SlideShare una empresa de Scribd logo
1 de 74
T.chhay


                                           V. Fñwm
                                           Beams
5>1> esckþIepþIm Introduction
        FñwmCaGgát;rbs;eRKOgbgÁúMEdlRTbnÞúkTTwg dUcenHehIy)aneFVIeGayvargnUvkarBt; (flexural or
bending). RbsinebImanvtþmanbnÞúktamGkS½kñúgbrimaNmYyFMKYrsm vanwgRtUv)aneKehAvafa beam-

column ¬EdlnwgRtUvbkRsayenAkñúgCMBUkTI6¦. enAkñúgGgát;eRKOgbgÁúMxøHEdlmanvtþman axial load

kñúgtMéltictYc EtT§iBld¾sþÜcesþIgenHRtUv)aneKecalenAkñúgkarGnuvtþn_CaeRcIn ehIyeK)ancat;
TukvaCa beam. CaTUeTAFñwmRtUv)aneKdak;kñúgTisedk nigrgnUvbnÞúkbBaÄr EtvamincaM)ac;EtkñúgkrNIEbb
enHeT. Ggát;eRKOgbgÁúMEdlRtUv)aneKcat;TukCa beam RbsinebIvargnUvbnÞúky:agNaEdleFVIeGayva
ekag (bending).
        rUbragmuxkat; (cross-sectional shape)EdlRtUv)aneKeRbICaTUeTArYmman W-, S- nig M-
shapes. eBlxøH chanel shape k¾RtUv)aneRbIdUcCaFñwmEdlpSMeLIgBIEdkbnÞH kñúgTMrg; I-, H- b¤ box

shape. Doubly symmetric shape dUcCa standard rolled W-, M- nig S-shape CarUbragEdlman

RbsiT§PaBCaeK.




        CaTUeTA rUbragEdl)anBIkarpSMrbs;EdkbnÞHRtUv)aneKKitCa plate girder b:uEnþ AISC
Specification EbgEck beam BI plate girder edayQrelIpleFobTTwgelIkMras; (width-thickness

ratio) rbs;RTnug. rUbTI 5>1 bgðajTaMg hot-rolled shape nig built-up shapeCamYynwgTMhMEdlRtUv

eRbIsMrab; width-thickness ratios. Rbsin
         t
          h 2555
            ≤
                F
                        ¬xñat IS¦ th ≤ 970 ¬xñat US¦
                                             F
          w      y                     w         y

Ggát;eRKOgbgÁúMRtUv)aneKcat;TUkCa beam edayminKitfavaCa rolled shape b¤Ca built-up. EpñkenH
RtUv)anerobrab;enAkñúg chapter F of the Specification, “Beams and Other Flexural Members”
ehIyvak¾CaRbFanbTEdlRtUvykmkniyayenAkñúgCMBUkenH. RbsinebI
                                           114                                        Fñwm
T.chhay


           h 2555
          tw
             >
               Fy
                         ¬xñat IS¦      h
                                       tw
                                          ≤
                                            970
                                             Fy
                                                      ¬xñat US¦
enaHGgát;eRKOgbgÁúMRtUv)aneKcat;TukCa plate girder nwgRtUv)anerobrab;enAkñúg Chapter G of the
specification, “Plate Girders”. enAkñúgesovePAenHeyIgnwgniyayBI plate girder kñúgCMBUkTI 10.

edaysarEt slenderness rbs;RTnug plate girder RtUvkarBicarNaBiessenABIelI nigBIeRkamEdlcM)ac;
sMrab;Fñwm.
         RKb; standard hot-rolled shape EdlGacrk)anenAkñúg Manual KWsßitenAkñúgRbePT beams.
Built-up shape PaKeRcInRtUv)ancat;cMNat;fñak;Ca plate girder b:uEnþ built-up shape xøHRtUv)ancat;

TukCaFñwmedaykarkMNt;rbs; AISC.
         sMrab; beams/ TMnak;TMngeKalrvagT§iBlbnÞúk (load effects) nig strength KW
          M u ≤ φb M n
Edl       Mu =  bnSMénm:Um:g;emKuNEdlFMCageK
          φb = emKuNersIusþg;sMrab;Fñwm = 0.9
          M n = nominal moment strength
Design strength, φb M n   enAeBlxøHRtUv)aneKehAfa design moment.

5>2> kugRtaMgBt; nigm:Um:g;)øasÞic           Bending Stress and the Plastic Mement

        edIm,IGackMNt; nominal design strength M n dMbUgeyIgRtUvBinitüemIlkarRbRBwtþeTA
(behavior) rbs;Fñwmtamry³énkardak;bnÞúkRKb;lkçxNÐ taMgBIbnÞúktUcrhUtdl;bnÞúkEdlGaceFVIeday

Fñwm)ak;. BicarNaFñwmEdlbgðajenAkñúgrUbTI 5>2 a EdlRtUv)andak;edayeFVIy:agNaeGayvaekag
eFobnwgGkS½em ¬GkS½ x − x sMrab; I- nig H-shape¦. sMrab; linear elastic material nigkMhUcRTg;
RTaytUc karBRgaykugRtaMgBt;RtUv)anbgðajenAkñúg rUbTI 5>2 b CamYynwgkugRtaMgEdlRtUv)an
snμt;faBRgayesμItamTTwgrbs;Fñwm. ¬kMlaMgkat;RtUv)anBicarNaedayELkenAkñúgEpñkTI 5>7¦. BI
elementary mechanics of materials/ kugRtaMgRtg;cMNucNamYyGackMNt;)anBI flexural formula³

         fb =
               My
               Ix
                                                                           ¬%>!¦
Edl M CamU:m:g;Bt;enAelImuxkat;EdlBicarNa/ y CacMgayEkgBIbøg;NWt ¬neutral plane) eTAcMnuc
Edlcg;dwg nig I x Cam:Um:g;niclPaBénmuxkat;EdleFobnwgGkS½NWt. sMrab; homogeneous material
                                            115                                         Fñwm
T.chhay


GkS½NWtRtYtsIuKñanwgGkS½TIRbCMuTMgn;. smIkar %>! KWQrenAelIkarsnμt;fa karBRgay strain man
lkçN³CabnÞat;BIelIdl;eRkam Edlmüa:geToteyIgGacsnμt;fa muxkat;Edlrab (plane) munrgkarBt;
enArkSarabdEdleRkaykarBt;. el;IsBIenH muxkat;FñwmRtUvEtmanGkS½sIuemRTIbBaÄr ehIybnÞúkRtUvEt
sßitenAkñúgbøg;EdlmanGkS½sIemRTIenaH. FñwmEdlminbMeBjtamklçxNÐTaMgenHRtUv)anBicarNaenAkñúg
EpñkTI 5>13. kugRtaMgGtibrmanwgekItenAsrésEpñkxageRkAbMput Edl y mantMélGtibrma. dUc
enHvamantMélGtibrmaBIrKW kugRtaMgsgát;GtibrmarnAsrésEpñkxagelIbMput nigkugRtaMgTajGtibrma
enAsrésEpñkxageRkambMput. RbsinebIGkS½NWtCaGkS½sIuemRTI kugRtaMgTaMgBIrenHnwgmantMélesμIKña.
        sMrab;kugRtaMgGtibrma smIkar %>! GacsresrkñúgTMrg;
          f max =
                  Mc
                  Ix
                       =
                          M
                               =
                                 M
                         Ix / c Sx
                                                                           ¬%>@¦
Edl c CacMNayEdkBIGkS½NWteTAsrésrEpñkxageRkAbMput ehIy S x Cam:UDulmuxkat;eGLasÞicénmux
kat; (elastic section modulus) . sMrab;RKb;rUbragmuxkat; section modulus mantMélefr. sMrab;mux
kat;minsIuemRTI S x nwgmantMélBIr³ mYysMrab;srésEpñkxagelIbMput nigmYyeTotsMrab;srésEpñkxag
eRkambMput. tMélrbs; S x sMrab; standard rolled shape RtUv)andak;kñúg dimension and properties
table enAkñúg Manual.




                                          116                                        Fñwm
T.chhay


          smIkar %>! nig %>@ mantMéleTA)ankñúgkrNIbnÞúktUclμmEdlsMPar³enAEtsßitenAkñúg linear
elastic range. sMrab;eRKOgbgÁúMEdk vamann½yfakugRtaMg f max minRtUvFMCag f y ehIymann½yfa

m:Um:g;minRtUvFMCag
          M y = Fy S x

Edl M y Cam:Um:g;Bt;EdleFVIeGayFñwmeTAdl;cMnuc yielding.




        enAkñúgrUbTI 5>3 FñwmTMrsamBaØCamYynwgbnÞúkcMcMnucenAkNþalElVgRtUv)anbgðajnUvkardak;
bnÞúktamdMNak;kalCabnþbnÞab;. enAeBl yielding cab;epþIm karBRgaykugRtaMgenAelImuxkat;Elg
manlkçN³CabnÞat; ehIy yielding nwgrIkralBIsrésEpñkxageRkAeTAGkS½NWt. kñúgeBlCamYyKña
                                          117                                       Fñwm
T.chhay


tMbn;Edlrg yield nwglatsn§wgtambeNþayFñwmBIGkS½kNþalrbs;FñwmEdlm:Um:g;Bt;mantMélesμInwg
M y enATItaMgCaeRcIn. tMbn;Edlrg yield enHRtUv)angðajedayépÞBN’exμAenAkñúgrUbTI 5>3 c nig d.

enAkñúgrUbTI 5>2 b yielding eTIbnwgcab;epþIm. enAkñúgrUbTI 5>2 c yielding )anrIkralcUleTAkñúgRTnug
ehIyenAkñúgrUbTI 5>2 b muxkat;TaMgmUl)an yield. eKRtUvkarm:Um:g;bEnßmkñúgtMélCamFüm vaesμIRb
Ehl 12% én yield moment edIm,InaMFñwmBIdMNak;kal (b) eTAdMNak;kal (d) sMrab; W-shape .
enAeBleKeTAdl;dMNak;kal (d) RbsinebIenAEtbEnßmbnÞúkeTotFñwmnwg)ak; enAeBlEdlFatuTaMgGs;
rbs;muxkat;)aneTAdl; yield plateau rbs; stress-strain curve ehIy unrestrict plastic flow nwg
ekIteLIg. Plastic hing RtUv)aneLIgRtg;GkS½rbs;Fñwm ehIysnøak;enHCamYnnwgsnøak;BitR)akdenA
xagcugrbs;FñwmbegáIt)anCa unstable machanism . kñúgeBl plastic collapse, mechanism motion
RtUv)anbgðajenAkñúgrUbTI 5>4. Structural analysis EdlQrelIkarBicarNa collapse mechanism
RtUv)aneKehAfa plastic analysis. karENnaMBI plastic analysis nig design RtUv)anerobrab;enAkñúg
Appendix A kñugesovePAenH.




        lT§PaBm:Um:g;)aøsÞic EdlCam:Um:g;EdlRtUvkaredIm,IbegáItsnøak;)aøsÞic GacRtUv)anKNnay:ag
gayRsYlBIkarBicarNakarBRgaykugRtaMgRtUvKña. enAkñúgrUbTI 5>5 ers‘ultg;kugRtaMgsgát; nigkug
RtaMgTajRtUv)anbgðaj Edl Ac CaRkLaépÞmuxkat;Edlrgkarsgát; nig At CaRkLaépÞmuxkat;Edl
rgkarTaj. RkLaépÞTaMgenHCaRkLaépÞEdlenABIxagelI nigBIxageRkamGkS½NWt)aøsÞic (plastic
neutral axis) EdlmincaM)ac;dUcKñanwgGkS½NWteGLasÞic. BIsßanPaBlMnwgrbs;kMlaMg eyIg)an

          C =T
          Ac Fy = At Fy

          Ac = At
dUcenHGkS½NWt)aøsÞicEckmuxkat;CaBIcMENkesμIKña. sMrab;rUbragEdlsIemRTIeFobnwgGkS½énkarBt;
GkS½NWteGLasÞic nigGkS½NWt)aøsÞicKWdUcKña. m:Um:g;)aøsÞic M p Ca resisting couple EdlbegáIteLIg
edaykMlaMgBIresμIKña nigmanTisedApÞúyKña b¤
                                             ⎛ A⎞
          M p = Fy ( Ac )a = Fy ( At )a = Fy ⎜ ⎟a = Fy Z
                                             ⎝2⎠
                                              118                                        Fñwm
T.chhay


Edl       A=  RkLaépÞmuxkat;srub
          a = cMgayrvagGkS½NWtrbs;RkLaépÞBak;kNþalTaMgBIr
              ⎛ A⎞
          Z = ⎜ ⎟a = m:UDulmuxkat;)aøsÞic (plastic section modulus)
              ⎝2⎠




]TahrN_ 5>1³ CamYynwg built-up shape EdlbgðajenAkñúgrUbTI 5>6 cUrkMNt; ¬k¦ elastic section
modulus S nig yielding moment M y nig ¬x¦ plastic section modulus Z nig plastic moment

M p . karekageFobnwgGkS½ x ehIyEdkEdleRbIKW A572 Grade 50 .




dMeNaHRsay³
¬k¦ edaysarvamanlkçN³sIuemRTI enaH elastic neutral axis ¬GkS½ x ¦ sßitenABak;kNþalmuxkat;
     ¬TItaMgrbs;TIRbCMuTMgn;¦. m:Um:g;niclPaBrbs;muxkat;GacRtUvkMNt;)anedayeRbIRTwsþIbTGkS½
     Rsb (parallel axis theorem) ehIylT§plénkarKNnaRtUv)ansegçbenAkñúgtarag 5>1.
      tarag 5>1
          Component          I                A              d                I + Ad 2
          Flange                   260417            5000             162.5        132291667
          Flange                   260417            5000             162.5        132291667
          Web                    28125000               -                 -         28125000
          Sum                                                                      292.71×106

                                             119                                          Fñwm
T.chhay


      Elastic section modulus       KW
            I 292.71 ⋅10 6 292.71 ⋅10 6
      S=     =                =         = 1.67 ⋅10 6 mm 3
            c 25 + (300 / 2 )   175
      Yield moment    KW
      M y = Fy S = 345 × 1.67 = 576.15kN .m

cMeLIy³ S = 1.67 ⋅106 mm3 nig M y = 576.15kN .m
¬x¦ edaysarrUbragenHmanlkçN³sIuemRTIeFobnwgGkS½ x / enaHGkS½enHEckmuxkat;CaBIrcMEnkesμIKña
      ehIyGkS½enHk¾Ca plastic neutral axis Edr. TIRbCMuTMgn;rbs;épÞBak;kNþalxagelIRtUv)an
      kMNt;edayeRbI principle of moment. Kitm:Um:;g;eFobGkS½NWténmuxkat;TaMgmUl ¬rUbTI 5>6¦
      ehIykarKNnaRtUv)anerobCatarag 5>2.
      tarag 5>2
          Component             A               y             Ay
          Flange                         5000         162.5        812500
          Web                            1875            75        140625
          Sum                            6875                      953125

      y=∑
          Ay 953125
            =       = 138.64mm
        ∑A    6875




      rUbTI 5>7 bgðajfaédXñas;m:Um:g;rbs;m:Umg;KUrEdlekItmanenAxagkñúgKW
                                             :
      a = 2 y = 2(138.64) = 277.28mm
      ehIy plastic section modulus KW
          ⎛ A⎞
      Z = ⎜ ⎟a = 6875 × 277.28 = 1.906 ⋅10 6 mm 3
          ⎝2⎠
      Plastic moment       KW
      M p = Fy Z = 345 × 1.906 = 657.6kN .m

                                                120                                Fñwm
T.chhay


cMeLIy³ Z = 1.906 ⋅106 mm3 nig       M p = 657.6kN .m



]TahrN_ 5>2³ KNna plastic moment, M p sMrab; W 10 × 60 rbs;Edk A36 .
dMeNaHRsay³ BI dimensions and properties tables enAkñúg Part1 of the Manual
          A = 17.6in 2
          A 17.6
            =       = 8.8in
          2     2
       TIRbCMuTMgn;sMrab;RkLaépÞBak;kNþalGacrk)anBIkñúgtaragsMrab; WT-shapes EdlRtUv)ankat;
ecjBI W-shapes. rUbragEdlRtUvKñarbs;vaKW WT 5× 30 ehIycMgayBIépÞxageRkAbMputrbs;søab
eTATIRbCMuTMgn;KW 0.884in dUcbgðajenAkñúgrUbTI 5>8.
          a = d − 2(0.884 ) = 10.22 − 2(0.884 ) = 8.452in
              ⎛ A⎞
          Z = ⎜ ⎟a = 8.8(8.452) = 74.38in 3
              ⎝2⎠
lT§plEdlTTYl)anenHmantMélRbhak;RbEhlnwgtMélEdleGayenAkñúg              dimensions          and

properties tables ¬PaBxusKñabNþalmkBIkarKitcMnYnxÞg;eRkayex,ós¦

cMeLIy³ M p = Fy Z = 36(74.38) = 2678in. − kips = 223 ft − kips




5>3> lMnwg            Stability

     RbsinebIFñwmGacrkSalMnwgrbs;va)anrhUtdl;vasßitkñúglkçxNÐ)aøsÞiceBjelj enaH nominal
moment strength RtUv)aneKKitfamantMélesμInwg plastic moment capacity Edl

          Mn = M p

pÞúymkvij M n < M p .


                                              121                                   Fñwm
T.chhay


       dUckrNIssrEdr PaBKμanlMnwgGacmann½yCalkçN³srub b¤Gacmann½yCalkçN³edaytMbn;.
karekagrbs;Ggát;RtUv)anbgðajenAkñúgrUbTI 5>9 a. enAeBlFñwmekag tMbn;rgkarsgát; ¬EpñkxagelI
GkS½NWt¦ manlkçN³ nigkareFVIkarRsedognwgssr ehIyvanwg buckle RbsinebIEpñkrbs;muxkat;man
lkçN³RsavRKb;RKan;. EtvamindUcssr edaysartMbn;rgkarsgát;rb;muxkat;RtUv)anTb;edayEpñk
EdlrgkarTaj ehIyPaBdabmkxageRkA (flexural buckling) RtUv)anbegáIteLIgeday twisting
(torsion). karbegáItnUvPaBKμanlMnwgenHRtUv)aneKehAfa lateral-torsional buckling (LTB).

eKGacbgáar Lateral-torsional buckling )aneday lateral bracing tMbn;rgkarsgát; CaBiesssøab
Edlrgkarsgát; CamYynwgcenøaHRKb;RKan;. karBRgwgenHRtUv)anbgðajlkçN³nimitþsBaØaenAkñúgrUbTI
5>9 b. dUcGVIEdleyIg)aneXIj moment strength GaRs½yeTAnwgRbEvgEpñkEdlmin)anBRgwgEdlCa
cMgayrvagcMnucénTMrxag (lateral support) .
         eTaHbICaFñwmGacTTYlm:Um:g;RKb;RKan;edIm,IeFVIeGayvaeTAdl;lkçxNÐ)aøsÞiceBjelj vak¾RtUv
GaRs½yfaetIva)anrkSa cross-sectional integrity b¤Gt;. vanwg)at;bg; integrity RbsinebIEpñkrgkar
sgát;NamYyrbs;muxkat; buckle. RbePT buckling GacCa compression flange buckling Edl
eKehAfa flange local buckling(FLB) b¤ buckling énEpñkrgkarsgát;rbs;RTnug EdleKehAfa web
local buckle (WLB). dUcEdl)anerobrab;enAkñúgCMBUk 4 RbePT local buckling epSgeTotekIteLIg

edayGaRs½ynwg width-thickness ratio rbs;Epñkrgkarsgát;rbs;muxkatt;.




          rUbTI 5>10 bgðajBIT§iBlrbs; local and lateral-torsional buckling. FñwmR)aMdac;eday
ELkRtUv)anbgðajenAkñúgRkaPicénbnÞúk-PaBdab. ExSekagTI ! CaExSekagbnÞúk-PaBdabrbs;FñwmEdl
KμanlMnwg ¬edayviFINak¾eday¦ ehIy)at;bg;lT§PaBRTbnÞúkrbs;vamuneBlvaeTAdl; first yield ¬rUbTI
5>3 b¦. ExSekag @ nig # RtUvKñanwgFñwmEdlGacRTbnÞúkedayqøgkat; first yield bu:Enþmin)anyUrRKb;
                                          122                                        Fñwm
T.chhay


RKan;edIm,IbegáItsnøak;)aøsÞic nigTTYl)an plastic collapse. RbsinebIvaGaceTAdl; plastic collapse
enaHExSekagbnÞúk-PaBdabnwgmanlkçN³dUcExSekag $ b¤ %. ExSekag $ sMrab;krNIm:Um:g;esμIenAeBj
RbEvgFñwmTaMgmUl ehIyExSekag % sMrab;FñwmEdlrgm:Um:g;ERbRbYl (moment gradient) . eKGac
TTYl)ankarKNnaRbkbedaysuvtßiPaBCamYynwgFñwmEdlRtUvKñanwgExSekagNamYyénExSekagTaMgenH
b:uEnþExSekag ! nig @ bgðajBIkareRbIsMPar³edayKμanlkμN³RbsiT§PaB.




5>4> cMNat;fñak;rbs;rUbrag                     Classification of Shapes

          AISC cat;cMNat;fñak;rUbragmuxkat;Ca compact, noncompact b¤ slender GaRs½ynwgtMél

rbs; width-thickness ratios. sMrab; I- nig H-shapes pleFobsMrab;søab (unstiffened element) KW
b f / 2t f ehIypleFobsMrab;RTnug (stiffened element) KW h / t w . eKGacrk)ankarcat;cMNat;fñak;

rbs;muxkat;enAkñúg Section B5 of the specification, “Local Buckling” in Table B5.1. vanwg
RtUv)ansegçbdUcxageRkam. edayyk
          λ = width-thickness ratio
          λ p = upper limit for compact category
          λr = upper limit for noncompact category
enaH RbsinebI λ ≤ λ p ehIysøabP¢ab;eTAnwgRTnugCab;Kμandac; enaHrUbragmanlkçN³ compact.
     RbsinebI λ p < λ ≤ λr enaHrUbragmanlkçN³ uncompact.
     RbsinebI λ > λr enaHrUbragmanlkçN³ slender.
cMNat;fñak;RtUvQrelI width-thickness ratio rbs;muxkat;EdlmantMélFMCag. ]TahrN_ RbsinebI
RTnugCa compact ehIysøabCa noncompact enaHrUbragRtUv)ancat;cMNat;fñak;Ca noncompact .

                                            123                                        Fñwm
T.chhay


tarag 5>3 RtUv)andkRsg;ecjBI AISC Table B5.1 nigman width-thickness ratio sMrabmuxkat;
hot-rolled I- nig H-shape.

tarag 5>3 Width-thickness parameters*
                                                        λp                       λr
         Element                      λ
                                                  IS         US          IS            US
                                     bf          170         65         370            141
          Flange
                                     2t f          Fy         Fy       Fy − 69        Fy − 10
                                       h         1680        640       2550            970
            Web
                                      tw           Fy         Fy        Fy              Fy
*   sMrab; hot-rolled I- nig H-shape rgkarBt;

5>5>       Bending Strength of Compact Shapes

        FñwmGac)ak;edayvaTTYlm:Um:g; M p ehIyvakøayCa)aøsÞiceBjelj b¤k¾vaGac)ak;eday
                 !> lateral-torsional buckling (LTB), eday elastically b¤ inelastically
                 @> flange local buckling (FLB), eday elastically b¤ inelastically
                 #> web local buckling (WLB), eday elastically b¤ inelastically
        RbsinebIkugRtaMgBt;Gtibrma (maximum bending stress) tUcCagEdnsmamaRt
(proportional limit) enAeBlEdl buckling ekIteLIg failure enHRtUv)aneKehAfa elastic. RbsinebI

minGBa©wgenH vaCa inelastic. ¬sUmemIlkarbkRsayEdlTak;TgenAkñúgEpñk 4>2 rbs;emeronTI 4 .¦
        edIm,IgayRsYl CadMbUgeyIgcat;cMNat;fñak;FñwmCa compact, noncompact b¤ slender. kar
erobrab;enAkñúgEpñkenHGnuvtþcMeBaHFñwmBIrRbePT³ ¬!¦ hot-rolled I-nig H-shape ekageFobGkS½xøaMg
ehIyEdlbnÞúkenAkñúgbøg;énGkS½exSay ehIy ¬2¦ channels ekageFobGkS½xøaMg ehIybnÞúkdak;tam
shear center b¤k¾RtUv)anTb;RbqaMgnwgkarrmYl. ¬ Shear center CacMnucenAelImuxkat; EdltamcMnuc

enHbnÞúkTTwgRtUv)ankat;tam RbsinebIFñwmekagedayKμankarrmYl.¦ vanwgekItmancMeBaH I-nig H-
Shapes. eKminBicarNaGMBI Hybrid beam ¬Edlsøab nigRTnugrbs;vamanersIusþg;epSgKña¦eT ehIy

smIkar AISC xøHnwgRtUv)anEkERbbnþicbnþÜcedIm,IeqøIytbeTAnwgkarkMNt;enH edayeKCMnYs Fyf nig
 Fyw EdlCa yield strength rbs;søab nigRTnugeday Fy .



                                                124                                   Fñwm
T.chhay


        eyIgcab;epþImCamYynwg compact shape EdlRtUv)ankMNt;CarUbragEdlRTnugrbs;vaRtUv)an
P¢ab;eTAsøabCab;tdac; ehIyEdlbMeBjnUvtMrUvkar width-thickness ratio xageRkamsMrab;søab nig
RTnug³
         bf
         2t
             ≤
                170
                 F
                      nig th ≤ 1680 ¬xñatCa IS ¦ 2btf ≤ 65 nig th ≤ 640 ¬xñatCa IS ¦
                                 F                         F              F
            f        y       w     y                      f       y       w       y

     sMrab;RKb; standard hot-rolled shape Edl)anrayeQμaHenAkñúg Manual )aneKarBlkçxNÐxag
elI dUcenHeKRtUvkarBinitüEtpleFobsøabb:ueNÑaH. rUbragPaKeRcInk¾bMeBjtMrUvkarrbs;søabEdr dUcenH
vaRtUv)ancat;cMNat;fñak;Ca compact. RbsinebIFñwmCa compact ehIymanTMrxagCab; b¤ unbraced
length xøI enaH nomina’moment strength, M n Ca plastic moment capacity eBjrbs;rUbrag M p .

sMrab;Ggát;EdlminmanTMrxagRKb;RKan; moment resistance RtUv)ankMNt;eday lateral-torsional
buckling strength EdlmanlkçN³Ca elastic b¤ inelastic .

        RbePTTImYy (laterally supported compact beam) CakrNIEdlFmμta nigsamBaØCageK.
AISC F1.1 eGay nominal strength Ca
          Mn = M p                                                     (AISC Equation F1.1)

Edl       M p = F y Z ≤ 1 .5 M y

         tMélkMNt;eday 1.5M y sMrab; M p KWedIm,IkarBarbnÞúkEdleFVIkarelIslb; nigRtUv)anbMeBj
enAeBlEdl
         F y Z ≤ 1 .5 F y S   b¤ Z ≤ 1.5
                                       S
sMrab; I- nig H-shape ekageFobGkS½xøaMg enaH Z / S EtgEttUcCag 1.5 Canic©. ¬b:uEnþsMrab; I- nig H-
shape ekageFobGkS½exSay enaH Z / S nwgminEdltUcCag 1.5 eT.¦



]TahrN_ 5>3³ FñwmEdlbgðajenAkñúgrUbTI 5>11 CaEdl A36 EdlmanrUbrag W 16 × 31 . vaRTkM
ralxNнebtugGarem:Edlpþl;nUv continuous lateral support dl;søabrgkarsgát;. Service dead
loadKW 450lb / ft . bnÞúkenHRtUv)andak;BIelIFñwm vaminRtUv)anKItbBa©ÚlbnÞúkpÞal;rbs;FñwmeT. Service

live load KW 550lb / ft . etIFñwmenHman moment strength RKb;RKan;b¤eT?




                                            125                                           Fñwm
T.chhay


dMeNaHRsay³ Service dead load srub edayrYmbBa©ÚlTaMgTMgn;rbs;FñwmKW
          wD = 450 + 31 = 481lb / ft
sMrab;FñwmTMrsamBaØrgbnÞúkBRgayesμI m:Um:g;Bt;GtibrmaekItmanenAkNþalElVgesμInwg
                 1
          M max = wL2
                 8
Edl w CabnÞúkEdlmanxñatkMlaMgelIÉktþaRbEvg ehIy L CaRbEvgElVg. enaH
               1 2 0.481× 30 2
          M D = wL =           = 54.11 ft − kips
               8       8
                 0.55 × 30 2
          ML =               = 61.88 ft − kips
                     8
edaysar dead load tUcCag live load min)an 8 dg enaHbnSMbnÞúk A4-2 nwgmantMélFMCageK³
          M u = 1.2M D + 1.6M L = 1.2 × 54.11 + 1.6 × 61.88 = 164 ft − kips
müa:gvijeTot bnÞúkGacRtUv)anKitemKuNmun
          wu = 1.2wD + 1.6wL = 1.2 × 0.431 + 1.6 × 0.550 = 1.457kips / ft
               1        1.457 × 30 2
          M u = wu L2 =              = 164 ft − kips
               8             8
RtYtBinitü compactness ³
         bf
         2t
             = 6.3    ¬BI Part 1 of the Manual ¦
             f
           65
           Fy
              =
                65
                 36
                    = 10.8 > 6.3       dUcenH søabCa compact .
           h
          tw
             <
               640
                Fy
                         ¬sMrab;RKb;rUbragenAkñúg Manual ¦
dUcenH W 16 × 31 Ca compact sMrab;Edk A36 .
edaysarFñwmCa compact ehIymanTMrxag
          M n = M p = F y Z x = 36(54.0 ) = 1944in − kips = 162 ft − kips

RtYtBinitüsMrab; M p ≤ 1.5M y ³
          Zx     54
              =       = 1.15 < 1.5       (OK)
          S x 47.2
          φb M n = 0.90(162) = 146 ft − kips < 164 ft − kips     (NG)
cMeLIy³ Design moment tUcCagm:Um:g;emKuN dUcenH W 16 × 31 minRKb;RKan;.
                                                 126                              Fñwm
T.chhay


         eTaHbICakarRtYtBinitüsMrab; M p ≤ 1.5M y RtUv)aneFVIenAkñúg]TahrN_xagelI b:uEnþvamincaM)ac;
sMrab; I- nig H-shape ekageFobGkS½xøaMg ehIyvaminRtUv)aneFVIdEdl²enAkñúgesobePAenHeT.




                        rbs; compact shape CaGnuKmn_nwg unbraced length, Lb EdlRtUv)ankM
          Strength moment

Nt;CacMgayrvagcMnucénTMrxag b¤karBRgwg. enAkñúgesovePAenH bgðajcMnucénTMrxageday “X” dUc
bgðajenAkñúgrUbTI 5>12. TMnak;TMngrvag nominal strength M n nig unbraced length RtUv)an
bgðajenAkñúgrUbTI 5>13 . RbsinebI unbraced length minFMCag L p FñwmRtUv)anBicarNamanTMr
xageBj ehIy M n = M p . RbsinebI Lb FMCag L p b:uEnþtUcCag b¤esμI)a:ra:Em:Rt Lr enaHersIusþg;nwg
QrelI inelastic LTB . RbsinebI Lb FMCag Lr enaHersIusþg;nwgQrelI elastic LTB .




            eKGacrksmIkarsMrab;                                                    enAkñúg
                                  theorical elastic lateral-torsional buckling strength

Theory of Elastic Stability (Timoshenko and Gere, 1961) nigCamYykarpøas;bþÚrnimitþsBaØaxøH

smIkarenHmanragdUcxageRkam³
                                             127                                           Fñwm
T.chhay


                                            2
                  π                   ⎛ πE ⎞
          Mn =              EI y GJ + ⎜ ⎟ I y C w
                                      ⎜L ⎟                                              ¬%>#¦
                  Lb                  ⎝ b⎠
Edl       Lb = unbraced length

          G = shear modulus = 77225MPa              b¤ = 11200ksi sMrab;eRKOgbgÁúMEdk
          J = torsional constant
          C w = warping constant ( mm 6 )
RbsinebIm:Um:g;enAeBlEdl lateral-torsional buckling ekIteLIgFMCagm:Um:g;EdlRtUvKñanwg first yield
enaH strength QrenAelI inelastic behavior. m:Um:g;EdlRtUvKñanwg first yield KW
          M r = FL S x                                                         (AISC Equation F1-7)
Edl FL CatMélEdltUcCageKkñúgcMeNam ( Fyf − Fr ) nig Fyw . enAkñúgsmIkarenH yield stress enA
kñúgsøabRtUv)ankat;bnßyeday Fr kugRtaMgEdlenAsl; (residual stress) . sMrab; nonhybrid
member, F yf = Fym = Fy ehIy FL EtgEtesμInwg F y − Fr . teTAmuxeTotenAkñúgCMBUkenH eyIg

CMnYs FL eday Fy − Fr . Ca]TahrN_ eyIgsresr AISC Equation E1-7 Ca
                 (
          M r = Fy − Fr S x    )                                               (AISC Equation F1-7)

EdlkugRtaMgEdlenAsl; Fr = 10ksi = 69MPa sMrab; rolled-shapes nig Fr = 16.5ksi = 114MPa
sMrab; welded built-up shapes. dUcbgðajenAkñúgrUbTI 5>13 RBMEdnrvag elastic behavior nig
inelastic behavior KW unbraced length Lr EdltMélrbs; Lr RtUv)anTTYlBIsmIkar %># enAeBl

Edl M n RtUv)andak;eGayesμI M r . eKTTYl)ansmIkarxageRkam³
          Lr =
                     ry X 1
                 (Fy − Fr )                     (      )
                                   1 + 1 + X 2 Fy − Fr 2                       (AISC Equation F1-6)

Edl
          π    EGJA
 X1 =
          Sx    2
                        2
                                                                       (AISC Equation F1-8 and F1-9)
      4C w ⎛ S x ⎞
 X2 =      ⎜     ⎟
       I y ⎝ GJ ⎠

dUckrNIssrEdr inelastic behavior rbs;FñwmmanlkçN³sμúKsμajCag elastic behavior
CaTUeTAeKeRcIneRbIrUbmnþEdl)anmkBIkarBiesaFn_ (empirical formulas). CamYynwgkarEktMrUvd¾tic
tYc AISC )aneGayeRbIsmIkarxageRkam³

                                                     128                                        Fñwm
T.chhay


                              ⎛ Lb − L p ⎞
                       (
          Mn = M p − M p − Mr ⎜   )      ⎟
                              ⎜ Lr − L p ⎟
                                                                                    ¬%>$¦
                              ⎝          ⎠
               790ry                       300ry
Edl       Lp =
                 Fy
                           ¬xñat ¦
                           IS       Lp =
                                             Fy
                                                       ¬xñat US¦      (AISC Equation F1-4)


Nominal bending strength     rbs; compact beam RtUv)anbgðajedaysmIkar %># nig %>$ rgnUv
upper limit M p sMrab; inelastic beam RbsinebIm:Um;g;EdlGnuvtþBRgayesμIelI unbraced length Lb .

RbsinebIdUcenaHeT vaman moment gradient ehIysmIkar %># nig %>$ RtUv)anEksMrYledayemKuN
Cb . emKuNenHRtUv)aneGayeday AISC F1.2 kñúgTMrg;
                           12.5M max
          Cb =                                                        (AISC Equation F1-3)
                 2.5M max + 3M A + 4 M B + 3M C
Edl   M max =  tMéldac;xatrbs;m:Um:g;GtibrmaenAkñúg unbraced length (including the end points)
     M A = tMéldac;xatrbs;m:Um:g;enAcMnucmYyPaKbYnén unbraced length

     M B = tMéldac;xatrbs;m:Um:g;enAcMnucBak;kNþalén unbraced length

     M C = tMéldac;xatrbs;m:Um:g;enAcMnucbIPaKbYnén unbraced length

enAeBlm:Um:g;Bt;BRgayesμI tMél Cb esμInwg
                    12.5M
      Cb =                       = 1.0
             2.5M + 3M + 4M + 3M


]TahrN_ 5>4³ kMNt;          Cb   sMrab;FñwmTMrsamBaØRTbnÞúkBRgayesμICamYyEtnwgkarTb;xagenAxagcug
b:ueNÑaH.




                                             129                                        Fñwm
T.chhay


dMeNaHRsay³ edaysarlkçN³suIemRTI m:Um:g;GtibrmasßitenAkNþalElVg dUcenH
                   1
      M max = M B = wL2
                   8
dUcKña edaysarlkçN³sIuemRTI m:Um:g;enAcMnucmYyPaKbIesμIm:Um:g;enAcMnucbIPaKbYn. BIrUbTI 5>14
                  wL ⎛ L ⎞ wL ⎛ L ⎞ wL 2 wL2         3
      M A = MC =      ⎜ ⎟−      ⎜ ⎟=       −     =     wL2
                   2 ⎝4⎠ 4 ⎝8⎠          8    32     32
                     12.5M max                             12.5(1 / 8)
      Cb =                                =                                             = 1.14
           2.5M max + 3M A + 4 M B + 3M C 2.5(1 / 8) + 3(3 / 32) + 4(1 / 8) + 3(3 / 32)
cMeLIy³ Cb = 1.14

          rUbTI 5>15 bgðajBItMélrbs; Cb sMrab;krNIFmμtaCaeRcInénkardak;bnÞúk nigTMrxag.
        sMrab; unbraced cantilever beams, AISC kMNt;tMél Cb = 1.0 . tMél 1.0 CatMéltUc
¬edayminKitBIrrUbragrbs;Fñwm nigkardak;bnÞúk¦ b:uEnþkñúgkrNIxøHvaCatMélEdltUcEmnETn. karkMNt;
TaMgGs;én nominal moment strength sMrab; compact shapes GacRtUv)ansegçbdUcxageRkam³




                                             130                                          Fñwm
T.chhay


           sMrab; Lb ≤ L p /
                  M n = M p ≤ 1.5 M y                                    (AISC Equation F1-1)

           sMrab; L p < Lb ≤ Lr /
                           ⎡                      ⎛     −L      ⎞⎤
                                    (
                  M n = Cb ⎢ M p − M p − M r      )⎜ Lb − L p ⎟⎥ ≤ M p
                                                   ⎜L         ⎟
                                                                         (AISC Equation F1-2)
                           ⎢
                           ⎣                      ⎝     r   p   ⎠⎥
                                                                 ⎦
           sMrab; L p > Lr /
                  M n = M cr ≤ M p                                       (AISC Equation F1-12)
                                          2
                      π              ⎛ πE ⎞
Edl       M cr = Cb        EI y GJ + ⎜
                                     ⎜ L ⎟ I y Cw
                                          ⎟                              (AISC Equation F1-13)
                      Lb             ⎝ b⎠
                                2
               C S X 2        X1 X 2
              = b x 1    1+
                 Lb / ry             (
                            2 Lb / ry 2       )
       tMélefr X1 nig X 2 RtUv)ankMNt;BImun ehIyRtUv)anrayCataragenAkñúg dimensions and
properties tables in the Manual.

       T§iBlrbs; Cb eTAelI nominal strength RtUv)anbgðajenAkñúgrUbTI5>16. eTaHbICa strength
smamaRtedaypÞal;eTAnwg Cb k¾eday EtRkaPicenH)anbgðajy:agc,as;BIsar³sMxan;rbs; upper
limit M p edayminKitBIsar³sMxan;rbs;smIkarEdlRtUveRbIsMrab; M n .




]TahrN_ 5>4³ kMNt; design strength φb M n sMrab; W 14 × 68 rbs;Edk A242 Edl³
k> TMrxagCab;
x> unbraced length = 20 ft / Cb = 1.0
                                                  131                                    Fñwm
T.chhay


K> unbraced length = 20 ft / Cb = 1.75
dMeNaHRsay³
k> BI Part 1 of the Manual /W14 × 68 KWsßitenAkñúg shape group 2 /dUcenHvaGacman yield stress
   F y = 50ksi / kMNt;faetIrUbragenHCa compact, noncompact b¤ slender.
          bf                      65
                 = 7.0 <
          2t f                     50

   rUbragenHKW compact dUcenH
          M n = M p = Fy Z x = 50(115) = 5750in. − kips = 479.2 ft − kips

cMeLIy³ φb M n = 0.9(479.2) = 431 ft − kips
x> Lb = 20 ft nig Cb = 1.0 . KNna L p nig Lr ³
                     300ry         300 × 2.46
          Lp =                 =              = 104.4in. = 8.7 ft
                         Fy            50

   BI torsion properties tables in Part 1 of the Manual,
        J = 3.02in 4 nig C w = 5380in 6

   eTaHbICa X1 nig X 2 RtUv)anerobCataragenAkñúg dimensions and properties table in part 1 of
the Manual eyIgnwgKNnavaenATIenHsMrab;bgðaj
                     π        EGJA    π 29000(11200)(3.02)(20)
          X1 =                     =                           = 3021ksi
                     Sx        2     103         2
                                        2                             2
                 C ⎛S ⎞      ⎛ 5380 ⎞⎛    103      ⎞               −2
          X 2 = 4 w ⎜ x ⎟ = 4⎜      ⎟⎜             ⎟ = 0.001649ksi
                 I y ⎝ GJ ⎠  ⎝ 121 ⎠⎝ 11200 × 3.02 ⎠
                         ry X 1
          Lr =                          1 + 1 + X 2 ( Fy − Fr ) 2
                     ( Fy − Fr )
                     2.46(3021)
                 =              1 + 1 + 0.001649(50 − 10 )2 = 316.8in = 26.40 ft
                      (50 − 10)
   edaysar L p < Lb < Lr strength QrelI inelastic LTB nig
                     (
          M r = Fy − Fr S x =      )        (50 − 10)(103) = 343.3 ft − kips
                                    12
                   ⎡                  ⎛ Lb − L p ⎞⎤
          M n = Cb ⎢ M p − M p − M r ⎜  (        ⎟⎥
                                      ⎜ Lr − L p ⎟⎥
                                                   )
                   ⎢
                   ⎣                  ⎝          ⎠⎦
                      ⎡                       ⎛ 20 − 8.7 ⎞⎤
                 = 1.0⎢479.2 − (479.2 − 343.3)⎜            ⎟⎥
                      ⎣                       ⎝ 26.4 − 8.7 ⎠⎦

                                                           132                        Fñwm
T.chhay


cMeLIy³ φb M n = 0.90(392.4) = 353 ft − kips
K> Lb = 20 ft nig Cb = 1.75 . Design strength sMrab; Cb = 1.75 KWesμInwg     1.75   dgén Design
   strength sMrab; Cb = 1.0 . dUcenH

          M n = 1.75(392.4) = 686.7 ft − kips > M p = 479.2 ft − kips

   Nominal strength      minGacFMCag M p / dUcenHeRbI nominal strength M n = 479.2 ft − kips
cMeLIy³ φb M n = 0.90(479.2) = 431 ft − kips

Part 4 of the Manual of Steel Construction, “Beam and Girder Design,” mantaragmanRbeyaCn_
CaeRcInsMrab;viPaK nigKNnaFñwm. Ca]TahrN_ Load Factor Design Selection Table raynUvrUbrag
EdleRbICaTUeTAsMrab;Fñwm EdlRtUv)anerobCalMdab;én Z x . edaysar M p = Fy Z x rUbragk¾RtUv)an
erobCalMdab;én design moment φb M p . tMélefrdéTeTotEdlmanRbeyaCn_k¾RtUv)anerobCatarag
EdlrYmman L p nig Lr ¬EdlCaEpñkmYyEdlKYreGayFujRTan;kñúgkarKNna¦.

Plastic Analysis
        enAkñúgkrNICaeRcIn m:Um:g;emKuNGtibrma M u nwgRtUv)anTTYlBI elastic structural analysis
edayeRbIbnÞúkemKuN. eRkamlkçxNÐc,as;las; ersIusþg;EdlcaM)ac; (required strength) sMrab;rcna
sm<n§½EdlminGackMNt;edaysþaTic (statically inderteminate structure) RtUv)anrkedayeRbI plastic
analysis. AISC GnuBaØateGayeRbI plastic analysis RbsinebIrUbrag compact nigRbsinebI

          Lb ≤ L pd
                   24800 + 15200(M 1 / M 2 )
Edl       L pd =
                             Fy
                                             ry         ¬xñat SI ¦      (AISC Equation F1-17)

            m:Um:g;EdltUcCageKkñúgcMeNamm:Um:g;cugTaMgBIrsMrab; unbraced segment
          M1 =

      M 2 = m:Um:g;EdlFMCageKkñúgcMeNamm:Um:g;cugTaMgBIrsMrab; unbraced segment

      pleFob M1 / M 2 viC¢manenAeBlEdlm:Um:g;begáIt reverse curvature enAkñúg unbraced
segment. enAeBlenH Lb Ca unbraced length EdlenACab;nwgsnøak;)aøsÞicEdlCaEpñkmYyén failure

mechanism. b:uEnþRbsinebIeKeRbI plastic analysis, nominal moment strength M n EdlenACab;nwg




                                                  133                                     Fñwm
T.chhay


snøak;cugeRkayEdlminenAEk,rsnøak;)aøsÞicRtUv)anKNnatamviFIdUcKñasMrab;FñwmEdlviPaKedayviFIeG
LasÞic ehIyvaRtUvEttUcCag M p .

5>6>      Bending Strength of Noncompact Shapes

        dUckarkt;cMNaMBImun standard W-, M-, nig S-shapes PaKeRcInCa compact sMrab;
 F y = 250 MPa nig F y = 350MPa . cMnYntictYcb:ueNÑaHCa noncompact edaysar width-

thickness ratio rbs;søab b:uEnþKμanrUbragmYyNaCa slender eT. edaysarmUlehtuTaMgenH AISC

Specification edaHRsay noncompact nig slender flexural member enAkñúg]bsm<n§½ (Appendix

F). enAkñúgesovePAenH eyIgnwgBicarNa slender flexural member enAkñúgCMBUkTI10.

        CaTUeTA FñwmGac)ak;eday lateral-torsional buckling, flange local buckling b¤ web local
buckling. RKb;RbePTénkar)ak;GacsßitenAkñúgEdneGLasÞic b¤ inelastic range. RTnugrbs;RKb;

rolled shapes enAkñúg Manual Ca compact dUcenH noncompact shapes CaRbFanbTsMrab;Etsßan

PaBkMNt; (limit states) én lateral-torsional buckling nig flange local buckling. ersIusþg;EdlRtUv
nwgsßanPaBkMNt;TaMgBIrRtUv)anKNna ehIyeKyktMélEdltUcCageK. BI AISC Appendix F CamYy
                 bf
          λ=
               2t f

RbsinebI λ p < λ ≤ λr / enaHsøabCa noncompact ehIy buckling Ca inelastic eyIgnwgTTYl)an
                              ⎛ λ − λp ⎞
                           (
          Mn = M p − M p − Mr ⎜         )⎟
                              ⎜ λr − λ p ⎟
                                                                                 (AISC Equation A-F1-3)
                              ⎝          ⎠
Edl       λp =
               170
                Fy
                            IS   ¬sMrab; ¦
                                     λp =
                                           65
                                           Fy
                                                                  ¬sMrab; US ¦
          λr =
                       370
                      F y − Fr
                                      ¬sMrab; IS ¦         λr =
                                                                   141
                                                                  F y − Fr
                                                                                 ¬sMrab; US ¦
                  (
          M r = F y − Fr S x     )
             kugRtaMgEdlenAesssl; = 69MPa = 10ksi sMrab; rolled shapes
          Fr =

¬GgÁenHRtUv)ankMNt;sMrab; nonhybrid beam¦



                                                     134                                         Fñwm
T.chhay


]TahrN_ 5>6³ FñwmTMrsamBaØmYymanRbEvg 40 feet RtUv)anTb;xagenAxagcugrbs;va ehIyvargnUv
service load dUcxageRkam³

        Dead load = 400lb / ft ¬edayrYmbBa©ÚlTaMgTMgn;Fñwm¦
          Live load = 1000lb / ft
RbsinebIeKeRbI AISC A572 Grade 50 etI W 14 × 90 RKb;RKan;b¤Gt;?
dMeNaHRsay³ bnÞúkemKuN nigm:Um:g;emKuNKW
          wu = 1.2wD + 1.6 wL = 1.2(0.40) + 1.6(1.00) = 2.08kips / ft
               1        2.08(40 )2
          M u = wu L2 =            = 416.0 ft − kips
               8            8
kMNt;lkçN³rUbragmuxkat; ¬faetICa compact, noncompact b¤ slender¦³
                 bf
          λ=           = 10.2
               2t f
                      65   65
          λp =           =     = 9.19
                      Fy    50
                       141        141
          λr =                 =         = 22.3
                      F y − Fr   50 − 10

eday λ p < λ < λr dUcenHrUbragenHKW noncompact. RtYtBinitülT§PaBRTRTg;edayQrelIsßanPaB
kMNt;rbs; flange local buckling³
                          50(157 )
          M p = Fy Z x =           = 654.2 ft − kips
                             12
          Mr      (            )
               = F y − Fr S x = (50 − 10)
                                          143
                                          12
                                              = 476.7 ft − kips

                                   ⎛ λ − λp ⎞
          Mn               (
               = M p − M p − Mr ⎜    )        ⎟ = 652.4 − (654.2 − 476.7 )⎛ 10.2 − 9.19 ⎞ = 640.5 ft − kips
                                   ⎜ λr − λ p ⎟                           ⎜             ⎟
                                   ⎝          ⎠                           ⎝ 22.3 − 9.19 ⎠

Design strength         EdlQrenAelI FLBdUcenH
          φb M n = 0.9(640.5) = 576 ft − kips
RtYtBinitülT§PaBRTRTg;EdlQrelIsßanPaBkMNt;rbs; lateral-torsional buckling. BI Load
Factor Design Selection Table³

          L p = 15 ft          nig   Lr = 38.4 ft

          Lb = 40 ft > Lr
dUcenHvanwg)ak;edayeGLasÞic LTB.
                                                    135                                       Fñwm
T.chhay


BI Part 1 of the Manual/
          I y = 362in 4

          J = 4.06in 4
          C w = 16000in 6
sMrab;FñwmTMrsamBaØRTbnÞúkBRgayesμICamYynwgTMrxagenAxagcugsgçag
          Cb = 1.14
AISC Equation F1-13        eGay
                                         2
                      π              ⎛ πE ⎞
          M n = Cb         EI y GJ + ⎜    ⎟
                                     ⎜ L ⎟ I yCw ≤ M p
                      Lb             ⎝ b⎠
                     ⎡                                                  2            ⎤
              = 1.14 ⎢ π                                  ⎛ π × 29000 ⎞
                               29000(362)(11200)(4.06 ) + ⎜           ⎟ (362)(16000) ⎥
                     ⎢ 40(12 )                            ⎝   40 × 12 ⎠              ⎥
                     ⎣                                                               ⎦
              = 1.14(5412 ) = 6180in. − kips = 515.0 ft − kips
          M p = 654.2 ft − kips > 515.0 ft − kips

edaysar 515.0 < 640.5 dUcenH LTB lub ehIy
          φb M n = (0.90)515.0 = 464 ft − kips > M u = 416 ft − kips          (OK) /
cMeLIy³ eday M u < φb M n enaHFñwmman moment strength RKb;RKan;.

       lkçN³kMNt;rbs; noncompact shapes RtUv)ansMrYleday Load Factor Design Selection
Table. Noncompact shapes RtUv)ankMNt;sMKal;eday footnote farUbragCa noncompact sMrab;

F y = 250 MPa = 36ksi b¤ F y = 350 MPa = 50ksi . Noncompact shapes k¾RtUv)anerobcMenAkñúg

taragedaylkçN³xusEbøkKñadUcxageRkam³
        !> sMrab; noncompact shapes tMélEdlmanenAkñúgtaragrbs; φb M p CatMélBitR)akdrbs;
           design strength EdlQrelI flange local buckling. enAkñúg]TahrN_TI 5>6 eyIg)an

           KNnatMélenHesμInwg 576 ft − kips b:uEnþtMélRtwmRtUvenAkñúgtarag φb M p KW
              0.90(654.2 ) = 589 ft − kips
           @> tMél L p enAkñúgtaragCatMélrbs; unbraced length Edl nominal strength EdlQr
              elI inelastic lateral torsional buckling esμInwg nominal strength EdlQrelI flange
                                              136                                        Fñwm
T.chhay


             local buckling  dUcenH nominal strength sMrab; unbraced length GtibrmaGacRtUv)an
             KitCaersIusþg;EdlQrelI web local buckling. ¬rMlwkfa L p sMrab; compact shapes
             Ca unbraced length GtibrmaEdl nominal strength GacRtUv)anKitesμInwg plastic
             moment¦. sMrab;rUbragenAkñúg]TahrN_5>6 karKNna nominal strength EdlQrelI

             FLB eTAersIusþg;EdlQrelI inelastic LTB (AISC Equation F1-2) CamYynwg

             Cb = 1.0 ³
                                         ⎛ Lb − L p ⎞
                 M n = M p − (M p − M r )⎜          ⎟                               ¬%>%¦
                                         ⎜L −L ⎟
                                              ⎝ r      p⎠

             tMélrbs; M r nig Lr RtUv)anTTYlBI]TahrN_ 5>6 ehIynwgminRtUv)anpøas;bþÚr. b:uEnþ
             tMélrbs; L p RtUvEt)anKNnaBI AISC Equation F1-4³
                       300ry        300(3.70 )
                Lp =            =              = 157.0in. = 13.08 ft.
                         Fy             50

             CMnYstMélxagelIkñúgsmIkar %>% eyIgTTYl)an
                                                ⎛ L − 13.08 ⎞
                640.5 = 654.2 − (654.2 − 476.7 )⎜ b            ⎟
                                                ⎝ 38.4 − 13.08 ⎠
                Lb = 15.0 ft.
             enHCatMélbBa©ÚlkñúgtaragCa L p sMrab; W = 14 × 90 CamYynwg Fy = 50ksi . cMNaMfa
                       300ry
                Lp =
                         Fy

             GaceRbIsMrab; noncompact shapes. RbsinebIeFVIEbbenH lT§plEdlTTYl)anenAkñúg
             smIkarsMrab; inelastic LTB EdlRtUv)aneRbIenAeBl Lb minmantMélFMRKb;RKan; enaH
             ersIusþg;EdlQrelI FLB nwglub.

5>7>      Summary of Moment Strength

        viFIsaRsþkñúgkarKNna nominal moment strength sMrab; I- nig H-shaped sections Edl
ekageFobnwgGkS½ x nwgRtUv)ansegçbenATIenH. GgÁTaMgGs;EdlmanenAkñúgsmIkarxageRkamRtUv)an
kMNt;rYcehIyBImun ehIyelxsmIkarrbs; AISC minRtUv)anbgðajenATIenHeT. karsegçbenHsMrab;Et
compact shapes nig noncompact shapes Etb:ueNÑaH ¬minmansMrab; slender shapes eT¦.


                                                 137                                  Fñwm
T.chhay


          !> kMNt;faetIrUbrag compact b¤Gt;
          @> RbsinebIrUbrag compact, RtYtBinitüsMrab; lateral-torsional buckling dUcxageRkam³
                 RbsinebI Lb ≤ L p vaminEmn LTB ehIy M n = M p
                 RbsinebI L p < Lb ≤ Lr / vaman inelastic LTB ehIy
                                  ⎡                        ⎛     −L       ⎞⎤
                                             (
                         M n = Cb ⎢ M p M p − M r          )⎜ Lb − L p ⎟⎥ ≤ M p
                                                            ⎜L         ⎟
                                  ⎢
                                  ⎣                        ⎝ r        p   ⎠⎥
                                                                           ⎦
                 RbsinebI Lb > br / vaman elastic LTB ehIy
                                                                 2
                                    π                  ⎛ πE ⎞
                         M n = Cb            EI y GJ + ⎜ ⎟ I y C w ≤ M p
                                                       ⎜L ⎟
                                    Lb                 ⎝ b⎠
          #> RbsinebIrUbrag noncompact edaysarsøab/ RTnug b¤TaMgBIr enaH nominal strength nwgCa
             tMéltUcCageKénersIusþg;EdlRtUvKñanwg flange local buckling, web local buckling nig
             lateral-torsional buckling.

                  k> Flange local buckling³
                           RbsinebI λ ≤ λ p vaminman FLB.
                           RbsinebI λ p < λ ≤ λr søabCa noncompact, ehIy
                                             ⎛ λ − λp                ⎞
                                         (
                         Mn = M p − M p − Mr ⎜
                                             ⎜ λr − λ p
                                                       )             ⎟≤Mp
                                                                     ⎟
                                             ⎝                       ⎠
                 x> Web local buckling³
                       RbsinebI λ ≤ λ p vaminman WLB.
                       RbsinebI λ p < λ ≤ λr RTnugCa noncompact, ehIy
                                             ⎛ λ − λp                ⎞
                                         (
                         Mn = M p − M p − Mr ⎜
                                             ⎜ λr − λ p
                                                       )             ⎟≤Mp
                                                                     ⎟
                                             ⎝                       ⎠
                 K> Lateral-torsional buckling³
                        RbsinebI Lb ≤ L p vaminman LTB.
                        RbsinebI L p < Lb ≤ Lr / vaman inelastic LTB ehIy
                                          ⎡                          ⎛     −L      ⎞⎤
                                                   (
                                 M n = Cb ⎢ M p M p − M r            )⎜ Lb − L p ⎟⎥ ≤ M p
                                                                      ⎜L         ⎟
                                          ⎢
                                          ⎣                          ⎝ r       p   ⎠⎥
                                                                                    ⎦
                         RbsinebI Lb > br / vaman elastic LTB ehIy
                                                 138                                        Fñwm
T.chhay


                                                            2
                                        π              ⎛ πE ⎞
                             M n = Cb        EI y GJ + ⎜ ⎟ I y C w ≤ M p
                                                       ⎜L ⎟
                                        Lb             ⎝ b⎠


5>8> ersIusþg;kMlaMgkat;TTwg Shear Strength
     ersIusþg;kMlaMgkat;rbs;FñwmRtUvEtRKb;RKan;edIm,IbMeBjTMnak;TMng
          Vu ≤ φvVn
Edl       Vu = kMlaMgkat;TTwgGtibrmaEdll)anBIkarbnSMbnÞúkemKuNFMCageK
          φv = emKuNersIusþg;sMrab;kMlaMgkat;TTwg = 0.9
          Vn = nominal shear strength/




        BicarNaFñwmsamBaØenAkñúgrUbTI 5>17. enAcMgay x BITMrxageqVgnigsßitenAelIGkS½NWtrbs;
muxkat; sßanPaBrbs;kugRtaMgRtUv)anbgðajenAkñúgrUbTI 5>17 d . edaysarFatuenHsßitenAelIGkS½
NWt vaminrgnUvkugRtaMgBt;eT. BI elementary mechanics of materials/ kugRtaMgkMlaMgkat;TTwg
(shearing stess) KW

         fv =
              VQ
               Ib
                                                                                  ¬%>^¦

                                             139                                    Fñwm
T.chhay


Edl       fv =kugRtaMgkMlaMgkat;TTwgbBaÄr nigedkenARtg;cMnucEdleyIgBicarNa
        V = kMlaMgkat;TTwgbBaÄrenARtg;muxkat;EdlBicarNa

        Q = m:Um:g;RkLaépÞTImYyeFobGkS½NWt rvagcMnucEdlBicarNanwgEpñkxagelIb¤EpñkxageRkam

             rbs;muxkat;
         I = m:Um:g;niclPaBeFobnwgGkS½NWt

        b = TTwgrbs;muxkat;enAcMnucEdlBicarNa

        smIkar %>^ KWQrelIkarsnμt;fakugRtaMgmantMélefreBjelITTwg b dUcenHvapþl;tMélsuRkit
sMrab;Et b mantMéltUc. sMrab;muxkat;ctuekaNEkgEdlmankMBs; d nigTTwg b tMéllMeGogsMrab;
d / b = 2 KWRbEhl 3% . sMrab; d / b = 1 tMéllMeGogKW 12% nigsMrab; d / b = 1 / 4 tMéllMeGogKW

100% (Higdon, Ohlsen, and Stiles, 1960). sMrab;mUlehtuenH smIkar %>^ minGacGnuvtþ)ansMrab;

søabrbs; W-shape dUcKñasMrab;RTnugrbs;va.




          rUbTI 5>18 bgðajBIkarBRgaykugRtaMgkMlaMgkat;sMrab; W-shape. ExSdac;CakugRtaMgmFüm
V / Aw  EdlBRgayenAkñúgRTnug ehIytMélenHminxusKñaBIkugRtaMgGtibrmaenAkñúgRTnugeRcIneT. eyIg
eXIjc,as;ehIyfa RTnugnwg yield y:agyUrmunnwgsøabc,ab;epþIm yield. edaysarbBaðaenH yielding
rbs;RTnugsMEdgnUvsßanPaBlImItkMNt;mYy. edayyk shear yield stress esμInwg 60% én tensile
yield stress eyIgGacsresrsmIkarsMrab;kugRtaMgenAkñúgRTnugenAeBl)ak;Ca
               V
          f v = n = 0.60 F y
               Aw
Edl Aw = RkLaépÞmuxkat;rbs;RTnug. dUcenH nominal strength EdlRtUvKñanwgsßanPaBkMNt;enHKW
          Vn = 0.6 F y Aw




                                           140                                       Fñwm
T.chhay


ehIyvaGacCa nominal strength in shear RbsinebIRTnugminman shear buckling. RbsinebIvaekIt
eLIgvanwgGaRs½ynwgpleFob width-thickness ratio h / t w rbs;RTnug. pleFob h / t w rbs;RTnug
EdlRsavxøaMgmantMélFMNas; enaHRTnugGacnwg buckle in shear eday inelastic b¤ elastic. TMnak;TM
ngrvag shear strength nig width-thickness ration manlkçN³RsedogKñanwgTMnak;TMngrvag flexural
strength nig width-thickness ratio ¬sMrab; FLB b¤ WLB¦ nigrvag flexural strength nig unbraced

length ¬sMrab; LTB¦. TMnak;TMngRtUvbgðajenAkñúgrUbTI 5>19 nigRtUv)aneGayenAkñúg AISC F2.2 dUc

xageRkam³
        sMrab; h / t w < 418 / Fy ¬sMrab; US¦/ h / t w < 1100 / Fy ¬sMrab; IS¦ RTnugmanesßrPaB
          Vn = 0.6 F y Aw                                            (AISC Equation F2-1)

        sMrab; 418 / Fy < h / t w ≤ 523 / Fy ¬sMrab; US¦/ 1100 / Fy ≤ h / t w < 1375 /     Fy

¬sMrab; IS¦ enaH inelastic web buckling GacnwgekIteLIg
                         418 / Fy
         Vn = 0.6 Fy Aw
                           h/t
                                   ¬sMrab; US¦ Vn = 0.6Fy Aw 1100//t Fy ¬sMrab; IS¦
                                                                h
                              w                                      w
                                                                     (AISC Equation F2-1)
       sMrab; 523 / Fy < h / t w ≤ 260 ¬sMrab; US¦/ 1375 / Fy ≤ h / t w < 260 ¬sMrab; IS¦ enaH
sßanPaBkMNt;KW elastic web buckling
       Vn =
             132000 Aw
                        ¬sMrab; US¦ Vn = 910 Aw2 ¬sMrab; IS¦ (AISC Equation F2-1)
                 (h / t w )
                     2
                                           (h / t w )
Edl       Aw =  RkLaépÞmuxkat;rbs;RTnug = dt w KitCa ¬ mm 2 ¦
         d = kMBs;srubrbs;Fñwm

         Vn = nominal strength ¬KitCa KN ¦

        RbsinebI h / t w > 260 enaHeKRtUvkar web stiffener ehIyvaRtUv)anbriyayenAkñúg
Appendix F2 ¬b¤ Appendix G sMrab; plate girder ¦.

        AISC Equation F2-3 KWQrelI elastic stability theory, ehIy Equation F2-2 CasmIkar

Edl)anBIkarBiesaFn_sMrab;tMbn; inelastic Edlpþl;nUvkarpøas;bþÚrrvagsßanPaBkMNt; web yielding
nig elastic web buckling.
        kMlaMgkat;CabBaðaEdlkMrekItmansMrab; rolled steel beams karGnuvtþn_TUeTAKWbnÞab;BIKNna
FñwmsMrab; flexural ehIyeyIgnwgRtYtBinitümuxkat;EdlTTYl)ansMrab;kMlaMgkat;TTwg.
                                           141                                           Fñwm
T.chhay




]TahrN_ 5>7³ RtYtBinitüFñwmenAkñúg]TahrN_ 5>6 sMrab;kMlaMgkat;TTwg.
dMeNaHRsay³ BI]TahrN_ 5>6/ wu = 2.080kips / ft nig L = 40 ft . Edk W 14 × 90 CamYynwg
 F y = 50ksi RtUv)aneRbI. sMrab;FñwmTmrsamBaØRTbnÞúkBRgayesμI kMlaMgkat;GtibrmaekItmanenA

elITMr ehIyesμInwgkMlaMgRbtikmμ
              w L 2.080(40)
          Vu = u =          = 41.6kips
               2      2
BI dimensions and properties tables in Part 1 of the Manual, web width-thickness ratio rbs;
W 14 × 90 KW
           h
             = 25.9
          tw
           418    418
               =      = 59.11
            Fy     50

edaysar h / t w < 418 /     Fy   enaHersIusþg;RtUv)anRKb;RKgeday shear yielding rbs;RTnug
          Vn = 0.6 Fy Aw = 0.6 Fy (dt w ) = 0.6(50 )(14.02 )(0.44 ) = 185.1kips
          φvVn = 0.90(185.1) = 167kips > 41.6kips                  (OK)
cMeLIy³ Shear design strength FMCagkMlaMgkat;emKuN dUcenHFñwmmanlkçN³RKb;RKan;.

      tMél φvVn EdlRtUv)anerobCataragenAkñúg factored uniform load table enAkñúg part 4 of
the Manual dUcnHkarKNnarbs;vaminmanRbeyaCn_sMrab; standard hot-rolled shapes.
,
                                                142                                         Fñwm
T.chhay


Block Shear
          Block shear   Edl)anBicarNasMrab;tMNenAkñúgGgát;rgkarTaj k¾GacekItmanenAkñúgRbePTxøH
rbs;tMNenAkñúgFñwmEdr. edIm,IsMrYlkñúgkartP¢ab;BIFñwmmYyeTAFñwmmYyeTot edayeGaynIv:UsøabxagelI
esμIKña enaHRbEvgd¾xøIrbs;søabxagelIrbs;FñwmmYyRtUvEtkat;ecj b¤ coped. RbsinebI coped beam
RtUv)antP¢ab;edayb‘ULúgdUckñúgrUbTI 5>20 kMNt; ABC cg;rEhkecj. bnÞúkEdlGnuvtþenAkñúgkrNI
enHnwgCaRbtikmμbBaÄrrbs;Fñwm dUcenHkMlaMgkat;nwgekItenAtamExS AB ehIynwgekItmankMlaMgTaj
tam BC . dUcenH block shear strength nwgCatMélEdlkMNt;rbs;Rbtikmμ.
          eyIg)anerobrab;BIkarKNna block shear strength enAkñúgCMBUkTI3rYcehIy b:uEnþeyIgnwgrMlwk
vaeLIgvijenATIenH. kar)ak;GacekIteLIgedaybnSMén shear yielding nig tendion fracture b¤eday
shear fracture nig tension yielding. AISC J4.3, “Block Shear Rupture Strength,” eGaysmIkar

BIrsMrab; block shear design strength³
                  [
          φRn = φ 0.6 Fy Agv + Fu Ant   ]                            (AISC Equation J4.3a)
          φRn = φ [0.6 Fu Anv + F y Agt ]                            (AISC Equation J4.3b)

Edl       φ = 0.75
          Agv = gross area rgkMlaMgkat; ¬enAkñúgrUbTI 5>20 RbEvg AB KuNnwgkMras;RTnug¦
          Anv = net area rgkMlaMgkat;

          Agt = gross area rgkMlaMgTaj ¬enAkñúgrUbTI 5>20 RbEvg BC KuNnwgkMras;RTnug¦

          Ant = net area rgkMlaMgTaj

          smIkarEdlmanlT§plFMCagKWCasmIkarEdlmantY fracture FMCag.




]TahrN_ 5>8³ kMNt;RbtikmμemKuNGtibrma EdlQrelI block shearEdlGacRTFñwmdUcbgðajkñúg
rUbTI 5>21.
                                            143                                         Fñwm
T.chhay


dMeNaHRsay³ Ggát;p©itRbehagRbsiT§PaBKW 3 / 4 + 1/ 8 = 7 / 8in. .
gross nig net shear areas KW

          Agv = (2 + 3 + 3 + 3)t w = 11(0.300) = 3.300in.2
                ⎛          7⎞
          Anv = ⎜11 − 3.5 × ⎟(0.300) = 2.381in.2
                ⎝          8⎠
gross   nig net tension areas KW
          Agt = 1.25t w = 1.25(0.300) = 0.375in.2
                ⎛            7⎞
          Ant = ⎜1.25 − 0.5 × ⎟(0.300 ) = 0.2438in.2
                ⎝            8⎠
AISC Equation J4.3a     eGay
                  [                   ]
          φRn = φ 0.6 Fy Agv + Fu Ant = 0.75[0.6(36)(3.3) + 58(0.2438)] = 64.1kips

AISC Equation J4.3b     eGay
                  [                   ]
          φRn = φ 0.6 Fu Anv + Fy Agt = 0.75[0.6(58)(2.381) + 36(0.3750)] = 72.3kips

tY fracture enAkñúg AISC Equation J4.3b mantMélFMCag ¬Edl 82.86>14.14¦ dUcenHsmIkarenH
mantMélFMCag.
cMelIy³ RbtikmμemKuNGtibrmaEdlQrelI block shear=72.3kips.




5>9> PaBdab Deflection
        bEnßmBIelIsuvtßiPaB eRKOgbgÁúMRtUvEt serviceable . eRKOgbgÁúMEdlman serviceable CaeRKOg
bgÁúMEdleFVIkar)anl¥ minbNþaleGayGñkEdleRbIR)as;vamanGarmμN_favaKμansuvtßiPaB. sMrab;Fñwm
edIm,ITTYl)an serviceable eKRtUvkMNt;bMlas;TIbBaÄr b¤PaBdab. PaBdabFMCaTUeTAekItmancMeBaH
flexible beam EdlGacmanbBaðaCamYynwgrMjr½. PaBdabGacbgábBaðaeTAdl;Ggát;d¾éTeTotEdlP¢ab;


                                               144                                      Fñwm
T.chhay


eTAnwgva edaybNþaleGaymankMhUcRTg;RTaytUc. elIsBIenH GñkeRbIR)as;sMNg;nwgeXIjPaB
GviC¢manedaysarPaBdabFM ehIyeFVIkarsnidæanxusfasMNg;KμansuvtßiPaB.
        sMrab;krNITUeTArbs;FñwmTMrsamBaØEdlRTbnÞúkBRgayesμIdUckúñrUbTI 5>22 PaBdabbBaÄrGti-
brmaKW³
                5 wL4
          Δ=
               384 EI
       eKGacrk)anrUbmnþPaBdabsMrab;FñwmeRcInRbePT niglkçxNÐdak;bnÞúkenAkñúg Part 4, “Beam
and Girder Design,”of the Manual. sMrab;sßanPaBminFmμtaeKGaceRbI standard analytical

method dUcCa method of virtual work CaedIm. PaBdabCa serviceability limit state minEmnCa

sßanPaBkMNt;sMrab;ersIusþg;eT dUcenHCaTUeTAPaBdabRtUv)ankMNt;CamYy service loads.
       karkMNt;d¾smrmüsMrab;PaBdabGtibrmaGaRs½yeTAnwgtYnaTIrbs;Fñwm nwgkarRbmaNBIPaB
xUcxatEdlekItBIPaBdab. AISC Specification pþl;nUvkarENnaMtictYcEdlmanEcgenAkñúg Chapter
L, “Serviceability Design Consideration,” faeKRtUvEtRtYtBinitüPaBdab. eKGacrk)ankarkMNt;

d¾smrmüsMrab;PaBdabBI governing building code. tMélxageRkamCaPaBdabGnuBaØatGtibrmasrub
¬service dead load bUknwg service live load¦.
                                     L
          Plastered construction:
                                    360
                                           L
          Unplastered floor construction:
                                          240
                                          L
          Unplastered roof construction:
                                         180
Edl L CaRbEvgElVg.




        eBlxøHeKcaM)ac;eRbIkarkMNt;PaBdabCatMélwlx CagkareRbIPaBdabCatMélRbPaK. eBlxøH
karkMNt;RtUv)anKitcMeBaHPaBdabEdlbNþalEtBI live load, edaysarCaerOy² dead load
deflection RtUv)ankarBarkñúgeBlsagsg;.


                                            145                                      Fñwm
T.chhay




]TahrN_ 5>9³ RtYtBinitüPaBdab;rbs;FñwmEdlbgðajenAkñúg rUbTI 5>23. PaBdabGtibrmasrub
GnuBaØatKW 240 .
            L


dMeNaHRsay³ PaBdabGtibrmasrubGnuBaØat = 240 = 9100 = 38mm
                                          L
                                                240
Total service load = 7.3 + 8 = 15.3kN / m
                              5 wL4      5 × 15.3 × 9100 4
Maximum total deflection =          =                          = 32.2mm < 38mm (OK)
                             384 EI   384 × 2 ⋅105 × 212 ⋅10 6
cMeLIy³ FñwmbMeBjlkçxNÐPaBdab




          PondingCaPaBdabmYyEdlb:HBal;dl;suvtßiPaBrbs;eRKOgbgÁúM. vaeRKaHfñak;bMputsMrab;RbBn§½
kMralxNнrabesμIGaceFVIeGayTwkePøógdk;. RbsinebIRbBn§½bgðÚrTwksÞHkñúgGMLúgeBlePøóg TMgn;rbs;Twk
Edldk;elIkMraleFVIeGaykMraldab EdlvabegáIt)anCaGagsMrab;sþúkTwkkan;EteRcIn. RbsinebIkrNI
enHekIteLIgtQb;Qr enaHeRKOgbgÁúMGacnwg)ak;. AISC specification tMrUvfaRbBn§½dMbUlRtUvEtman
PaBrwgRkajRKb;RKan;edIm,IkarBar ponding, elIsBIenH vaerobrab;BIkarkMNt;m:Um:g;niclPaB nig)a:ra:-
Em:Rtd¾éTeTotenAkñúg Section K2, “Ponding”.

5>10> karKNnamuxkat; Design
        karKNnamuxkat;FñwmtMrUvkareRCIserIsrUbragmuxkat;EdlmanersIusþg;RKb;RKan; nigbMeBjtMrUvkar
serviceability. enAeBleyIgKitBIersIusþg; flexure EtgEtmaneRKaHfñak;CagkMlaMgkat; dUcenHkar

Gnuvtþn_TUeTAKWeKKNnamuxkat;sMrab; flexure rYcehIyRtYtBinitükMlaMgkat;tameRkay. viFIsaRsþkñúg
karKNnamuxkat;RtUv)anerobrab;xageRkam³
        !> kMNt;m:Um:g;emKuN/ M u . vadUcKñanwg required design strength, φb M n . TMgn;rbs;Fñwm
            CaEpñkrbs; desd load b:uEnþvaminRtUv)andwgenARtg;cMnucenH. eKGacsnμt;tMélenH b¤k¾eK
            ecalvasin bnÞab;mkeKnwgRtYtBinitüvaeLIgvijeRkayeBleKeRCIseIsrUbragehIy.
                                            146                                         Fñwm
T.chhay


      @> eRCIserIsrUbragEdlbMeBjnUvtMrUvkarersIusþg;enH. eKGacGnuvtþtamviFImYykñúgcMeNamviFIBIr
          xageRkam³
              k> eRkayeBlsnμt;rUbragEdk KNna design strength rYcehIyeRbobeFobvaCamYy
                  nwgm:Um:g;emKuN. epÞogpÞat;eLIgvijRbsinebIcaM)ac;. eKGaceRCIserIsrUbragsnμt;
                  y:aggayRsYlEtenAkñúgsßanPaBkMNt;mYycMnYn ¬]TahrN_ 5>10¦.
              x> eRbI beam design charts in Part 4 of the Manual. eKcUlcitþviFIenH ehIyva
                  RtUv)anBnül;enAkñúg]TahrN_ 5>10 xageRkam.
      #> RtYtBinitü shear strength.
      $> RtYtBinitüPaBdab.
]TahrN_ 5>10³ eRCIserIs standardhot-rolled shape of A36 sMrab;FñwmEdlbgðajenAkñúg rUbTI
5>24. FñwmenHmanTMrxagCab; ehIyRtUv)anRT uniform service live load 5kips / ft . PaBdab
GtibrmaGnuBaØatsMrab;bnÞúkGefrKW L / 360 .




dMeNaHRsay³ snμt;TMgn;FñwmesμI 100lb / ft .
          wu = 1.2 wD + 1.6 wL = 1.2(0.10) + 1.6(5.00) = 8.120kips / ft
               1        8.12(30 )2
          M u = wu L2 =            = 913.5 ft − kips = requiredφb M n
               8            8
snμt;farUbrag compact. sMrab;rUbrag compact ehIymanTMrxagCab;
          M n = M p = Z x Fy

BI φb M n ≥ M u /
          φb F y Z x ≥ M u
                  Mu    913.5(12)
          Zx ≥        =           = 338.3in.3
                 φb Fy 0.90(36)
CaFmμta Load Factor Design Selection Table erob rolled shapes EdlRtUv)aneRbICaFñwmedaytM
él plastic section modulus fycuH. elIsBIenH RtUv)andak;CaRkumedayrUbragenAxagelIeKenAkñúg
                                              147                                      Fñwm
T.chhay


Rkum ¬GkSrRkas;¦ rUbragEdlRsalCageKEdlman section modulus RKb;RKan;edIm,IbMeBj section
modulus EdlfycuHenAkñúgRkum. kñúg]TahrN_enH rUbragEdlmantMélEk,rnwg section modulus

requirement KW W 27 × 114 CamYynwg Z x = 343in.3 b:uEnþrUbragEdlRsalCageKKW W 30 × 108 Ca

mYynwg Z x = 343in.3 . edaysar section modulusminsmamaRtedaypÞal;nwgRkLaépÞ karEdlman
section modulus FMCamYynwgRkLaépÞtUc dUcenHTMgn;k¾GacRsaleTAtamRkLaépÞ.

        sakl,g W 30 ×108 . rUbrag compact dUcEdl)ansnμt; ¬noncompact shapesRtUv)ankM
Nt;cMNaMenAkñúgtarag¦ dUcenH M n = M p dUcEdl)ansnμt;.
        TMgn;rbs;vaF¶n;Cagkarsnμt;bnþic dUcenHeKRtUvKNna required strength eLIgvij eTaHbICa
W 30 × 108 manlT§PaBRTRTg;FMCaglT§PaBRTRTg;tMrUvkaredayrUbragsnμt;k¾eday EtvaPaKeRcInEtg

EtmanlT§PaBRTRTg;FMCaglT§PaBRTRTg;tMrUvkaredayrUbragsnμt;.
          wu = 1.2(1.08) + 1.6(5.00) = 8.130kips / ft
               8.130(30 )2
          Mu =             = 914.6 ft − kips
                   8
BI Load Factor Design Selection Table,
          φb M p = φb M n = 934 ft − kips > 914.6 ft − kips       (OK)

CMnYseGaykareRCIserIsrUbragEdlQrelI required section modulus, eKGaceRbI design strength
φb M p edaysarvasmamaRtedaypÞal;nwg Z x ehIyvak¾RtUv)anrayenAkñúgtarag. bnÞab;mkeTot

epÞógpÞat;kMlaMgkat;
              w L 8.13(30 )
          Vu = u =          = 122kips
               2     2
BI factored uniform load tables /
          φvVn = 316kips > 122kips                                (OK)
cugeRkaybMput epÞógpÞat;PaBdab. PaBdabGtibrmaGnuBaØatsMrab;bnÞúkGefrKW L / 360
           L    30 × 12
              =         = 1in.
          360    360
               5 wL L4       5 (5.00 / 12 )(30 × 12 )4
          Δ=             =                             = 0.703in. < 1in.   (OK)
              384 EI x      384   29000(4470 )
cMeLIy³ eRbI   W 30 × 108   .


                                               148                                 Fñwm
T.chhay


Beam Design Charts
        eKmanRkaPic nigtaragCaeRcInsMrab;visVkrEdlGnuvtþn_ ehIyRkaPic nigtaragCMnYyTaMgenHCYy
sMrYly:ageRcIndl;dMeNIrkarKNnamuxkat;. vaRtUv)aneKeRbIy:agTUlMTUlayenAkñúg design office b:uEnþ
visVkrRtUvEteRbIvaedayRbytñ½. enAkñúgesovePAenHmin)anENnaMnUvRkaPic nigtaragTaMgGs;enaHlMGit
Gs;eT b:uEnþRkaPic nigtaragxøHmansar³sMxan;kñúgkarENnaM CaBiessKW ExSekag design moment
versus unbraced length EdleGayenAkñúg Part 4 of the Manual.

        ExSekagenHRtUv)anbgðajenAkñúgrUbTI 5>25 EdlbgðajBIRkaPic design moment φb M n Ca
GnuKmn_én unbraced length Lb sMrab; particular compact shape. eKGacsg;RkaPicEbbenHsMrab;
muxkat;epSg²CamYynwgtMélCak;lak;én Fy nig Cb edayeRbIsmikarsmRsbsMrab; moment
strength.




          Manual chart   rYmmanRKYsarénExSekagsMrab; rolled shapes CaeRcIn. ExSekagTaMgenHRtUv)an
begáIteLIgCamYy Cb = 1.0 . sMrab;ExSekagepSgeTotrbs; Cb KuN design moment Edl)anBIta
rageday Cb . RtUvcaMfa φb M n minGacFMCag φb M p ¬b¤ sMrab; noncompact shapes φb M n QrelI
local buckling¦. bMerIbMras;rbs;RkaPicRtUv)anbgðajbgðajenAkñúgrUbTI 5>26 EdlExSekagEbbenHBIr

RtUv)anbgðaj. cMNucNak¾edayenAelIRkaPicenH dUcCacMnucCYbKñaénExSdac;BIr bgðajBI design
moment nig unbraced length. RbsinebIm:Um:g;Ca required moment capacity enaHExSekagEdlenABI

elIcMnucenaHRtUvKñanwgFñwmEdlman moment capacity FMCag. ExSekagEdlenAxagsþaMKWsMrab;FñwmEdl
man required moment capacity Cak;lak; eTaHbIsMrab; unbraced length FMCagk¾eday. dUcenH enA
kñúgkarKNnamuxkat; RbsinebIeyIgdak; unbraced length nig required design strength cUleTAkñúg
                                            149                                         Fñwm
T.chhay


RkaPic ExSekagenABIelI nigenABIsþaMcMnucenaH RtUvKñanwgFñwmEdlGacTTYlyk)an. RbsinebIeKKitTaMg
ExSekagdac;² enaHExSekagsMrab;rUbragRsalCagsßitenABIelI nigBIxagsþaMExSekagdac;². cMNucenAelI
ExSekagEdlRtUvnwg L p RtUv)anbgðajeday solid circle ehIy Lr RtUv)anbgðajeday open circle.
eKmanExSekagBIrRbePT mYysMrab; Fy = 36ksi = 250MPa nigmYyeTotsMrab; Fy = 50ksi = 350
MPa .




         kñúg]TahrN_ 5>10 required design strength ¬EdlrYmbBa©ÚlTaMgTMgn;Fñwmsnμt;¦ KW 913.5
 ft − kips ehIyvaman continuous lateral support. sMrab;TMrxagCab; eKGacyk Lb = 0 . BIRkaPic

 F y = 36ksi ExSekagRkas;TImYyenABIelI 913.5 ft − kips KW W 30 × 108 EdldUcKñanwgkareRCIserIs

enAkñúg]TahrN_ 5>10. eTaHbICa Lb = 0 minRtUv)anbgðajenAkñúgRkaPicBiessk¾eday k¾tMéltUc
bMputrbs; Lb EdlbgðajKWtUcCag L p sMrab;RKb;rUbragenAelITMBr½enaH.
         ExSekagFñwmEdlbgðajenAkñúgrUbTI 5>25 KWsMrab; compact shape dUcenHtMélrbs; φb M n sM
rab;tMéltUcEdlRKb;RKan;rbs; Lb KW φb M p . dUcEdl)anerobrab;enAkñúgEpñk 5>6 RbsinebIrUbragCa
noncompact tMélGtibrma φb M n nwgQrelI flange local buckling. vaCakarBitEdl maximum

unbraced length sMrab; φb M n xagelInwgxusKñaBItMél L p EdlTTYlCamYynwg AISC Equation

F1-4. The moment strength rbs; noncompact shapeRtUv)anbgðajCalkçN³RkaPicenAkñúgrUbTI

5>27 Edl maximum design strength RtUv)ankMNt;sMKal;eday φb M 'n ehIy maximum
unbraced length EdlRtUvnwg φb M 'n xagelIRtUv)ansMKaleday L' p .




                                          150                                        Fñwm
T.chhay


       eTaHbICaRkaPicsMrab; compact nig noncompact shapes manlkçN³RsedogKñak¾eday k¾
φb M n nig Lb RtUv)aneRbIsMrab; compact shapes Et φb M 'n nig L' p RtUv)aneRbIsMrab;

noncompact shapes.




]TahrN_ 5>11³ FñwmEdlbgðajenAkñúg rUbTI 5>28 RtUvRTbnÞúkcMcMnucGefrBIrEdlmYy²mantMél
20kips Rtg;cMnucmYyPaKbYn. PaBdabGtibrmaminRtUvFMCag L / 240 . Lateral support RtUv)anpþl;

eGayenAcugrbs;Fñwm. eRbIEdk A572 Grade50 nigeRCIserIs rolled shape.




                                         151                                       Fñwm
T.chhay


dMeNaHRsay³ RbsinebIeKecalTMgn;rbs;Fñwm enaHkMNat;FñwmcenøaHbnÞúkcMcMnucrgnUvm:Um:g;efr.
          M A = M B = M C = M max
          ehIy Cb = 1.0
      eTaHRbsinCaeKKitTMgn;pÞal;rbs;Fñwmk¾eday k¾vaGacRtUv)anecaledayeFobnwgbnÞúkcMcMnuc
ehIy Cb k¾enAEtmantMélesμI 1.0 EdlGnuBaØateGayeKGaceRbIRkaPicedayKμankarEkERb.
      edayminKitBITMgn;FñwmbeNþaHGasnñ eyIgTTYl)an
                  M u = 6(1.6 × 20) = 192 ft − kips
          BIRkaPic CamYynwg Lb = 24 ft sakl,g W 15× 53 ³
                  φb M n = 219 ft − kips > 192 ft − kips                       (OK)
          LÚveyIgKitBITMgn;Fñwm
                  M u = 192 +
                                 1
                                   (1.2 × 0.053)(24)2 = 197 ft − kips < 219 ft − kips   (OK)
                                 8
          kMlaMgkat;TTwgKW
                                   1.2(0.053)(24)
                 Vu = 1.6(20) +                   = 32.8kips
                                          2
          BI factored uniform load tables/
                  φvVn = 112kips > 32.8kips        (OK)
          PaBdabGtibrmaGnuBaØatKW
                   L    24(12 )
                      =         = 1.2in.
                  240    240
      BI Beam Diagrams nig Formulas section in Part 4 of the Manual/ PaBdabGtibrma
¬enAkNþalElVg¦ sMrab;bnÞúkBIresμIKñaEdlRtUv)andak;sIuemRTIKñaKW
                  Δ=
                        Pa
                       24 EI
                             (
                             3L2 − 4a 2 . )
          Edl     P=  GaMgtg;sIuetbnÞúkcMcMnuc
                  a. =cMgayBITMreTAbnÞúk

                  L = RbEvgElVg

                  Δ=
                       20(6 × 12 )
                         24 EI
                                   [                        ]
                                   3(24 × 12 )2 − 4(6 × 12 )2 =
                                                                13.69 × 10 6
                                                                    EI
          sMrab;TMgn;pÞal;rbs;Fñwm PaBdabGtibrmak¾sßitenAkNþalElVgEd dUcenH

                                                 152                                       Fñwm
T.chhay


                        5 wL4    5 (0.053 / 12 )(24 × 12 )4 0.04 × 10 6
                  Δ=          =                            =
                       384 EI   384          EI                 EI
          PaBdabsrub
                       13.69 × 10 6 0.04 × 10 6 13.73 × 10 6
                  Δ=               +           =             = 1.114in. < 1.2in.        (OK)
                           EI           EI       29000(425)
cMeLIy³           eRbI W12 × 53 .

       eTaHbICaRkaPicQrelI Cb = 1.0 k¾eday b:uEnþeKk¾GaceRbIvay:agRsYledIm,IKNnamuxkat;enA
eBlEdl Cb minesIμnwg 1.0 edayEck required design strength eday Cb munnwgdak;vaeTAkñúgRka
Pic. ]TahrN_ 5>12 nwgbgðajBIbec©keTsenH.

]TahrN_ 5>12³ eRbIEdk A36 ehIyeRCIserIs rolled shapes sMrab;FñwmenAkñúg rUbTI 5>29. bnÞúkcMcM
nucCa service live load ehIybnÞúkBRgayesμIKW 30% CabnÞúkefr nig 70% CabnÞúkGefr. Lateral
bracing RtUv)anpþl;eGayenAcug nigkNþalElVg. vaminmankarkMNt;sMrab;PaBdabeT.




dMeNaHRsay³ edaysnμt;TMgn;FñwmesμI 100lb / ft. enaH
          wD = 0.30(3) + 0.10 = 1kips / ft.

          wL = 1.2(1.0 ) + 1.6(0.7 × 3) = 4.560kips / ft.

          Pu = 1.6(9) = 14.4kips
          bnÞúkemKuN nigRbtikmμRtUv)anbgðajenAkñúgrUbTI 5>30.
          m:Um:g;EdlcaM)ac;sMrab;KNna Cb ³ m:Um:g;Bt;enAcMgay x BIcugxageqVgKW
                                  ⎛ x⎞
          M = 61.92 x − 4.590 x⎜ ⎟ = 61.92 x − 2.280 x 2
                                  ⎝2⎠
                                                                  ¬sMrab; x ≤ 12 ft ¦
          sMrab; x = 3 ft / M A = 61.92(3) − 2.280(3)2 = 165.2 ft − kips
                                                 153                                      Fñwm
T.chhay


          sMrab; x = 6 ft / M B = 61.92(6) − 2.280(6)2 = 289.4 ft − kips
          sMrab; x = 9 ft / M C = 61.92(9) − 2.280(9)2 = 372.6 ft − kips
          sMrab; x = 12 ft / M max = M u = 61.92(12) − 2.280(12)2 = 414.7 ft − kips
                            12.5M max
          Cb =
                2.5M max + 3M A + 4 M B + 3M C
                                 12.5(414.7 )
              =                                               = 1.36
                2.5(414.7 ) + 3(165.2 ) + 4(289.4) + 3(372.6)
          bBa©ÚleTAkñúgRkaPicCamYynwg unbraced length Lb = 12 ft nigm:mU:g;Bt;KW
          M u 414.7
             =      = 305 ft − kips
          Cb   1.36
          sakl,g W 21× 62 ³
                 φb M n = 343 ft − kips      ¬sMrab; Cb = 1 ¦
          edaysar Cb = 1.36 design strength BitR)akdKW
                 φb M n = 1.36(343) = 466 ft − kips
        b:uEnþ design strength minRtUvelIs φb M p EdlesμIRtwmEt 389 ft − kips ¬TTYl)anBIRka
Pic¦ dUcenH design strength BitR)akdRtUvEtesμInwg
                  φb M n = 389 ft − kips < M u = 414.7 ft − kips               (N.G.)
       sMrab;rUbragsakl,gbnÞab; eyIgRtUvrMkileLIgelIeTArkExSekagCab;Rkas;bnÞab;enAelIRkaPic
eyIgTTYl)an W 21× 68 . sMrab; Lb = 12 ft design strength Edl)anBIRkaPicKW 385 ft − kips sMrab;
Cb = 1.0 . ersIusþg;sMrab; Cb = 1.36 KW

          φb M n = 1.36(385) = 524 ft − kips > φb M p = 432 ft − kips

          dUcenH φb M n = φb M p = 432 ft − kips > M u = 414.7 ft − kips       (OK)

          TMgn;FñwmKW 68lb / ft EdltUcCagTMgn;snμt; 100lb / ft .               (OK)

          kMlaMgkat;TTwgKW
          Vu = 61.92kips
          ¬lT§plBitR)akdnwgtUcCagenHbnþic edaysarTMgn;pÞal;rbs;FñwmtUcCagbnÞúksnμt;¦
          BI factored uniform load table
          φvVn = 177kips > 61.92kips              (OK)
cMeLIy³ eRbI W 21× 68
                                               154                                      Fñwm
T.chhay




        RbsinebItMrUvkarPaBdabRKb;RKgelIkarKNnamuxkat; eKRtUvkMNt;m:Um:g;niclPaBcaM)ac;Gb,-
brma ehIyeKRtUvrkrUbragRsalCageKEdlRtUvnwgtMélenH. kargarenHRtUv)ansMrYly:ageRcIneday
sar moment of inertia selection table in part 4 of the Manual. ]TahrN_ 5>13 nwgbgðajBIkar
eRbIR)as;taragenH ehIynwgBnül;pgEdrBIviFIsaRsþkñúgkarKNnamuxkat;FñwmenAkñúgRbBn§½kMralxNн.

]TahrN_ 5>13³ EpñkénRbBn§½eRKagkMralRtUv)anbgðajenAkñúg rUbTI 5>31. kMralebtugBRgwgeday
EdkmankMras; 4in. RtUv)anRTeday floor beams EdlmanKMlatBIKña 7 ft. . Floor beamsRtUv)anRT
eday girders EdlRtUv)anbnþedayssr. ¬eBlxøH floor beamsRtUv)aneKehAfa filler beams¦.
bEnßmBIelITMgn;rbs;rcnasm<n§½ bnÁÞúkrYmmanbnÞúkGefrBRgayesμI 80 psf nig movable partitions
EdlRtUv)anKitCabnÞúkBRgayesμI 20 psf elIépÞkMral . PaBdabsrubGtibrmaminRtUvelIsBI 1/ 360
énRbEvgElVg. eRbIEdk A36 nigKNnamuxkat;rbs; floor beams. snμt;fakMralpþl;nUv continuous
lateral support rbs; floor beams.




                                         155                                        Fñwm
T.chhay


dMeNaHRsay³
eRbIebtugGarem:TMgn;FmμtaEdlmanTMgn; 150lb / ft 3 sMrab;KNnabnÞúkefr. TMgn;GacRtUv)anKitCabnÞúk
kñúgmYyÉktþaépÞedayKuNTMgn;maDnwgkMras;kMralxNн.
        TMgn;kMralxNн = 150⎛⎜⎝ 12 ⎞⎟⎠ = 50 psf
                                 4


snμt;faFñwmnImYy²RTnUvTTwgrgbnÞúk (tributary width) 7 ft. rbs;kMralxNн.
        kMralxNн³ 50(7) = 350lb / ft
        Partition³ 20(7 )         = 140lb / ft

        TMgn;Fñwm³                = 40lb / ft ¬)a:n;sμan¦

        srub³                     = 530lb / ft ¬ service dead load¦

eTaHbI partition Gacclt½)an b:uEnþ national model building codes KitvaCabnÞúkefr (BOCA,
1996; ICBO, 1997;nig SBCC, 1997). eyIgk¾KitvaCabnÞúkGefrEdrenATIenH.

bnÞúkGefr³ 80(7) = 560lb / ft
ehIybnÞúkemKuNsrubKW
          wu = 1.2wD + 1.6wL = 1.2(0.53) + 1.6(0.56) = 1.532kips / ft
kartP¢ab;kMral-Fñwmpþl;nUv no moment restraint ehIyFñwmRtUv)anKitCaFñwmEdlRTedayTMrsamBaØ.
                     2 1.532(30 )
                                 2
                1
           M u = wu L =            = 172.4 ft − kips
                8          8
BI beam design chart CamYynwg Lb = 0 sakl,g W18× 35 ³
          φb M u = 179.5 ft − kips > 172.4 ft − kips   (OK)
kMlaMgkat;TTwgKW
                 1532(30)
          Vu ≈            = 22.98kips
                    2
BI factored uniform load tables
          φvVn = 103kips > 22.98kips                   (OK)
PaBdabGtibrmaGnuBaØatKW
           L    30(12)
              =        = 1in.
          360    360
                5 wL4    5 (0.35 + 0.14 + 0.035 + 0.56)(30)4 (12)3
          Δ=          =                                            = 1.3in. > 1in.   (N.G.)
               384 EI   384              29000(510)
edayedaHRsaysmIkarPaBdabsMrab; required moment of inertia TTYl)an
                                               156                                      Fñwm
T.chhay


                           5wL4 384        5(1.085)(30)4 (12)3
          I required =                   =                     = 682in.4
                         384 EΔ required      384(29000)(1)

Moment of Inertia Selection Table  RtUv)anerobcMeLIgkñúgviFIdUcKñanwg Load Factor Design
Selection Table dUcenHkareRCIserIsrUbragEdlRsalCageKCamYynwgm:Um:g;niclPaBRKb;RKan;man

lkçN³samBaØ. BI I x Table sakl,g W 21× 44 ³
          I x = 843in.4 > 682in.4                         (OK)
          φb M n = 257.5 ft − kips > 172.4 ft − kips      (OK)
TMgn;rbs;rUbragenHFMCagkarsnμt;dMbUgbnþic b:uEnþTMgn;EdlbEnßmenHminGaceRbobeFobnwg moment
capacity d¾FMenaH)aneT.
          φvVn = 141kips > 22.98kips                      (OK)
cMeLIy³ eRbI W 21× 44 .

5>11> rn§RbehagenAkñúgFñwm Holes in Beam
         RbsinebIkartP¢ab;FñwmRtUv)aneFVIeLIgCamYyb‘ULúg søab b¤RTnugrbs;FñwmRtUv)anecaHRbehag
b¤xYg. elIsBIenH eBlxøHRTnugFñwmRtUv)anecaHrn§FM²edIm,Irt;eRKOgbrikçaepSg²dUcCa bMBugExSePøIg
GKÁisnI bMBugxül;CaedIm. eKcUlcitþecaHrn§enAelIRTnugFñwmRtg;kEnøgNaEdlmankMlaMgkat;TTwgtUc
ehIyrn§RbehagRtUv)anecaHenAelIsøabRtg;kEnøgNaEdlmanm:Um:g;tUc. b:uEnþeKminGaceFVIEbbenH)an
rhUteT dUcenHeKRtUvKitBIT§iBlrbs;rn§Rbehag.
         sMrab;rn§RbehagtUc dUcsMrab;b‘ULúg T§iBlrbs;vanwgtUc CaBiesssMrab; flexure edaymUl
ehtuBIr. TI1KW karkat;bnßymuxkat;tUc. TI2KW muxkat;EdlenAEk,rmin)ankat;bnßy ehIykarpøas;
bþÚrmuxkat;énPaBminCab;tUcFMCag “weak link”.
         dUcenH AISC B10 GnuBaØateGayecalnUvT§iBlrbslrn§RbehagenAeBlEdl
          0.75 Fu A fn ≥ 0.9 Fy A fg                                       (AISC Equation B10-1)

Edl       A fg = gross flange are
          A fn = net flange are

RbsinebIeKminCYbnUvlkçxNÐenHeT flexural properties RtUvEtQrelIRkLaépÞsøabrgkarTajRbsiT§
PaB
                   5 Fu
          A fe =        A fn                                               (AISC Equation B10-3)
                   6 Fy

                                                157                                        Fñwm
T.chhay


]TahrN_ 5>14³ KNna elastic section modulus EdlRtUv)ankat;bnßy S x sMrab;muxkat;Edl
bgðajenAkñúgrUbTI 5>32. eKeRbIEdk A36 nigRbehagsMrab;b‘ULúgGgát;p©it 1in. .




dMeNaHRsay³ A fg = b f t f = 7.635(0.81) = 6.184in 2
Ggát;p©itRbehagRbsiT§PaBKW
                1 1
          dh =1+ =1 in.
                8 8
net flange area    KW
           A fn = A fg − ∑ d h t f = 6.184 − 2(1.125)(0.810 ) = 4.362in.2

BI AISC Equation B10-1
          0.75 Fu A fn = 0.75(58)(4.362 ) = 189.7kips

nig 0.9Fy A fg = 0.9(36)(6.184) = 200.4kips
edaysar 0.75Fu A fn < 0.9Fy A fg eyIgRtUvEtKitrn§Rbehag. edayeRbI AISC Equation B10-3
eGayRkLaépÞsøabRbsiT§PaB
                   5   Fu       5 ⎛ 58 ⎞
          A fg =          A fn = ⎜ ⎟4.362 = 5.856in.2
                   6   Fy       6 ⎝ 36 ⎠

RkLaépÞsøabenHRtUvKñanwgkarkat;bnßyeday 6.184 − 5.856 = 0.328in.2 . GkS½NWteGLasÞicsßitenA
cMgay y BIkMBUlrbs;muxkat;
               20.8(18.47 / 2 ) − 0.328(18.47 − 0.405)
          y=                                           = 9.094in.
                            20.8 − 0.328
m:Um:g;niclPaBEdlRtUv)ankat;bnßyKW
          I x . = 1170 + 20.8(9.094 − 9.235)2 − 0.328(9.094 − 18.06)2 = 1144in.4
Sx   sMrab;søabxagelIKW

                                               158                                 Fñwm
T.chhay


              I    1144
          Sx = x =       = 126in.3
               y   9.094
Sx   sMrab;søabxageRkamKW
                  Ix       1144
          Sx =       =               = 122in.3
                 d−y   18.47 − 9.094
cMeLIy³ The reduced elastic section modulus sMrab;EpñkxagelIKW 126in.3 nigsMrab;EpñkxageRkamKW
122in.3 .



       FñwmEdlmanrn§RbehagFMenAelIRTnug RtUvkarkarKNnaBiessEdlminmanerobrab;enAkñúgesov
ePAenHeT. Design of Steel and Composite Beam with Web Openings KWCakarENnaMd¾manRb
eyaCn_sMrab;RbFanbTenH (Darwin, 1990).

5>12>      Open-Web Steel Joists

          Open-web steel joists CaRbePT truss EdlplitrYcCaeRscdUcbgðajenAkñúgrUbTI 5>33.
Open-web steel joists xøHEdlmanTMhMtUc eRbIr)arEdkmUlCab;sMrab;eFVICaGgát;RTnug (web member)

ehIyvaRtUv)aneKehA bar joists. vaRtUv)aneKeRbIenAkñúgkMral nigRbBn§½dMbUlsMrab;eRKOgbgÁúMCaeRcIn.
sMrab;RbEvgElVgEdleGaydUcKña open-web steel joists manTMgn;RsalCag rolled shapes ehIyGvtþ
manrbs;RTnugtan;GnuBaØateGayeKrt;RbBn§½brikçay:agRsYl. GaRs½yeTAnwgRbEvgElVg open-web
steel joist manlkçN³esdækic©Cag rolled shapes eTaHbICavaKñaeKalkarN_ENnaMsMrab;karkMNt;vak¾

eday.
         eKGacrk open-web steel joists CamYynwgkMBs;sþg;dar niglT§PaBRTbnÞúkBIeragcRkCaeRcIn.
Open-web steel joist xøHRtUv)anKNnaedIm,IeFVIkarCa floor b¤ roof joists ehIy open-web steel

joists xøHeTotRtUv)anKNnaedIm,IeFVIkarCa girder EdlRTRbtikmμEdlRbmUlpþúMBI joists. AISC

Specification min)anerobrab;BI open-web steel joists eT Etsßabn½mYyepSgeTotEdleKehAfa Steel

Joist Institute (SJI) manBiBN’naBIva. ral;kareRbIR)as; steel joists rYmTaMgkarKNna nigkarplit

RtUv)ane)aHBum<pSayenAkñúg Standard Specifications, Load Tables, nig Weight Table for Steel
Joists and Joist Girders (SJI, 1994).



                                            159                                         Fñwm
T.chhay




        eKGaceRCIserIs open-web steel joists CamYynwg the aid of the standard load tables (SJI,
1994) ehIytaragmYyenAkñúgcMeNamenaHRtUv)anbgðajenAkñúgrUbTI 5>34 . CamYynwgkarpSMKñarvag

ElVg nig joist eKnwgTTYl)antMélbnÞúkmYyKUr. elxxagelICa total service load capacity KitCa
pounds kñúgmYy foot ehIyelxenAxageRkamCa service live load kñúgmYy foot EdlnwgbegáItPaBdab

esμInwg 1/ 360 énRbEvgElVg. ¬eTaHbICabnÞúkenAkñúgtaragCa service load capacities k¾eday k¾eK
GaceRbItaragenHy:aggayRsYlCamYynwgviFI LRFD EdleyIgnwgbgðajenATIenH¦. elxdMbUgénelx

                                           160                                         Fñwm
T.chhay


sMKal;CakMBs;rbs; open-web steel joist EdlKitCa in. . taragk¾eGaypg EdrnUvTMgn;Rbhak;Rb
EhlEdlKitCa pound kñúgmYy foot énRbEvg.
        eKGacrk open-web steel joists EdlRtUv)anKNnaedIm,ImannaTICa floor or roof joist ¬Edl
pÞúyBImannaTICa girder¦ Ca open-web steel joist (K-series, both standard and KCS), longspan
steel joists (LH-series), nig deep longspan steel joist (DLH-series). enAeBleyIgrMkilesrIeLIg

kan;Etx<s; eyIgnwgTTYl)anRbEvgElVg niglT§PaBRTbnÞúkkan;EtFM. Ca]TahrN_ 8K1 manRbEvg
ElVg 8 ft. niglT§PaBRTbnÞúk 550lb / ft. b:uEnþ 72DLH19 GacRTbnÞúk)an 497lb / ft. elIRbEvg 144 ft. .
        edayelIkElg KCS joists, open-web steel joists TaMgGs;RtUv)anKNnaCa trusses EdlRT
edayTMrsamBaØ CamYynwgbnÞúkBRgayesμIenAelI top chord. kardak;bnÞúkenHeFVIeGay top chord rgnUv
bending k¾dUc axial compression dUcenH top chord RtUv)anKNnaCa beam-column ¬emIlCMBUk 6¦.

edIm,IFananUvesßrPaBrbs; top chord eKRtUvP¢ab; the floor or roof deck kñúgviFIEbbNaedIm,IeFVIeGay
man continuous lateral support.
        TaMg top nig bottom chord members rbs; K-series joists RtUv)anplitedayEdkEdlman
yield stress 50ksi . lT§PaBRTbnÞúkrbs; K-series joists RtUv)anepÞógpÞat;edaykarBiesaFn_ ehIy

emKuNsuvtßiPaBGb,brmaRtUv)anbgðajeGayeXIjesμInwg 1.65 .
        viFIsaRsþd¾samBaØsMrab;eRbIR)as; standard load tables CamYynwg LRFD RtUv)anENnaMeday
SJI (1994) ehIyRtUv)anbgðajenATIenH kñúgTMrg;EkERbbnþicbnþÜc. BicarNa TMnak;TMngeKal LRFD

smIkar @>#³
           ∑ γ i Qi ≤ φRn
vaRtUv)ansresrsMrab;bnÞúkBRgayesμIkñúgTMrg;Ca
           wu ≤ φwn                                                            ¬%>&¦
Edl wu CabnÞúkBRgayesμIemKuN nig wn Ca nominal uniform load strength of the joist. Rbsin
ebIeyIgeRbIpleFobmFümén nominal strength elI allowable strength esμInwg 1.65 eyIgGac          *


sresr nominal strength eday
           wn = 1.65wsji



*
    cMNaMfaemKuNsuvtßiPaBsMrab; K-series joists RtUv)ankMNt;edaykarBesaFn_EdleFVIelIgedayplitkr.
                                                    161                                            Fñwm
T.chhay


Edl wsji Ca allowable strength (allowable load) EdleGayenAkñúg standard load tables.
Design strength KW

                    (         )
          φwn = 0.9 1.65wsji = 1.485wsji ≈ 3 2 wsji

LÚveyIgGacsresrsmIkar %>& Ca
          wu ≤ 3 2 wsji

sMrab;eKalbMNgénkarKNna eyIgGacsresrTMnak;TMngenHCa
          required wsji = 2 3 wu



]TahrN_ 5>15³ eRbI load table EdleGayenAkñúg rUbTI 5>34 eRCIserIs open-web steel joist
sMrab;RbBn§½kMral nigbnÞúkxageRkam.
          Joist spacing = 3 ft
          Span length = 20 ft
bnÞúkKW³ kMralxNнkMras; 3in.
         bnÞúkefrepSgeTot = 20 psf
         bnÞúkGefr = 50 psf
dMeNaHRsay³ sMrab;bnÞúkefr
         kMralxNн³ 50⎛⎝⎜ 12 ⎞⎟⎠ = 37.5 psf
                           3


         bnÞúkefrepSgeTot = 20 psf
         TMgn;rbs; joist = 3 psf ¬]bma¦
         srub                     = 60.5 psf

          wD = 60.5(3) = 181.5lb / ft
sMrab;bnÞúkGefr 50 psf
          wL = 50(3) = 150lb / ft
bnÞúkemKuNKW
          wu = 1.2 wD + 1.6 wL = 1.2(181.5) + 1.6(150 ) = 457.8lb' ft
bMElgbnÞúkenHeTACa required service load³
                              wu = (457.8) = 305lb / ft
                            2     2
          required wsji =
                            3     3

                                               162                                Fñwm
T.chhay


rUbTI 5>34 bgðajfa joist xageRkambMeBjnUvtMrUvkarénbnÞúkxagelI³ 12K 5 TMgn;RbEhl 7.1lb / ft /
14K 3  TMgn;RbEhl 6lb / ft nig 16K 2 TMgn;RbEhl 5.5lb / ft . edayminmankarkMNt;sMrab;kMBs;
dUcenHeyIgerIsnUv joist NaEdlRsalCageK.
cMeLIy³ eRbI 16K 2 .

5>13> bnÞHRTFñwm nigbnÞH)atssr Beam Bearing Plates and Column Base Plate
        viFIKNnabnÞHRTssrmanlkçN³RsedogKñanwgviFIKNnabnÞHRTFñwm ehIyedaysarmUlehtu
enH eyIgnwgBicarNavaCamYyKña. elIsBI karkMNt;kMras;rbs;bnÞH)atssrtMrUveGaymankarBicarNa
BI flexure dUcenHvaRtUv)anelIkykmkerobrab;enATIenH EdlminEmnenAkñúgCMBUk 4. kñúgkrNITaMgBIr
tYnaTIrbs;bnÞHEdkKWEbgEckbnÞúkEdlRbmUlpþúM (concentrated load) eTAsMPar³EdlRTva.
        bnÞHRTFñwmmanBIrRbePTKW³ mYysMrab;bBa¢ÚnRbtikmμrbs;FñwmeTATMr dUcCaCBa¢aMgebtug nigmYy
eTotsMrab;bBa¢ÚnbnÞúkeTAsøabxagelIrbs;Fñwm. dMbUg BicarNaTMrFñwmEdlbgðajenAkñúgrUbTI 5>35 .
eTaHbICaFñwmCaeRcInRtUv)antP¢ab;eTAssrb¤eTAFñwmepSgeTotk¾eday EtRbePTénTMrEdlbgðajenATIenH
RtUv)aneRbICaerOy² CaBiessenARtg; bridge abutments. karKNnaBIbnÞHRT rYmmanbICMhan³
        !> kMNt;TMhM N EdleKGackarBar web yielding nig web crippling.
        @> kMNt;TMhM B EdlRkLaépÞ B × N manTMhMRKb;RKan;edIm,IkarBarsMPar³EdlRT ¬CaTUeTAKW
ebtug¦ BIkarEbk.
        #> kMNt;kMras; t EdlbnÞHRTman bending strength RKb;RKan;.
        karBN’naBI Web yielding and web crippling manenAkñúg Chapter K of AISC Specifica-
tion, “Strength Design Consideration”. ÉcMENk bearing strength rbs;ebtugRtUv)anniyayenA

kñúg Chapter J, “Connections, Joints, and Fasteners”.




                                          163                                         Fñwm
T.chhay


Web Yielding
          Web yielding KWCakarpÞúHEbkedaykarsgát; (compressive crushing) rbs;RTnugFñwmEdl
bNþalBIkarGnuvtþn_kMlaMgsgát;edaypÞal;eTAsøabEdlenABIxagelI b¤BIxageRkamRTnug. kMlaMgenH
GacCakMlaMgRbtikmμBITMrénRbePTdUcbgðajkñúg rUbTI 5>35 b¤vaGacCabnÞúkEdlbBa¢ÚneTAsøabeday
ssr b¤FñwmepSgeTot. Yielding ekIteLIgenAeBlEdlkugRtaMgsgát;enAelImuxkat;edktamry³RTnug
xiteTArkcMnuc yield. enAeBlbnÞúkRtUv)anbBa¢Úntamry³bnÞHEdk web yielding RtUv)ansnμt;faekIt
manenAEk,rmuxkat;EdlmanTTwg t w . enAkñúg rolled shape muxkat;enARtg;cugénBitekag (toe of the
fillet) EdlmancMgay k BIépÞxageRkArbs;søab ¬TMhMenHRtUv)anerobCatarag enAkñúg dimensions

and properties tables in the Manual). RbsinebIbnÞúkRtUv)ansnμt;faEbgEckxøÜnvaeday slope

1 : 2.5 dUcbgðajenAkñúg rUbTI 5>36 RkLaépÞenARtg;TMrrgnUv yielding KW (2.5k + N )t w . edayKuN

RkLaépÞenHnwg yield stress eGay nominal strength sMrab; web yielding enARtg;TMr³
          Rn = (2.5k + N )Fy t w                                   (AISC Equation K1-3)

The bearing length N  enARtg;TMrmikKYrtUcCag k .
enARtg;bnÞúkxagkñúg beNþayrbs;muxkat;rgnUv yielding KW
          2(2.5k ) + N = 5k + N
The nominal strength      KW
          Rn = (5k + N )Fy t w                                     (AISC Equation K1-2)

The design strength    KW φRn , Edl φ = 1.0




Web Cripplimg
          Web cripplingCa buckling rbs;RTnugEdlbNþalBIkMlaMgsgát;EdlbBa¢Úntamry³søab.
sMrab;bnÞúkxagkñúg nominal strength sMrab; web crippling KW³
                                              164                                     Fñwm
T.chhay


                         ⎡                  1.5 ⎤
                            ⎛N    ⎞⎛ t w ⎞      ⎥ Fy t f
          Rn = 135t w ⎢1 + 3⎜
                    2
                                  ⎟⎜ ⎟                                    (AISC Equation K1-4)
                      ⎢       ⎝ d ⎠⎜ t f ⎟
                                   ⎝ ⎠
                                                ⎥ tw
                         ⎢
                         ⎣                      ⎥
                                                ⎦
sMrab;bnÞúkenARtg; b¤Ek,rTMr ¬minFMCagBak;kNþalkMBs;FñwmBIcug¦ nominal strength KW³
                     ⎡                  1.5 ⎤
                           ⎛N    ⎞⎛ t w ⎞     ⎥ Fy t f
          Rn = 68t w ⎢1 + 3⎜
                   2
                     ⎢
                                 ⎟⎜ ⎟
                             ⎝ d ⎠⎜ t f ⎟     ⎥ tw
                                                           sMrab; N ≤ 2
                                                                  d
                                                                          (AISC Equation K1-5a)
                    ⎢
                    ⎣             ⎝ ⎠         ⎥
                                              ⎦
                    ⎡                      1.5 ⎤
                   2⎢ ⎛ N          ⎞⎛ t w ⎞ ⎥ Fy t f
b¤        Rn = 68t w 1 + ⎜ 4 − 0.2 ⎟⎜ ⎟
                    ⎢ ⎝ d          ⎠⎜ t f ⎟ ⎥ t w
                                                           sMrab; N > 2
                                                                  d
                                                                          (AISC Equation K1-5b)
                    ⎢
                    ⎣               ⎝ ⎠ ⎥      ⎦
emKuNersIusþg;sMrab;sßanPaBkMNt;enHKW φ = 0.75

Concrete Bearing Strength
       sMPar³EdleRbIsMrab;RTFñwmGacCa ebtug dæ b¤sMPar³epSg²eTot b:uEnþCaTUeTAvaCaebtug.
sMPar³enHRtUvEtTb;nwg bearing load EdlGnuvtþedaybnÞHEdk. The nominal bearing strength
EdlbBa¢ak;enAkñúg AISC J9 dUcKñaenAkñúg American Concrete Institute’s Building Code (ACI,
1995). RbsinebI plate RKbeBjelIépÞrbs;TMr enaH nominal strength KW
          Pp = 0.85 f 'c A1                                               (AISC Equation J9-1)

RbsinebI plate minRKbeBjelIépÞrbs;TMreT enaH nominal strength KW
          Pp = 0.85 f 'c A1 A2 / A1                                       (AISC Equation J9-2)




                                                     165                                  Fñwm
T.chhay


Edl            ersIusþg;rgkarsgát; 28éf¶rbs;ebtug
          f 'c =

         A1 = bearing area R

         A2 = full area rbs;TMr

        RbsinebI A2 mincMCamYy A1 enaH A2 KYrmantMélFMCag A1 EdlvamanragFrNImaRtRsedog
Kñanwg A1 dUcbgðajenAkñúgrUbTI 5>37. AISC tMrUveGay
            A2 / A1 ≤ 2
          The design bearing strength    KW φc Pp Edl φc = 0.60 .

Plate Thickness
        enAeBlEdlbeNþay nigTTwgrbs;bnÞHTMrRtUv)ankMNt;ehIy bearing pressure mFümRtUv)an
KitCabnÞúkBRgayesμIeTAelI)atén plate EdlRtUv)ansnμt;RTedayTTwg 2k EdlenAkNþalFñwmnig
beNþay N dUcbgðajenAkñúgrUbTI 5>38. bnÞab;mkeTotbnÞHRtUv)anBicarNafaekageFobGkS½RsbeTA
nwgElVgFñwm. dUcenH bnÞHRtUv)anKitCa cantilever EdlmanRbEvgElVg n = (B − 2k ) / 2 nigTTwg N .
edIm,IgayRsYl TTwg 1in. RtUv)anBicarNa CamYynwgbnÞúkBRgayesμIKitCa lb / in. EdlesμInwg bearing
pressure EdlKitCa lb / in.2 .




          BIrUbTI 5>38 m:Um:g;GtibrmaenAkñúgbnÞHKW
                          Ru    n R n2
                   Mu =      ×n× = u
                          BN    2 2 BN

                                                166                                   Fñwm
T.chhay


      Edl Ru / BN Ca bearing pressure mFümrvagbnÞHnigebtug. sMrab;muxkat;ctuekaNEkg
EdlekageFobGkS½exSay (minor axis) enaH nominal moment strength M u esμInwg plastic
moment capacity M p . dUcbgðajenAkñúgrUbTI 5>39 plastic moment sMrab;muxkat;ctuekaNEkg

EdlmanTMhMTTwgmYyÉktþa nigkMras; t KW
                   ⎛ t ⎞⎛ t ⎞    t2
          M p = Fy ⎜1× ⎟⎜ ⎟ = Fy
                   ⎝ 2 ⎠⎝ 2 ⎠     4
          edaysar φb M n RtUvEttUcCag M u
          φb M n ≥ M u
                   t 2 Ru n 2
          0 .9 F y    ≥
                    4   2 BN
                2 Ru n 2                        2.222 Ru n 2
          t≥
               0.9 BNF y
                                    b¤     t≥
                                                   BNF y
                                                                                   ¬%>* / %>(¦

]TahrN_ 5>16³ KNna bearing plate edIm,IEbgEckRbtikmμrbs; W 21× 68 CamYynwgRbEvgElVg
15 ft. 10in. KitBIGkS½eTAGkS½rbs;TMr. Service load srub EdlKitbBa©ÚlTaMgTMgn;FñwmKW 9kips / ft

EdlmanbnÞúkefr nigbnÞúkGefresμIKña. FñwmRtUv)anRTenABIelICBa¢aMgebtugGarem:Edlman
 f 'c = 3500 psi . TaMgbnÞHEdk nigFñwmCaEdk A36 .

dMeNaHRsay³ bnÞúkemKuNKW
          wu = 1.2wD + 1.6wL = 1.2(4.5) + 1.6(4.5) = 12.6kips / ft.
ehIyRbtikmμKW
              w L 12.6(15.83)
          Ru = u =            = 99.73kips
               2       2
kMNt;RbEvgrbs; bearing N EdlcaM)ac;edIm,IkarBar web yielding. BI AISC Equation K1-3,
design strength sMrab;sßanPaBkMNt;enHKW

           Rn = (2.5k + N )Fy t w

sMrab; φRn ≥ Ru /
          1[2.5(1.438) + N ](36 )(0.430 ) ≥ 99.73

          N ≥ 2.85in.



                                                167                                    Fñwm
T.chhay


eRbI AISC Equation K1-5edIm,IkMNt;tMélrbs; N EdlcaM)ac;edIm,IkarBar web crippling. snμt;
 N / d ≥ 0.2 nigsakl,gTMrg;TIBIrrbs;smIkar. sMrab; φRn ≥ Ru /
                 ⎡                      1.5 ⎤
                2⎢ ⎛ N          ⎞⎛ t w ⎞ ⎥      Fy t f
          φ 68t w 1 + ⎜ 4 − 0.2 ⎟⎜ ⎟                     ≥ Ru
                 ⎢ ⎝ d          ⎠⎜ t f ⎟ ⎥
                                 ⎝ ⎠             tw
                 ⎢
                 ⎣                         ⎥
                                           ⎦
                         ⎡ ⎛ 4N            ⎞⎛ 0.43 ⎞ ⎤ 36(0.685)
                                                     1.5
          0.75(68)(0.43) ⎢1 + ⎜
                         2
                                     − 0.2 ⎟⎜       ⎟ ⎥          ≥ 99.73
                         ⎢ ⎝ 21.13
                         ⎣                 ⎠⎝ 0.685 ⎠ ⎥  ⎦
                                                           0.43
          N ≥ 5.27in.           (controls)
RtYtBinitükarsnμt;
          N 5.268
           =      = 0.25 > 0.2             (OK)
          d 21.13
sakl,g N = 6in. . kMNt;TMhM B BI bearing strength. karsnμt;EdlmansuvtßiPaBKWRkLaépÞeBj
TaMgGs;rbs;TMrRtUv)aneRbI.
           φc (0.85) f 'c A1 ≥ Ru

          0.6(0.85)(3.5)A1 ≥ 99.73

                         A1 ≥ 55.87in 2
tMélGb,brmarbs;TMhM B KW
            A 55.87
          B= 1 =    = 9.31in.
             N   6
TTwgsøabrbs; W 21× 68 KW 8.270in. EdleFVIeGaybnÞHEdkFMCagsøabbnþic EdleKcg;)an. sakl,g
B = 10in. .

kMNt;kMras;bnÞHEdkEdlcaM)ac;
               B − 2k 10 − 2(1.438)
          n=         =              = 3.562in.
                 2          2
BIsmIkar ¬%>(¦
             2.222 Ru n 2   2.222(99.73)(3.562 )2
          t=              =                       = 1.14in.
                BNF y            10(6 )(36 )


cMeLIy³ eRbI PL1 14 × 6 ×10 .


                                                  168                             Fñwm
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams
5.beams

Más contenido relacionado

Destacado

Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force methodChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
Construction work
Construction work Construction work
Construction work Chhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphicChhay Teng
 

Destacado (20)

Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
4.compression members
4.compression members4.compression members
4.compression members
 
3.tension members
3.tension members3.tension members
3.tension members
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
Appendix
AppendixAppendix
Appendix
 
Construction work
Construction work Construction work
Construction work
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Euro l
Euro lEuro l
Euro l
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
Tiling
Tiling Tiling
Tiling
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
Appendix
AppendixAppendix
Appendix
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 

Similar a 5.beams

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeChhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slabChhay Teng
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structuresChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 

Similar a 5.beams (20)

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
 
8. deflection
8. deflection8. deflection
8. deflection
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 

Más de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Más de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

5.beams

  • 1. T.chhay V. Fñwm Beams 5>1> esckþIepþIm Introduction FñwmCaGgát;rbs;eRKOgbgÁúMEdlRTbnÞúkTTwg dUcenHehIy)aneFVIeGayvargnUvkarBt; (flexural or bending). RbsinebImanvtþmanbnÞúktamGkS½kñúgbrimaNmYyFMKYrsm vanwgRtUv)aneKehAvafa beam- column ¬EdlnwgRtUvbkRsayenAkñúgCMBUkTI6¦. enAkñúgGgát;eRKOgbgÁúMxøHEdlmanvtþman axial load kñúgtMéltictYc EtT§iBld¾sþÜcesþIgenHRtUv)aneKecalenAkñúgkarGnuvtþn_CaeRcIn ehIyeK)ancat; TukvaCa beam. CaTUeTAFñwmRtUv)aneKdak;kñúgTisedk nigrgnUvbnÞúkbBaÄr EtvamincaM)ac;EtkñúgkrNIEbb enHeT. Ggát;eRKOgbgÁúMEdlRtUv)aneKcat;TukCa beam RbsinebIvargnUvbnÞúky:agNaEdleFVIeGayva ekag (bending). rUbragmuxkat; (cross-sectional shape)EdlRtUv)aneKeRbICaTUeTArYmman W-, S- nig M- shapes. eBlxøH chanel shape k¾RtUv)aneRbIdUcCaFñwmEdlpSMeLIgBIEdkbnÞH kñúgTMrg; I-, H- b¤ box shape. Doubly symmetric shape dUcCa standard rolled W-, M- nig S-shape CarUbragEdlman RbsiT§PaBCaeK. CaTUeTA rUbragEdl)anBIkarpSMrbs;EdkbnÞHRtUv)aneKKitCa plate girder b:uEnþ AISC Specification EbgEck beam BI plate girder edayQrelIpleFobTTwgelIkMras; (width-thickness ratio) rbs;RTnug. rUbTI 5>1 bgðajTaMg hot-rolled shape nig built-up shapeCamYynwgTMhMEdlRtUv eRbIsMrab; width-thickness ratios. Rbsin t h 2555 ≤ F ¬xñat IS¦ th ≤ 970 ¬xñat US¦ F w y w y Ggát;eRKOgbgÁúMRtUv)aneKcat;TUkCa beam edayminKitfavaCa rolled shape b¤Ca built-up. EpñkenH RtUv)anerobrab;enAkñúg chapter F of the Specification, “Beams and Other Flexural Members” ehIyvak¾CaRbFanbTEdlRtUvykmkniyayenAkñúgCMBUkenH. RbsinebI 114 Fñwm
  • 2. T.chhay h 2555 tw > Fy ¬xñat IS¦ h tw ≤ 970 Fy ¬xñat US¦ enaHGgát;eRKOgbgÁúMRtUv)aneKcat;TukCa plate girder nwgRtUv)anerobrab;enAkñúg Chapter G of the specification, “Plate Girders”. enAkñúgesovePAenHeyIgnwgniyayBI plate girder kñúgCMBUkTI 10. edaysarEt slenderness rbs;RTnug plate girder RtUvkarBicarNaBiessenABIelI nigBIeRkamEdlcM)ac; sMrab;Fñwm. RKb; standard hot-rolled shape EdlGacrk)anenAkñúg Manual KWsßitenAkñúgRbePT beams. Built-up shape PaKeRcInRtUv)ancat;cMNat;fñak;Ca plate girder b:uEnþ built-up shape xøHRtUv)ancat; TukCaFñwmedaykarkMNt;rbs; AISC. sMrab; beams/ TMnak;TMngeKalrvagT§iBlbnÞúk (load effects) nig strength KW M u ≤ φb M n Edl Mu = bnSMénm:Um:g;emKuNEdlFMCageK φb = emKuNersIusþg;sMrab;Fñwm = 0.9 M n = nominal moment strength Design strength, φb M n enAeBlxøHRtUv)aneKehAfa design moment. 5>2> kugRtaMgBt; nigm:Um:g;)øasÞic Bending Stress and the Plastic Mement edIm,IGackMNt; nominal design strength M n dMbUgeyIgRtUvBinitüemIlkarRbRBwtþeTA (behavior) rbs;Fñwmtamry³énkardak;bnÞúkRKb;lkçxNÐ taMgBIbnÞúktUcrhUtdl;bnÞúkEdlGaceFVIeday Fñwm)ak;. BicarNaFñwmEdlbgðajenAkñúgrUbTI 5>2 a EdlRtUv)andak;edayeFVIy:agNaeGayvaekag eFobnwgGkS½em ¬GkS½ x − x sMrab; I- nig H-shape¦. sMrab; linear elastic material nigkMhUcRTg; RTaytUc karBRgaykugRtaMgBt;RtUv)anbgðajenAkñúg rUbTI 5>2 b CamYynwgkugRtaMgEdlRtUv)an snμt;faBRgayesμItamTTwgrbs;Fñwm. ¬kMlaMgkat;RtUv)anBicarNaedayELkenAkñúgEpñkTI 5>7¦. BI elementary mechanics of materials/ kugRtaMgRtg;cMNucNamYyGackMNt;)anBI flexural formula³ fb = My Ix ¬%>!¦ Edl M CamU:m:g;Bt;enAelImuxkat;EdlBicarNa/ y CacMgayEkgBIbøg;NWt ¬neutral plane) eTAcMnuc Edlcg;dwg nig I x Cam:Um:g;niclPaBénmuxkat;EdleFobnwgGkS½NWt. sMrab; homogeneous material 115 Fñwm
  • 3. T.chhay GkS½NWtRtYtsIuKñanwgGkS½TIRbCMuTMgn;. smIkar %>! KWQrenAelIkarsnμt;fa karBRgay strain man lkçN³CabnÞat;BIelIdl;eRkam Edlmüa:geToteyIgGacsnμt;fa muxkat;Edlrab (plane) munrgkarBt; enArkSarabdEdleRkaykarBt;. el;IsBIenH muxkat;FñwmRtUvEtmanGkS½sIuemRTIbBaÄr ehIybnÞúkRtUvEt sßitenAkñúgbøg;EdlmanGkS½sIemRTIenaH. FñwmEdlminbMeBjtamklçxNÐTaMgenHRtUv)anBicarNaenAkñúg EpñkTI 5>13. kugRtaMgGtibrmanwgekItenAsrésEpñkxageRkAbMput Edl y mantMélGtibrma. dUc enHvamantMélGtibrmaBIrKW kugRtaMgsgát;GtibrmarnAsrésEpñkxagelIbMput nigkugRtaMgTajGtibrma enAsrésEpñkxageRkambMput. RbsinebIGkS½NWtCaGkS½sIuemRTI kugRtaMgTaMgBIrenHnwgmantMélesμIKña. sMrab;kugRtaMgGtibrma smIkar %>! GacsresrkñúgTMrg; f max = Mc Ix = M = M Ix / c Sx ¬%>@¦ Edl c CacMNayEdkBIGkS½NWteTAsrésrEpñkxageRkAbMput ehIy S x Cam:UDulmuxkat;eGLasÞicénmux kat; (elastic section modulus) . sMrab;RKb;rUbragmuxkat; section modulus mantMélefr. sMrab;mux kat;minsIuemRTI S x nwgmantMélBIr³ mYysMrab;srésEpñkxagelIbMput nigmYyeTotsMrab;srésEpñkxag eRkambMput. tMélrbs; S x sMrab; standard rolled shape RtUv)andak;kñúg dimension and properties table enAkñúg Manual. 116 Fñwm
  • 4. T.chhay smIkar %>! nig %>@ mantMéleTA)ankñúgkrNIbnÞúktUclμmEdlsMPar³enAEtsßitenAkñúg linear elastic range. sMrab;eRKOgbgÁúMEdk vamann½yfakugRtaMg f max minRtUvFMCag f y ehIymann½yfa m:Um:g;minRtUvFMCag M y = Fy S x Edl M y Cam:Um:g;Bt;EdleFVIeGayFñwmeTAdl;cMnuc yielding. enAkñúgrUbTI 5>3 FñwmTMrsamBaØCamYynwgbnÞúkcMcMnucenAkNþalElVgRtUv)anbgðajnUvkardak; bnÞúktamdMNak;kalCabnþbnÞab;. enAeBl yielding cab;epþIm karBRgaykugRtaMgenAelImuxkat;Elg manlkçN³CabnÞat; ehIy yielding nwgrIkralBIsrésEpñkxageRkAeTAGkS½NWt. kñúgeBlCamYyKña 117 Fñwm
  • 5. T.chhay tMbn;Edlrg yield nwglatsn§wgtambeNþayFñwmBIGkS½kNþalrbs;FñwmEdlm:Um:g;Bt;mantMélesμInwg M y enATItaMgCaeRcIn. tMbn;Edlrg yield enHRtUv)angðajedayépÞBN’exμAenAkñúgrUbTI 5>3 c nig d. enAkñúgrUbTI 5>2 b yielding eTIbnwgcab;epþIm. enAkñúgrUbTI 5>2 c yielding )anrIkralcUleTAkñúgRTnug ehIyenAkñúgrUbTI 5>2 b muxkat;TaMgmUl)an yield. eKRtUvkarm:Um:g;bEnßmkñúgtMélCamFüm vaesμIRb Ehl 12% én yield moment edIm,InaMFñwmBIdMNak;kal (b) eTAdMNak;kal (d) sMrab; W-shape . enAeBleKeTAdl;dMNak;kal (d) RbsinebIenAEtbEnßmbnÞúkeTotFñwmnwg)ak; enAeBlEdlFatuTaMgGs; rbs;muxkat;)aneTAdl; yield plateau rbs; stress-strain curve ehIy unrestrict plastic flow nwg ekIteLIg. Plastic hing RtUv)aneLIgRtg;GkS½rbs;Fñwm ehIysnøak;enHCamYnnwgsnøak;BitR)akdenA xagcugrbs;FñwmbegáIt)anCa unstable machanism . kñúgeBl plastic collapse, mechanism motion RtUv)anbgðajenAkñúgrUbTI 5>4. Structural analysis EdlQrelIkarBicarNa collapse mechanism RtUv)aneKehAfa plastic analysis. karENnaMBI plastic analysis nig design RtUv)anerobrab;enAkñúg Appendix A kñugesovePAenH. lT§PaBm:Um:g;)aøsÞic EdlCam:Um:g;EdlRtUvkaredIm,IbegáItsnøak;)aøsÞic GacRtUv)anKNnay:ag gayRsYlBIkarBicarNakarBRgaykugRtaMgRtUvKña. enAkñúgrUbTI 5>5 ers‘ultg;kugRtaMgsgát; nigkug RtaMgTajRtUv)anbgðaj Edl Ac CaRkLaépÞmuxkat;Edlrgkarsgát; nig At CaRkLaépÞmuxkat;Edl rgkarTaj. RkLaépÞTaMgenHCaRkLaépÞEdlenABIxagelI nigBIxageRkamGkS½NWt)aøsÞic (plastic neutral axis) EdlmincaM)ac;dUcKñanwgGkS½NWteGLasÞic. BIsßanPaBlMnwgrbs;kMlaMg eyIg)an C =T Ac Fy = At Fy Ac = At dUcenHGkS½NWt)aøsÞicEckmuxkat;CaBIcMENkesμIKña. sMrab;rUbragEdlsIemRTIeFobnwgGkS½énkarBt; GkS½NWteGLasÞic nigGkS½NWt)aøsÞicKWdUcKña. m:Um:g;)aøsÞic M p Ca resisting couple EdlbegáIteLIg edaykMlaMgBIresμIKña nigmanTisedApÞúyKña b¤ ⎛ A⎞ M p = Fy ( Ac )a = Fy ( At )a = Fy ⎜ ⎟a = Fy Z ⎝2⎠ 118 Fñwm
  • 6. T.chhay Edl A= RkLaépÞmuxkat;srub a = cMgayrvagGkS½NWtrbs;RkLaépÞBak;kNþalTaMgBIr ⎛ A⎞ Z = ⎜ ⎟a = m:UDulmuxkat;)aøsÞic (plastic section modulus) ⎝2⎠ ]TahrN_ 5>1³ CamYynwg built-up shape EdlbgðajenAkñúgrUbTI 5>6 cUrkMNt; ¬k¦ elastic section modulus S nig yielding moment M y nig ¬x¦ plastic section modulus Z nig plastic moment M p . karekageFobnwgGkS½ x ehIyEdkEdleRbIKW A572 Grade 50 . dMeNaHRsay³ ¬k¦ edaysarvamanlkçN³sIuemRTI enaH elastic neutral axis ¬GkS½ x ¦ sßitenABak;kNþalmuxkat; ¬TItaMgrbs;TIRbCMuTMgn;¦. m:Um:g;niclPaBrbs;muxkat;GacRtUvkMNt;)anedayeRbIRTwsþIbTGkS½ Rsb (parallel axis theorem) ehIylT§plénkarKNnaRtUv)ansegçbenAkñúgtarag 5>1. tarag 5>1 Component I A d I + Ad 2 Flange 260417 5000 162.5 132291667 Flange 260417 5000 162.5 132291667 Web 28125000 - - 28125000 Sum 292.71×106 119 Fñwm
  • 7. T.chhay Elastic section modulus KW I 292.71 ⋅10 6 292.71 ⋅10 6 S= = = = 1.67 ⋅10 6 mm 3 c 25 + (300 / 2 ) 175 Yield moment KW M y = Fy S = 345 × 1.67 = 576.15kN .m cMeLIy³ S = 1.67 ⋅106 mm3 nig M y = 576.15kN .m ¬x¦ edaysarrUbragenHmanlkçN³sIuemRTIeFobnwgGkS½ x / enaHGkS½enHEckmuxkat;CaBIrcMEnkesμIKña ehIyGkS½enHk¾Ca plastic neutral axis Edr. TIRbCMuTMgn;rbs;épÞBak;kNþalxagelIRtUv)an kMNt;edayeRbI principle of moment. Kitm:Um:;g;eFobGkS½NWténmuxkat;TaMgmUl ¬rUbTI 5>6¦ ehIykarKNnaRtUv)anerobCatarag 5>2. tarag 5>2 Component A y Ay Flange 5000 162.5 812500 Web 1875 75 140625 Sum 6875 953125 y=∑ Ay 953125 = = 138.64mm ∑A 6875 rUbTI 5>7 bgðajfaédXñas;m:Um:g;rbs;m:Umg;KUrEdlekItmanenAxagkñúgKW : a = 2 y = 2(138.64) = 277.28mm ehIy plastic section modulus KW ⎛ A⎞ Z = ⎜ ⎟a = 6875 × 277.28 = 1.906 ⋅10 6 mm 3 ⎝2⎠ Plastic moment KW M p = Fy Z = 345 × 1.906 = 657.6kN .m 120 Fñwm
  • 8. T.chhay cMeLIy³ Z = 1.906 ⋅106 mm3 nig M p = 657.6kN .m ]TahrN_ 5>2³ KNna plastic moment, M p sMrab; W 10 × 60 rbs;Edk A36 . dMeNaHRsay³ BI dimensions and properties tables enAkñúg Part1 of the Manual A = 17.6in 2 A 17.6 = = 8.8in 2 2 TIRbCMuTMgn;sMrab;RkLaépÞBak;kNþalGacrk)anBIkñúgtaragsMrab; WT-shapes EdlRtUv)ankat; ecjBI W-shapes. rUbragEdlRtUvKñarbs;vaKW WT 5× 30 ehIycMgayBIépÞxageRkAbMputrbs;søab eTATIRbCMuTMgn;KW 0.884in dUcbgðajenAkñúgrUbTI 5>8. a = d − 2(0.884 ) = 10.22 − 2(0.884 ) = 8.452in ⎛ A⎞ Z = ⎜ ⎟a = 8.8(8.452) = 74.38in 3 ⎝2⎠ lT§plEdlTTYl)anenHmantMélRbhak;RbEhlnwgtMélEdleGayenAkñúg dimensions and properties tables ¬PaBxusKñabNþalmkBIkarKitcMnYnxÞg;eRkayex,ós¦ cMeLIy³ M p = Fy Z = 36(74.38) = 2678in. − kips = 223 ft − kips 5>3> lMnwg Stability RbsinebIFñwmGacrkSalMnwgrbs;va)anrhUtdl;vasßitkñúglkçxNÐ)aøsÞiceBjelj enaH nominal moment strength RtUv)aneKKitfamantMélesμInwg plastic moment capacity Edl Mn = M p pÞúymkvij M n < M p . 121 Fñwm
  • 9. T.chhay dUckrNIssrEdr PaBKμanlMnwgGacmann½yCalkçN³srub b¤Gacmann½yCalkçN³edaytMbn;. karekagrbs;Ggát;RtUv)anbgðajenAkñúgrUbTI 5>9 a. enAeBlFñwmekag tMbn;rgkarsgát; ¬EpñkxagelI GkS½NWt¦ manlkçN³ nigkareFVIkarRsedognwgssr ehIyvanwg buckle RbsinebIEpñkrbs;muxkat;man lkçN³RsavRKb;RKan;. EtvamindUcssr edaysartMbn;rgkarsgát;rb;muxkat;RtUv)anTb;edayEpñk EdlrgkarTaj ehIyPaBdabmkxageRkA (flexural buckling) RtUv)anbegáIteLIgeday twisting (torsion). karbegáItnUvPaBKμanlMnwgenHRtUv)aneKehAfa lateral-torsional buckling (LTB). eKGacbgáar Lateral-torsional buckling )aneday lateral bracing tMbn;rgkarsgát; CaBiesssøab Edlrgkarsgát; CamYynwgcenøaHRKb;RKan;. karBRgwgenHRtUv)anbgðajlkçN³nimitþsBaØaenAkñúgrUbTI 5>9 b. dUcGVIEdleyIg)aneXIj moment strength GaRs½yeTAnwgRbEvgEpñkEdlmin)anBRgwgEdlCa cMgayrvagcMnucénTMrxag (lateral support) . eTaHbICaFñwmGacTTYlm:Um:g;RKb;RKan;edIm,IeFVIeGayvaeTAdl;lkçxNÐ)aøsÞiceBjelj vak¾RtUv GaRs½yfaetIva)anrkSa cross-sectional integrity b¤Gt;. vanwg)at;bg; integrity RbsinebIEpñkrgkar sgát;NamYyrbs;muxkat; buckle. RbePT buckling GacCa compression flange buckling Edl eKehAfa flange local buckling(FLB) b¤ buckling énEpñkrgkarsgát;rbs;RTnug EdleKehAfa web local buckle (WLB). dUcEdl)anerobrab;enAkñúgCMBUk 4 RbePT local buckling epSgeTotekIteLIg edayGaRs½ynwg width-thickness ratio rbs;Epñkrgkarsgát;rbs;muxkatt;. rUbTI 5>10 bgðajBIT§iBlrbs; local and lateral-torsional buckling. FñwmR)aMdac;eday ELkRtUv)anbgðajenAkñúgRkaPicénbnÞúk-PaBdab. ExSekagTI ! CaExSekagbnÞúk-PaBdabrbs;FñwmEdl KμanlMnwg ¬edayviFINak¾eday¦ ehIy)at;bg;lT§PaBRTbnÞúkrbs;vamuneBlvaeTAdl; first yield ¬rUbTI 5>3 b¦. ExSekag @ nig # RtUvKñanwgFñwmEdlGacRTbnÞúkedayqøgkat; first yield bu:Enþmin)anyUrRKb; 122 Fñwm
  • 10. T.chhay RKan;edIm,IbegáItsnøak;)aøsÞic nigTTYl)an plastic collapse. RbsinebIvaGaceTAdl; plastic collapse enaHExSekagbnÞúk-PaBdabnwgmanlkçN³dUcExSekag $ b¤ %. ExSekag $ sMrab;krNIm:Um:g;esμIenAeBj RbEvgFñwmTaMgmUl ehIyExSekag % sMrab;FñwmEdlrgm:Um:g;ERbRbYl (moment gradient) . eKGac TTYl)ankarKNnaRbkbedaysuvtßiPaBCamYynwgFñwmEdlRtUvKñanwgExSekagNamYyénExSekagTaMgenH b:uEnþExSekag ! nig @ bgðajBIkareRbIsMPar³edayKμanlkμN³RbsiT§PaB. 5>4> cMNat;fñak;rbs;rUbrag Classification of Shapes AISC cat;cMNat;fñak;rUbragmuxkat;Ca compact, noncompact b¤ slender GaRs½ynwgtMél rbs; width-thickness ratios. sMrab; I- nig H-shapes pleFobsMrab;søab (unstiffened element) KW b f / 2t f ehIypleFobsMrab;RTnug (stiffened element) KW h / t w . eKGacrk)ankarcat;cMNat;fñak; rbs;muxkat;enAkñúg Section B5 of the specification, “Local Buckling” in Table B5.1. vanwg RtUv)ansegçbdUcxageRkam. edayyk λ = width-thickness ratio λ p = upper limit for compact category λr = upper limit for noncompact category enaH RbsinebI λ ≤ λ p ehIysøabP¢ab;eTAnwgRTnugCab;Kμandac; enaHrUbragmanlkçN³ compact. RbsinebI λ p < λ ≤ λr enaHrUbragmanlkçN³ uncompact. RbsinebI λ > λr enaHrUbragmanlkçN³ slender. cMNat;fñak;RtUvQrelI width-thickness ratio rbs;muxkat;EdlmantMélFMCag. ]TahrN_ RbsinebI RTnugCa compact ehIysøabCa noncompact enaHrUbragRtUv)ancat;cMNat;fñak;Ca noncompact . 123 Fñwm
  • 11. T.chhay tarag 5>3 RtUv)andkRsg;ecjBI AISC Table B5.1 nigman width-thickness ratio sMrabmuxkat; hot-rolled I- nig H-shape. tarag 5>3 Width-thickness parameters* λp λr Element λ IS US IS US bf 170 65 370 141 Flange 2t f Fy Fy Fy − 69 Fy − 10 h 1680 640 2550 970 Web tw Fy Fy Fy Fy * sMrab; hot-rolled I- nig H-shape rgkarBt; 5>5> Bending Strength of Compact Shapes FñwmGac)ak;edayvaTTYlm:Um:g; M p ehIyvakøayCa)aøsÞiceBjelj b¤k¾vaGac)ak;eday !> lateral-torsional buckling (LTB), eday elastically b¤ inelastically @> flange local buckling (FLB), eday elastically b¤ inelastically #> web local buckling (WLB), eday elastically b¤ inelastically RbsinebIkugRtaMgBt;Gtibrma (maximum bending stress) tUcCagEdnsmamaRt (proportional limit) enAeBlEdl buckling ekIteLIg failure enHRtUv)aneKehAfa elastic. RbsinebI minGBa©wgenH vaCa inelastic. ¬sUmemIlkarbkRsayEdlTak;TgenAkñúgEpñk 4>2 rbs;emeronTI 4 .¦ edIm,IgayRsYl CadMbUgeyIgcat;cMNat;fñak;FñwmCa compact, noncompact b¤ slender. kar erobrab;enAkñúgEpñkenHGnuvtþcMeBaHFñwmBIrRbePT³ ¬!¦ hot-rolled I-nig H-shape ekageFobGkS½xøaMg ehIyEdlbnÞúkenAkñúgbøg;énGkS½exSay ehIy ¬2¦ channels ekageFobGkS½xøaMg ehIybnÞúkdak;tam shear center b¤k¾RtUv)anTb;RbqaMgnwgkarrmYl. ¬ Shear center CacMnucenAelImuxkat; EdltamcMnuc enHbnÞúkTTwgRtUv)ankat;tam RbsinebIFñwmekagedayKμankarrmYl.¦ vanwgekItmancMeBaH I-nig H- Shapes. eKminBicarNaGMBI Hybrid beam ¬Edlsøab nigRTnugrbs;vamanersIusþg;epSgKña¦eT ehIy smIkar AISC xøHnwgRtUv)anEkERbbnþicbnþÜcedIm,IeqøIytbeTAnwgkarkMNt;enH edayeKCMnYs Fyf nig Fyw EdlCa yield strength rbs;søab nigRTnugeday Fy . 124 Fñwm
  • 12. T.chhay eyIgcab;epþImCamYynwg compact shape EdlRtUv)ankMNt;CarUbragEdlRTnugrbs;vaRtUv)an P¢ab;eTAsøabCab;tdac; ehIyEdlbMeBjnUvtMrUvkar width-thickness ratio xageRkamsMrab;søab nig RTnug³ bf 2t ≤ 170 F nig th ≤ 1680 ¬xñatCa IS ¦ 2btf ≤ 65 nig th ≤ 640 ¬xñatCa IS ¦ F F F f y w y f y w y sMrab;RKb; standard hot-rolled shape Edl)anrayeQμaHenAkñúg Manual )aneKarBlkçxNÐxag elI dUcenHeKRtUvkarBinitüEtpleFobsøabb:ueNÑaH. rUbragPaKeRcInk¾bMeBjtMrUvkarrbs;søabEdr dUcenH vaRtUv)ancat;cMNat;fñak;Ca compact. RbsinebIFñwmCa compact ehIymanTMrxagCab; b¤ unbraced length xøI enaH nomina’moment strength, M n Ca plastic moment capacity eBjrbs;rUbrag M p . sMrab;Ggát;EdlminmanTMrxagRKb;RKan; moment resistance RtUv)ankMNt;eday lateral-torsional buckling strength EdlmanlkçN³Ca elastic b¤ inelastic . RbePTTImYy (laterally supported compact beam) CakrNIEdlFmμta nigsamBaØCageK. AISC F1.1 eGay nominal strength Ca Mn = M p (AISC Equation F1.1) Edl M p = F y Z ≤ 1 .5 M y tMélkMNt;eday 1.5M y sMrab; M p KWedIm,IkarBarbnÞúkEdleFVIkarelIslb; nigRtUv)anbMeBj enAeBlEdl F y Z ≤ 1 .5 F y S b¤ Z ≤ 1.5 S sMrab; I- nig H-shape ekageFobGkS½xøaMg enaH Z / S EtgEttUcCag 1.5 Canic©. ¬b:uEnþsMrab; I- nig H- shape ekageFobGkS½exSay enaH Z / S nwgminEdltUcCag 1.5 eT.¦ ]TahrN_ 5>3³ FñwmEdlbgðajenAkñúgrUbTI 5>11 CaEdl A36 EdlmanrUbrag W 16 × 31 . vaRTkM ralxNнebtugGarem:Edlpþl;nUv continuous lateral support dl;søabrgkarsgát;. Service dead loadKW 450lb / ft . bnÞúkenHRtUv)andak;BIelIFñwm vaminRtUv)anKItbBa©ÚlbnÞúkpÞal;rbs;FñwmeT. Service live load KW 550lb / ft . etIFñwmenHman moment strength RKb;RKan;b¤eT? 125 Fñwm
  • 13. T.chhay dMeNaHRsay³ Service dead load srub edayrYmbBa©ÚlTaMgTMgn;rbs;FñwmKW wD = 450 + 31 = 481lb / ft sMrab;FñwmTMrsamBaØrgbnÞúkBRgayesμI m:Um:g;Bt;GtibrmaekItmanenAkNþalElVgesμInwg 1 M max = wL2 8 Edl w CabnÞúkEdlmanxñatkMlaMgelIÉktþaRbEvg ehIy L CaRbEvgElVg. enaH 1 2 0.481× 30 2 M D = wL = = 54.11 ft − kips 8 8 0.55 × 30 2 ML = = 61.88 ft − kips 8 edaysar dead load tUcCag live load min)an 8 dg enaHbnSMbnÞúk A4-2 nwgmantMélFMCageK³ M u = 1.2M D + 1.6M L = 1.2 × 54.11 + 1.6 × 61.88 = 164 ft − kips müa:gvijeTot bnÞúkGacRtUv)anKitemKuNmun wu = 1.2wD + 1.6wL = 1.2 × 0.431 + 1.6 × 0.550 = 1.457kips / ft 1 1.457 × 30 2 M u = wu L2 = = 164 ft − kips 8 8 RtYtBinitü compactness ³ bf 2t = 6.3 ¬BI Part 1 of the Manual ¦ f 65 Fy = 65 36 = 10.8 > 6.3 dUcenH søabCa compact . h tw < 640 Fy ¬sMrab;RKb;rUbragenAkñúg Manual ¦ dUcenH W 16 × 31 Ca compact sMrab;Edk A36 . edaysarFñwmCa compact ehIymanTMrxag M n = M p = F y Z x = 36(54.0 ) = 1944in − kips = 162 ft − kips RtYtBinitüsMrab; M p ≤ 1.5M y ³ Zx 54 = = 1.15 < 1.5 (OK) S x 47.2 φb M n = 0.90(162) = 146 ft − kips < 164 ft − kips (NG) cMeLIy³ Design moment tUcCagm:Um:g;emKuN dUcenH W 16 × 31 minRKb;RKan;. 126 Fñwm
  • 14. T.chhay eTaHbICakarRtYtBinitüsMrab; M p ≤ 1.5M y RtUv)aneFVIenAkñúg]TahrN_xagelI b:uEnþvamincaM)ac; sMrab; I- nig H-shape ekageFobGkS½xøaMg ehIyvaminRtUv)aneFVIdEdl²enAkñúgesobePAenHeT. rbs; compact shape CaGnuKmn_nwg unbraced length, Lb EdlRtUv)ankM Strength moment Nt;CacMgayrvagcMnucénTMrxag b¤karBRgwg. enAkñúgesovePAenH bgðajcMnucénTMrxageday “X” dUc bgðajenAkñúgrUbTI 5>12. TMnak;TMngrvag nominal strength M n nig unbraced length RtUv)an bgðajenAkñúgrUbTI 5>13 . RbsinebI unbraced length minFMCag L p FñwmRtUv)anBicarNamanTMr xageBj ehIy M n = M p . RbsinebI Lb FMCag L p b:uEnþtUcCag b¤esμI)a:ra:Em:Rt Lr enaHersIusþg;nwg QrelI inelastic LTB . RbsinebI Lb FMCag Lr enaHersIusþg;nwgQrelI elastic LTB . eKGacrksmIkarsMrab; enAkñúg theorical elastic lateral-torsional buckling strength Theory of Elastic Stability (Timoshenko and Gere, 1961) nigCamYykarpøas;bþÚrnimitþsBaØaxøH smIkarenHmanragdUcxageRkam³ 127 Fñwm
  • 15. T.chhay 2 π ⎛ πE ⎞ Mn = EI y GJ + ⎜ ⎟ I y C w ⎜L ⎟ ¬%>#¦ Lb ⎝ b⎠ Edl Lb = unbraced length G = shear modulus = 77225MPa b¤ = 11200ksi sMrab;eRKOgbgÁúMEdk J = torsional constant C w = warping constant ( mm 6 ) RbsinebIm:Um:g;enAeBlEdl lateral-torsional buckling ekIteLIgFMCagm:Um:g;EdlRtUvKñanwg first yield enaH strength QrenAelI inelastic behavior. m:Um:g;EdlRtUvKñanwg first yield KW M r = FL S x (AISC Equation F1-7) Edl FL CatMélEdltUcCageKkñúgcMeNam ( Fyf − Fr ) nig Fyw . enAkñúgsmIkarenH yield stress enA kñúgsøabRtUv)ankat;bnßyeday Fr kugRtaMgEdlenAsl; (residual stress) . sMrab; nonhybrid member, F yf = Fym = Fy ehIy FL EtgEtesμInwg F y − Fr . teTAmuxeTotenAkñúgCMBUkenH eyIg CMnYs FL eday Fy − Fr . Ca]TahrN_ eyIgsresr AISC Equation E1-7 Ca ( M r = Fy − Fr S x ) (AISC Equation F1-7) EdlkugRtaMgEdlenAsl; Fr = 10ksi = 69MPa sMrab; rolled-shapes nig Fr = 16.5ksi = 114MPa sMrab; welded built-up shapes. dUcbgðajenAkñúgrUbTI 5>13 RBMEdnrvag elastic behavior nig inelastic behavior KW unbraced length Lr EdltMélrbs; Lr RtUv)anTTYlBIsmIkar %># enAeBl Edl M n RtUv)andak;eGayesμI M r . eKTTYl)ansmIkarxageRkam³ Lr = ry X 1 (Fy − Fr ) ( ) 1 + 1 + X 2 Fy − Fr 2 (AISC Equation F1-6) Edl π EGJA X1 = Sx 2 2 (AISC Equation F1-8 and F1-9) 4C w ⎛ S x ⎞ X2 = ⎜ ⎟ I y ⎝ GJ ⎠ dUckrNIssrEdr inelastic behavior rbs;FñwmmanlkçN³sμúKsμajCag elastic behavior CaTUeTAeKeRcIneRbIrUbmnþEdl)anmkBIkarBiesaFn_ (empirical formulas). CamYynwgkarEktMrUvd¾tic tYc AISC )aneGayeRbIsmIkarxageRkam³ 128 Fñwm
  • 16. T.chhay ⎛ Lb − L p ⎞ ( Mn = M p − M p − Mr ⎜ ) ⎟ ⎜ Lr − L p ⎟ ¬%>$¦ ⎝ ⎠ 790ry 300ry Edl Lp = Fy ¬xñat ¦ IS Lp = Fy ¬xñat US¦ (AISC Equation F1-4) Nominal bending strength rbs; compact beam RtUv)anbgðajedaysmIkar %># nig %>$ rgnUv upper limit M p sMrab; inelastic beam RbsinebIm:Um;g;EdlGnuvtþBRgayesμIelI unbraced length Lb . RbsinebIdUcenaHeT vaman moment gradient ehIysmIkar %># nig %>$ RtUv)anEksMrYledayemKuN Cb . emKuNenHRtUv)aneGayeday AISC F1.2 kñúgTMrg; 12.5M max Cb = (AISC Equation F1-3) 2.5M max + 3M A + 4 M B + 3M C Edl M max = tMéldac;xatrbs;m:Um:g;GtibrmaenAkñúg unbraced length (including the end points) M A = tMéldac;xatrbs;m:Um:g;enAcMnucmYyPaKbYnén unbraced length M B = tMéldac;xatrbs;m:Um:g;enAcMnucBak;kNþalén unbraced length M C = tMéldac;xatrbs;m:Um:g;enAcMnucbIPaKbYnén unbraced length enAeBlm:Um:g;Bt;BRgayesμI tMél Cb esμInwg 12.5M Cb = = 1.0 2.5M + 3M + 4M + 3M ]TahrN_ 5>4³ kMNt; Cb sMrab;FñwmTMrsamBaØRTbnÞúkBRgayesμICamYyEtnwgkarTb;xagenAxagcug b:ueNÑaH. 129 Fñwm
  • 17. T.chhay dMeNaHRsay³ edaysarlkçN³suIemRTI m:Um:g;GtibrmasßitenAkNþalElVg dUcenH 1 M max = M B = wL2 8 dUcKña edaysarlkçN³sIuemRTI m:Um:g;enAcMnucmYyPaKbIesμIm:Um:g;enAcMnucbIPaKbYn. BIrUbTI 5>14 wL ⎛ L ⎞ wL ⎛ L ⎞ wL 2 wL2 3 M A = MC = ⎜ ⎟− ⎜ ⎟= − = wL2 2 ⎝4⎠ 4 ⎝8⎠ 8 32 32 12.5M max 12.5(1 / 8) Cb = = = 1.14 2.5M max + 3M A + 4 M B + 3M C 2.5(1 / 8) + 3(3 / 32) + 4(1 / 8) + 3(3 / 32) cMeLIy³ Cb = 1.14 rUbTI 5>15 bgðajBItMélrbs; Cb sMrab;krNIFmμtaCaeRcInénkardak;bnÞúk nigTMrxag. sMrab; unbraced cantilever beams, AISC kMNt;tMél Cb = 1.0 . tMél 1.0 CatMéltUc ¬edayminKitBIrrUbragrbs;Fñwm nigkardak;bnÞúk¦ b:uEnþkñúgkrNIxøHvaCatMélEdltUcEmnETn. karkMNt; TaMgGs;én nominal moment strength sMrab; compact shapes GacRtUv)ansegçbdUcxageRkam³ 130 Fñwm
  • 18. T.chhay sMrab; Lb ≤ L p / M n = M p ≤ 1.5 M y (AISC Equation F1-1) sMrab; L p < Lb ≤ Lr / ⎡ ⎛ −L ⎞⎤ ( M n = Cb ⎢ M p − M p − M r )⎜ Lb − L p ⎟⎥ ≤ M p ⎜L ⎟ (AISC Equation F1-2) ⎢ ⎣ ⎝ r p ⎠⎥ ⎦ sMrab; L p > Lr / M n = M cr ≤ M p (AISC Equation F1-12) 2 π ⎛ πE ⎞ Edl M cr = Cb EI y GJ + ⎜ ⎜ L ⎟ I y Cw ⎟ (AISC Equation F1-13) Lb ⎝ b⎠ 2 C S X 2 X1 X 2 = b x 1 1+ Lb / ry ( 2 Lb / ry 2 ) tMélefr X1 nig X 2 RtUv)ankMNt;BImun ehIyRtUv)anrayCataragenAkñúg dimensions and properties tables in the Manual. T§iBlrbs; Cb eTAelI nominal strength RtUv)anbgðajenAkñúgrUbTI5>16. eTaHbICa strength smamaRtedaypÞal;eTAnwg Cb k¾eday EtRkaPicenH)anbgðajy:agc,as;BIsar³sMxan;rbs; upper limit M p edayminKitBIsar³sMxan;rbs;smIkarEdlRtUveRbIsMrab; M n . ]TahrN_ 5>4³ kMNt; design strength φb M n sMrab; W 14 × 68 rbs;Edk A242 Edl³ k> TMrxagCab; x> unbraced length = 20 ft / Cb = 1.0 131 Fñwm
  • 19. T.chhay K> unbraced length = 20 ft / Cb = 1.75 dMeNaHRsay³ k> BI Part 1 of the Manual /W14 × 68 KWsßitenAkñúg shape group 2 /dUcenHvaGacman yield stress F y = 50ksi / kMNt;faetIrUbragenHCa compact, noncompact b¤ slender. bf 65 = 7.0 < 2t f 50 rUbragenHKW compact dUcenH M n = M p = Fy Z x = 50(115) = 5750in. − kips = 479.2 ft − kips cMeLIy³ φb M n = 0.9(479.2) = 431 ft − kips x> Lb = 20 ft nig Cb = 1.0 . KNna L p nig Lr ³ 300ry 300 × 2.46 Lp = = = 104.4in. = 8.7 ft Fy 50 BI torsion properties tables in Part 1 of the Manual, J = 3.02in 4 nig C w = 5380in 6 eTaHbICa X1 nig X 2 RtUv)anerobCataragenAkñúg dimensions and properties table in part 1 of the Manual eyIgnwgKNnavaenATIenHsMrab;bgðaj π EGJA π 29000(11200)(3.02)(20) X1 = = = 3021ksi Sx 2 103 2 2 2 C ⎛S ⎞ ⎛ 5380 ⎞⎛ 103 ⎞ −2 X 2 = 4 w ⎜ x ⎟ = 4⎜ ⎟⎜ ⎟ = 0.001649ksi I y ⎝ GJ ⎠ ⎝ 121 ⎠⎝ 11200 × 3.02 ⎠ ry X 1 Lr = 1 + 1 + X 2 ( Fy − Fr ) 2 ( Fy − Fr ) 2.46(3021) = 1 + 1 + 0.001649(50 − 10 )2 = 316.8in = 26.40 ft (50 − 10) edaysar L p < Lb < Lr strength QrelI inelastic LTB nig ( M r = Fy − Fr S x = ) (50 − 10)(103) = 343.3 ft − kips 12 ⎡ ⎛ Lb − L p ⎞⎤ M n = Cb ⎢ M p − M p − M r ⎜ ( ⎟⎥ ⎜ Lr − L p ⎟⎥ ) ⎢ ⎣ ⎝ ⎠⎦ ⎡ ⎛ 20 − 8.7 ⎞⎤ = 1.0⎢479.2 − (479.2 − 343.3)⎜ ⎟⎥ ⎣ ⎝ 26.4 − 8.7 ⎠⎦ 132 Fñwm
  • 20. T.chhay cMeLIy³ φb M n = 0.90(392.4) = 353 ft − kips K> Lb = 20 ft nig Cb = 1.75 . Design strength sMrab; Cb = 1.75 KWesμInwg 1.75 dgén Design strength sMrab; Cb = 1.0 . dUcenH M n = 1.75(392.4) = 686.7 ft − kips > M p = 479.2 ft − kips Nominal strength minGacFMCag M p / dUcenHeRbI nominal strength M n = 479.2 ft − kips cMeLIy³ φb M n = 0.90(479.2) = 431 ft − kips Part 4 of the Manual of Steel Construction, “Beam and Girder Design,” mantaragmanRbeyaCn_ CaeRcInsMrab;viPaK nigKNnaFñwm. Ca]TahrN_ Load Factor Design Selection Table raynUvrUbrag EdleRbICaTUeTAsMrab;Fñwm EdlRtUv)anerobCalMdab;én Z x . edaysar M p = Fy Z x rUbragk¾RtUv)an erobCalMdab;én design moment φb M p . tMélefrdéTeTotEdlmanRbeyaCn_k¾RtUv)anerobCatarag EdlrYmman L p nig Lr ¬EdlCaEpñkmYyEdlKYreGayFujRTan;kñúgkarKNna¦. Plastic Analysis enAkñúgkrNICaeRcIn m:Um:g;emKuNGtibrma M u nwgRtUv)anTTYlBI elastic structural analysis edayeRbIbnÞúkemKuN. eRkamlkçxNÐc,as;las; ersIusþg;EdlcaM)ac; (required strength) sMrab;rcna sm<n§½EdlminGackMNt;edaysþaTic (statically inderteminate structure) RtUv)anrkedayeRbI plastic analysis. AISC GnuBaØateGayeRbI plastic analysis RbsinebIrUbrag compact nigRbsinebI Lb ≤ L pd 24800 + 15200(M 1 / M 2 ) Edl L pd = Fy ry ¬xñat SI ¦ (AISC Equation F1-17) m:Um:g;EdltUcCageKkñúgcMeNamm:Um:g;cugTaMgBIrsMrab; unbraced segment M1 = M 2 = m:Um:g;EdlFMCageKkñúgcMeNamm:Um:g;cugTaMgBIrsMrab; unbraced segment pleFob M1 / M 2 viC¢manenAeBlEdlm:Um:g;begáIt reverse curvature enAkñúg unbraced segment. enAeBlenH Lb Ca unbraced length EdlenACab;nwgsnøak;)aøsÞicEdlCaEpñkmYyén failure mechanism. b:uEnþRbsinebIeKeRbI plastic analysis, nominal moment strength M n EdlenACab;nwg 133 Fñwm
  • 21. T.chhay snøak;cugeRkayEdlminenAEk,rsnøak;)aøsÞicRtUv)anKNnatamviFIdUcKñasMrab;FñwmEdlviPaKedayviFIeG LasÞic ehIyvaRtUvEttUcCag M p . 5>6> Bending Strength of Noncompact Shapes dUckarkt;cMNaMBImun standard W-, M-, nig S-shapes PaKeRcInCa compact sMrab; F y = 250 MPa nig F y = 350MPa . cMnYntictYcb:ueNÑaHCa noncompact edaysar width- thickness ratio rbs;søab b:uEnþKμanrUbragmYyNaCa slender eT. edaysarmUlehtuTaMgenH AISC Specification edaHRsay noncompact nig slender flexural member enAkñúg]bsm<n§½ (Appendix F). enAkñúgesovePAenH eyIgnwgBicarNa slender flexural member enAkñúgCMBUkTI10. CaTUeTA FñwmGac)ak;eday lateral-torsional buckling, flange local buckling b¤ web local buckling. RKb;RbePTénkar)ak;GacsßitenAkñúgEdneGLasÞic b¤ inelastic range. RTnugrbs;RKb; rolled shapes enAkñúg Manual Ca compact dUcenH noncompact shapes CaRbFanbTsMrab;Etsßan PaBkMNt; (limit states) én lateral-torsional buckling nig flange local buckling. ersIusþg;EdlRtUv nwgsßanPaBkMNt;TaMgBIrRtUv)anKNna ehIyeKyktMélEdltUcCageK. BI AISC Appendix F CamYy bf λ= 2t f RbsinebI λ p < λ ≤ λr / enaHsøabCa noncompact ehIy buckling Ca inelastic eyIgnwgTTYl)an ⎛ λ − λp ⎞ ( Mn = M p − M p − Mr ⎜ )⎟ ⎜ λr − λ p ⎟ (AISC Equation A-F1-3) ⎝ ⎠ Edl λp = 170 Fy IS ¬sMrab; ¦ λp = 65 Fy ¬sMrab; US ¦ λr = 370 F y − Fr ¬sMrab; IS ¦ λr = 141 F y − Fr ¬sMrab; US ¦ ( M r = F y − Fr S x ) kugRtaMgEdlenAesssl; = 69MPa = 10ksi sMrab; rolled shapes Fr = ¬GgÁenHRtUv)ankMNt;sMrab; nonhybrid beam¦ 134 Fñwm
  • 22. T.chhay ]TahrN_ 5>6³ FñwmTMrsamBaØmYymanRbEvg 40 feet RtUv)anTb;xagenAxagcugrbs;va ehIyvargnUv service load dUcxageRkam³ Dead load = 400lb / ft ¬edayrYmbBa©ÚlTaMgTMgn;Fñwm¦ Live load = 1000lb / ft RbsinebIeKeRbI AISC A572 Grade 50 etI W 14 × 90 RKb;RKan;b¤Gt;? dMeNaHRsay³ bnÞúkemKuN nigm:Um:g;emKuNKW wu = 1.2wD + 1.6 wL = 1.2(0.40) + 1.6(1.00) = 2.08kips / ft 1 2.08(40 )2 M u = wu L2 = = 416.0 ft − kips 8 8 kMNt;lkçN³rUbragmuxkat; ¬faetICa compact, noncompact b¤ slender¦³ bf λ= = 10.2 2t f 65 65 λp = = = 9.19 Fy 50 141 141 λr = = = 22.3 F y − Fr 50 − 10 eday λ p < λ < λr dUcenHrUbragenHKW noncompact. RtYtBinitülT§PaBRTRTg;edayQrelIsßanPaB kMNt;rbs; flange local buckling³ 50(157 ) M p = Fy Z x = = 654.2 ft − kips 12 Mr ( ) = F y − Fr S x = (50 − 10) 143 12 = 476.7 ft − kips ⎛ λ − λp ⎞ Mn ( = M p − M p − Mr ⎜ ) ⎟ = 652.4 − (654.2 − 476.7 )⎛ 10.2 − 9.19 ⎞ = 640.5 ft − kips ⎜ λr − λ p ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ 22.3 − 9.19 ⎠ Design strength EdlQrenAelI FLBdUcenH φb M n = 0.9(640.5) = 576 ft − kips RtYtBinitülT§PaBRTRTg;EdlQrelIsßanPaBkMNt;rbs; lateral-torsional buckling. BI Load Factor Design Selection Table³ L p = 15 ft nig Lr = 38.4 ft Lb = 40 ft > Lr dUcenHvanwg)ak;edayeGLasÞic LTB. 135 Fñwm
  • 23. T.chhay BI Part 1 of the Manual/ I y = 362in 4 J = 4.06in 4 C w = 16000in 6 sMrab;FñwmTMrsamBaØRTbnÞúkBRgayesμICamYynwgTMrxagenAxagcugsgçag Cb = 1.14 AISC Equation F1-13 eGay 2 π ⎛ πE ⎞ M n = Cb EI y GJ + ⎜ ⎟ ⎜ L ⎟ I yCw ≤ M p Lb ⎝ b⎠ ⎡ 2 ⎤ = 1.14 ⎢ π ⎛ π × 29000 ⎞ 29000(362)(11200)(4.06 ) + ⎜ ⎟ (362)(16000) ⎥ ⎢ 40(12 ) ⎝ 40 × 12 ⎠ ⎥ ⎣ ⎦ = 1.14(5412 ) = 6180in. − kips = 515.0 ft − kips M p = 654.2 ft − kips > 515.0 ft − kips edaysar 515.0 < 640.5 dUcenH LTB lub ehIy φb M n = (0.90)515.0 = 464 ft − kips > M u = 416 ft − kips (OK) / cMeLIy³ eday M u < φb M n enaHFñwmman moment strength RKb;RKan;. lkçN³kMNt;rbs; noncompact shapes RtUv)ansMrYleday Load Factor Design Selection Table. Noncompact shapes RtUv)ankMNt;sMKal;eday footnote farUbragCa noncompact sMrab; F y = 250 MPa = 36ksi b¤ F y = 350 MPa = 50ksi . Noncompact shapes k¾RtUv)anerobcMenAkñúg taragedaylkçN³xusEbøkKñadUcxageRkam³ !> sMrab; noncompact shapes tMélEdlmanenAkñúgtaragrbs; φb M p CatMélBitR)akdrbs; design strength EdlQrelI flange local buckling. enAkñúg]TahrN_TI 5>6 eyIg)an KNnatMélenHesμInwg 576 ft − kips b:uEnþtMélRtwmRtUvenAkñúgtarag φb M p KW 0.90(654.2 ) = 589 ft − kips @> tMél L p enAkñúgtaragCatMélrbs; unbraced length Edl nominal strength EdlQr elI inelastic lateral torsional buckling esμInwg nominal strength EdlQrelI flange 136 Fñwm
  • 24. T.chhay local buckling dUcenH nominal strength sMrab; unbraced length GtibrmaGacRtUv)an KitCaersIusþg;EdlQrelI web local buckling. ¬rMlwkfa L p sMrab; compact shapes Ca unbraced length GtibrmaEdl nominal strength GacRtUv)anKitesμInwg plastic moment¦. sMrab;rUbragenAkñúg]TahrN_5>6 karKNna nominal strength EdlQrelI FLB eTAersIusþg;EdlQrelI inelastic LTB (AISC Equation F1-2) CamYynwg Cb = 1.0 ³ ⎛ Lb − L p ⎞ M n = M p − (M p − M r )⎜ ⎟ ¬%>%¦ ⎜L −L ⎟ ⎝ r p⎠ tMélrbs; M r nig Lr RtUv)anTTYlBI]TahrN_ 5>6 ehIynwgminRtUv)anpøas;bþÚr. b:uEnþ tMélrbs; L p RtUvEt)anKNnaBI AISC Equation F1-4³ 300ry 300(3.70 ) Lp = = = 157.0in. = 13.08 ft. Fy 50 CMnYstMélxagelIkñúgsmIkar %>% eyIgTTYl)an ⎛ L − 13.08 ⎞ 640.5 = 654.2 − (654.2 − 476.7 )⎜ b ⎟ ⎝ 38.4 − 13.08 ⎠ Lb = 15.0 ft. enHCatMélbBa©ÚlkñúgtaragCa L p sMrab; W = 14 × 90 CamYynwg Fy = 50ksi . cMNaMfa 300ry Lp = Fy GaceRbIsMrab; noncompact shapes. RbsinebIeFVIEbbenH lT§plEdlTTYl)anenAkñúg smIkarsMrab; inelastic LTB EdlRtUv)aneRbIenAeBl Lb minmantMélFMRKb;RKan; enaH ersIusþg;EdlQrelI FLB nwglub. 5>7> Summary of Moment Strength viFIsaRsþkñúgkarKNna nominal moment strength sMrab; I- nig H-shaped sections Edl ekageFobnwgGkS½ x nwgRtUv)ansegçbenATIenH. GgÁTaMgGs;EdlmanenAkñúgsmIkarxageRkamRtUv)an kMNt;rYcehIyBImun ehIyelxsmIkarrbs; AISC minRtUv)anbgðajenATIenHeT. karsegçbenHsMrab;Et compact shapes nig noncompact shapes Etb:ueNÑaH ¬minmansMrab; slender shapes eT¦. 137 Fñwm
  • 25. T.chhay !> kMNt;faetIrUbrag compact b¤Gt; @> RbsinebIrUbrag compact, RtYtBinitüsMrab; lateral-torsional buckling dUcxageRkam³ RbsinebI Lb ≤ L p vaminEmn LTB ehIy M n = M p RbsinebI L p < Lb ≤ Lr / vaman inelastic LTB ehIy ⎡ ⎛ −L ⎞⎤ ( M n = Cb ⎢ M p M p − M r )⎜ Lb − L p ⎟⎥ ≤ M p ⎜L ⎟ ⎢ ⎣ ⎝ r p ⎠⎥ ⎦ RbsinebI Lb > br / vaman elastic LTB ehIy 2 π ⎛ πE ⎞ M n = Cb EI y GJ + ⎜ ⎟ I y C w ≤ M p ⎜L ⎟ Lb ⎝ b⎠ #> RbsinebIrUbrag noncompact edaysarsøab/ RTnug b¤TaMgBIr enaH nominal strength nwgCa tMéltUcCageKénersIusþg;EdlRtUvKñanwg flange local buckling, web local buckling nig lateral-torsional buckling. k> Flange local buckling³ RbsinebI λ ≤ λ p vaminman FLB. RbsinebI λ p < λ ≤ λr søabCa noncompact, ehIy ⎛ λ − λp ⎞ ( Mn = M p − M p − Mr ⎜ ⎜ λr − λ p ) ⎟≤Mp ⎟ ⎝ ⎠ x> Web local buckling³ RbsinebI λ ≤ λ p vaminman WLB. RbsinebI λ p < λ ≤ λr RTnugCa noncompact, ehIy ⎛ λ − λp ⎞ ( Mn = M p − M p − Mr ⎜ ⎜ λr − λ p ) ⎟≤Mp ⎟ ⎝ ⎠ K> Lateral-torsional buckling³ RbsinebI Lb ≤ L p vaminman LTB. RbsinebI L p < Lb ≤ Lr / vaman inelastic LTB ehIy ⎡ ⎛ −L ⎞⎤ ( M n = Cb ⎢ M p M p − M r )⎜ Lb − L p ⎟⎥ ≤ M p ⎜L ⎟ ⎢ ⎣ ⎝ r p ⎠⎥ ⎦ RbsinebI Lb > br / vaman elastic LTB ehIy 138 Fñwm
  • 26. T.chhay 2 π ⎛ πE ⎞ M n = Cb EI y GJ + ⎜ ⎟ I y C w ≤ M p ⎜L ⎟ Lb ⎝ b⎠ 5>8> ersIusþg;kMlaMgkat;TTwg Shear Strength ersIusþg;kMlaMgkat;rbs;FñwmRtUvEtRKb;RKan;edIm,IbMeBjTMnak;TMng Vu ≤ φvVn Edl Vu = kMlaMgkat;TTwgGtibrmaEdll)anBIkarbnSMbnÞúkemKuNFMCageK φv = emKuNersIusþg;sMrab;kMlaMgkat;TTwg = 0.9 Vn = nominal shear strength/ BicarNaFñwmsamBaØenAkñúgrUbTI 5>17. enAcMgay x BITMrxageqVgnigsßitenAelIGkS½NWtrbs; muxkat; sßanPaBrbs;kugRtaMgRtUv)anbgðajenAkñúgrUbTI 5>17 d . edaysarFatuenHsßitenAelIGkS½ NWt vaminrgnUvkugRtaMgBt;eT. BI elementary mechanics of materials/ kugRtaMgkMlaMgkat;TTwg (shearing stess) KW fv = VQ Ib ¬%>^¦ 139 Fñwm
  • 27. T.chhay Edl fv =kugRtaMgkMlaMgkat;TTwgbBaÄr nigedkenARtg;cMnucEdleyIgBicarNa V = kMlaMgkat;TTwgbBaÄrenARtg;muxkat;EdlBicarNa Q = m:Um:g;RkLaépÞTImYyeFobGkS½NWt rvagcMnucEdlBicarNanwgEpñkxagelIb¤EpñkxageRkam rbs;muxkat; I = m:Um:g;niclPaBeFobnwgGkS½NWt b = TTwgrbs;muxkat;enAcMnucEdlBicarNa smIkar %>^ KWQrelIkarsnμt;fakugRtaMgmantMélefreBjelITTwg b dUcenHvapþl;tMélsuRkit sMrab;Et b mantMéltUc. sMrab;muxkat;ctuekaNEkgEdlmankMBs; d nigTTwg b tMéllMeGogsMrab; d / b = 2 KWRbEhl 3% . sMrab; d / b = 1 tMéllMeGogKW 12% nigsMrab; d / b = 1 / 4 tMéllMeGogKW 100% (Higdon, Ohlsen, and Stiles, 1960). sMrab;mUlehtuenH smIkar %>^ minGacGnuvtþ)ansMrab; søabrbs; W-shape dUcKñasMrab;RTnugrbs;va. rUbTI 5>18 bgðajBIkarBRgaykugRtaMgkMlaMgkat;sMrab; W-shape. ExSdac;CakugRtaMgmFüm V / Aw EdlBRgayenAkñúgRTnug ehIytMélenHminxusKñaBIkugRtaMgGtibrmaenAkñúgRTnugeRcIneT. eyIg eXIjc,as;ehIyfa RTnugnwg yield y:agyUrmunnwgsøabc,ab;epþIm yield. edaysarbBaðaenH yielding rbs;RTnugsMEdgnUvsßanPaBlImItkMNt;mYy. edayyk shear yield stress esμInwg 60% én tensile yield stress eyIgGacsresrsmIkarsMrab;kugRtaMgenAkñúgRTnugenAeBl)ak;Ca V f v = n = 0.60 F y Aw Edl Aw = RkLaépÞmuxkat;rbs;RTnug. dUcenH nominal strength EdlRtUvKñanwgsßanPaBkMNt;enHKW Vn = 0.6 F y Aw 140 Fñwm
  • 28. T.chhay ehIyvaGacCa nominal strength in shear RbsinebIRTnugminman shear buckling. RbsinebIvaekIt eLIgvanwgGaRs½ynwgpleFob width-thickness ratio h / t w rbs;RTnug. pleFob h / t w rbs;RTnug EdlRsavxøaMgmantMélFMNas; enaHRTnugGacnwg buckle in shear eday inelastic b¤ elastic. TMnak;TM ngrvag shear strength nig width-thickness ration manlkçN³RsedogKñanwgTMnak;TMngrvag flexural strength nig width-thickness ratio ¬sMrab; FLB b¤ WLB¦ nigrvag flexural strength nig unbraced length ¬sMrab; LTB¦. TMnak;TMngRtUvbgðajenAkñúgrUbTI 5>19 nigRtUv)aneGayenAkñúg AISC F2.2 dUc xageRkam³ sMrab; h / t w < 418 / Fy ¬sMrab; US¦/ h / t w < 1100 / Fy ¬sMrab; IS¦ RTnugmanesßrPaB Vn = 0.6 F y Aw (AISC Equation F2-1) sMrab; 418 / Fy < h / t w ≤ 523 / Fy ¬sMrab; US¦/ 1100 / Fy ≤ h / t w < 1375 / Fy ¬sMrab; IS¦ enaH inelastic web buckling GacnwgekIteLIg 418 / Fy Vn = 0.6 Fy Aw h/t ¬sMrab; US¦ Vn = 0.6Fy Aw 1100//t Fy ¬sMrab; IS¦ h w w (AISC Equation F2-1) sMrab; 523 / Fy < h / t w ≤ 260 ¬sMrab; US¦/ 1375 / Fy ≤ h / t w < 260 ¬sMrab; IS¦ enaH sßanPaBkMNt;KW elastic web buckling Vn = 132000 Aw ¬sMrab; US¦ Vn = 910 Aw2 ¬sMrab; IS¦ (AISC Equation F2-1) (h / t w ) 2 (h / t w ) Edl Aw = RkLaépÞmuxkat;rbs;RTnug = dt w KitCa ¬ mm 2 ¦ d = kMBs;srubrbs;Fñwm Vn = nominal strength ¬KitCa KN ¦ RbsinebI h / t w > 260 enaHeKRtUvkar web stiffener ehIyvaRtUv)anbriyayenAkñúg Appendix F2 ¬b¤ Appendix G sMrab; plate girder ¦. AISC Equation F2-3 KWQrelI elastic stability theory, ehIy Equation F2-2 CasmIkar Edl)anBIkarBiesaFn_sMrab;tMbn; inelastic Edlpþl;nUvkarpøas;bþÚrrvagsßanPaBkMNt; web yielding nig elastic web buckling. kMlaMgkat;CabBaðaEdlkMrekItmansMrab; rolled steel beams karGnuvtþn_TUeTAKWbnÞab;BIKNna FñwmsMrab; flexural ehIyeyIgnwgRtYtBinitümuxkat;EdlTTYl)ansMrab;kMlaMgkat;TTwg. 141 Fñwm
  • 29. T.chhay ]TahrN_ 5>7³ RtYtBinitüFñwmenAkñúg]TahrN_ 5>6 sMrab;kMlaMgkat;TTwg. dMeNaHRsay³ BI]TahrN_ 5>6/ wu = 2.080kips / ft nig L = 40 ft . Edk W 14 × 90 CamYynwg F y = 50ksi RtUv)aneRbI. sMrab;FñwmTmrsamBaØRTbnÞúkBRgayesμI kMlaMgkat;GtibrmaekItmanenA elITMr ehIyesμInwgkMlaMgRbtikmμ w L 2.080(40) Vu = u = = 41.6kips 2 2 BI dimensions and properties tables in Part 1 of the Manual, web width-thickness ratio rbs; W 14 × 90 KW h = 25.9 tw 418 418 = = 59.11 Fy 50 edaysar h / t w < 418 / Fy enaHersIusþg;RtUv)anRKb;RKgeday shear yielding rbs;RTnug Vn = 0.6 Fy Aw = 0.6 Fy (dt w ) = 0.6(50 )(14.02 )(0.44 ) = 185.1kips φvVn = 0.90(185.1) = 167kips > 41.6kips (OK) cMeLIy³ Shear design strength FMCagkMlaMgkat;emKuN dUcenHFñwmmanlkçN³RKb;RKan;. tMél φvVn EdlRtUv)anerobCataragenAkñúg factored uniform load table enAkñúg part 4 of the Manual dUcnHkarKNnarbs;vaminmanRbeyaCn_sMrab; standard hot-rolled shapes. , 142 Fñwm
  • 30. T.chhay Block Shear Block shear Edl)anBicarNasMrab;tMNenAkñúgGgát;rgkarTaj k¾GacekItmanenAkñúgRbePTxøH rbs;tMNenAkñúgFñwmEdr. edIm,IsMrYlkñúgkartP¢ab;BIFñwmmYyeTAFñwmmYyeTot edayeGaynIv:UsøabxagelI esμIKña enaHRbEvgd¾xøIrbs;søabxagelIrbs;FñwmmYyRtUvEtkat;ecj b¤ coped. RbsinebI coped beam RtUv)antP¢ab;edayb‘ULúgdUckñúgrUbTI 5>20 kMNt; ABC cg;rEhkecj. bnÞúkEdlGnuvtþenAkñúgkrNI enHnwgCaRbtikmμbBaÄrrbs;Fñwm dUcenHkMlaMgkat;nwgekItenAtamExS AB ehIynwgekItmankMlaMgTaj tam BC . dUcenH block shear strength nwgCatMélEdlkMNt;rbs;Rbtikmμ. eyIg)anerobrab;BIkarKNna block shear strength enAkñúgCMBUkTI3rYcehIy b:uEnþeyIgnwgrMlwk vaeLIgvijenATIenH. kar)ak;GacekIteLIgedaybnSMén shear yielding nig tendion fracture b¤eday shear fracture nig tension yielding. AISC J4.3, “Block Shear Rupture Strength,” eGaysmIkar BIrsMrab; block shear design strength³ [ φRn = φ 0.6 Fy Agv + Fu Ant ] (AISC Equation J4.3a) φRn = φ [0.6 Fu Anv + F y Agt ] (AISC Equation J4.3b) Edl φ = 0.75 Agv = gross area rgkMlaMgkat; ¬enAkñúgrUbTI 5>20 RbEvg AB KuNnwgkMras;RTnug¦ Anv = net area rgkMlaMgkat; Agt = gross area rgkMlaMgTaj ¬enAkñúgrUbTI 5>20 RbEvg BC KuNnwgkMras;RTnug¦ Ant = net area rgkMlaMgTaj smIkarEdlmanlT§plFMCagKWCasmIkarEdlmantY fracture FMCag. ]TahrN_ 5>8³ kMNt;RbtikmμemKuNGtibrma EdlQrelI block shearEdlGacRTFñwmdUcbgðajkñúg rUbTI 5>21. 143 Fñwm
  • 31. T.chhay dMeNaHRsay³ Ggát;p©itRbehagRbsiT§PaBKW 3 / 4 + 1/ 8 = 7 / 8in. . gross nig net shear areas KW Agv = (2 + 3 + 3 + 3)t w = 11(0.300) = 3.300in.2 ⎛ 7⎞ Anv = ⎜11 − 3.5 × ⎟(0.300) = 2.381in.2 ⎝ 8⎠ gross nig net tension areas KW Agt = 1.25t w = 1.25(0.300) = 0.375in.2 ⎛ 7⎞ Ant = ⎜1.25 − 0.5 × ⎟(0.300 ) = 0.2438in.2 ⎝ 8⎠ AISC Equation J4.3a eGay [ ] φRn = φ 0.6 Fy Agv + Fu Ant = 0.75[0.6(36)(3.3) + 58(0.2438)] = 64.1kips AISC Equation J4.3b eGay [ ] φRn = φ 0.6 Fu Anv + Fy Agt = 0.75[0.6(58)(2.381) + 36(0.3750)] = 72.3kips tY fracture enAkñúg AISC Equation J4.3b mantMélFMCag ¬Edl 82.86>14.14¦ dUcenHsmIkarenH mantMélFMCag. cMelIy³ RbtikmμemKuNGtibrmaEdlQrelI block shear=72.3kips. 5>9> PaBdab Deflection bEnßmBIelIsuvtßiPaB eRKOgbgÁúMRtUvEt serviceable . eRKOgbgÁúMEdlman serviceable CaeRKOg bgÁúMEdleFVIkar)anl¥ minbNþaleGayGñkEdleRbIR)as;vamanGarmμN_favaKμansuvtßiPaB. sMrab;Fñwm edIm,ITTYl)an serviceable eKRtUvkMNt;bMlas;TIbBaÄr b¤PaBdab. PaBdabFMCaTUeTAekItmancMeBaH flexible beam EdlGacmanbBaðaCamYynwgrMjr½. PaBdabGacbgábBaðaeTAdl;Ggát;d¾éTeTotEdlP¢ab; 144 Fñwm
  • 32. T.chhay eTAnwgva edaybNþaleGaymankMhUcRTg;RTaytUc. elIsBIenH GñkeRbIR)as;sMNg;nwgeXIjPaB GviC¢manedaysarPaBdabFM ehIyeFVIkarsnidæanxusfasMNg;KμansuvtßiPaB. sMrab;krNITUeTArbs;FñwmTMrsamBaØEdlRTbnÞúkBRgayesμIdUckúñrUbTI 5>22 PaBdabbBaÄrGti- brmaKW³ 5 wL4 Δ= 384 EI eKGacrk)anrUbmnþPaBdabsMrab;FñwmeRcInRbePT niglkçxNÐdak;bnÞúkenAkñúg Part 4, “Beam and Girder Design,”of the Manual. sMrab;sßanPaBminFmμtaeKGaceRbI standard analytical method dUcCa method of virtual work CaedIm. PaBdabCa serviceability limit state minEmnCa sßanPaBkMNt;sMrab;ersIusþg;eT dUcenHCaTUeTAPaBdabRtUv)ankMNt;CamYy service loads. karkMNt;d¾smrmüsMrab;PaBdabGtibrmaGaRs½yeTAnwgtYnaTIrbs;Fñwm nwgkarRbmaNBIPaB xUcxatEdlekItBIPaBdab. AISC Specification pþl;nUvkarENnaMtictYcEdlmanEcgenAkñúg Chapter L, “Serviceability Design Consideration,” faeKRtUvEtRtYtBinitüPaBdab. eKGacrk)ankarkMNt; d¾smrmüsMrab;PaBdabBI governing building code. tMélxageRkamCaPaBdabGnuBaØatGtibrmasrub ¬service dead load bUknwg service live load¦. L Plastered construction: 360 L Unplastered floor construction: 240 L Unplastered roof construction: 180 Edl L CaRbEvgElVg. eBlxøHeKcaM)ac;eRbIkarkMNt;PaBdabCatMélwlx CagkareRbIPaBdabCatMélRbPaK. eBlxøH karkMNt;RtUv)anKitcMeBaHPaBdabEdlbNþalEtBI live load, edaysarCaerOy² dead load deflection RtUv)ankarBarkñúgeBlsagsg;. 145 Fñwm
  • 33. T.chhay ]TahrN_ 5>9³ RtYtBinitüPaBdab;rbs;FñwmEdlbgðajenAkñúg rUbTI 5>23. PaBdabGtibrmasrub GnuBaØatKW 240 . L dMeNaHRsay³ PaBdabGtibrmasrubGnuBaØat = 240 = 9100 = 38mm L 240 Total service load = 7.3 + 8 = 15.3kN / m 5 wL4 5 × 15.3 × 9100 4 Maximum total deflection = = = 32.2mm < 38mm (OK) 384 EI 384 × 2 ⋅105 × 212 ⋅10 6 cMeLIy³ FñwmbMeBjlkçxNÐPaBdab PondingCaPaBdabmYyEdlb:HBal;dl;suvtßiPaBrbs;eRKOgbgÁúM. vaeRKaHfñak;bMputsMrab;RbBn§½ kMralxNнrabesμIGaceFVIeGayTwkePøógdk;. RbsinebIRbBn§½bgðÚrTwksÞHkñúgGMLúgeBlePøóg TMgn;rbs;Twk Edldk;elIkMraleFVIeGaykMraldab EdlvabegáIt)anCaGagsMrab;sþúkTwkkan;EteRcIn. RbsinebIkrNI enHekIteLIgtQb;Qr enaHeRKOgbgÁúMGacnwg)ak;. AISC specification tMrUvfaRbBn§½dMbUlRtUvEtman PaBrwgRkajRKb;RKan;edIm,IkarBar ponding, elIsBIenH vaerobrab;BIkarkMNt;m:Um:g;niclPaB nig)a:ra:- Em:Rtd¾éTeTotenAkñúg Section K2, “Ponding”. 5>10> karKNnamuxkat; Design karKNnamuxkat;FñwmtMrUvkareRCIserIsrUbragmuxkat;EdlmanersIusþg;RKb;RKan; nigbMeBjtMrUvkar serviceability. enAeBleyIgKitBIersIusþg; flexure EtgEtmaneRKaHfñak;CagkMlaMgkat; dUcenHkar Gnuvtþn_TUeTAKWeKKNnamuxkat;sMrab; flexure rYcehIyRtYtBinitükMlaMgkat;tameRkay. viFIsaRsþkñúg karKNnamuxkat;RtUv)anerobrab;xageRkam³ !> kMNt;m:Um:g;emKuN/ M u . vadUcKñanwg required design strength, φb M n . TMgn;rbs;Fñwm CaEpñkrbs; desd load b:uEnþvaminRtUv)andwgenARtg;cMnucenH. eKGacsnμt;tMélenH b¤k¾eK ecalvasin bnÞab;mkeKnwgRtYtBinitüvaeLIgvijeRkayeBleKeRCIseIsrUbragehIy. 146 Fñwm
  • 34. T.chhay @> eRCIserIsrUbragEdlbMeBjnUvtMrUvkarersIusþg;enH. eKGacGnuvtþtamviFImYykñúgcMeNamviFIBIr xageRkam³ k> eRkayeBlsnμt;rUbragEdk KNna design strength rYcehIyeRbobeFobvaCamYy nwgm:Um:g;emKuN. epÞogpÞat;eLIgvijRbsinebIcaM)ac;. eKGaceRCIserIsrUbragsnμt; y:aggayRsYlEtenAkñúgsßanPaBkMNt;mYycMnYn ¬]TahrN_ 5>10¦. x> eRbI beam design charts in Part 4 of the Manual. eKcUlcitþviFIenH ehIyva RtUv)anBnül;enAkñúg]TahrN_ 5>10 xageRkam. #> RtYtBinitü shear strength. $> RtYtBinitüPaBdab. ]TahrN_ 5>10³ eRCIserIs standardhot-rolled shape of A36 sMrab;FñwmEdlbgðajenAkñúg rUbTI 5>24. FñwmenHmanTMrxagCab; ehIyRtUv)anRT uniform service live load 5kips / ft . PaBdab GtibrmaGnuBaØatsMrab;bnÞúkGefrKW L / 360 . dMeNaHRsay³ snμt;TMgn;FñwmesμI 100lb / ft . wu = 1.2 wD + 1.6 wL = 1.2(0.10) + 1.6(5.00) = 8.120kips / ft 1 8.12(30 )2 M u = wu L2 = = 913.5 ft − kips = requiredφb M n 8 8 snμt;farUbrag compact. sMrab;rUbrag compact ehIymanTMrxagCab; M n = M p = Z x Fy BI φb M n ≥ M u / φb F y Z x ≥ M u Mu 913.5(12) Zx ≥ = = 338.3in.3 φb Fy 0.90(36) CaFmμta Load Factor Design Selection Table erob rolled shapes EdlRtUv)aneRbICaFñwmedaytM él plastic section modulus fycuH. elIsBIenH RtUv)andak;CaRkumedayrUbragenAxagelIeKenAkñúg 147 Fñwm
  • 35. T.chhay Rkum ¬GkSrRkas;¦ rUbragEdlRsalCageKEdlman section modulus RKb;RKan;edIm,IbMeBj section modulus EdlfycuHenAkñúgRkum. kñúg]TahrN_enH rUbragEdlmantMélEk,rnwg section modulus requirement KW W 27 × 114 CamYynwg Z x = 343in.3 b:uEnþrUbragEdlRsalCageKKW W 30 × 108 Ca mYynwg Z x = 343in.3 . edaysar section modulusminsmamaRtedaypÞal;nwgRkLaépÞ karEdlman section modulus FMCamYynwgRkLaépÞtUc dUcenHTMgn;k¾GacRsaleTAtamRkLaépÞ. sakl,g W 30 ×108 . rUbrag compact dUcEdl)ansnμt; ¬noncompact shapesRtUv)ankM Nt;cMNaMenAkñúgtarag¦ dUcenH M n = M p dUcEdl)ansnμt;. TMgn;rbs;vaF¶n;Cagkarsnμt;bnþic dUcenHeKRtUvKNna required strength eLIgvij eTaHbICa W 30 × 108 manlT§PaBRTRTg;FMCaglT§PaBRTRTg;tMrUvkaredayrUbragsnμt;k¾eday EtvaPaKeRcInEtg EtmanlT§PaBRTRTg;FMCaglT§PaBRTRTg;tMrUvkaredayrUbragsnμt;. wu = 1.2(1.08) + 1.6(5.00) = 8.130kips / ft 8.130(30 )2 Mu = = 914.6 ft − kips 8 BI Load Factor Design Selection Table, φb M p = φb M n = 934 ft − kips > 914.6 ft − kips (OK) CMnYseGaykareRCIserIsrUbragEdlQrelI required section modulus, eKGaceRbI design strength φb M p edaysarvasmamaRtedaypÞal;nwg Z x ehIyvak¾RtUv)anrayenAkñúgtarag. bnÞab;mkeTot epÞógpÞat;kMlaMgkat; w L 8.13(30 ) Vu = u = = 122kips 2 2 BI factored uniform load tables / φvVn = 316kips > 122kips (OK) cugeRkaybMput epÞógpÞat;PaBdab. PaBdabGtibrmaGnuBaØatsMrab;bnÞúkGefrKW L / 360 L 30 × 12 = = 1in. 360 360 5 wL L4 5 (5.00 / 12 )(30 × 12 )4 Δ= = = 0.703in. < 1in. (OK) 384 EI x 384 29000(4470 ) cMeLIy³ eRbI W 30 × 108 . 148 Fñwm
  • 36. T.chhay Beam Design Charts eKmanRkaPic nigtaragCaeRcInsMrab;visVkrEdlGnuvtþn_ ehIyRkaPic nigtaragCMnYyTaMgenHCYy sMrYly:ageRcIndl;dMeNIrkarKNnamuxkat;. vaRtUv)aneKeRbIy:agTUlMTUlayenAkñúg design office b:uEnþ visVkrRtUvEteRbIvaedayRbytñ½. enAkñúgesovePAenHmin)anENnaMnUvRkaPic nigtaragTaMgGs;enaHlMGit Gs;eT b:uEnþRkaPic nigtaragxøHmansar³sMxan;kñúgkarENnaM CaBiessKW ExSekag design moment versus unbraced length EdleGayenAkñúg Part 4 of the Manual. ExSekagenHRtUv)anbgðajenAkñúgrUbTI 5>25 EdlbgðajBIRkaPic design moment φb M n Ca GnuKmn_én unbraced length Lb sMrab; particular compact shape. eKGacsg;RkaPicEbbenHsMrab; muxkat;epSg²CamYynwgtMélCak;lak;én Fy nig Cb edayeRbIsmikarsmRsbsMrab; moment strength. Manual chart rYmmanRKYsarénExSekagsMrab; rolled shapes CaeRcIn. ExSekagTaMgenHRtUv)an begáIteLIgCamYy Cb = 1.0 . sMrab;ExSekagepSgeTotrbs; Cb KuN design moment Edl)anBIta rageday Cb . RtUvcaMfa φb M n minGacFMCag φb M p ¬b¤ sMrab; noncompact shapes φb M n QrelI local buckling¦. bMerIbMras;rbs;RkaPicRtUv)anbgðajbgðajenAkñúgrUbTI 5>26 EdlExSekagEbbenHBIr RtUv)anbgðaj. cMNucNak¾edayenAelIRkaPicenH dUcCacMnucCYbKñaénExSdac;BIr bgðajBI design moment nig unbraced length. RbsinebIm:Um:g;Ca required moment capacity enaHExSekagEdlenABI elIcMnucenaHRtUvKñanwgFñwmEdlman moment capacity FMCag. ExSekagEdlenAxagsþaMKWsMrab;FñwmEdl man required moment capacity Cak;lak; eTaHbIsMrab; unbraced length FMCagk¾eday. dUcenH enA kñúgkarKNnamuxkat; RbsinebIeyIgdak; unbraced length nig required design strength cUleTAkñúg 149 Fñwm
  • 37. T.chhay RkaPic ExSekagenABIelI nigenABIsþaMcMnucenaH RtUvKñanwgFñwmEdlGacTTYlyk)an. RbsinebIeKKitTaMg ExSekagdac;² enaHExSekagsMrab;rUbragRsalCagsßitenABIelI nigBIxagsþaMExSekagdac;². cMNucenAelI ExSekagEdlRtUvnwg L p RtUv)anbgðajeday solid circle ehIy Lr RtUv)anbgðajeday open circle. eKmanExSekagBIrRbePT mYysMrab; Fy = 36ksi = 250MPa nigmYyeTotsMrab; Fy = 50ksi = 350 MPa . kñúg]TahrN_ 5>10 required design strength ¬EdlrYmbBa©ÚlTaMgTMgn;Fñwmsnμt;¦ KW 913.5 ft − kips ehIyvaman continuous lateral support. sMrab;TMrxagCab; eKGacyk Lb = 0 . BIRkaPic F y = 36ksi ExSekagRkas;TImYyenABIelI 913.5 ft − kips KW W 30 × 108 EdldUcKñanwgkareRCIserIs enAkñúg]TahrN_ 5>10. eTaHbICa Lb = 0 minRtUv)anbgðajenAkñúgRkaPicBiessk¾eday k¾tMéltUc bMputrbs; Lb EdlbgðajKWtUcCag L p sMrab;RKb;rUbragenAelITMBr½enaH. ExSekagFñwmEdlbgðajenAkñúgrUbTI 5>25 KWsMrab; compact shape dUcenHtMélrbs; φb M n sM rab;tMéltUcEdlRKb;RKan;rbs; Lb KW φb M p . dUcEdl)anerobrab;enAkñúgEpñk 5>6 RbsinebIrUbragCa noncompact tMélGtibrma φb M n nwgQrelI flange local buckling. vaCakarBitEdl maximum unbraced length sMrab; φb M n xagelInwgxusKñaBItMél L p EdlTTYlCamYynwg AISC Equation F1-4. The moment strength rbs; noncompact shapeRtUv)anbgðajCalkçN³RkaPicenAkñúgrUbTI 5>27 Edl maximum design strength RtUv)ankMNt;sMKal;eday φb M 'n ehIy maximum unbraced length EdlRtUvnwg φb M 'n xagelIRtUv)ansMKaleday L' p . 150 Fñwm
  • 38. T.chhay eTaHbICaRkaPicsMrab; compact nig noncompact shapes manlkçN³RsedogKñak¾eday k¾ φb M n nig Lb RtUv)aneRbIsMrab; compact shapes Et φb M 'n nig L' p RtUv)aneRbIsMrab; noncompact shapes. ]TahrN_ 5>11³ FñwmEdlbgðajenAkñúg rUbTI 5>28 RtUvRTbnÞúkcMcMnucGefrBIrEdlmYy²mantMél 20kips Rtg;cMnucmYyPaKbYn. PaBdabGtibrmaminRtUvFMCag L / 240 . Lateral support RtUv)anpþl; eGayenAcugrbs;Fñwm. eRbIEdk A572 Grade50 nigeRCIserIs rolled shape. 151 Fñwm
  • 39. T.chhay dMeNaHRsay³ RbsinebIeKecalTMgn;rbs;Fñwm enaHkMNat;FñwmcenøaHbnÞúkcMcMnucrgnUvm:Um:g;efr. M A = M B = M C = M max ehIy Cb = 1.0 eTaHRbsinCaeKKitTMgn;pÞal;rbs;Fñwmk¾eday k¾vaGacRtUv)anecaledayeFobnwgbnÞúkcMcMnuc ehIy Cb k¾enAEtmantMélesμI 1.0 EdlGnuBaØateGayeKGaceRbIRkaPicedayKμankarEkERb. edayminKitBITMgn;FñwmbeNþaHGasnñ eyIgTTYl)an M u = 6(1.6 × 20) = 192 ft − kips BIRkaPic CamYynwg Lb = 24 ft sakl,g W 15× 53 ³ φb M n = 219 ft − kips > 192 ft − kips (OK) LÚveyIgKitBITMgn;Fñwm M u = 192 + 1 (1.2 × 0.053)(24)2 = 197 ft − kips < 219 ft − kips (OK) 8 kMlaMgkat;TTwgKW 1.2(0.053)(24) Vu = 1.6(20) + = 32.8kips 2 BI factored uniform load tables/ φvVn = 112kips > 32.8kips (OK) PaBdabGtibrmaGnuBaØatKW L 24(12 ) = = 1.2in. 240 240 BI Beam Diagrams nig Formulas section in Part 4 of the Manual/ PaBdabGtibrma ¬enAkNþalElVg¦ sMrab;bnÞúkBIresμIKñaEdlRtUv)andak;sIuemRTIKñaKW Δ= Pa 24 EI ( 3L2 − 4a 2 . ) Edl P= GaMgtg;sIuetbnÞúkcMcMnuc a. =cMgayBITMreTAbnÞúk L = RbEvgElVg Δ= 20(6 × 12 ) 24 EI [ ] 3(24 × 12 )2 − 4(6 × 12 )2 = 13.69 × 10 6 EI sMrab;TMgn;pÞal;rbs;Fñwm PaBdabGtibrmak¾sßitenAkNþalElVgEd dUcenH 152 Fñwm
  • 40. T.chhay 5 wL4 5 (0.053 / 12 )(24 × 12 )4 0.04 × 10 6 Δ= = = 384 EI 384 EI EI PaBdabsrub 13.69 × 10 6 0.04 × 10 6 13.73 × 10 6 Δ= + = = 1.114in. < 1.2in. (OK) EI EI 29000(425) cMeLIy³ eRbI W12 × 53 . eTaHbICaRkaPicQrelI Cb = 1.0 k¾eday b:uEnþeKk¾GaceRbIvay:agRsYledIm,IKNnamuxkat;enA eBlEdl Cb minesIμnwg 1.0 edayEck required design strength eday Cb munnwgdak;vaeTAkñúgRka Pic. ]TahrN_ 5>12 nwgbgðajBIbec©keTsenH. ]TahrN_ 5>12³ eRbIEdk A36 ehIyeRCIserIs rolled shapes sMrab;FñwmenAkñúg rUbTI 5>29. bnÞúkcMcM nucCa service live load ehIybnÞúkBRgayesμIKW 30% CabnÞúkefr nig 70% CabnÞúkGefr. Lateral bracing RtUv)anpþl;eGayenAcug nigkNþalElVg. vaminmankarkMNt;sMrab;PaBdabeT. dMeNaHRsay³ edaysnμt;TMgn;FñwmesμI 100lb / ft. enaH wD = 0.30(3) + 0.10 = 1kips / ft. wL = 1.2(1.0 ) + 1.6(0.7 × 3) = 4.560kips / ft. Pu = 1.6(9) = 14.4kips bnÞúkemKuN nigRbtikmμRtUv)anbgðajenAkñúgrUbTI 5>30. m:Um:g;EdlcaM)ac;sMrab;KNna Cb ³ m:Um:g;Bt;enAcMgay x BIcugxageqVgKW ⎛ x⎞ M = 61.92 x − 4.590 x⎜ ⎟ = 61.92 x − 2.280 x 2 ⎝2⎠ ¬sMrab; x ≤ 12 ft ¦ sMrab; x = 3 ft / M A = 61.92(3) − 2.280(3)2 = 165.2 ft − kips 153 Fñwm
  • 41. T.chhay sMrab; x = 6 ft / M B = 61.92(6) − 2.280(6)2 = 289.4 ft − kips sMrab; x = 9 ft / M C = 61.92(9) − 2.280(9)2 = 372.6 ft − kips sMrab; x = 12 ft / M max = M u = 61.92(12) − 2.280(12)2 = 414.7 ft − kips 12.5M max Cb = 2.5M max + 3M A + 4 M B + 3M C 12.5(414.7 ) = = 1.36 2.5(414.7 ) + 3(165.2 ) + 4(289.4) + 3(372.6) bBa©ÚleTAkñúgRkaPicCamYynwg unbraced length Lb = 12 ft nigm:mU:g;Bt;KW M u 414.7 = = 305 ft − kips Cb 1.36 sakl,g W 21× 62 ³ φb M n = 343 ft − kips ¬sMrab; Cb = 1 ¦ edaysar Cb = 1.36 design strength BitR)akdKW φb M n = 1.36(343) = 466 ft − kips b:uEnþ design strength minRtUvelIs φb M p EdlesμIRtwmEt 389 ft − kips ¬TTYl)anBIRka Pic¦ dUcenH design strength BitR)akdRtUvEtesμInwg φb M n = 389 ft − kips < M u = 414.7 ft − kips (N.G.) sMrab;rUbragsakl,gbnÞab; eyIgRtUvrMkileLIgelIeTArkExSekagCab;Rkas;bnÞab;enAelIRkaPic eyIgTTYl)an W 21× 68 . sMrab; Lb = 12 ft design strength Edl)anBIRkaPicKW 385 ft − kips sMrab; Cb = 1.0 . ersIusþg;sMrab; Cb = 1.36 KW φb M n = 1.36(385) = 524 ft − kips > φb M p = 432 ft − kips dUcenH φb M n = φb M p = 432 ft − kips > M u = 414.7 ft − kips (OK) TMgn;FñwmKW 68lb / ft EdltUcCagTMgn;snμt; 100lb / ft . (OK) kMlaMgkat;TTwgKW Vu = 61.92kips ¬lT§plBitR)akdnwgtUcCagenHbnþic edaysarTMgn;pÞal;rbs;FñwmtUcCagbnÞúksnμt;¦ BI factored uniform load table φvVn = 177kips > 61.92kips (OK) cMeLIy³ eRbI W 21× 68 154 Fñwm
  • 42. T.chhay RbsinebItMrUvkarPaBdabRKb;RKgelIkarKNnamuxkat; eKRtUvkMNt;m:Um:g;niclPaBcaM)ac;Gb,- brma ehIyeKRtUvrkrUbragRsalCageKEdlRtUvnwgtMélenH. kargarenHRtUv)ansMrYly:ageRcIneday sar moment of inertia selection table in part 4 of the Manual. ]TahrN_ 5>13 nwgbgðajBIkar eRbIR)as;taragenH ehIynwgBnül;pgEdrBIviFIsaRsþkñúgkarKNnamuxkat;FñwmenAkñúgRbBn§½kMralxNн. ]TahrN_ 5>13³ EpñkénRbBn§½eRKagkMralRtUv)anbgðajenAkñúg rUbTI 5>31. kMralebtugBRgwgeday EdkmankMras; 4in. RtUv)anRTeday floor beams EdlmanKMlatBIKña 7 ft. . Floor beamsRtUv)anRT eday girders EdlRtUv)anbnþedayssr. ¬eBlxøH floor beamsRtUv)aneKehAfa filler beams¦. bEnßmBIelITMgn;rbs;rcnasm<n§½ bnÁÞúkrYmmanbnÞúkGefrBRgayesμI 80 psf nig movable partitions EdlRtUv)anKitCabnÞúkBRgayesμI 20 psf elIépÞkMral . PaBdabsrubGtibrmaminRtUvelIsBI 1/ 360 énRbEvgElVg. eRbIEdk A36 nigKNnamuxkat;rbs; floor beams. snμt;fakMralpþl;nUv continuous lateral support rbs; floor beams. 155 Fñwm
  • 43. T.chhay dMeNaHRsay³ eRbIebtugGarem:TMgn;FmμtaEdlmanTMgn; 150lb / ft 3 sMrab;KNnabnÞúkefr. TMgn;GacRtUv)anKitCabnÞúk kñúgmYyÉktþaépÞedayKuNTMgn;maDnwgkMras;kMralxNн. TMgn;kMralxNн = 150⎛⎜⎝ 12 ⎞⎟⎠ = 50 psf 4 snμt;faFñwmnImYy²RTnUvTTwgrgbnÞúk (tributary width) 7 ft. rbs;kMralxNн. kMralxNн³ 50(7) = 350lb / ft Partition³ 20(7 ) = 140lb / ft TMgn;Fñwm³ = 40lb / ft ¬)a:n;sμan¦ srub³ = 530lb / ft ¬ service dead load¦ eTaHbI partition Gacclt½)an b:uEnþ national model building codes KitvaCabnÞúkefr (BOCA, 1996; ICBO, 1997;nig SBCC, 1997). eyIgk¾KitvaCabnÞúkGefrEdrenATIenH. bnÞúkGefr³ 80(7) = 560lb / ft ehIybnÞúkemKuNsrubKW wu = 1.2wD + 1.6wL = 1.2(0.53) + 1.6(0.56) = 1.532kips / ft kartP¢ab;kMral-Fñwmpþl;nUv no moment restraint ehIyFñwmRtUv)anKitCaFñwmEdlRTedayTMrsamBaØ. 2 1.532(30 ) 2 1 M u = wu L = = 172.4 ft − kips 8 8 BI beam design chart CamYynwg Lb = 0 sakl,g W18× 35 ³ φb M u = 179.5 ft − kips > 172.4 ft − kips (OK) kMlaMgkat;TTwgKW 1532(30) Vu ≈ = 22.98kips 2 BI factored uniform load tables φvVn = 103kips > 22.98kips (OK) PaBdabGtibrmaGnuBaØatKW L 30(12) = = 1in. 360 360 5 wL4 5 (0.35 + 0.14 + 0.035 + 0.56)(30)4 (12)3 Δ= = = 1.3in. > 1in. (N.G.) 384 EI 384 29000(510) edayedaHRsaysmIkarPaBdabsMrab; required moment of inertia TTYl)an 156 Fñwm
  • 44. T.chhay 5wL4 384 5(1.085)(30)4 (12)3 I required = = = 682in.4 384 EΔ required 384(29000)(1) Moment of Inertia Selection Table RtUv)anerobcMeLIgkñúgviFIdUcKñanwg Load Factor Design Selection Table dUcenHkareRCIserIsrUbragEdlRsalCageKCamYynwgm:Um:g;niclPaBRKb;RKan;man lkçN³samBaØ. BI I x Table sakl,g W 21× 44 ³ I x = 843in.4 > 682in.4 (OK) φb M n = 257.5 ft − kips > 172.4 ft − kips (OK) TMgn;rbs;rUbragenHFMCagkarsnμt;dMbUgbnþic b:uEnþTMgn;EdlbEnßmenHminGaceRbobeFobnwg moment capacity d¾FMenaH)aneT. φvVn = 141kips > 22.98kips (OK) cMeLIy³ eRbI W 21× 44 . 5>11> rn§RbehagenAkñúgFñwm Holes in Beam RbsinebIkartP¢ab;FñwmRtUv)aneFVIeLIgCamYyb‘ULúg søab b¤RTnugrbs;FñwmRtUv)anecaHRbehag b¤xYg. elIsBIenH eBlxøHRTnugFñwmRtUv)anecaHrn§FM²edIm,Irt;eRKOgbrikçaepSg²dUcCa bMBugExSePøIg GKÁisnI bMBugxül;CaedIm. eKcUlcitþecaHrn§enAelIRTnugFñwmRtg;kEnøgNaEdlmankMlaMgkat;TTwgtUc ehIyrn§RbehagRtUv)anecaHenAelIsøabRtg;kEnøgNaEdlmanm:Um:g;tUc. b:uEnþeKminGaceFVIEbbenH)an rhUteT dUcenHeKRtUvKitBIT§iBlrbs;rn§Rbehag. sMrab;rn§RbehagtUc dUcsMrab;b‘ULúg T§iBlrbs;vanwgtUc CaBiesssMrab; flexure edaymUl ehtuBIr. TI1KW karkat;bnßymuxkat;tUc. TI2KW muxkat;EdlenAEk,rmin)ankat;bnßy ehIykarpøas; bþÚrmuxkat;énPaBminCab;tUcFMCag “weak link”. dUcenH AISC B10 GnuBaØateGayecalnUvT§iBlrbslrn§RbehagenAeBlEdl 0.75 Fu A fn ≥ 0.9 Fy A fg (AISC Equation B10-1) Edl A fg = gross flange are A fn = net flange are RbsinebIeKminCYbnUvlkçxNÐenHeT flexural properties RtUvEtQrelIRkLaépÞsøabrgkarTajRbsiT§ PaB 5 Fu A fe = A fn (AISC Equation B10-3) 6 Fy 157 Fñwm
  • 45. T.chhay ]TahrN_ 5>14³ KNna elastic section modulus EdlRtUv)ankat;bnßy S x sMrab;muxkat;Edl bgðajenAkñúgrUbTI 5>32. eKeRbIEdk A36 nigRbehagsMrab;b‘ULúgGgát;p©it 1in. . dMeNaHRsay³ A fg = b f t f = 7.635(0.81) = 6.184in 2 Ggát;p©itRbehagRbsiT§PaBKW 1 1 dh =1+ =1 in. 8 8 net flange area KW A fn = A fg − ∑ d h t f = 6.184 − 2(1.125)(0.810 ) = 4.362in.2 BI AISC Equation B10-1 0.75 Fu A fn = 0.75(58)(4.362 ) = 189.7kips nig 0.9Fy A fg = 0.9(36)(6.184) = 200.4kips edaysar 0.75Fu A fn < 0.9Fy A fg eyIgRtUvEtKitrn§Rbehag. edayeRbI AISC Equation B10-3 eGayRkLaépÞsøabRbsiT§PaB 5 Fu 5 ⎛ 58 ⎞ A fg = A fn = ⎜ ⎟4.362 = 5.856in.2 6 Fy 6 ⎝ 36 ⎠ RkLaépÞsøabenHRtUvKñanwgkarkat;bnßyeday 6.184 − 5.856 = 0.328in.2 . GkS½NWteGLasÞicsßitenA cMgay y BIkMBUlrbs;muxkat; 20.8(18.47 / 2 ) − 0.328(18.47 − 0.405) y= = 9.094in. 20.8 − 0.328 m:Um:g;niclPaBEdlRtUv)ankat;bnßyKW I x . = 1170 + 20.8(9.094 − 9.235)2 − 0.328(9.094 − 18.06)2 = 1144in.4 Sx sMrab;søabxagelIKW 158 Fñwm
  • 46. T.chhay I 1144 Sx = x = = 126in.3 y 9.094 Sx sMrab;søabxageRkamKW Ix 1144 Sx = = = 122in.3 d−y 18.47 − 9.094 cMeLIy³ The reduced elastic section modulus sMrab;EpñkxagelIKW 126in.3 nigsMrab;EpñkxageRkamKW 122in.3 . FñwmEdlmanrn§RbehagFMenAelIRTnug RtUvkarkarKNnaBiessEdlminmanerobrab;enAkñúgesov ePAenHeT. Design of Steel and Composite Beam with Web Openings KWCakarENnaMd¾manRb eyaCn_sMrab;RbFanbTenH (Darwin, 1990). 5>12> Open-Web Steel Joists Open-web steel joists CaRbePT truss EdlplitrYcCaeRscdUcbgðajenAkñúgrUbTI 5>33. Open-web steel joists xøHEdlmanTMhMtUc eRbIr)arEdkmUlCab;sMrab;eFVICaGgát;RTnug (web member) ehIyvaRtUv)aneKehA bar joists. vaRtUv)aneKeRbIenAkñúgkMral nigRbBn§½dMbUlsMrab;eRKOgbgÁúMCaeRcIn. sMrab;RbEvgElVgEdleGaydUcKña open-web steel joists manTMgn;RsalCag rolled shapes ehIyGvtþ manrbs;RTnugtan;GnuBaØateGayeKrt;RbBn§½brikçay:agRsYl. GaRs½yeTAnwgRbEvgElVg open-web steel joist manlkçN³esdækic©Cag rolled shapes eTaHbICavaKñaeKalkarN_ENnaMsMrab;karkMNt;vak¾ eday. eKGacrk open-web steel joists CamYynwgkMBs;sþg;dar niglT§PaBRTbnÞúkBIeragcRkCaeRcIn. Open-web steel joist xøHRtUv)anKNnaedIm,IeFVIkarCa floor b¤ roof joists ehIy open-web steel joists xøHeTotRtUv)anKNnaedIm,IeFVIkarCa girder EdlRTRbtikmμEdlRbmUlpþúMBI joists. AISC Specification min)anerobrab;BI open-web steel joists eT Etsßabn½mYyepSgeTotEdleKehAfa Steel Joist Institute (SJI) manBiBN’naBIva. ral;kareRbIR)as; steel joists rYmTaMgkarKNna nigkarplit RtUv)ane)aHBum<pSayenAkñúg Standard Specifications, Load Tables, nig Weight Table for Steel Joists and Joist Girders (SJI, 1994). 159 Fñwm
  • 47. T.chhay eKGaceRCIserIs open-web steel joists CamYynwg the aid of the standard load tables (SJI, 1994) ehIytaragmYyenAkñúgcMeNamenaHRtUv)anbgðajenAkñúgrUbTI 5>34 . CamYynwgkarpSMKñarvag ElVg nig joist eKnwgTTYl)antMélbnÞúkmYyKUr. elxxagelICa total service load capacity KitCa pounds kñúgmYy foot ehIyelxenAxageRkamCa service live load kñúgmYy foot EdlnwgbegáItPaBdab esμInwg 1/ 360 énRbEvgElVg. ¬eTaHbICabnÞúkenAkñúgtaragCa service load capacities k¾eday k¾eK GaceRbItaragenHy:aggayRsYlCamYynwgviFI LRFD EdleyIgnwgbgðajenATIenH¦. elxdMbUgénelx 160 Fñwm
  • 48. T.chhay sMKal;CakMBs;rbs; open-web steel joist EdlKitCa in. . taragk¾eGaypg EdrnUvTMgn;Rbhak;Rb EhlEdlKitCa pound kñúgmYy foot énRbEvg. eKGacrk open-web steel joists EdlRtUv)anKNnaedIm,ImannaTICa floor or roof joist ¬Edl pÞúyBImannaTICa girder¦ Ca open-web steel joist (K-series, both standard and KCS), longspan steel joists (LH-series), nig deep longspan steel joist (DLH-series). enAeBleyIgrMkilesrIeLIg kan;Etx<s; eyIgnwgTTYl)anRbEvgElVg niglT§PaBRTbnÞúkkan;EtFM. Ca]TahrN_ 8K1 manRbEvg ElVg 8 ft. niglT§PaBRTbnÞúk 550lb / ft. b:uEnþ 72DLH19 GacRTbnÞúk)an 497lb / ft. elIRbEvg 144 ft. . edayelIkElg KCS joists, open-web steel joists TaMgGs;RtUv)anKNnaCa trusses EdlRT edayTMrsamBaØ CamYynwgbnÞúkBRgayesμIenAelI top chord. kardak;bnÞúkenHeFVIeGay top chord rgnUv bending k¾dUc axial compression dUcenH top chord RtUv)anKNnaCa beam-column ¬emIlCMBUk 6¦. edIm,IFananUvesßrPaBrbs; top chord eKRtUvP¢ab; the floor or roof deck kñúgviFIEbbNaedIm,IeFVIeGay man continuous lateral support. TaMg top nig bottom chord members rbs; K-series joists RtUv)anplitedayEdkEdlman yield stress 50ksi . lT§PaBRTbnÞúkrbs; K-series joists RtUv)anepÞógpÞat;edaykarBiesaFn_ ehIy emKuNsuvtßiPaBGb,brmaRtUv)anbgðajeGayeXIjesμInwg 1.65 . viFIsaRsþd¾samBaØsMrab;eRbIR)as; standard load tables CamYynwg LRFD RtUv)anENnaMeday SJI (1994) ehIyRtUv)anbgðajenATIenH kñúgTMrg;EkERbbnþicbnþÜc. BicarNa TMnak;TMngeKal LRFD smIkar @>#³ ∑ γ i Qi ≤ φRn vaRtUv)ansresrsMrab;bnÞúkBRgayesμIkñúgTMrg;Ca wu ≤ φwn ¬%>&¦ Edl wu CabnÞúkBRgayesμIemKuN nig wn Ca nominal uniform load strength of the joist. Rbsin ebIeyIgeRbIpleFobmFümén nominal strength elI allowable strength esμInwg 1.65 eyIgGac * sresr nominal strength eday wn = 1.65wsji * cMNaMfaemKuNsuvtßiPaBsMrab; K-series joists RtUv)ankMNt;edaykarBesaFn_EdleFVIelIgedayplitkr. 161 Fñwm
  • 49. T.chhay Edl wsji Ca allowable strength (allowable load) EdleGayenAkñúg standard load tables. Design strength KW ( ) φwn = 0.9 1.65wsji = 1.485wsji ≈ 3 2 wsji LÚveyIgGacsresrsmIkar %>& Ca wu ≤ 3 2 wsji sMrab;eKalbMNgénkarKNna eyIgGacsresrTMnak;TMngenHCa required wsji = 2 3 wu ]TahrN_ 5>15³ eRbI load table EdleGayenAkñúg rUbTI 5>34 eRCIserIs open-web steel joist sMrab;RbBn§½kMral nigbnÞúkxageRkam. Joist spacing = 3 ft Span length = 20 ft bnÞúkKW³ kMralxNнkMras; 3in. bnÞúkefrepSgeTot = 20 psf bnÞúkGefr = 50 psf dMeNaHRsay³ sMrab;bnÞúkefr kMralxNн³ 50⎛⎝⎜ 12 ⎞⎟⎠ = 37.5 psf 3 bnÞúkefrepSgeTot = 20 psf TMgn;rbs; joist = 3 psf ¬]bma¦ srub = 60.5 psf wD = 60.5(3) = 181.5lb / ft sMrab;bnÞúkGefr 50 psf wL = 50(3) = 150lb / ft bnÞúkemKuNKW wu = 1.2 wD + 1.6 wL = 1.2(181.5) + 1.6(150 ) = 457.8lb' ft bMElgbnÞúkenHeTACa required service load³ wu = (457.8) = 305lb / ft 2 2 required wsji = 3 3 162 Fñwm
  • 50. T.chhay rUbTI 5>34 bgðajfa joist xageRkambMeBjnUvtMrUvkarénbnÞúkxagelI³ 12K 5 TMgn;RbEhl 7.1lb / ft / 14K 3 TMgn;RbEhl 6lb / ft nig 16K 2 TMgn;RbEhl 5.5lb / ft . edayminmankarkMNt;sMrab;kMBs; dUcenHeyIgerIsnUv joist NaEdlRsalCageK. cMeLIy³ eRbI 16K 2 . 5>13> bnÞHRTFñwm nigbnÞH)atssr Beam Bearing Plates and Column Base Plate viFIKNnabnÞHRTssrmanlkçN³RsedogKñanwgviFIKNnabnÞHRTFñwm ehIyedaysarmUlehtu enH eyIgnwgBicarNavaCamYyKña. elIsBI karkMNt;kMras;rbs;bnÞH)atssrtMrUveGaymankarBicarNa BI flexure dUcenHvaRtUv)anelIkykmkerobrab;enATIenH EdlminEmnenAkñúgCMBUk 4. kñúgkrNITaMgBIr tYnaTIrbs;bnÞHEdkKWEbgEckbnÞúkEdlRbmUlpþúM (concentrated load) eTAsMPar³EdlRTva. bnÞHRTFñwmmanBIrRbePTKW³ mYysMrab;bBa¢ÚnRbtikmμrbs;FñwmeTATMr dUcCaCBa¢aMgebtug nigmYy eTotsMrab;bBa¢ÚnbnÞúkeTAsøabxagelIrbs;Fñwm. dMbUg BicarNaTMrFñwmEdlbgðajenAkñúgrUbTI 5>35 . eTaHbICaFñwmCaeRcInRtUv)antP¢ab;eTAssrb¤eTAFñwmepSgeTotk¾eday EtRbePTénTMrEdlbgðajenATIenH RtUv)aneRbICaerOy² CaBiessenARtg; bridge abutments. karKNnaBIbnÞHRT rYmmanbICMhan³ !> kMNt;TMhM N EdleKGackarBar web yielding nig web crippling. @> kMNt;TMhM B EdlRkLaépÞ B × N manTMhMRKb;RKan;edIm,IkarBarsMPar³EdlRT ¬CaTUeTAKW ebtug¦ BIkarEbk. #> kMNt;kMras; t EdlbnÞHRTman bending strength RKb;RKan;. karBN’naBI Web yielding and web crippling manenAkñúg Chapter K of AISC Specifica- tion, “Strength Design Consideration”. ÉcMENk bearing strength rbs;ebtugRtUv)anniyayenA kñúg Chapter J, “Connections, Joints, and Fasteners”. 163 Fñwm
  • 51. T.chhay Web Yielding Web yielding KWCakarpÞúHEbkedaykarsgát; (compressive crushing) rbs;RTnugFñwmEdl bNþalBIkarGnuvtþn_kMlaMgsgát;edaypÞal;eTAsøabEdlenABIxagelI b¤BIxageRkamRTnug. kMlaMgenH GacCakMlaMgRbtikmμBITMrénRbePTdUcbgðajkñúg rUbTI 5>35 b¤vaGacCabnÞúkEdlbBa¢ÚneTAsøabeday ssr b¤FñwmepSgeTot. Yielding ekIteLIgenAeBlEdlkugRtaMgsgát;enAelImuxkat;edktamry³RTnug xiteTArkcMnuc yield. enAeBlbnÞúkRtUv)anbBa¢Úntamry³bnÞHEdk web yielding RtUv)ansnμt;faekIt manenAEk,rmuxkat;EdlmanTTwg t w . enAkñúg rolled shape muxkat;enARtg;cugénBitekag (toe of the fillet) EdlmancMgay k BIépÞxageRkArbs;søab ¬TMhMenHRtUv)anerobCatarag enAkñúg dimensions and properties tables in the Manual). RbsinebIbnÞúkRtUv)ansnμt;faEbgEckxøÜnvaeday slope 1 : 2.5 dUcbgðajenAkñúg rUbTI 5>36 RkLaépÞenARtg;TMrrgnUv yielding KW (2.5k + N )t w . edayKuN RkLaépÞenHnwg yield stress eGay nominal strength sMrab; web yielding enARtg;TMr³ Rn = (2.5k + N )Fy t w (AISC Equation K1-3) The bearing length N enARtg;TMrmikKYrtUcCag k . enARtg;bnÞúkxagkñúg beNþayrbs;muxkat;rgnUv yielding KW 2(2.5k ) + N = 5k + N The nominal strength KW Rn = (5k + N )Fy t w (AISC Equation K1-2) The design strength KW φRn , Edl φ = 1.0 Web Cripplimg Web cripplingCa buckling rbs;RTnugEdlbNþalBIkMlaMgsgát;EdlbBa¢Úntamry³søab. sMrab;bnÞúkxagkñúg nominal strength sMrab; web crippling KW³ 164 Fñwm
  • 52. T.chhay ⎡ 1.5 ⎤ ⎛N ⎞⎛ t w ⎞ ⎥ Fy t f Rn = 135t w ⎢1 + 3⎜ 2 ⎟⎜ ⎟ (AISC Equation K1-4) ⎢ ⎝ d ⎠⎜ t f ⎟ ⎝ ⎠ ⎥ tw ⎢ ⎣ ⎥ ⎦ sMrab;bnÞúkenARtg; b¤Ek,rTMr ¬minFMCagBak;kNþalkMBs;FñwmBIcug¦ nominal strength KW³ ⎡ 1.5 ⎤ ⎛N ⎞⎛ t w ⎞ ⎥ Fy t f Rn = 68t w ⎢1 + 3⎜ 2 ⎢ ⎟⎜ ⎟ ⎝ d ⎠⎜ t f ⎟ ⎥ tw sMrab; N ≤ 2 d (AISC Equation K1-5a) ⎢ ⎣ ⎝ ⎠ ⎥ ⎦ ⎡ 1.5 ⎤ 2⎢ ⎛ N ⎞⎛ t w ⎞ ⎥ Fy t f b¤ Rn = 68t w 1 + ⎜ 4 − 0.2 ⎟⎜ ⎟ ⎢ ⎝ d ⎠⎜ t f ⎟ ⎥ t w sMrab; N > 2 d (AISC Equation K1-5b) ⎢ ⎣ ⎝ ⎠ ⎥ ⎦ emKuNersIusþg;sMrab;sßanPaBkMNt;enHKW φ = 0.75 Concrete Bearing Strength sMPar³EdleRbIsMrab;RTFñwmGacCa ebtug dæ b¤sMPar³epSg²eTot b:uEnþCaTUeTAvaCaebtug. sMPar³enHRtUvEtTb;nwg bearing load EdlGnuvtþedaybnÞHEdk. The nominal bearing strength EdlbBa¢ak;enAkñúg AISC J9 dUcKñaenAkñúg American Concrete Institute’s Building Code (ACI, 1995). RbsinebI plate RKbeBjelIépÞrbs;TMr enaH nominal strength KW Pp = 0.85 f 'c A1 (AISC Equation J9-1) RbsinebI plate minRKbeBjelIépÞrbs;TMreT enaH nominal strength KW Pp = 0.85 f 'c A1 A2 / A1 (AISC Equation J9-2) 165 Fñwm
  • 53. T.chhay Edl ersIusþg;rgkarsgát; 28éf¶rbs;ebtug f 'c = A1 = bearing area R A2 = full area rbs;TMr RbsinebI A2 mincMCamYy A1 enaH A2 KYrmantMélFMCag A1 EdlvamanragFrNImaRtRsedog Kñanwg A1 dUcbgðajenAkñúgrUbTI 5>37. AISC tMrUveGay A2 / A1 ≤ 2 The design bearing strength KW φc Pp Edl φc = 0.60 . Plate Thickness enAeBlEdlbeNþay nigTTwgrbs;bnÞHTMrRtUv)ankMNt;ehIy bearing pressure mFümRtUv)an KitCabnÞúkBRgayesμIeTAelI)atén plate EdlRtUv)ansnμt;RTedayTTwg 2k EdlenAkNþalFñwmnig beNþay N dUcbgðajenAkñúgrUbTI 5>38. bnÞab;mkeTotbnÞHRtUv)anBicarNafaekageFobGkS½RsbeTA nwgElVgFñwm. dUcenH bnÞHRtUv)anKitCa cantilever EdlmanRbEvgElVg n = (B − 2k ) / 2 nigTTwg N . edIm,IgayRsYl TTwg 1in. RtUv)anBicarNa CamYynwgbnÞúkBRgayesμIKitCa lb / in. EdlesμInwg bearing pressure EdlKitCa lb / in.2 . BIrUbTI 5>38 m:Um:g;GtibrmaenAkñúgbnÞHKW Ru n R n2 Mu = ×n× = u BN 2 2 BN 166 Fñwm
  • 54. T.chhay Edl Ru / BN Ca bearing pressure mFümrvagbnÞHnigebtug. sMrab;muxkat;ctuekaNEkg EdlekageFobGkS½exSay (minor axis) enaH nominal moment strength M u esμInwg plastic moment capacity M p . dUcbgðajenAkñúgrUbTI 5>39 plastic moment sMrab;muxkat;ctuekaNEkg EdlmanTMhMTTwgmYyÉktþa nigkMras; t KW ⎛ t ⎞⎛ t ⎞ t2 M p = Fy ⎜1× ⎟⎜ ⎟ = Fy ⎝ 2 ⎠⎝ 2 ⎠ 4 edaysar φb M n RtUvEttUcCag M u φb M n ≥ M u t 2 Ru n 2 0 .9 F y ≥ 4 2 BN 2 Ru n 2 2.222 Ru n 2 t≥ 0.9 BNF y b¤ t≥ BNF y ¬%>* / %>(¦ ]TahrN_ 5>16³ KNna bearing plate edIm,IEbgEckRbtikmμrbs; W 21× 68 CamYynwgRbEvgElVg 15 ft. 10in. KitBIGkS½eTAGkS½rbs;TMr. Service load srub EdlKitbBa©ÚlTaMgTMgn;FñwmKW 9kips / ft EdlmanbnÞúkefr nigbnÞúkGefresμIKña. FñwmRtUv)anRTenABIelICBa¢aMgebtugGarem:Edlman f 'c = 3500 psi . TaMgbnÞHEdk nigFñwmCaEdk A36 . dMeNaHRsay³ bnÞúkemKuNKW wu = 1.2wD + 1.6wL = 1.2(4.5) + 1.6(4.5) = 12.6kips / ft. ehIyRbtikmμKW w L 12.6(15.83) Ru = u = = 99.73kips 2 2 kMNt;RbEvgrbs; bearing N EdlcaM)ac;edIm,IkarBar web yielding. BI AISC Equation K1-3, design strength sMrab;sßanPaBkMNt;enHKW Rn = (2.5k + N )Fy t w sMrab; φRn ≥ Ru / 1[2.5(1.438) + N ](36 )(0.430 ) ≥ 99.73 N ≥ 2.85in. 167 Fñwm
  • 55. T.chhay eRbI AISC Equation K1-5edIm,IkMNt;tMélrbs; N EdlcaM)ac;edIm,IkarBar web crippling. snμt; N / d ≥ 0.2 nigsakl,gTMrg;TIBIrrbs;smIkar. sMrab; φRn ≥ Ru / ⎡ 1.5 ⎤ 2⎢ ⎛ N ⎞⎛ t w ⎞ ⎥ Fy t f φ 68t w 1 + ⎜ 4 − 0.2 ⎟⎜ ⎟ ≥ Ru ⎢ ⎝ d ⎠⎜ t f ⎟ ⎥ ⎝ ⎠ tw ⎢ ⎣ ⎥ ⎦ ⎡ ⎛ 4N ⎞⎛ 0.43 ⎞ ⎤ 36(0.685) 1.5 0.75(68)(0.43) ⎢1 + ⎜ 2 − 0.2 ⎟⎜ ⎟ ⎥ ≥ 99.73 ⎢ ⎝ 21.13 ⎣ ⎠⎝ 0.685 ⎠ ⎥ ⎦ 0.43 N ≥ 5.27in. (controls) RtYtBinitükarsnμt; N 5.268 = = 0.25 > 0.2 (OK) d 21.13 sakl,g N = 6in. . kMNt;TMhM B BI bearing strength. karsnμt;EdlmansuvtßiPaBKWRkLaépÞeBj TaMgGs;rbs;TMrRtUv)aneRbI. φc (0.85) f 'c A1 ≥ Ru 0.6(0.85)(3.5)A1 ≥ 99.73 A1 ≥ 55.87in 2 tMélGb,brmarbs;TMhM B KW A 55.87 B= 1 = = 9.31in. N 6 TTwgsøabrbs; W 21× 68 KW 8.270in. EdleFVIeGaybnÞHEdkFMCagsøabbnþic EdleKcg;)an. sakl,g B = 10in. . kMNt;kMras;bnÞHEdkEdlcaM)ac; B − 2k 10 − 2(1.438) n= = = 3.562in. 2 2 BIsmIkar ¬%>(¦ 2.222 Ru n 2 2.222(99.73)(3.562 )2 t= = = 1.14in. BNF y 10(6 )(36 ) cMeLIy³ eRbI PL1 14 × 6 ×10 . 168 Fñwm