SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
The International Journal Of Engineering And Science (IJES)
||Volume||2 ||Issue|| 7 ||Pages|| 10-17||2013||
ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805
www.theijes.com The IJES Page 10
Implementation of Electronic Nose Technique In Explosives
Detection
1,
A.O Afolabi & * 2,
T.J Afolabi
1,
Department of Computer Science and Engineering
*Department of Chemical Engineering Ladoke Akintola University of Technology, Ogbomoso.Nigeria
----------------------------------------------------ABSTRACT-----------------------------------------------------------
Detection of explosives has become a very important issue in the last few years. The number of
terrorist attacks, and suicide bombings in particular, has risen dramatically in the last few years, the explosives
used by terrorists and insurgents only give off incredibly small amounts of detectable gas. Existing systems
which are capable of detecting compounds in the gas phase at such low levels are large, unwieldy and very
expensive, they also have limited sensitivity and selectivity - there is no way to be certain which explosive
substance has been detected. As nanomaterials become more readily available for commercial devices, great
interest has been shown in using them to develop trace-level detection systems for explosives which overcome
all of these issues. Because of the unique nature and properties of nanomaterials like carbon nanotubes,
nanowires, and other nanostructures, handheld or portable systems which are sensitive down to the molecular
level could well be possible. Therefore this work focuses effort in the use of electronic sensors and pattern
recognition technology to imitate the sensing capabilities of the human nose. With the addition of nano-
enhanced sensors and heuristic algorithm E-Nose was simulated that can detect and identify incredibly
quantities of explosive chemicals.
---------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 17July. 2013 Date of Publication:30.July 2013
---------------------------------------------------------------------------------------------------------------------------------------
I. INTODUCTION
Detection of explosives has become a very important issue in the last few years. The number of
terrorist attacks, and suicide bombings in particular, has risen dramatically in the last few years. A significant
number of the casualties in Iraq and Afghanistan have been caused by IEDs (Improvised Explosive Devices).
Early detection of hidden explosive devices therefore has the potential to save many lives. The explosives
typically used by terrorists and insurgents only give off incredibly small amounts of detectable gas. Existing
systems which are capable of detecting compounds in the gas phase at such low levels are large, unwieldy and
very expensive. They also have limited sensitivity and selectivity - there is no way to be certain which explosive
substance has been detected.
The concept of an "electronic nose" has been in development since the 1980's - the aim is to use
electronic sensors and pattern recognition technology to imitate the sensing capabilities of the human nose. With
the addition of nano-enhanced sensors and advances in artificial intelligence technologies like neural networks,
electronic noses have been developed which can detect and identify incredibly small quantities of explosive
chemicals.Electronic nose is mainly composed of chemical sensor system, sampling system and a pattern
recognition system as a neural network. This composited detector can sense the odour difference caused by
explosives and converts it to signals. For instance electrical conductivity in a nanotube changes due to
interacting with molecules of an explosive analyze, as a result of highly selective adsorption. Nanomechanical
effects induced by molecular adsorption offer unprecedented opportunities for trace explosive detection.
II. THE ELECTRONIC NOSE SYSTEM
Electronic Nose is a smart instrument that is designed to detect and discriminate among complex odors
using an array of sensors. The array of sensors consists of a number of broadly tuned (nonspecific) sensors that
are treated with a variety of odor-sensitive biological or chemical materials. This instrument provides a rapid,
simple and non-invasive sampling technique, for the detection and identification of a range of volatile
compounds. The key function of an electronic nose is to mimic human olfactory system (figure 2.4). the human
nose is still consideration the primary tool employed in industry to characterize the odor of a variety of
consumer products.
Implementation Of Electronic Nose…
www.theijes.com The IJES Page 11
Several type sensor materials are currently used in artificial nose technology such as metal oxide,
conductive polymer, piezoelectric crystal and fiber optics. An odor stimulates generates a characteristic
fingerprint from this array of sensors. Patterns or fingerprints from known odors are used to construct a database
and train a pattern recognition system so that unknown odors can be subsequently be classified and/or identified.
Typically an electronic nose consists of three elements: a sensor array which is exposed to the volatiles,
conversion of the sensor signals to a readable format and software analysis of the data to produce characteristic
outputs related to the odor encountered (figure 2). the output from the sensor array may be interpreted via a
variety of methods such as pattern recognition algorithms, principal component analysis, discriminate function
analysis, cluster analysis and artificial neural networks to discriminate between samples. This technology is a
user-friendly, inexpensive and intelligent laboratory diagnostic device [1]
2.1.Electronic Nose and Bomb Detectors: Comparison and Analysis
Staples[4] analyzed and compared e-nose with bomb detectors as follows: conventional bomb detectors
are designed to responds to only energetic materials e.g nitrates and not to detect other background chemicals in
odors. Conversely electronic nose are designed to respond to all chemical with an odor. Based upon these
distinction electronic noses might not be considered good bomb detectors where there are strong background
odors.
Electronic nose have the ability to recognize an almost limitless number of chemical vapor threats
while bomb/chemical agent detectors provide the ability to detect specific target chemical at trace levels while
not being affected by high ambient concentration of non-target compounds. Electronic nose provide a different
screening capability with inherently more information gathering power than bomb detectors and help to resolve
ambiguities by using a library of aroma signature. The ZnoseTM
uses a patented method of olfactory images
called VaporPrint. This high-resolution 2-dimentional image is specific and determined solely by an object‟s
aroma chemistry.[2]
2.2.Working Process of the E-Nose
The mechanism devised through the sensor technology is fast and indeed comprehensive to prevent
terrorist attacks. Yet you can‟t bet that terrorist threat can be completely put off. But the day is not far when
such violent and destructive missions will be made numb and those involved will fear of hysteria forever. We all
want peace. That is the ultimate mission for making the world better and happier.
III. IIIDESIGN AND METHODOLOGY
 Computer system: This was used to simulate the system and serve as an interface used to communicate
with the software in order to detect bomb using electronic nose.
 Knowledge- based intelligence software: This is the program written to detect bomb incorporated with
artificial neural network.
Fig 1 Schematic representation of human and
artificial olfactory system
Implementation Of Electronic Nose…
www.theijes.com The IJES Page 12
 Chemical composition of sampled bombs: Since there are different types of explosives and each of
them consist of different chemical compositions, some of these chemical compositions are gotten from
the internet in order to know what makes up a bomb.
 Modelled electronic nose sensor: Modelled electronic nose sensor was used to sniff and detect bomb
within the vicinity.
3.2 METHODOLOGY
An electronic nose sensor was modeled by using an object-oriented programming language called C#
to detect any explosive compound in vapor.
3.2 Energetic Compounds
The chemistry of explosives involves what are called energetic compounds because they readily
decompose with shock or high temperature[5]. Some important characteristics of six common energetic
compounds found in explosives are listed in Table 1.
Table. 1: Common energetic compounds found in explosives.
For detection purposes perhaps the most important characteristics are the vapor pressure and
decomposition temperature. Low vapor pressure compounds tend to adhere to cool surfaces and require careful
control of instrument temperatures. However, if temperatures are too high compounds like NG and PETN will
decompose before they can be detected.
3.3.Kovats Indices of Common Explosives
The retention times and Kovats indices of energetic compounds were obtained by Direct desorbtion
with a methanol solution containing known concentrations and measuring the resulting odor chemistry with a
zNose™. The Kovats indices for each of the 6 common explosives are tabulated in Table 2.
Table 2; Kovate indices of the six energetic compound
3.2. Virtual Chemical Sensors with Alarms
These indices, tabulated in Table .2, provided the basis for creating alarms or virtual sensors for each of
the compounds. Because the retention times are relative to N-alkane vapors they are machine independent and
only require knowledge of the N-alkane retention times to create a library of explosives which applies to all
zNose™[2] instruments.
Implementation Of Electronic Nose…
www.theijes.com The IJES Page 13
Fig 2 virtual chemical sensor
Tabulated data listings as shown in Figure1 are used to define retention times by index rather than
retention time in seconds. Response factors of each sensor and alarm window widths are also defined. Thus
defined, chromatographic measurements are reduced to a simple user display of six virtual sensors for the
common explosive compounds together with their individual alarm levels.[6]
IV. IMPLEMENTATION
Figure 4 below is the first screen that will be displayed when the system is opened, it is the user
interface for the simulated bomb detection system. On this interface, there is a text box, menu bar and picture
box.
TEXT BOX: this is a box on the interface which is there for the purpose of displaying some text when the
system detect any explosive.
PICTURE BOX: this box is on the interface too, it is a picture that is there for the purpose of signaling
whenever the system detect any explosive. The picture box is attached with a sound to raise alarm when the
explosive is detected by the system.
MENU BAR: this bar will later consists of menus that navigate to some other screen when the system detected
any explosive, but it does not consist any menu presently since the system has not detect any explosive.
Implementation Of Electronic Nose…
www.theijes.com The IJES Page 14
Figure 2 Simulated bomb detected system.
Figure 2 below is another screen that will be displayed when any explosive is detected, just a button
is added to the figure 1 above and the button is RESET button.
TEXT BOX: this box will display this sentence: “Bomb is detected.” to the user what is happening when the
system raise alarm.
PICTURE BOX: this is a box which involves a picture that changes color from blue to red and gives an alarm
sound to alert the system user of any explosive detected by the system.
MENU BAR: this bar consists of menus that navigate to some other screen, the menus are:
1 Check/update substance and
2 Check detected bomb detail.
RESET BUTTON: this button, when clicked, enable the user to stop signaling and return to the normal screen
when no explosive is not detected.
Figure 3 Bomb discovered
Figure 3 is displayed when the Check/Update Substance menu in figure 2 above is clicked, it shows sampled
explosives with their information.The first text box space is attached with combo box that contains those
Implementation Of Electronic Nose…
www.theijes.com The IJES Page 15
sampled explosives, any one of the information can be clicked and the following text boxes are provided to
display information about that particular explosive. The information are indices number, molecular weight,
density, chemical formula and vapor pressure. Each of these has text box in their front that contain those
information.
UPDATE SUBSTANCE TO LIBRARY: This is the button that navigates a new screen to update the
information about the substances in the library. Another button on top of this interface is to close this screen
and back to the normal screen when any explosive is not detected.
Figure 4: check and update substance
Figure 4 is displayed when the Update Substance to Library button in figure 3 above is clicked, this interface
enable the user to update the substance in the Library.
The first text box is attached with combo box that contain those explosives so that any one that is to update can
be clicked and those information with each text box space is provided to enable the use to input new data for
those information.
UPDATE BUTTON: this button when is clicked update the substances with new data that the user just entered.
BACK BUTTON: This button enable the user to leave this interface for previous interface.Another button on
top of this interface is to close this screen and back to the normal screen when any explosive is not detected.
Figure 5: Library update
Implementation Of Electronic Nose…
www.theijes.com The IJES Page 16
Figure 4 is displayed when the Check Detected Detail menu in the figure 3 above is clicked, this
interface is provided to enable the user to check which type of explosive is detected by the system some detail
about that particular explosive.
This interface shows alarm percentage and spread percentage of the explosive detected. The alarm percentage is
set to be 100%, and it is constant but the spread percentage of each explosive is varied and the proximity of the
explosive to the system also affect this spread percentage.Another button provided in this interface is indicated
by „<<‟, this button is there to enable the user to back to previous interface.
Figure 6: The spread percentage and alarm percentage.
V. DISCUSSION
Explosive detected system was modeled using C#. In this model, chemical composition of sampled
explosives are entered into C# working environment to do this. The sampled explosives can be detected by the
user by merely looking at the modeled system and even alarm sound is attached to alert the user if the user is a
lay man. But as for an expert who may want to know more about the particular type of the explosive, the detail
about the explosive and probably he/she want to update the substance in the library, the modeled system
provides opportunity for all these to be accomplished.
The table 3 below shows different explosive with their details.
TABLE 3 SUBSTANCES BY THEIR INDEX
SUBSTANCES
NG DNT
TNT
PETN RDX TETRYL
INDICES
1361
1537
1709 1785
1870 2113
MOL
WEIGHT
227.0872 182.1354 227.133 316.1378 222.117 287.1452
DENSITY 1.6 1.521
1.654 1.77
1.82 1.73
FORMULAR
C3H5N3O9
C7H6N2O4
C7H5N3O6 C5H8N4O12
C3H6N6O6 C7H5N5O6
VAPOUR
PRESSURE
0.004 0.000147 5.4E-
06
1.2E-
08 4.1E-09 4E-10
Implementation Of Electronic Nose…
www.theijes.com The IJES Page 17
V. CONCLUSION
In this project, an electronic nose technique in explosives detection has been implemented. Through this
modeled system, explosive chemicals can be quickly and appropriately detected so that lives can be rescued
before the explosion of any explosive.The system has the advantages that the designed program is user friendly
and the result can be easily understand by any user even, a lay man user who cannot read can easily understand
it since the modeled system can alert the userthrough an alarm sound and changing of the picture‟s color in the
interface of the system. Also the required output is displayed in a human understandable form.
Conclusively, the system modeled in this project has a capability to detect explosives hidden in luggage,
vehicles, under clothes, mail or any hidden places, and alert the user.
REFERENCES
[1] http:/www.estical.com/techpapers/odors_of_explosives.doc.
[2] http//science.nasa.gov.science-news/science-at-nasa/2004/06oct_enose.2011
[3] Senesac,T.G Thundat,Nanosensors for Trace Explosive Detection, Materials Today,11 (2008)
[3] Datskos P.G,T Thunda and Lavrik N.V, Encyclopedia Nanosci, Nanotechnol ,10(2004), p.1
[4] Staples E.J (2012): Analysis of Odors from Explosives using an Elctronic Nose ;Proceedings of Electronic Nose Sensor
Technology.
[5] Stigliani, W.M (1991): Chemical Time Bomb:Definition,Concepts and Examples. International Institute for Applied System
Analysis, Novographic, Vienna, Austria.p31.
[6] Yoni Engel, Supersensitive Detection of Explosives by Silicon Nanowire Arrays, Angewandte Chemie International Edition,
Volume 49,Issue 38,pp 6830-6835,2010

Más contenido relacionado

La actualidad más candente

Seminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHU
Seminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHUSeminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHU
Seminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHUmayank843
 
Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...
Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...
Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...Gasera Ltd.
 
Detection of Drugs with Cantilever-Enhanced Photoacoustic Spectroscopy
Detection of Drugs with Cantilever-Enhanced Photoacoustic SpectroscopyDetection of Drugs with Cantilever-Enhanced Photoacoustic Spectroscopy
Detection of Drugs with Cantilever-Enhanced Photoacoustic SpectroscopyGasera Ltd.
 
Electronic nose in Food Analysis
Electronic nose in Food AnalysisElectronic nose in Food Analysis
Electronic nose in Food AnalysisPrathameshPawale
 
Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...
Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...
Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...Gasera Ltd.
 
Nisha e nose
Nisha e noseNisha e nose
Nisha e noseNISHA R
 
Gasera's gas sensor for the Internet of Things (IoT)
Gasera's gas sensor for the Internet of Things (IoT)Gasera's gas sensor for the Internet of Things (IoT)
Gasera's gas sensor for the Internet of Things (IoT)Gasera Ltd.
 
Photonics for High-End Gas Analysis - Gasera Ltd.
Photonics for High-End Gas Analysis - Gasera Ltd.Photonics for High-End Gas Analysis - Gasera Ltd.
Photonics for High-End Gas Analysis - Gasera Ltd.Gasera Ltd.
 
Measurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient Air
Measurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient AirMeasurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient Air
Measurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient AirGasera Ltd.
 
Demonstration of Detection of Hidden Persons and Illegal Substances with an A...
Demonstration of Detection of Hidden Persons and Illegal Substances with an A...Demonstration of Detection of Hidden Persons and Illegal Substances with an A...
Demonstration of Detection of Hidden Persons and Illegal Substances with an A...Gasera Ltd.
 

La actualidad más candente (20)

Electronic nose
Electronic noseElectronic nose
Electronic nose
 
Seminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHU
Seminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHUSeminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHU
Seminar on Electronic-NOSE (E-NOSE) By- MAYANK SAHU
 
Electronic nose
Electronic noseElectronic nose
Electronic nose
 
Electronic nose
Electronic noseElectronic nose
Electronic nose
 
ELECTRONIC NOSE
ELECTRONIC NOSEELECTRONIC NOSE
ELECTRONIC NOSE
 
Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...
Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...
Analysis of Damaged Floor Coverings Emissions in Indoor Air Quality with Cant...
 
Detection of Drugs with Cantilever-Enhanced Photoacoustic Spectroscopy
Detection of Drugs with Cantilever-Enhanced Photoacoustic SpectroscopyDetection of Drugs with Cantilever-Enhanced Photoacoustic Spectroscopy
Detection of Drugs with Cantilever-Enhanced Photoacoustic Spectroscopy
 
Electronic nose in Food Analysis
Electronic nose in Food AnalysisElectronic nose in Food Analysis
Electronic nose in Food Analysis
 
Electronic nose
Electronic noseElectronic nose
Electronic nose
 
E-Nose
E-NoseE-Nose
E-Nose
 
ENOSE
ENOSEENOSE
ENOSE
 
Electronic nose
Electronic noseElectronic nose
Electronic nose
 
Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...
Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...
Measurement of VOCs for Air Quality Using Widely Tunable Mid-Infrared Laser S...
 
E nose
E noseE nose
E nose
 
Nisha e nose
Nisha e noseNisha e nose
Nisha e nose
 
food
foodfood
food
 
Gasera's gas sensor for the Internet of Things (IoT)
Gasera's gas sensor for the Internet of Things (IoT)Gasera's gas sensor for the Internet of Things (IoT)
Gasera's gas sensor for the Internet of Things (IoT)
 
Photonics for High-End Gas Analysis - Gasera Ltd.
Photonics for High-End Gas Analysis - Gasera Ltd.Photonics for High-End Gas Analysis - Gasera Ltd.
Photonics for High-End Gas Analysis - Gasera Ltd.
 
Measurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient Air
Measurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient AirMeasurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient Air
Measurement of Trace Hydrogen Fluoride in Clean Rooms and Ambient Air
 
Demonstration of Detection of Hidden Persons and Illegal Substances with an A...
Demonstration of Detection of Hidden Persons and Illegal Substances with an A...Demonstration of Detection of Hidden Persons and Illegal Substances with an A...
Demonstration of Detection of Hidden Persons and Illegal Substances with an A...
 

Destacado

How to think like a startup
How to think like a startupHow to think like a startup
How to think like a startupLoic Le Meur
 
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your BusinessBarry Feldman
 
Teaching Students with Emojis, Emoticons, & Textspeak
Teaching Students with Emojis, Emoticons, & TextspeakTeaching Students with Emojis, Emoticons, & Textspeak
Teaching Students with Emojis, Emoticons, & TextspeakShelly Sanchez Terrell
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerLuminary Labs
 
Study: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving CarsStudy: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving CarsLinkedIn
 

Destacado (6)

Inaugural Addresses
Inaugural AddressesInaugural Addresses
Inaugural Addresses
 
How to think like a startup
How to think like a startupHow to think like a startup
How to think like a startup
 
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
 
Teaching Students with Emojis, Emoticons, & Textspeak
Teaching Students with Emojis, Emoticons, & TextspeakTeaching Students with Emojis, Emoticons, & Textspeak
Teaching Students with Emojis, Emoticons, & Textspeak
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI Explainer
 
Study: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving CarsStudy: The Future of VR, AR and Self-Driving Cars
Study: The Future of VR, AR and Self-Driving Cars
 

Similar a The International Journal of Engineering and Science (The IJES)

Reliable e-nose for air toxicity monitoring by filter diagonalization method
Reliable e-nose for air toxicity monitoring by filter  diagonalization methodReliable e-nose for air toxicity monitoring by filter  diagonalization method
Reliable e-nose for air toxicity monitoring by filter diagonalization methodIJECEIAES
 
ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...
ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...
ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...IAEME Publication
 
e-nose-150423103436-conversion-gate02[441].pdf
e-nose-150423103436-conversion-gate02[441].pdfe-nose-150423103436-conversion-gate02[441].pdf
e-nose-150423103436-conversion-gate02[441].pdfyalmeetisai
 
Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...
Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...
Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...Allan Melvin Andrew
 
Artificial neural networks
Artificial neural networksArtificial neural networks
Artificial neural networksjsharath
 
DETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCH
DETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCHDETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCH
DETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCHIRJET Journal
 
Dynamic Stand-Alone Gas Detection System
Dynamic Stand-Alone Gas Detection SystemDynamic Stand-Alone Gas Detection System
Dynamic Stand-Alone Gas Detection SystemIRJET Journal
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Neuro identification of some commonly used volatile organic compounds using e...
Neuro identification of some commonly used volatile organic compounds using e...Neuro identification of some commonly used volatile organic compounds using e...
Neuro identification of some commonly used volatile organic compounds using e...Alexander Decker
 
IRJET- Neurotechnology for Superior Brain
IRJET-  	  Neurotechnology for Superior BrainIRJET-  	  Neurotechnology for Superior Brain
IRJET- Neurotechnology for Superior BrainIRJET Journal
 
A CNT-based artificial nose for food spoilage detection
A CNT-based artificial nose for food spoilage detectionA CNT-based artificial nose for food spoilage detection
A CNT-based artificial nose for food spoilage detectionIRJET Journal
 
Smoke detection in video for early warning using
Smoke detection in video for early warning usingSmoke detection in video for early warning using
Smoke detection in video for early warning usingeSAT Publishing House
 
Smoke detection in video for early warning using static and dynamic features
Smoke detection in video for early warning using static and dynamic featuresSmoke detection in video for early warning using static and dynamic features
Smoke detection in video for early warning using static and dynamic featureseSAT Journals
 
Current and Future Research of E Nose(Electronic Nose)
Current and Future Research of E Nose(Electronic Nose)Current and Future Research of E Nose(Electronic Nose)
Current and Future Research of E Nose(Electronic Nose)Nadiya Mahjabin
 
Drager Fixed Gas Detector - At The Heart Of Gas Detection Systems Brochure
Drager Fixed Gas Detector - At The Heart Of Gas Detection Systems BrochureDrager Fixed Gas Detector - At The Heart Of Gas Detection Systems Brochure
Drager Fixed Gas Detector - At The Heart Of Gas Detection Systems BrochureThorne & Derrick UK
 
IRJET- AI to Analyze and Extract Data to Gain Insights About the Spread o...
IRJET-  	  AI to Analyze and Extract Data to Gain Insights About the Spread o...IRJET-  	  AI to Analyze and Extract Data to Gain Insights About the Spread o...
IRJET- AI to Analyze and Extract Data to Gain Insights About the Spread o...IRJET Journal
 

Similar a The International Journal of Engineering and Science (The IJES) (20)

Reliable e-nose for air toxicity monitoring by filter diagonalization method
Reliable e-nose for air toxicity monitoring by filter  diagonalization methodReliable e-nose for air toxicity monitoring by filter  diagonalization method
Reliable e-nose for air toxicity monitoring by filter diagonalization method
 
ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...
ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...
ROLE OF SUBSTANTIAL CHARACTERISTICS IN ELECTRONIC NOSE SENSOR SELECTION FOR D...
 
Electronic Nose ppt
Electronic Nose pptElectronic Nose ppt
Electronic Nose ppt
 
e-nose-150423103436-conversion-gate02[441].pdf
e-nose-150423103436-conversion-gate02[441].pdfe-nose-150423103436-conversion-gate02[441].pdf
e-nose-150423103436-conversion-gate02[441].pdf
 
Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...
Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...
Development of-an-electronic-nose-for-fire-detection 2006-sensors-and-actuato...
 
Artificial neural networks
Artificial neural networksArtificial neural networks
Artificial neural networks
 
DETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCH
DETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCHDETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCH
DETECTION AND INTIMATION OF AIR POLLUTIONPERCENTAGE IN SMARTWATCH
 
Dynamic Stand-Alone Gas Detection System
Dynamic Stand-Alone Gas Detection SystemDynamic Stand-Alone Gas Detection System
Dynamic Stand-Alone Gas Detection System
 
Artificial Nose-Presentation.pdf
Artificial Nose-Presentation.pdfArtificial Nose-Presentation.pdf
Artificial Nose-Presentation.pdf
 
Electronic Nose
Electronic NoseElectronic Nose
Electronic Nose
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Neuro identification of some commonly used volatile organic compounds using e...
Neuro identification of some commonly used volatile organic compounds using e...Neuro identification of some commonly used volatile organic compounds using e...
Neuro identification of some commonly used volatile organic compounds using e...
 
IRJET- Neurotechnology for Superior Brain
IRJET-  	  Neurotechnology for Superior BrainIRJET-  	  Neurotechnology for Superior Brain
IRJET- Neurotechnology for Superior Brain
 
A CNT-based artificial nose for food spoilage detection
A CNT-based artificial nose for food spoilage detectionA CNT-based artificial nose for food spoilage detection
A CNT-based artificial nose for food spoilage detection
 
Smoke detection in video for early warning using
Smoke detection in video for early warning usingSmoke detection in video for early warning using
Smoke detection in video for early warning using
 
Smoke detection in video for early warning using static and dynamic features
Smoke detection in video for early warning using static and dynamic featuresSmoke detection in video for early warning using static and dynamic features
Smoke detection in video for early warning using static and dynamic features
 
Current and Future Research of E Nose(Electronic Nose)
Current and Future Research of E Nose(Electronic Nose)Current and Future Research of E Nose(Electronic Nose)
Current and Future Research of E Nose(Electronic Nose)
 
Electronic nose
Electronic noseElectronic nose
Electronic nose
 
Drager Fixed Gas Detector - At The Heart Of Gas Detection Systems Brochure
Drager Fixed Gas Detector - At The Heart Of Gas Detection Systems BrochureDrager Fixed Gas Detector - At The Heart Of Gas Detection Systems Brochure
Drager Fixed Gas Detector - At The Heart Of Gas Detection Systems Brochure
 
IRJET- AI to Analyze and Extract Data to Gain Insights About the Spread o...
IRJET-  	  AI to Analyze and Extract Data to Gain Insights About the Spread o...IRJET-  	  AI to Analyze and Extract Data to Gain Insights About the Spread o...
IRJET- AI to Analyze and Extract Data to Gain Insights About the Spread o...
 

Último

Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integrationmarketing932765
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Alkin Tezuysal
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 

Último (20)

Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS:  6 Ways to Automate Your Data IntegrationBridging Between CAD & GIS:  6 Ways to Automate Your Data Integration
Bridging Between CAD & GIS: 6 Ways to Automate Your Data Integration
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 

The International Journal of Engineering and Science (The IJES)

  • 1. The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 7 ||Pages|| 10-17||2013|| ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805 www.theijes.com The IJES Page 10 Implementation of Electronic Nose Technique In Explosives Detection 1, A.O Afolabi & * 2, T.J Afolabi 1, Department of Computer Science and Engineering *Department of Chemical Engineering Ladoke Akintola University of Technology, Ogbomoso.Nigeria ----------------------------------------------------ABSTRACT----------------------------------------------------------- Detection of explosives has become a very important issue in the last few years. The number of terrorist attacks, and suicide bombings in particular, has risen dramatically in the last few years, the explosives used by terrorists and insurgents only give off incredibly small amounts of detectable gas. Existing systems which are capable of detecting compounds in the gas phase at such low levels are large, unwieldy and very expensive, they also have limited sensitivity and selectivity - there is no way to be certain which explosive substance has been detected. As nanomaterials become more readily available for commercial devices, great interest has been shown in using them to develop trace-level detection systems for explosives which overcome all of these issues. Because of the unique nature and properties of nanomaterials like carbon nanotubes, nanowires, and other nanostructures, handheld or portable systems which are sensitive down to the molecular level could well be possible. Therefore this work focuses effort in the use of electronic sensors and pattern recognition technology to imitate the sensing capabilities of the human nose. With the addition of nano- enhanced sensors and heuristic algorithm E-Nose was simulated that can detect and identify incredibly quantities of explosive chemicals. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 17July. 2013 Date of Publication:30.July 2013 --------------------------------------------------------------------------------------------------------------------------------------- I. INTODUCTION Detection of explosives has become a very important issue in the last few years. The number of terrorist attacks, and suicide bombings in particular, has risen dramatically in the last few years. A significant number of the casualties in Iraq and Afghanistan have been caused by IEDs (Improvised Explosive Devices). Early detection of hidden explosive devices therefore has the potential to save many lives. The explosives typically used by terrorists and insurgents only give off incredibly small amounts of detectable gas. Existing systems which are capable of detecting compounds in the gas phase at such low levels are large, unwieldy and very expensive. They also have limited sensitivity and selectivity - there is no way to be certain which explosive substance has been detected. The concept of an "electronic nose" has been in development since the 1980's - the aim is to use electronic sensors and pattern recognition technology to imitate the sensing capabilities of the human nose. With the addition of nano-enhanced sensors and advances in artificial intelligence technologies like neural networks, electronic noses have been developed which can detect and identify incredibly small quantities of explosive chemicals.Electronic nose is mainly composed of chemical sensor system, sampling system and a pattern recognition system as a neural network. This composited detector can sense the odour difference caused by explosives and converts it to signals. For instance electrical conductivity in a nanotube changes due to interacting with molecules of an explosive analyze, as a result of highly selective adsorption. Nanomechanical effects induced by molecular adsorption offer unprecedented opportunities for trace explosive detection. II. THE ELECTRONIC NOSE SYSTEM Electronic Nose is a smart instrument that is designed to detect and discriminate among complex odors using an array of sensors. The array of sensors consists of a number of broadly tuned (nonspecific) sensors that are treated with a variety of odor-sensitive biological or chemical materials. This instrument provides a rapid, simple and non-invasive sampling technique, for the detection and identification of a range of volatile compounds. The key function of an electronic nose is to mimic human olfactory system (figure 2.4). the human nose is still consideration the primary tool employed in industry to characterize the odor of a variety of consumer products.
  • 2. Implementation Of Electronic Nose… www.theijes.com The IJES Page 11 Several type sensor materials are currently used in artificial nose technology such as metal oxide, conductive polymer, piezoelectric crystal and fiber optics. An odor stimulates generates a characteristic fingerprint from this array of sensors. Patterns or fingerprints from known odors are used to construct a database and train a pattern recognition system so that unknown odors can be subsequently be classified and/or identified. Typically an electronic nose consists of three elements: a sensor array which is exposed to the volatiles, conversion of the sensor signals to a readable format and software analysis of the data to produce characteristic outputs related to the odor encountered (figure 2). the output from the sensor array may be interpreted via a variety of methods such as pattern recognition algorithms, principal component analysis, discriminate function analysis, cluster analysis and artificial neural networks to discriminate between samples. This technology is a user-friendly, inexpensive and intelligent laboratory diagnostic device [1] 2.1.Electronic Nose and Bomb Detectors: Comparison and Analysis Staples[4] analyzed and compared e-nose with bomb detectors as follows: conventional bomb detectors are designed to responds to only energetic materials e.g nitrates and not to detect other background chemicals in odors. Conversely electronic nose are designed to respond to all chemical with an odor. Based upon these distinction electronic noses might not be considered good bomb detectors where there are strong background odors. Electronic nose have the ability to recognize an almost limitless number of chemical vapor threats while bomb/chemical agent detectors provide the ability to detect specific target chemical at trace levels while not being affected by high ambient concentration of non-target compounds. Electronic nose provide a different screening capability with inherently more information gathering power than bomb detectors and help to resolve ambiguities by using a library of aroma signature. The ZnoseTM uses a patented method of olfactory images called VaporPrint. This high-resolution 2-dimentional image is specific and determined solely by an object‟s aroma chemistry.[2] 2.2.Working Process of the E-Nose The mechanism devised through the sensor technology is fast and indeed comprehensive to prevent terrorist attacks. Yet you can‟t bet that terrorist threat can be completely put off. But the day is not far when such violent and destructive missions will be made numb and those involved will fear of hysteria forever. We all want peace. That is the ultimate mission for making the world better and happier. III. IIIDESIGN AND METHODOLOGY  Computer system: This was used to simulate the system and serve as an interface used to communicate with the software in order to detect bomb using electronic nose.  Knowledge- based intelligence software: This is the program written to detect bomb incorporated with artificial neural network. Fig 1 Schematic representation of human and artificial olfactory system
  • 3. Implementation Of Electronic Nose… www.theijes.com The IJES Page 12  Chemical composition of sampled bombs: Since there are different types of explosives and each of them consist of different chemical compositions, some of these chemical compositions are gotten from the internet in order to know what makes up a bomb.  Modelled electronic nose sensor: Modelled electronic nose sensor was used to sniff and detect bomb within the vicinity. 3.2 METHODOLOGY An electronic nose sensor was modeled by using an object-oriented programming language called C# to detect any explosive compound in vapor. 3.2 Energetic Compounds The chemistry of explosives involves what are called energetic compounds because they readily decompose with shock or high temperature[5]. Some important characteristics of six common energetic compounds found in explosives are listed in Table 1. Table. 1: Common energetic compounds found in explosives. For detection purposes perhaps the most important characteristics are the vapor pressure and decomposition temperature. Low vapor pressure compounds tend to adhere to cool surfaces and require careful control of instrument temperatures. However, if temperatures are too high compounds like NG and PETN will decompose before they can be detected. 3.3.Kovats Indices of Common Explosives The retention times and Kovats indices of energetic compounds were obtained by Direct desorbtion with a methanol solution containing known concentrations and measuring the resulting odor chemistry with a zNose™. The Kovats indices for each of the 6 common explosives are tabulated in Table 2. Table 2; Kovate indices of the six energetic compound 3.2. Virtual Chemical Sensors with Alarms These indices, tabulated in Table .2, provided the basis for creating alarms or virtual sensors for each of the compounds. Because the retention times are relative to N-alkane vapors they are machine independent and only require knowledge of the N-alkane retention times to create a library of explosives which applies to all zNose™[2] instruments.
  • 4. Implementation Of Electronic Nose… www.theijes.com The IJES Page 13 Fig 2 virtual chemical sensor Tabulated data listings as shown in Figure1 are used to define retention times by index rather than retention time in seconds. Response factors of each sensor and alarm window widths are also defined. Thus defined, chromatographic measurements are reduced to a simple user display of six virtual sensors for the common explosive compounds together with their individual alarm levels.[6] IV. IMPLEMENTATION Figure 4 below is the first screen that will be displayed when the system is opened, it is the user interface for the simulated bomb detection system. On this interface, there is a text box, menu bar and picture box. TEXT BOX: this is a box on the interface which is there for the purpose of displaying some text when the system detect any explosive. PICTURE BOX: this box is on the interface too, it is a picture that is there for the purpose of signaling whenever the system detect any explosive. The picture box is attached with a sound to raise alarm when the explosive is detected by the system. MENU BAR: this bar will later consists of menus that navigate to some other screen when the system detected any explosive, but it does not consist any menu presently since the system has not detect any explosive.
  • 5. Implementation Of Electronic Nose… www.theijes.com The IJES Page 14 Figure 2 Simulated bomb detected system. Figure 2 below is another screen that will be displayed when any explosive is detected, just a button is added to the figure 1 above and the button is RESET button. TEXT BOX: this box will display this sentence: “Bomb is detected.” to the user what is happening when the system raise alarm. PICTURE BOX: this is a box which involves a picture that changes color from blue to red and gives an alarm sound to alert the system user of any explosive detected by the system. MENU BAR: this bar consists of menus that navigate to some other screen, the menus are: 1 Check/update substance and 2 Check detected bomb detail. RESET BUTTON: this button, when clicked, enable the user to stop signaling and return to the normal screen when no explosive is not detected. Figure 3 Bomb discovered Figure 3 is displayed when the Check/Update Substance menu in figure 2 above is clicked, it shows sampled explosives with their information.The first text box space is attached with combo box that contains those
  • 6. Implementation Of Electronic Nose… www.theijes.com The IJES Page 15 sampled explosives, any one of the information can be clicked and the following text boxes are provided to display information about that particular explosive. The information are indices number, molecular weight, density, chemical formula and vapor pressure. Each of these has text box in their front that contain those information. UPDATE SUBSTANCE TO LIBRARY: This is the button that navigates a new screen to update the information about the substances in the library. Another button on top of this interface is to close this screen and back to the normal screen when any explosive is not detected. Figure 4: check and update substance Figure 4 is displayed when the Update Substance to Library button in figure 3 above is clicked, this interface enable the user to update the substance in the Library. The first text box is attached with combo box that contain those explosives so that any one that is to update can be clicked and those information with each text box space is provided to enable the use to input new data for those information. UPDATE BUTTON: this button when is clicked update the substances with new data that the user just entered. BACK BUTTON: This button enable the user to leave this interface for previous interface.Another button on top of this interface is to close this screen and back to the normal screen when any explosive is not detected. Figure 5: Library update
  • 7. Implementation Of Electronic Nose… www.theijes.com The IJES Page 16 Figure 4 is displayed when the Check Detected Detail menu in the figure 3 above is clicked, this interface is provided to enable the user to check which type of explosive is detected by the system some detail about that particular explosive. This interface shows alarm percentage and spread percentage of the explosive detected. The alarm percentage is set to be 100%, and it is constant but the spread percentage of each explosive is varied and the proximity of the explosive to the system also affect this spread percentage.Another button provided in this interface is indicated by „<<‟, this button is there to enable the user to back to previous interface. Figure 6: The spread percentage and alarm percentage. V. DISCUSSION Explosive detected system was modeled using C#. In this model, chemical composition of sampled explosives are entered into C# working environment to do this. The sampled explosives can be detected by the user by merely looking at the modeled system and even alarm sound is attached to alert the user if the user is a lay man. But as for an expert who may want to know more about the particular type of the explosive, the detail about the explosive and probably he/she want to update the substance in the library, the modeled system provides opportunity for all these to be accomplished. The table 3 below shows different explosive with their details. TABLE 3 SUBSTANCES BY THEIR INDEX SUBSTANCES NG DNT TNT PETN RDX TETRYL INDICES 1361 1537 1709 1785 1870 2113 MOL WEIGHT 227.0872 182.1354 227.133 316.1378 222.117 287.1452 DENSITY 1.6 1.521 1.654 1.77 1.82 1.73 FORMULAR C3H5N3O9 C7H6N2O4 C7H5N3O6 C5H8N4O12 C3H6N6O6 C7H5N5O6 VAPOUR PRESSURE 0.004 0.000147 5.4E- 06 1.2E- 08 4.1E-09 4E-10
  • 8. Implementation Of Electronic Nose… www.theijes.com The IJES Page 17 V. CONCLUSION In this project, an electronic nose technique in explosives detection has been implemented. Through this modeled system, explosive chemicals can be quickly and appropriately detected so that lives can be rescued before the explosion of any explosive.The system has the advantages that the designed program is user friendly and the result can be easily understand by any user even, a lay man user who cannot read can easily understand it since the modeled system can alert the userthrough an alarm sound and changing of the picture‟s color in the interface of the system. Also the required output is displayed in a human understandable form. Conclusively, the system modeled in this project has a capability to detect explosives hidden in luggage, vehicles, under clothes, mail or any hidden places, and alert the user. REFERENCES [1] http:/www.estical.com/techpapers/odors_of_explosives.doc. [2] http//science.nasa.gov.science-news/science-at-nasa/2004/06oct_enose.2011 [3] Senesac,T.G Thundat,Nanosensors for Trace Explosive Detection, Materials Today,11 (2008) [3] Datskos P.G,T Thunda and Lavrik N.V, Encyclopedia Nanosci, Nanotechnol ,10(2004), p.1 [4] Staples E.J (2012): Analysis of Odors from Explosives using an Elctronic Nose ;Proceedings of Electronic Nose Sensor Technology. [5] Stigliani, W.M (1991): Chemical Time Bomb:Definition,Concepts and Examples. International Institute for Applied System Analysis, Novographic, Vienna, Austria.p31. [6] Yoni Engel, Supersensitive Detection of Explosives by Silicon Nanowire Arrays, Angewandte Chemie International Edition, Volume 49,Issue 38,pp 6830-6835,2010