. QED Contribution The quantum electromagnetic dynamics (QED to the muon g − 2 (99.993%), and come from CHAPTER 2. FOUNDATION µ µ γ (A) µ µ γ (B) µ Figure 2.1: (A) The Feynman diagram which contributes to the ano of the muon. (B) The hadronic vacuum-polarization contributions to hadronic light-by-light contributions to the muon g − 2. The amplitude can be interpreted as the Born approximatio electron from a potential (For detail, see textbook [19]). The intera corresponds to such potential is given by Hint = −〈−→µ 〉 · −→ B , where 〈−→µ 〉 = 2 F1(0) + F2(0) × eQℓ 2mℓ ξ′† −→σ 2 ξ. CHAPTER 2. FOUNDATION 23 µ µ γ (A) µ µ γ (B) µ µ γ (C) Figure 2.1: (A) The Feynman diagram which contributes to the anomalous magnetic moment of the muon. (B) The hadronic vacuum-polarization contributions to the muon g −2. (C) The hadronic light-by-light contributions to the muon g − 2. The amplitude can be interpreted as the Born approximation to the scattering of the electron from a potential (For detail, see textbook [19]). The interaction Hamiltonian which had QED,  EW had Experiment [E821  Muon  g-‐‑‒2実験のHome  pageより] 11659208.9  (6.3)  ×  10-‐‑‒10aexp µ = >3σの不不⼀一致が観測 26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp µ ath µ =
  • 8.   Muon  g-‐‑‒2 8 >3σの不不⼀一致が観測 26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp µ ath µ = Status of the muon g-2 SM Value experiment DHMZ (11) The latest result of the muon g-2 [Hagiwara,Liao,Martin,Nomura,Teubner,J. Phys. G 38 (2011)085033] [Davier,Hoecker,Malaescu,Zhang,Eur. Phys. J. C 71(2011)1515] 3.3 σ 3.6 σ aμ  ×  1010  -‐‑‒  11659000 SM Exp [Hagiwara,  Liao,  Martin,  Nomura,  Teubner,  ʼ’11]
  • 9.   Muon  g-‐‑‒2 9 Future 35 26 25 40 Fermilab  &  JPARC Next  3-‐‑‒5  years e+e-‐‑‒→hadrons実験 中⼼心値が変わらなければ 近い将来>5σの感度度が期待 [Snowmass  white  paperより] SMXX 181.5±3.5
  • 10.   Muon  g-‐‑‒2 10 中⼼心値が変わらなければ 近い将来>5σの感度度が期待 >3σの不不⼀一致が観測 26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp µ ath µ = 「今」Muon  g-‐‑‒2の不不⼀一致の原因 を調べることは⾮非常に重要 博⼠士論論⽂文での⽴立立場
  • 11.   Muon  g-‐‑‒2 11 博⼠士論論⽂文での⽴立立場 /21Dec 2, 2013 SUSY: Model-building and Phenomenology Teppei KITAHARA -The Univ. of Tokyo Status of the muon g-2 SM Value experiment DHMZ (11) The latest result of the muon g-2 [Hagiwara,Liao,Martin,Nomura,Teubner,J. Phys. G 38 (2011)085033] [Davier,Hoecker,Malaescu,Zhang,Eur. Phys. J. C 71(2011)1515] 3.3 σ 3.6 σ (possibly a signal of new physics)muon g-2 anomaly 3 SM+NP Exp Muon  g-‐‑‒2の不不⼀一致は新しい物理理(NP)の寄与が原因 新しい物理理 -‐‑‒  博⼠士論論⽂文では超対称模型を仮定 -‐‑‒  model-‐‑‒independentにSUSYの寄与を確かめる CHAPTER 2. FOUNDATION µ µ γ (A) µ µ γ (B) µ Figure 2.1: (A) The Feynman diagram which contributes to the anom of the muon. (B) The hadronic vacuum-polarization contributions to hadronic light-by-light contributions to the muon g − 2. The amplitude can be interpreted as the Born approximation electron from a potential (For detail, see textbook [19]). The intera corresponds to such potential is given by Hint = −〈−→µ 〉 · −→ B , where 〈−→µ 〉 = 2 F1(0) + F2(0) × eQℓ 2mℓ ξ′† −→σ 2 ξ. The factor ξ′† (−→σ /2)ξ can be interpreted as the spin of the leptons, −→ S with Eqs. (2.3) and (2.4), the coefficient 2 F1(0) + F2(0) becomes 2 F1(0) + F2(0) = 2(1 + aℓ) = gℓ. It is just the g-value. 2.2.2 The Standard Model prediction of the muon g − The SM prediction of the muon g − 2 has been precisely evaluated NP
  • 12.   本⽇日の内容 12 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 13.   Supersymmetry 13 「BosonとFermionの間の対称性」 MSSM=Minimal  Supersymmetric  Standard  Model SM粒粒⼦子のパートナー(superparticle)を予⾔言
  • 14.   Supersymmetry 14 SUSY  contribution  to  the  muon  g-‐‑‒2 aSUSY µ ⇠ ↵2 tan 4⇡ m2 µ m2 SUSY 46 Dissertation / Takahiro Yosh µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL W0 H0 d γ (c) µL µR µL B H0 d γ (d) µL µR µR H0 d B γ (e) Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigen The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–( from the neutralino–smuon diagram. ∆aχ0 µ = − mµ 48π2 6 X=1 4 A=1 1 m2 ℓX mµ 4 N L(e) 2AX 2 + N R(e) 2AX 2 FN 1 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ + mχ0 A 2 ℜ N L(e)∗ 2AX N R(e) 2AX FN 2 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ , where FC 1,2 and FN 1,2 are the loop functions. FC 1 (x) = 2 (1 − x)4 2 + 2x − 6x2 + x3 + 6x log x , FC (x) = 3 −3 + 4x − x2 − 2log x , fW eH Chargino-‐‑‒sneutrino Neutralino-‐‑‒smuon Ç ⇠ 150 ⇥ 10 10 ⇥ ✓ 100GeV mSUSY ◆2 ⇥ ✓ tan 10 ◆å mSUSY  :  典型的なSUSY粒粒⼦子の質量量,    tanβ  :  Higgsの真空期待値の⽐比 mSUSY  =  O(100)GeV,  tanβ  =  O(10)のとき 超対称模型の寄与によりMuon  g-‐‑‒2の不不⼀一致を説明可能 [Lopez,  Nanopoulos,  Wang,  ʼ’93] [Chattopadhyay,  Nath,  ʼ’95] [Moroi,  ʼ’95] 26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp µ ath µ =
  • 15.   Supersymmetry 15 Representative  SUSY  contributions Contributions O(100)GeV  particles Diagram Chagino-‐‑‒ sneutrino Wino,  Higgsinos,   (Bino),  smuons,   Neutralino-‐‑‒ smuon Bino,  smuons 46 Dissertation / Takah µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µL W0 H (c) µL µR µL B H0 d γ µL µR µR H0 d B γ fW eH 46 µL µR W± νµ γ (a) µL µL µR B (b) µL µR µL B H0 d γ (d) Figure 3.4: The diagrams of the SUSY contributio The diagram (a) comes from the chargino–muon s from the neutralino–smuon diagram. 6 4 fW eH l  Muon  g-‐‑‒2を説明するminimalな解の⼀一つ l  特徴的な性質を持つ
  • 16.   Supersymmetry 16 博⼠士論論⽂文での⽴立立場 /21Dec 2, 2013 SUSY: Model-building and Phenomenology Teppei KITAHARA -The Univ. of Tokyo Status of the muon g-2 SM Value experiment DHMZ (11) The latest result of the muon g-2 [Hagiwara,Liao,Martin,Nomura,Teubner,J. Phys. G 38 (2011)085033] [Davier,Hoecker,Malaescu,Zhang,Eur. Phys. J. C 71(2011)1515] 3.3 σ 3.6 σ (possibly a signal of new physics)muon g-2 anomaly 3 SM+SUSY Exp Muon  g-‐‑‒2の不不⼀一致は                                            の寄与が原因 知りたいこと -‐‑‒  どのような性質を持つか -‐‑‒  実験で検証できるか 46 Dissertation / Takahiro Yoshinaga µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL W0 H0 d γ (c) µL µR µL B H0 d γ (d) µL µR µR H0 d B γ (e) Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigenstates. The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–(e) are from the neutralino–smuon diagram. ∆aχ0 µ = − mµ 48π2 6 X=1 4 A=1 1 m2 ℓX mµ 4 N L(e) 2AX 2 + N R(e) 2AX 2 FN 1 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ + mχ0 A 2 ℜ N L(e)∗ 2AX N R(e) 2AX FN 2 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ , (3.33) where FC 1,2 and FN 1,2 are the loop functions. fW eH 46 Dissertation / Takahiro Yoshinaga µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL W0 H0 d γ (c) µL µR µL B H0 d γ (d) µL µR µR H0 d B γ (e) Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigenstates. The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–(e) are from the neutralino–smuon diagram. ∆aχ0 µ = − mµ 48π2 6 X=1 4 A=1 1 m2 ℓX mµ 4 N L(e) 2AX 2 + N R(e) 2AX 2 FN 1 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ + mχ0 A 2 ℜ N L(e)∗ 2AX N R(e) 2AX FN 2 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ , (3.33) where FC 1,2 and FN 1,2 are the loop functions. FC 1 (x) = 2 (1 − x)4 2 + 2x − 6x2 + x3 + 6x log x , (3.34) FC 2 (x) = 3 2(1 − x)3 −3 + 4x − x2 − 2log x , (3.35) FN 1 (x) = 2 (1 − x)4 1 − 6x + 3x2 + 2x3 − 6x2 log x , (3.36) fW eH
  • 17.   本⽇日の内容 17 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 18.   Minimal  SUSY  model 18 Mass  spectrum eB e`L e`R eg eq fW ··· ⇡ ≫1TeV O(100)GeV 46 Dissertation / µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL W µL γ µR γ fW eH l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons l  他の超対称粒粒⼦子  :  Decoupled* *  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾
  • 19.   Minimal  SUSY  model 19 Mass  spectrum eB e`L e`R eg eq fW ··· ⇡ ≫1TeV O(100)GeV 46 Dissertation / Takahiro Yos µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL W0 H0 d γ (c) µL µR µL 0 γ µL µR µR 0 γ fW eH l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons l  他の超対称粒粒⼦子  :  Decoupled* *  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾 [GeV]0m 0 1000 2000 3000 4000 5000 6000 [GeV]1/2m 300 400 500 600 700 800 900 1000 (2400GeV)q~ (1600GeV) q~ (1000 GeV) g ~ (1400 GeV)g ~ h(122GeV) h(124GeV) h(126GeV) Expected Observed Expected Observed Expected Observed Expected Observed Expected Observed Expected Observed > 0µ,0= -2m 0 ) = 30, AβMSUGRA/CMSSM: tan( Status: ICHEP 2014 ATLAS Preliminary = 8 TeVs, -1 L dt = 20.1 - 20.7 fb∫ τ∼ LSP not included.theory SUSY σ95% CL limits. 0-lepton, 2-6 jets 0-lepton, 7-10 jets 0-1 lepton, 3 b-jets 1-lepton + jets + MET 1-2 taus + 0-1 lept. + jets + MET 3 b-jets≥2SS/3 leptons, 0 - arXiv: 1405.7875 arXiv: 1308.1841 arXiv: 1407.0600 ATLAS-CONF-2013-062 arXiv: 1407.0603 arXiv: 1404.2500 [GeV]g~m 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 [GeV] 1 0 χ∼m 200 400 600 800 1000 forbidden 1 0 χ∼tt →g~ = 8 TeVs),g~) >> m(q~, m(1 0 χ∼tt→g~production,g~g~ ICHEP 2014 ATLAS Preliminary Expected Observed Expected Observed Observed Expected 10 jets≥0-lepton, 7 - 3 b-jets≥0-1 lepton, 3 b-jets≥2SS/3 leptons, 0 - arXiv: 1308.1841 arXiv: 1407.0600 arXiv: 1404.2500 ]-1 = 20.3 fb int [L ]-1 = 20.1 fb int [L ]-1 = 20.3 fb int [L not included.theory SUSY σ95% CL limits. Colored  superparticles  >  ~∼1TeV [https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults#Summary_̲plots_̲status_̲July_̲2014]
  • 20.   Minimal  SUSY  model 20 Mass  spectrum eB e`L e`R eg eq fW ··· ⇡ ≫1TeV O(100)GeV 46 Dissertation / Takahiro Yos µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL W0 H0 d γ (c) µL µR µL 0 γ µL µR µR 0 γ fW eH l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons l  他の超対称粒粒⼦子  :  Decoupled* *  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾 Scalar  top  >>  1TeV [Hahn,  Heinemeyer,  Hollik,  Rzehak,  Weiglein,  ʼ’13] 3 FD approach in the e leading and sub- her up to a certain btained in the RGE all terms of Eq. (4) n terms of mt; the ven by 3αt)/(16π))] (5) e are no logarithmic MMS S and MOS S . beyond 2-loop order tion MA ≫ MZ, to ons can be incorpo- he φ2φ2 self-energy t 1/ sin2 β). In this ons enter not only other Higgs sector nHiggs. The latest 0, which is available roved predictions as etical uncertainties ns. Taking into ac- garithmic contribu- certainty of the re- tions. Accordingly, ng from corrections p sector is adjusted running top-quark s evaluated only for er than for the full 5000 10000 15000 20000 MS [GeV] 115 120 125 130 135 140 145 150 155 Mh [GeV] FH295 3-loop 4-loop 5-loop 6-loop 7-loop LL+NLL FeynHiggs 2.10.0 Xt = 0 Xt /MS = 2 5000 10000 15000 20000 MS [GeV] 115 120 125 130 135 140 145 150 155 Mh [GeV] 3-loop, O(αt αs 2 ) 3-loop full LL+NLL H3m FeynHiggs 2.10.0 A0 = 0, tanβ = 10 FIG. 1. Upper plot: Mh as a function of MS for Xt = 0 (solid) and Xt/MS = 2 (dashed). The full result (“LL+NLL”) is compared with results containing the logarithmic contribu- tions up to the 3-loop, . . . 7-loop level and with the fixed-order FD result (“FH295”). Lower plot: comparison of FeynHiggs (red) with H3m (blue). In green we show the FeynHiggs 3-loop 2 Mh  :  Higgs  mass Ms  :  Scalar  top  mass
  • 21.   Minimal  SUSY  model 21 Mass  spectrum eB e`L e`R eg eq fW ··· ⇡ ≫1TeV O(100)GeV l  軽い(O(100)GeV)粒粒⼦子  :  Bino,  sleptons l  他の超対称粒粒⼦子  :  Decoupled* *  現在のLHCの制限および126GeV  Higgs  massと無⽭矛盾 46 Dissertation / µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL W µL γ µR γ fW eH
  • 22.   Minimal  SUSY  model 22 Dissertation / Takahi µR W± νµ γ (a) µL µR µL µR B γ (b) µL µL W0 H0 d (c) µ µ µL 0 γ µ µ µR 0 γ fW eH eµL eµR m2 e`LR Neutralino-‐‑‒smuon  contribution 右巻きと左巻きsleptonの混合に⽐比例例
  • 23.   Minimal  SUSY  model 23 右巻きと左巻きsmuonの混合に⽐比例例   -‐‑‒  Large  μ×tanβ  :  enhanced -‐‑‒  Large  smuon  mass  :  suppressed 46 Dis µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL B H0 d γ (d) µL µR H0 d (e) Figure 3.4: The diagrams of the SUSY contributions to the mu The diagram (a) comes from the chargino–muon sneutrino diag from the neutralino–smuon diagram. ∆aχ0 µ = − mµ 2 6 4 1 2 mµ N L(e) 2AX 2 + N R 2 fW eH eµL eµR m2 e`LR SmuonがO(1)TeVでも極端に⼤大きな混合を 取ればMuon  g-‐‑‒2の不不⼀一致を説明できてしまう Muon  g-‐‑‒2 1σ 2σ 加速器実験の探索索可能領領域を超えてしまう!? [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] Neutralino-‐‑‒smuon  contribution
  • 24.   Minimal  SUSY  model 24 右巻きと左巻きsmuonの混合に⽐比例例   -‐‑‒  Large  μ×tanβ  :  enhanced -‐‑‒  Large  smuon  mass  :  suppressed 46 Dis µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL B H0 d γ (d) µL µR H0 d (e) Figure 3.4: The diagrams of the SUSY contributions to the mu The diagram (a) comes from the chargino–muon sneutrino diag from the neutralino–smuon diagram. ∆aχ0 µ = − mµ 2 6 4 1 2 mµ N L(e) 2AX 2 + N R 2 fW eH eµL eµR m2 e`LR SmuonがO(1)TeVでも極端に⼤大きな混合を 取ればMuon  g-‐‑‒2の不不⼀一致を説明できてしまう Muon  g-‐‑‒2 1σ 2σ 加速器実験の探索索可能領領域を超えてしまう!? [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] Neutralino-‐‑‒smuon  contribution   スカラーポテンシャルの安定性条件   により上限が存在する
  • 25.   Minimal  SUSY  model 25 まとめとこれから議論論すること SmuonがO(1)TeVでも極端に⼤大きな混合 を取ればMuon  g-‐‑‒2の不不⼀一致を説明できてしまう                                                がMuon  g-‐‑‒2の不不⼀一致の原因 46 Dissertation / Takahiro Yoshinaga µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL W0 H0 d γ (c) µL µR µL B H0 d γ (d) µL µR µR H0 d B γ (e) Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 in gauge eigenstates. The diagram (a) comes from the chargino–muon sneutrino diagram, the diagrams (b)–(e) are from the neutralino–smuon diagram. ∆aχ0 µ = − mµ 48π2 6 X=1 4 A=1 1 m2 ℓX mµ 4 N L(e) 2AX 2 + N R(e) 2AX 2 FN 1 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ + mχ0 A 2 ℜ N L(e)∗ 2AX N R(e) 2AX FN 2 ⎛ ⎝ m2 χ0 A m2 ℓX ⎞ ⎠ , (3.33) where FC 1,2 and FN 1,2 are the loop functions. FC 1 (x) = 2 (1 − x)4 2 + 2x − 6x2 + x3 + 6x log x , (3.34) FC (x) = 3 −3 + 4x − x2 − 2log x , (3.35) fW eH eµL eµR m2 e`LR 極端に⼤大きな混合は スカラーポテンシャルの安定性条件により制限 Muon  g-‐‑‒2の不不⼀一致を説明するという 条件と合わせるとsmuonのmassに上限 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
  • 26.   本⽇日の内容 26 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 27.   Slepton  Mass  Bound 27 真空の安定性条件 -‐‑‒  SleptonとHiggsの3点結合 v  :  真空期待値,  h  :  SM  Higgs,  混合はμ>0のときnegative   EW  vacuumの寿命  >  宇宙年年齢とすると 混合の⼤大きさに上限が付く EW  vacuum Charge-‐‑‒breaking  minima ⼤大きすぎる混合
  • 28.   Slepton  Mass  Bound 28 真空の安定性条件 -‐‑‒  数値公式* Slepton  mass  bound [Kitahara,  TY,  ʻ‘13] [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] *  Calculated  by  CosmoTransitions      η~∼1,  (leptonのフレーバーに弱く依存)   Muon  g-‐‑‒2の不不⼀一致を説明するという 条件と合わせるとsmuonのmassに上限 (すべて縮退)のとき Stau-‐‑‒Higgsポテンシャルで強く制限 Vacuum  bound 〜~400GeV
  • 29.   Slepton  Mass  Bound 29 Stau  mass  dependence Massの制限はstauとsmuonのmassの⽐比に依存 Vacuum  bound 〜~400GeV 〜~600GeV me⌧/meµ = 1 me⌧/meµ = 2 me⌧/meµ 1 stauによって制限 (3点結合はYukawaに⽐比例例) meµ Æ 500GeV smuonによって制限 (stauがdecoupleしたとき) meµ Æ 2TeV [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] stauが重くなると 制限が弱くなる
  • 30.   Slepton  Mass  Bound 30 まとめとこれから議論論すること Universal Non-‐‑‒Universal Spectrum Vacuum Severe  (stau) Mild  (smuon) Mass  Bound Tight  (<500GeV) Loose  (<2TeV) Collider LHC,  ILC ✕ Flavor/CP GIM Sensitive まとめ これから mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 31.   本⽇日の内容 31 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 32.   Universal  Case 32 -‐‑‒  Mass -‐‑‒  混合 -‐‑‒  LHC mee = meµ = me⌧ (縮退) 真空の安定性条件を満たす 中で最⼤大の値を各点で選ぶ LHC  Status e`e` e0 1e0 1 ` ` [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] Smuon  mass  <  500GeVに制限される g-‐‑‒2 1σ 2σ Excluded  by  long-‐‑‒lived  stau  search pp ! e`e`⇤ ! `+ ` + Emiss T
  • 33.   Universal  Case 33 -‐‑‒  Mass -‐‑‒  混合 -‐‑‒  LHC mee = meµ = me⌧ (縮退) 真空の安定性条件を満たす 中で最⼤大の値を各点で選ぶ LHC  Status e`e` e0 1e0 1 ` ` (Dilepton  search)が有効 [ATLAS  Collaboration,  JHEP  05  (2014)  035] [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] pp ! e`e`⇤ ! `+ ` + Emiss T pp ! e`e`⇤ ! `+ ` + Emiss T
  • 34.   Universal  Case 34 -‐‑‒  Mass -‐‑‒  混合 -‐‑‒  LHC mee = meµ = me⌧ (縮退) 真空の安定性条件を満たす 中で最⼤大の値を各点で選ぶ LHC  Status e`e` e0 1e0 1 ` ` Muon  g-‐‑‒2を1σで説明できる領領域  (1σ  Region) のほとんどは現在のLHCのデータですでに排除 Excluded [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] pp ! e`e`⇤ ! `+ ` + Emiss T
  • 35.   Universal  Case 35 -‐‑‒  Cross  section  (LO) Future  Prospects Smuonの質量量がNeutralinoの質量量より ⼗十分⼤大きい領領域は14TeV  LHCで探索索可能 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] (eµ1 eµ1) = 8 >>< >>: 1fb  (√s  =  8TeV,                                          のとき)meµ = 330GeV meµ = 450GeV1fb  (√s  =  14TeV,                                          のとき) ↔  現在のLHCの制限 ↔  (Naïveな)将来の感度度 LHC
  • 36.   Universal  Case 36 Future  Prospects Smuonの質量量とNeutralinoの質量量が 近い領領域は1TeV  ILCで探索索可能 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] -‐‑‒  ILC kinematicalに許される質量量領領域ならば探索索可能 Closing the loopholes At the ILC, a systematic search for the NLSP is possible without leaving loopholes, covering even the cases that may be very difficult to test at the LHC. In the case of a very small mass difference between the LSP and the NLSP - less than a few GeV - the clean environment at the ILC nevertheless allows for a good detection efficiency. If √ s is much larger than the threshold for the NLSP-pair production, the NLSPs themselves will be highly boosted in the detector frame, and most of the spectrum of the decay products will be easily detected. In this case, the precise knowledge of the initial state at the ILC is of paramount importance to recognize the signal, by the slight discrepancy in energy, momentum and acolinearity between signal and background from pair production of the NLSP’s SM partner. In the case the threshold is not much below √ s, the background to fight is γγ → f ¯f where the γ’s are virtual ones radiated off the beam-electrons. The beam-electrons themselves are deflected so little that they leave the detector undetected through the outgoing beam-pipes. Under the clean conditions at the ILC, this background can be kept under control by demanding that there is a visible ISR photon accompanying the soft NLSP decay products. If such an ISR is present in a γγ event, the beam-remnant will also be detected, and the event can be rejected. If the LSP is unstable due to R-parity violation, the ILC reach would be better or equal to the R- conserving case, both for long-lived and short-lived LSP’s and whether the LSP is charged or neutral. Also in the case of an NLSP which is a mass-state mixed between the hyper-charge states, the procedure is viable. One will have one more parameter - the mixing angle. However, as the couplings to the Z of both states are known from the SUSY principle, so is the coupling with any mixed state. There will then be one mixing-angle that represents a possible “worst case”, which allows to determine the reach whatever the mixing is - namely the reach in this “worst case”. Finally, the case of “several” NLSPs– i.e. a group of near-degenerate sparticles– can be disentangled due to the possibility to precisely choose the beam energy at the ILC. This will make it possible to study the “real” NLSP below the threshold of its nearby partner. 0 50 100 150 200 250 0 50 100 150 200 250 Exclusion Discovery Excludable at95% C L NLSP : µ˜R MNLSP [GeV] MLSP[GeV] 0 50 100 150 200 250 240 242 244 246 248 250 Exclusion Discovery NLSP : µ˜R MNLSP [GeV] MLSP[GeV] Figure 3: Discovery reach for a ˜µR NLSP after collecting 500 fb−1 at √ s = 500 GeV. Left: full scale, Right: zoom to last few GeV before the kinematic limit. The strategy At an e+ e− -collider, the following typical features of NLSP production and decay can be exploited: missing [Baer,  et.al.,  ʻ‘13] ex)  √s  =  500GeV   Δm=O(10-‐‑‒100)MeV Massの差はO(10)GeV ILCで探索索可能
  • 37.   Universal  Case 37 Muon  g-‐‑‒2を1σで説明できる領領域  (1σ  Region) のほとんどは現在のLHCのデータですでに排除 残りの質量量領領域も将来のLHC,  ILC実験 で探索索可能な⾒見見通し* Stau-‐‑‒Higgsポテンシャルの安定性条件から slepton  mass  <  500GeVに制限される まとめ *  ILCにおけるStau探索索に関して、HiggsとDiphotonの結合の情報も有効 [Kitahara,  TY,  ʻ‘13] [Endo,  Kitahara,  TY,  ʻ‘14]
  • 38.   本⽇日の内容 38 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 39.   Non-‐‑‒Universal  Case 39 Smuon  mass  bound 500 1000 1500 2000 500 1500 2500 3500 meµ < me0 1 Smuon-‐‑‒Higgsポテンシャルの安定性条件から   smuon  mass  <  2TeVに制限される -‐‑‒  Mass -‐‑‒  混合 mee = meµ ⌧ me⌧ (stauはdecouple) meµL = meµR , tan = 40 真空の安定性条件を満たす 中で最⼤大の値を各点で選ぶ Smuon  mass  <2TeVは 加速器実験の探索索可能領領域を超えている [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13]
  • 40.   Non-‐‑‒Universal  Case 40 Fermionを対⾓角にする基底で Slepton質量量⾏行行列列に⾮非対⾓角項が出現 Sleptonの質量量が縮退していない場合、 GIM機構が働かないため、LFV/CPVを誘発 LFV/CPV                         (対⾓角)  である模型でも Fermionを対⾓角にする基底とは⼀一般に揃わない ⇣ m2 e` ⌘ i j = diag ⇣ m2 ee , m2 eµ, m2 e⌧ ⌘ LFV/CPVはSlepton質量量⾏行行列列の⾮非対⾓角項に敏感
  • 41.   Non-‐‑‒Universal  Case 41 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] ex)  μ→eγ崩壊 Br(µ ! e ) ⇣ aNeutralino µ ⌘2 ' 1 (µ ! all) ↵mµ 16 13 23 2 Ç m⌧ mµ å2 + (higher order) l  Stauは1,2世代のSleptonより重い: l  SelectronとSmuonは縮退:1-‐‑‒2世代間の混合の寄与はsuppress mee = meµ ⌧ me⌧ 仮定 Stauが1,2世代のSleptonより⼗十分重い場合 μ→eγとMuon  g-‐‑‒2の⽐比はBino,  slepton  massと独⽴立立 Flavor  mixingの定義 46 Diss µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL µR µL B H0 γ µL µR H0 fW eH eµL eµReeR eR
  • 42.   Non-‐‑‒Universal  Case 42 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] ex)  μ→eγ崩壊 SleptonがLHC,  ILCで発⾒見見されなくても レプトンフレーバー実験から⾼高感度度で探索索可能 =Non-‐‑‒Universality 現在の Bound 将来の 感度度 -‐‑‒  Mass -‐‑‒  Formula mee = meµ ⌧ me⌧ Br(µ ! e ) Br(µ ! e ) ⇣ aNeutralino µ ⌘2 ' 1 (µ ! all) ↵mµ 16 13 23 2 Ç m⌧ mµ å2 + (higher order) Stauが⼗十分重い(R≫1)とき L 13 R ⇤ 23 Æ 3 ⇥ 10 6 L 13 R ⇤ 23 Æ 10 7⇠8 (Current) (Future) VubVcb ⇠ 10 4 cf)  CKM-‐‑‒like
  • 43.   Non-‐‑‒Universal  Case 43 Sleptonのmassが縮退していない場合、 ⼀一般に⼤大きなLFV/CPVを誘発 Smuon-‐‑‒Higgsポテンシャルの安定性条件から smuon  mass  <  2TeVに制限される まとめ SleptonがLHC,  ILCで発⾒見見されなくても レプトンフレーバー実験から⾼高感度度で探索索可能
  • 44.   本⽇日の内容 44 Intro. Muon  g-‐‑‒2 Supersymmetric  Standard  Model Main “Minimal”  SUSY  model Slepton  Mass  Bound Conc. Summary mee = meµ = me⌧ mee = meµ ⌧ me⌧
  • 45.   まとめ 45 「Muon  g-‐‑‒2を説明する超対称模型の現象論論」 Muon  g-‐‑‒2 >3σ  dev. eB e`L e`R eg eq fW ··· ⇡ ≫1TeV O(100)GeV “Minimal”  SUSY  model LHC ILC LFV EDM mee = m eµ = m e⌧ m ee = m eµ ⌧ m e⌧ ①  massに制限 ②  相補的に探索索可能
  • 47.   Muon  g-‐‑‒2 47 測り⽅方 磁場中でのMuonの歳差運動の周波数から求める ①  ⼀一様磁場中に偏極した(反)muonを⼊入れる ②  サイクロトロン運動(磁場)&歳差運動(スピン) ③  g=2  :  歳差運動はサイクロトロン運動に追従 g≠2  :  歳差運動の⽅方がわずかに速くなる(異異常歳差運動) ④  崩壊先の陽電⼦子の数の時間変動の測定から歳差運動の振動数を求める ⑤  歳差運動の振動数からg-‐‑‒2を読み取る !a ' e mµ aµ ! B
  • 48.   Muon  g-‐‑‒2 48 BNLとJPARCの違い* l  BNL:Magic  momentum l  JPARC:電場ゼロ 電場速度度 Lorentz因⼦子 異異常歳差運動の振動数 γ=29.4  (p  =  3.094GeV/c)  のとき、第⼆二項が無視できる *  Fermilab  (FNAL)  はBNLと同じsetup   極冷冷muonを⽤用いることで、収束電場を不不要にする EDMの観測も⽬目標 !a = e mµ 2 4aµ ! B ✓ aµ 1 2 1 ◆ ! ⇥ ! E c ⌘ 2 ⇣! ⇥ ! B ⌘ 3 5 EDM(無視)
  • 49.   Muon  g-‐‑‒2 49 (Naive)  NP  contribution aNP µ ⇠ ↵NP 4⇡ mµ m2 NP ✓ g = 2 at tree level (Dirac equation) ✓ g ≠ 2 by radiative corrections Magnetic moment g-factor gNP gNP mNP 条件:SM  EW  contributionと同程度度 26.1  (8.0)  ×  10-‐‑‒10aµ ⌘ aexp µ ath µ = aSM EW µ ⇠ ↵2 4⇡ m2 µ m2 W = 15.36  (0.1)  ×  10-‐‑‒10 αNP,  mNP  ~∼  O(EWボソンの結合,  質量量) そのような粒粒⼦子が存在したら既に発⾒見見されているはず…
  • 50.   Muon  g-‐‑‒2 50 (Naive)  NP  contribution aNP µ ⇠ ↵NP 4⇡ mµ m2 NP ✓ g = 2 at tree level (Dirac equation) ✓ g ≠ 2 by radiative corrections Magnetic moment g-factor gNP gNP mNP 2種類の可能性 l  αNP~∼  O(10-‐‑‒6)  (weak),  mNP~∼  O(100)MeV  (small) l  αNP~∼  O(0.1-‐‑‒1)  (strong),  mNP~∼  O(100-‐‑‒1000)GeV  (heavy) e.g.  Hidden  Photon e.g.  Supersymmetry
  • 51.   Supersymmetry 51 Higgs  mass l  Tree  level  :   l  Large  top-‐‑‒stop  correction mtree h ' mZ m2 h ⇠ m2 Z cos2 2 + 3 4⇡2 Y 2 t sin2 ñ m2 t log M2 S m2 t + X2 t M2 S Ç 1 X2 t 12M2 S å + ··· ô Ms = p met1 met2 , Xt = At µcot -‐‑‒  Heavy  stop  :  Ms  ≫  1TeV,  Xt  =  0 -‐‑‒  Maximal  mixing  :  Ms  ~∼  1TeV,  Xt  =  √6Ms   Scalar  top  >  1TeV
  • 52.   Supersymmetry 52 CMSSM  (mSUGRA) m0 A0 m1/2 sgn(µ) tan Scalar  mass Scalar  coupling m0 Masses  of  Hu,d Gaugino  mass Other  parameters  :  
  • 53.   Supersymmetry 53 Muon  g-‐‑‒2  vs  CMSSM CMSSMの枠組では現在のLHCの制限とHiggs  massと Muon  g-‐‑‒2を同時に説明することができない [Endo,  Hamaguchi,  Iwamoto,  Nakayama,  Yokozaki  ʻ‘11] [GeV]0m 0 1000 2000 3000 4000 5000 6000 [GeV]1/2 m 300 400 500 600 700 800 900 1000 (2400GeV)q~ (1600GeV) q~ (1000 GeV) g ~ (1400 GeV)g ~ h(122GeV) h(124GeV) h(126GeV) Expected Observed Expected Observed Expected Observed Expected Observed Expected Observed Expected Observed > 0µ,0= -2m 0 ) = 30, AβMSUGRA/CMSSM: tan( Status: ICHEP 2014 ATLAS Preliminary = 8 TeVs, -1 L dt = 20.1 - 20.7 fb∫ τ∼ LSP not included.theory SUSY σ95% CL limits. 0-lepton, 2-6 jets 0-lepton, 7-10 jets 0-1 lepton, 3 b-jets 1-lepton + jets + MET 1-2 taus + 0-1 lept. + jets + MET 3 b-jets≥2SS/3 leptons, 0 - arXiv: 1405.7875 arXiv: 1308.1841 arXiv: 1407.0600 ATLAS-CONF-2013-062 arXiv: 1407.0603 arXiv: 1404.2500 mh  ~∼126GeV* g-‐‑‒2 tanβ=20 m0[GeV] m1/2[GeV] *  Higgs  massは  (b→sγの制限を満たす範囲で)  A-‐‑‒termを調節して説明
  • 54.   Supersymmetry 54 Muon  g-‐‑‒2  vs  Higgs  mass  and  LHC  (model) l  Messenger  sectorを拡張 l  Extra  vector-‐‑‒like  matterを加える l  新しいgauge対称性を加える [Endo,  Hamaguchi,  Iwamoto,  Yokozaki,    ʼ’11,12] [Endo,  Hamaguchi,  Ishikawa,  Iwamoto,  Yokozaki,    ʼ’12] [Moroi,  Sato,  Yanagida,  ʼ’12] [Evans,  Ibe,  Yanagida,  ʼ’11] [Evans,  Ibe,  Shirai,  Yanagida,  ʼ’11] [Ibe,  Matsumoto,  Yanagida,  Yokozaki,  ʼ’12] [Bhattacharyya,  Bhattacherjee,  Yanagida,  Yokozaki  ʼ’13]   [Endo,  Hamaguchi,  Iwamoto,  Nakayama,  Yokozaki,    ʼ’11]
  • 55.   Supersymmetry 55 Electron  g-‐‑‒2   11596521807.3(2.8)×10-‐‑‒13 aexp e = ath e = 11596521818.7(0.6)(0.4)(0.2)(7.6)(0.1)×10-‐‑‒13 ae = aexp e ath e = -‐‑‒11.4  (8.1)  ×  10-‐‑‒13 l  実験値と理理論論値はConsistent  (1.4σ) l  新しい物理理の寄与 ae = ✓ aµ 3 ⇥ 10 9 ◆ 0.7 ⇥ 10 13 (NaïveにYukawaでスケール) -‐‑‒  SUSYでSleptonが縮退している場合はMuon  g-‐‑‒2に⽐比べて感度度が弱い -‐‑‒  Non-‐‑‒universalの場合はElectron,  Muon  g-‐‑‒2の両⽅方がenhanceし得る (符号逆&LFV/CPVを誘発するのでちと厳しいが…) ae ⇠ 2 ⇥ 10 12 ex.)                                                                      のときmee = 100GeV, tan = 30
  • 56.   Minimal  SUSY  model 56 Muon  g-‐‑‒2  (Higher  order  corr.  1,  ~∼10%) l  QEDのLeading  Log  correction   l  Bino  couplingに重い粒粒⼦子がdecoupleした効果 1 + 2loop = Ç 1 4↵ ⇡ ln msoft mµ å 1 + 1 4⇡ ✓ 2↵Y b + 9 4 ↵2 ◆ ln Msoft msoft egL = gY + egL ' gY  1 + 1 4⇡ ✓ ↵Y b + 9 4 ↵2 ◆ ln Msoft msoft egR = gY + egR ' gY  1 + ↵Y 4⇡ b ln Msoft msoft aµ = (1 + 2loop ) ⇥ a1loop µ Leading  Log Bino  coupling 重い粒粒⼦子のスケール 軽い粒粒⼦子のスケール b = 41 6 (# of the generations of light sleptons)
  • 57.   Minimal  SUSY  model 57 Muon  g-‐‑‒2  (Higher  order  corr.  2,  ~∼10%) l  Yukawaの補正  (Non-‐‑‒Holomorphic  Yukawa) -‐‑‒  MSSMのYukawaとSMのYukawaのmatchingの際に出現 m` = `L `R + hHdi hHui `L `R SUSYSUSY Y MSSM ` = m` v cos 1 1 + ` `
  • 58.   Minimal  SUSY  model 58 Bino  coupling SUSY  limitではU(1)Y  ゲージ結合と等しい (重い粒粒⼦子の)  SUSY  breakingの効果でズレが発⽣生 Coupling EnergyMsoftmsoft egBino = gY gY egBino egBino 重い粒粒⼦子 decouple  くりこみ群の runが変化 Lint = 1 p 2 egL eB`L e`⇤ L + p 2egR eB`R e`⇤ R + h.c. -‐‑‒  Interaction -‐‑‒  Bino  coupling egL = gY + egL ' gY  1 + 1 4⇡ ✓ ↵Y b + 9 4 ↵2 ◆ ln Msoft msoft egR = gY + egR ' gY  1 + ↵Y 4⇡ b ln Msoft msoft b = 41 6 (# of the generations of light sleptons)
  • 59.   Slepton  Mass  Bound 59 スカラーポテンシャル l  Up-‐‑‒type  HiggsとSlepton l  Slepton-‐‑‒Higgsの3点相互作⽤用 l  Sleptonの4点相互作⽤用 V = (m2 Hu + µ2 )|Hu|2 + m2 e`L |e`L|2 + m2 e`R |e`R|2 (Y`µH⇤ u e`⇤ L e`R + h.c.) + Y 2 ` |e`⇤ L e`R|2 + g2 8 (|e`L|2 + |Hu|2 )2 + g2 Y 8 (|e`L|2 2|e`R|2 |Hu|2 )2 + g2 + g2 Y 8 H |Hu|4 mixing Flavor  dep. -‐‑‒  Sleptonの混合に⽐比例例 -‐‑‒  極端に⼤大きいとEW  vacuumが不不安定になる -‐‑‒  LeptonのYukawaに⽐比例例  (=tanβが⼤大きい極限でにtanβに⽐比例例) -‐‑‒  tanβを⼤大きくすると真空の安定性条件をゆるくする⽅方向に働く -‐‑‒  Stauの場合は若若⼲干依存、Selectron/Smuonは依存性無視できる
  • 60.   Slepton  Mass  Bound 60 真空崩壊 l  Decay  rate /(Volume) = A· e B ~∼(100GeV)4 Bounce解から評価 -‐‑‒  偽の真空の基底状態のエネルギーの虚部から出現 -‐‑‒  境界条件 -‐‑‒  境界条件のもとでの運動⽅方程式の解:Bounce解 = 2ImE0, E0 = lim T!1 1 T ln ÇZ [D ]exp( SE[ ]) å Φ=Up-‐‑‒type  Higgs,  Sleptons,  SE  はユークリッド作⽤用 lim T!1 ✓ !x ,± T 2 ◆ = f ¯ B = SE[ ¯] SE[ f ] 偽の真空での場の配位 [Coleman,  ʻ‘77] [Callan,  Coleman,  ʻ‘77]
  • 61.   Slepton  Mass  Bound 61 真空崩壊 l  Bounce解  (Path  deformation  method) -‐‑‒  運動⽅方程式  (O(4)  symmetric,  zero  temp.  :  α  =  3) -‐‑‒  最初にPathにあたりをつける -‐‑‒  Pathを変形させて運動⽅方程式の解になるものを探す ! guess = ! (x), d ! dx = 1 (仮定) Figure 4: Path deformation in two dimensions. The normal force exerted on path (blue straight line) pushes it in the direction of the true tunneling so curved line). [CosmoTransitions,  ʻ‘11] d2 ! d⇢2 + ↵ ⇢ d ! d⇢ = rV( ! ) d2 x d⇢2 + ↵ ⇢ dx d⇢ = @ @ x V( ! ) d2 ! d⇢2 ✓ dx d⇢ ◆2 = r?V( ! ) (Path⽅方向) (垂直⽅方向) V true false cf.)  Overshoot/Undershoot  method Multi-‐‑‒dimensionだと⼀一意に求められない
  • 62.   Slepton  Mass  Bound 62 Fitting  Formula   200 300 400 500 600 200 300 400 500 600 l  Stauの場合 µtan , tan = 70 30 20TeV 40 50 60 70 90 80 [Kitahara,  TY,  ʻ‘13] [Endo,  Kitahara,  TY,  ʻ‘14]
  • 63.   Slepton  Mass  Bound 63 Fitting  Formula   l  tanβ依存性 20 40 60 80 100 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 -‐‑‒  スカラーの4点はYukawaに依存  (                                            ) -‐‑‒  tanβが⼤大きい極限で(tanβ)2に⽐比例例 -‐‑‒  tanβを⼤大きくするとVacuumの制限が若若⼲干改善* [Kitahara,  TY,  ʻ‘13] 改善悪化 ここで1に規格化 *  1,2世代のsleptonの場合は、Yukawaが⼩小さいため、tanβ依存性は無視できる
  • 64.   Universal  Case 64 ILC  (smuon) [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] Smuonにmassの差がある場合はILCが有効 偏極ビームを⽤用いることで断⾯面積がenhance p s = 1TeV p s = 1TeV Polarization
  • 65.   Universal  Case 65 ILC  (selectron) [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] t-‐‑‒channel  Bino  exchangeのため断⾯面積がenhance Bino  couplingの測定にも有効 p s = 1TeV -‐‑‒  Diagram  (t-‐‑‒channel) -‐‑‒  Bino  coupling eB ee ee⇤ e+ e ü  重い粒粒⼦子の効果でO(%)変化 ü  ⾼高精度度のCouplingの測定から重いスケールを探れるかも [Nojiri,  Fujii,  Tsukamoto,  ʻ‘96] [Nojiri,  Pierce,  Yamada,  ʼ’97]
  • 66.   Non-‐‑‒Universal  Case 66 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] Non-‐‑‒Universality Smuonが重いほどMuon  g-‐‑‒2の説明のために ⼤大きなNon-‐‑‒Universalityが要求される
  • 67.   Non-‐‑‒Universal  Case 67 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] Flavor  mixingの定義 l  SleptonがFlavor  diagonalである基底でのYukawa: l  Fermion  massを対⾓角にする基底でのYukawa: l  Mixing  matrix:世代間の混合をparameterize Mixing  matrix  :  基底間のズレ
  • 68.   Non-‐‑‒Universal  Case 68 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] ex)  Lepton  FCNCs l  Effective  operator  (双極⼦子型) l  Wilson係数 l  Flavor  mixing Leff ⌘ e m`i 2 `i µ⌫ ⇣ AL i j PL + AR i j PR ⌘ `j Fµ⌫ + h.c. Higher-‐‑‒order   correction Loop  function AL i j = (1 + 2loop ) ↵Y 8⇡ M1µtan m`j X a,b=1,2,3 h UR i ib h M` i ba h U† L i aj Fa,b AR i j = (1 + 2loop ) ↵Y 8⇡ M1µtan m`j X a,b=1,2,3 h UL i ia h M† ` i ab h U† R i bj Fa,b h UL i 1a h M† ` i ab h U† R i b2 Fa,b = mµ 1 + µ ( L)12 Ä F1,2 F2,2 ä + m⌧ 1 + ⌧ ( L)13( R)⇤ 23 Ä F1,2 F1,3 F3,2 + F3,3 ä SelectronとSmuonが縮退 していればキャンセル Sleptonが全て縮退 していればキャンセル 46 Dissertation µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL W µL µR µL B H0 d γ (d) µL µR µR H0 d B γ (e) Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 The diagram (a) comes from the chargino–muon sneutrino diagram, the from the neutralino–smuon diagram. χ0 mµ 6 4 1 mµ L(e) 2 R(e) 2 N fW eH eµL eµReeR eR
  • 69.   Non-‐‑‒Universal  Case 69 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] ex)  Lepton  FCNCs l  μ→eγ崩壊 l  電⼦子の電気双極⼦子モーメント l  Muon  g-‐‑‒2との相関 46 Dissertation µL µR W± νµ γ (a) µL µR µL µR B γ (b) µL W µL µR µL B H0 d γ (d) µL µR µR H0 d B γ (e) Figure 3.4: The diagrams of the SUSY contributions to the muon g − 2 The diagram (a) comes from the chargino–muon sneutrino diagram, the from the neutralino–smuon diagram. χ0 mµ 6 4 1 mµ L(e) 2 R(e) 2 N fW eH eµL eµReeR eR de e = me 2 Im î AL 11 AR 11 ó B(µ ! e ) ' 48⇡3 ↵ G2 F Ä |AL 12|2 + |AR 12|2 ä Br(µ ! e ) ⇣ aNeutralino µ ⌘2 ' 1 (µ ! all) ↵mµ 16 13 23 2 Ç m⌧ mµ å2 + (higher order) de/e aNeutralino µ ' 1 2mµ Im[( R)13( L)⇤ 13] m⌧ mµ + (higher order) Stauが⼗十分重いとき、SUSY粒粒⼦子の質量量と独⽴立立
  • 70.   Non-‐‑‒Universal  Case 70 [Endo,  Hamaguchi,  Kitahara,  TY,  ʻ‘13] SleptonがLHC,  ILCで発⾒見見されなくても レプトンフレーバー実験から⾼高感度度で探索索可能 =Non-‐‑‒Universality 現在の Bound 将来の 感度度 -‐‑‒  Mass -‐‑‒  Formula mee = meµ ⌧ me⌧ Stauが⼗十分重い(R≫1)とき (Current) (Future) ex)  電⼦子の電気双極⼦子モーメント de/e aNeutralino µ ' 1 2mµ Im[( R)13( L)⇤ 13] m⌧ mµ + (higher order) Im L 13 R ⇤ 13 Æ 6 ⇥ 10 8 Im L 13 R ⇤ 13 Æ 6 ⇥ 10 9⇠10 de/e
  • 71.   Extra-‐‑‒Slides 71 Future  Prospects for  Stau 博⼠士論論⽂文  Sec.4.3 Based  on    T.  Kitahara  and  T.Y    JHEP  05  035  (2013)    M.  Endo,  T.  Kitahara,  and  T.Y    JHEP  04  139  (2014)
  • 72.   Stau 72 Higgs  Oblique  Correction   l  Loop-‐‑‒induced  Higgs  coupling l  新しい物理理にsensitive -‐‑‒  Higgs  to  digluon,  diphoton,  Zγ -‐‑‒  間接的に新しい物理理を制限 -‐‑‒  SM:tree  levelで出現しない -‐‑‒  新しい物理理の影響を受けやすい NPh V V制限 予⾔言 実験 新しい物理理
  • 73.   Stau 73 Higgs  coupling  to  diphoton  κγ l  Current  accuracy  (LHC) l  Joint  analysis  ⌘ gh gh (SM) = 1 +  ,  ⇠ 15% -‐‑‒  Br(h→γγ)/Br(h→ZZ)はHL-‐‑‒LHCで精密測定  (3.6%と仮定) -‐‑‒  Br(h→ZZ)は初期ステージでのILCで精密測定  (sub%  level) -‐‑‒  両者の結果を合わせると単体での測定よりもκγを精密に決定可能  ⇠ 1 2% [Peskin,  ʻ‘13] 5% 4% 3% 2% 1% γ CMS-1 CMS-2 ILC ILC + LHC BR ratio CMS 250 500 500up 1000up1000 6% 7%  -‐‑‒  HL-‐‑‒LHC,  ILC単体だとO(1-‐‑‒10)% -‐‑‒  Joint  analysis
  • 74.   Stau 74 Higgs  coupling  to  diphoton  κγ l  Loop-‐‑‒induced  Higgs  coupling l  新しい物理理にsensitive l  HL-‐‑‒LHCと初期のILCから1-‐‑‒2%の決定精度度が期待 将来excessが⾒見見えた場合に分かる 新しい物理理の性質を考察しておくことは重要 l  博⼠士論論⽂文では超対称模型を仮定 l  Muon  g-‐‑‒2を考慮すると、軽いStauが予想 l  初期のILCまでで数%のexcessが観測されたと仮定 新しい物理理
  • 75. l  Stau  :  κγのみに⼤大きな寄与 l  3つのParameterでcontroll  (mass,  mixing  angle)   l  Stauが軽い&⼤大きな混合を持つ場合にenhance  (O(10)%) l  極端に⼤大きな混合は真空の安定性条件により制限   Stau 75 Stau  contribution  to  κγ Dissertation / Takahiro Yoshinaga τR τL h γ γ gure 3.6: Feynman diagram of the stau contribution to the Higgs coupling to di-photon. re OL,R are the unitary matrices, which diagonalize the chargino mass matrix, as seen in 3.3.1. δm2 fLL,RR and δm2 fLR are defined as m2 e⌧LR = 1 2 ⇣ m2 e⌧1 m2 e⌧2 ⌘ sin2✓e⌧ m2 e⌧1 , m2 e⌧2 , ✓e⌧ Ue⌧Me⌧U† e⌧ = diag(m2 e⌧1 , me⌧2 ) Ue⌧ = ✓ cos✓e⌧ sin✓e⌧ sin✓e⌧ cos✓e⌧ ◆ cf.)  Stauの質量量⾏行行列列
  • 76.   Stau 76 Stau  contribution  to  κγ [Endo,  Kitahara,  TY,  ʻ‘13] 真空の安定性条件からκγの⼤大きさは制限 10-‐‑‒15%が取りうるexcessの最⼤大値 Large  mixing  angle:真空の安定性条件で制限
  • 77.   Stau 77 Stau  mass  region [Endo,  Kitahara,  TY,  ʻ‘13] δκγ>4%ならば、      250GeVに制限 √s  =500GeV  ILCまでで発⾒見見可能 me⌧1 < Higgs  coupling  to  diphoton sin2✓e⌧ = 1 真空の安定性条件を満たす なかで最⼤大の値を選択tan = 20
  • 78. l  仮定 l  Sample  point l  Reconstruction  (ILC  at  √s  =  500GeV)   Stau 78 Stau  searches  (Reconstruction) -‐‑‒  Stau1,2,  mixing  angle全てがILC  (√s  =  500GeV)で観測 -‐‑‒  κγは数%のexcessが観測、測定精度度は2%と仮定 88 Dissertation / Takahiro Yoshinaga Table 4.3: Model parameters at our sample point. In addition, tanβ = 5 and Aτ = 0 are set, though the results are almost independent of them. Parameters mτ1 mτ2 sin2θτ mχ0 1 δκγ Values 100 GeV 230 GeV 0.92 90 GeV 3.6% 4.3 Stau So far, we studied the prospects for the selection/smuon searches. In this section, we discuss the stau searches. If the staus have masses of (100)GeV and large left-right mixing, the Higgs coupling to the di-photon κγ is deviated from the SM prediction. Such a large left-right mixing is constrained by the vacuum meta-stability condition of the stau-Higgs potential, as mentioned in Sec 4.1.3. Then, we discussed that once the deviation from the SM prediction of κγ were observed, the mass region for the staus were determined by the condition in Sec. 4.1.4. Once the stau is discovered at ILC, its properties including the mass are determined. Par- ticularly, it is important to measure the mixing angle of the stau θτ. When sin2θτ is sizable, [Endo,  Kitahara,  TY,  ʻ‘13] me⌧1 ⇠ 0.1 GeV, me⌧2 ⇠ 6 GeV, sin2✓e⌧ sin2✓e⌧ ⇠ 2%  ⇠ 0.5% excessがStau起源かcheck可能
  • 79. l  仮定 l  Sample  point  (stau2は√s  =  500GeVでは未発⾒見見) l  Prediction  for  stau2  (ILC  at  √s  =  1TeV)   Stau 79 Stau  searches  (Prediction) -‐‑‒  Stau1,  mixing  angleがILC  (√s  =  500GeV)で観測、stau2は未発⾒見見 -‐‑‒  κγは数%のexcessが観測、測定精度度は2%と仮定 [Endo,  Kitahara,  TY,  ʻ‘13] Table 1: Model parameters at our sample point. In addition, tanβ = 5 and Aτ = 0 are set, though the results are almost independent of them. Parameters mτ1 mτ2 sin2θτ mχ0 1 δκγ Values 150 GeV 400 GeV 0.91 140 GeV 5.6% me⌧1 ⇠ 0.1 GeV, sin2✓e⌧ sin2✓e⌧ ⇠ 2.5%,  ⇠ 2% √s  =  1TeV  ILCで発⾒見見が期待、ビームエネルギーを調節するためのヒントを与える me⌧2 = 400 ± 53 GeV