SlideShare una empresa de Scribd logo
1 de 27
Descargar para leer sin conexión
Deformação por torção de um eixo circular
• Torque é um momento que tende a torcer um elemento em torno de seu eixo
longitudinal.
• Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo
permanecerão inalterados.
Torção
1
Cisalhamento por torção
• BD=ρ dφ = dx γ
• γ = ρ dφ/dx (dφ/dx = para todos os elementos na
seção transversal na posição x) então a
deformação por cisalhamento é proporcional a ρ
• Como dφ/dx = γ / ρ = γmax / c então: γ = (ρ / c) γmax
Torção
2
ߛ =
ߨ
2
− lim
஻,஼→஺
ߠ´
γ = (ρ / c) γmax
A fórmula da torção
• Se o material for linear elástico, então a lei de Hooke se aplica τ=Gγ.
• Uma variação linear na deformação por cisalhamento γ resulta em uma
variação linear na tensão de cisalhamento ττττ correspondente, ao longo
de qualquer linha radial na seção transversal. Portanto, igual que no caso
da deformação por cisalhamento, τ variará de zero a τmax
J
T
J
Tc ρ
ττ == oumáx
= tensão de cisalhamento máxima no eixo
= deformação por cisalhamento à distância ρ
= torque interno resultante (método das seções!)
= momento polar de inércia da área da seção transversal
= raio externo do eixo
= distância intermediária
máxτ
τ
T
J
c
ρ 3
τ = (ρ / c) τ max
Para qualquer elemento de área dA localizado em ρ teremos uma força F = τ
dA. O torque produzido por F será dT = ρ τdA e para toda a seção teremos:
ܶ = න ߩ߬݀‫ܣ‬ = න ߩ
ߩ
ܿ
߬௠௔௫݀‫ܣ‬ =
߬௠௔௫
ܿ஺஺
න ߩଶ
݀‫ܣ‬
஺
• Se o eixo tiver uma seção transversal circular maciça, utilizamos um anel
diferencial de área de espessura dρ portanto dA = 2πρdρ e a integral (0 a c) fica:
• Se o eixo tiver uma seção transversal tubular,
4
2
cJ
π
=
( )44
2
io ccJ −=
π
4
Como calcular o J (momento polar de inércia)?
O eixo maciço de raio c é submetido a um torque T. Determine a fração de T à qual
resiste o material contido no interior da região externa do eixo, que tem raio interno
c/2 e raio externo c.
Solução:
( ) ( ) ( )ρπρτρρτρ dcdAdT 2' máx==
( ) máxτρτ c=
Para toda a área sombreada mais clara, o torque é
(1)
32
152
' 3
máx
2/
3máx
cd
c
T
c
c
τ
π
ρρ
πτ
== ∫
A tensão no eixo varia linearmente, tal que .
O torque no anel (área) localizado no interior da região
sombreada mais clara é
Exemplo 1
5Qual o valor de τmax em função do torque interno resultante T?
Usando a fórmula de torção para determinar a tensão máxima no eixo, temos
(Resposta)
16
15
' TT =
( )
3máx
4máx
2
2
c
T
c
Tc
J
Tc
π
τ
π
τ
=
==
Substituindo essa expressão na Equação 1,
6
O eixo está apoiado em dois mancais e sujeito a três torques. Determine a tensão
de cisalhamento desenvolvida nos pontos A e B localizados na seção a–a do eixo.
Exemplo 2
7
Solução:
Pelo diagrama de corpo livre do segmento
esquerdo determinamos o torque interno
resultante na seção:
( ) mm1097,475
2
74
×==
π
J
mmkN250.10000.3250.4;0 ⋅=⇒=−−=∑ TTMx
O momento polar de inércia para o eixo é
Visto que A se encontra em ρ = c = 75 mm, utilizando a fórmula da torção...
( )( ) (Resposta)MPa89,1
1097,4
75250.1
7
=
×
==
J
Tc
Aτ
Da mesma forma, para B, em ρ =15 mm, temos
( )( ) (Resposta)MPa377,0
1097,4
15250.1
7
=
×
==
J
Tc
Bτ
8
Transmissão de potência
• Potência é definida como o trabalho realizado por unidade de tempo.
• Para um eixo rotativo com torque, a potência é:
• Visto que , a equação para a potência é
• Se conhecemos o torque T e τadm, para o projeto do eixo, o parâmetro de
projeto ou parâmetro geométrico sai de:
dtdTP /éeixodoangularevelocidadaonde θωω ==
fπωπ 2rad2ciclo1 =⇒=
fTP π2=
admτ
T
c
J
=
9
Um eixo maciço de aço AB será usado para transmitir 3.750 W do motor M ao qual
está acoplado. Se o eixo girar a ω = 175 rpm e o aço tiver uma tensão de
cisalhamento admissível τadm = 100 MPa, determine o diâmetro exigido para o eixo
com precisão de mm.
Exemplo 3
10
Solução:
O torque no eixo é
Nm6,204
60
2175
750.3 =⇒




 ×
=
=
TT
TP
π
ω
Assim, o parâmetro geométrico é:
( )( )
( )
mm92,10
100
000.16,20422
2
3/13/1
adm
adm
4
=





=





=
==
ππτ
τ
π
T
c
T
c
c
c
J
Visto que 2c = 21,84 mm, selecione um eixo com diâmetro 22 mm.
11
Exercícios
1. O tubo da figura é submetido a um torque de 750 Nm. Determine a parcela
desse torque à qual a seção sombreada cinza resiste. Resolva o problema de duas
maneiras: (a) usando a fórmula da torção e (b) determinando a resultante da
distribuição da tensão de cisalhamento (5.4)
12
2. O eixo maciço de 30mm de diâmetro é usado para transmitir os torques
aplicados às engrenagens. Determine a tensão de cisalhamento máxima (em
valores absolutos) no eixo. (5.5)
13
3. O eixo maciço tem conicidade linear rA em uma extremidade e rB na outra
extremidade. Deduza uma equação que dê a tensão de cisalhamento máxima no
eixo em uma localização x ao longo da linha central do eixo. (5.30)
14
4. O projeto de um automóvel prevê que o eixo de transmissão AB será um tubo
com parede fina. O motor transmite 125 kW quando o eixo está girando a 1500
rev/min. Determine a espessura mínima da parede do eixo se o diâmetro externo
for 62,5 mm. A tensão de cisalhamento admissível do material é τadm = 50 Mpa.
(5.33)
15
Ângulo de torção - φφφφ
• Integrando em todo o comprimento L do eixo, temos
• Por exemplo, se o material é homogêneo, com seção, T e G constantes....
• A convenção de sinal é determinada pela regra
da mão direita.
( )
( )∫=
L
GxJ
dxxT
0
φ
Φ = ângulo de torção
T(x) = torque interno
J(x) = momento polar de inércia do eixo
G = módulo de elasticidade ao cisalhamento
JG
TL
=φ
16
Para o disco diferencial de espessura dx localizado em x o torque em geral será T(x).
Sendo dφ o deslocamento relativo de uma face em relação à outra já sabemos que a
uma distância ρ do eixo teremos γ = ρ dφ/dx. Como τ =Gγ e como τ = Tρ/J teremos:
γ = T(x) ρ/J(x)G substituindo teremos: ݀߶ =
ܶ(‫)ݔ‬
‫ܬ‬ ‫ݔ‬ ‫ܩ‬
݀‫ݔ‬
Os dois eixos maciços de aço estão interligados por meio das engrenagens.
Determine o ângulo de torção da extremidade A do eixo AB quando é aplicado o
torque 45 Nm. Considere G = 80 GPa. O eixo AB é livre para girar dentro dos
mancais E e F, enquanto o eixo DC é fixo em D. Cada eixo tem diâmetro de
20 mm.
Exemplo 4
17
Solução:
Do diagrama de corpo livre, nas
engrenagens teremos uma F e
um T:
( ) ( ) Nm5,22075,0300
N30015,0/45
==
==
xDT
F
1. O ângulo de torção da engrenagem C é
( )( )
( )( ) ( )[ ] rad0269,0
1080001,02
5,15,22
94
+=
+
==
π
φ
JG
LT DC
C
Visto que as engrenagens na
extremidade estão relacionadas
(r⋅θ = cte),
( ) ( )( ) rad0134,0075,00269,015,0 ⇒=Bφ
18
Agora determinaremos o ângulo
de torção da extremidade A em
relação à extremidade B.
O ângulo na extremidade A em relação ao extremo B do eixo AB causada pelo
torque de 45 Nm,
( )( )
( )( ) ( )[ ] rad0716,0
1080010,02
245
94/ +=
+
==
π
φ
JG
LT ABAB
BA
A rotação total da extremidade A é portanto
(Resposta)rad0850,00716,00134,0/ +=+=+= BABA φφφ
19
O eixo cônico mostrado abaixo é feito de um material com módulo de cisalhamento
G. Determine o ângulo de torção de sua extremidade B quando submetido ao
torque T.
Exemplo 5
20
Solução:
Do diagrama de corpo livre, o torque interno é T e
o raio c(x) é:





 −
−=⇒
−
=
−
L
cc
xcc
x
cc
L
cc 12
2
212
Assim, em x teremos um J(x):
( )
4
12
2
2 










 −
−=
L
cc
xcxJ
π
O ângulo de torção será:
(Resposta)
3
22
3
2
3
1
2
121
2
2
0
4
12
2





 ++
=











 −
−
= ∫ cc
cccc
G
TL
L
cc
xc
dx
G
T L
ππ
φ
21
( )
( )∫=
L
GxJ
dxxT
0
φ
5. Um eixo é submetido a um torque T. Compare a efetividade da utilização do tubo
mostrado na figura com a de uma seção maciça de raio c. Para isso calcule o
aumento percentual na tensão de torção e no ângulo de torção por unidade de
comprimento para o tubo em comparação com o da seção maciça (5.45)
22
Exercícios
6. O eixo de aço A-36 de 20 mm de diâmetro é submetido aos torques mostrados.
Determine o ângulo de torção da extremidade B (5.51)
23
Exercícios
7. O eixo maciço de 60 mm de diâmetro de aço A-36 é submetido aos
carregamentos de torção distribuídos e concentrados mostrados na figura.
Determine o ângulo de torção na extremidade livre A devido a esses
carregamentos (5.62)
24
Exercícios
Elementos estaticamente indeterminados carregados com
torque
෍ ‫ܯ‬௫ = 0 ܶ − ܶ‫ܣ‬ − ܶ‫ܤ‬ = 0
‫݅݀݊݋ܥ‬çã‫)ݏ݁ݐ݊ܽ	݁ݑݍ	݈ܽݑ݃݅(	݈ܾ݁݀ܽ݀݅݅݅ݐܽ݌݉݋ܿ	݁݀	݋‬
O ângulo de torção da extremidade A em
relação à outra (B) deve ser = 0
φ‫ܤܣ‬ = 0
Portanto:
்ಲ௅ಲ಴
௃ீ
−
்ಳ௅ಳ಴
௃ீ
= 0
Como L = LAB+LBC obtemos:
ܶ‫ܣ‬ = ܶ
‫ܮ‬஻஼
‫ܮ‬
ܶ‫ܤ‬ = ܶ
‫ܮ‬஺஼
‫ܮ‬
O eixo maciço de aço mostrado na figura abaixo tem
diâmetro de 20 mm. Se for submetido aos dois torques,
determine as reações nos apoios fixos A e B.
Solução: Examinando o diagrama de corpo livre,
(1)0500800;0 =−−+−=∑ Abx TTM
Visto que as extremidades do eixo são fixas, .0/ =BAφ
Para as três regiões (método das seções), usando a
convenção de sinal (para fora + ver figura ao lado):
( ) ( )( ) ( )
(2)7502,08,1
0
3,05,15002,0
−=−
=+
+
+
−
BA
AAB
TT
JG
T
JG
T
JG
T
Resolvendo as equações 1 e 2, obtemos TA = –345 Nm e TB = 645 Nm.
Exemplo 6
26
Utilizando a relação para as 3 regiões:
JG
TL
=φ
8. O eixo de aço é composto por dois segmentos: AC, com diâmetro de 12 mm e
CB, com diâmetro de 25 mm. Se estiver preso em suas extremidades A e B e for
submetido a um torque de 750 Nm, determine a tensão de cisalhamento máxima
no eixo. Gaço = 75 Gpa (5.76)
27
Exercícios

Más contenido relacionado

La actualidad más candente

Soluções resistência dos materiais - beer & johnston - 3a ed
Soluções   resistência dos materiais - beer & johnston - 3a edSoluções   resistência dos materiais - beer & johnston - 3a ed
Soluções resistência dos materiais - beer & johnston - 3a edLeandroHFDiogenes
 
Exercicios resolvidos resmat
Exercicios resolvidos resmatExercicios resolvidos resmat
Exercicios resolvidos resmatMarinaldo Junior
 
Resistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosResistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosMoreira1972
 
Resistencia dos materiais tensão e deformação
Resistencia dos materiais   tensão e deformaçãoResistencia dos materiais   tensão e deformação
Resistencia dos materiais tensão e deformaçãoDouglas Mota
 
8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)Keliane Pires
 
Resistência dos materiais
Resistência dos materiais   Resistência dos materiais
Resistência dos materiais Willian De Sá
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidoswedson Oliveira
 
Exercícios de torque
Exercícios de torqueExercícios de torque
Exercícios de torqueRobsoncn
 
Lista de exercícios flexão em vigas compostas mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas   mecânica dos sólidos iiLista de exercícios flexão em vigas compostas   mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas mecânica dos sólidos iiDiego Alves
 
Solução da lista 2
Solução da lista 2Solução da lista 2
Solução da lista 2Ayrton Lira
 
Apostila exercicio - mecânica dos sólidos
Apostila  exercicio - mecânica dos sólidosApostila  exercicio - mecânica dos sólidos
Apostila exercicio - mecânica dos sólidosJoão Ferreira
 
111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-iitwolipa
 
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS INOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS IUeiglas C. Vanderlei
 
Exercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsolExercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsolDanieli Franco Mota
 

La actualidad más candente (20)

Lista exercicio prova_1
Lista exercicio prova_1Lista exercicio prova_1
Lista exercicio prova_1
 
Soluções resistência dos materiais - beer & johnston - 3a ed
Soluções   resistência dos materiais - beer & johnston - 3a edSoluções   resistência dos materiais - beer & johnston - 3a ed
Soluções resistência dos materiais - beer & johnston - 3a ed
 
Exercicios resolvidos resmat
Exercicios resolvidos resmatExercicios resolvidos resmat
Exercicios resolvidos resmat
 
Resistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosResistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios Resolvidos
 
Lista de resistência dos materiais
Lista de resistência dos materiaisLista de resistência dos materiais
Lista de resistência dos materiais
 
Resistencia dos materiais tensão e deformação
Resistencia dos materiais   tensão e deformaçãoResistencia dos materiais   tensão e deformação
Resistencia dos materiais tensão e deformação
 
8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)8 tensoes principais(cargas combinadas)
8 tensoes principais(cargas combinadas)
 
Aula18(3)
Aula18(3)Aula18(3)
Aula18(3)
 
Resistência dos materiais
Resistência dos materiais   Resistência dos materiais
Resistência dos materiais
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidos
 
FLEXÕES
FLEXÕESFLEXÕES
FLEXÕES
 
Exercícios de torque
Exercícios de torqueExercícios de torque
Exercícios de torque
 
Lista de exercícios flexão em vigas compostas mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas   mecânica dos sólidos iiLista de exercícios flexão em vigas compostas   mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas mecânica dos sólidos ii
 
Solução da lista 2
Solução da lista 2Solução da lista 2
Solução da lista 2
 
Questões ri l1 selecionada-2017-1
Questões ri   l1 selecionada-2017-1Questões ri   l1 selecionada-2017-1
Questões ri l1 selecionada-2017-1
 
Apostila exercicio - mecânica dos sólidos
Apostila  exercicio - mecânica dos sólidosApostila  exercicio - mecânica dos sólidos
Apostila exercicio - mecânica dos sólidos
 
111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii
 
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS INOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
 
Exercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsolExercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsol
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 

Similar a Deformação por torção de eixo circular

230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circularesDaiane Machado
 
Material de estudo_pra_mecânica_dos_sólidos_ii (1)
Material de estudo_pra_mecânica_dos_sólidos_ii (1)Material de estudo_pra_mecânica_dos_sólidos_ii (1)
Material de estudo_pra_mecânica_dos_sólidos_ii (1)Jose Donizeti Tagliaferro
 
F128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_aF128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_aElisabete Freitas
 
Analise de forca engrenagens
Analise de forca   engrenagensAnalise de forca   engrenagens
Analise de forca engrenagensCarlos Valenzuela
 
Dimensionamento de eixos
Dimensionamento de eixosDimensionamento de eixos
Dimensionamento de eixosSandro De Souza
 
Cálculos movimento circular
Cálculos movimento circularCálculos movimento circular
Cálculos movimento circularTableau Colégio
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Thommas Kevin
 
Física - 700 Questões de Vestibular - soluções
Física  - 700 Questões de Vestibular - soluçõesFísica  - 700 Questões de Vestibular - soluções
Física - 700 Questões de Vestibular - soluçõesEverton Moraes
 
Resolução da flexão composta normal e oblíqua por meio de ábacos
Resolução da flexão composta normal e oblíqua por meio de ábacosResolução da flexão composta normal e oblíqua por meio de ábacos
Resolução da flexão composta normal e oblíqua por meio de ábacosJoao Wagner Dominici
 

Similar a Deformação por torção de eixo circular (20)

230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares
 
Material de estudo_pra_mecânica_dos_sólidos_ii (1)
Material de estudo_pra_mecânica_dos_sólidos_ii (1)Material de estudo_pra_mecânica_dos_sólidos_ii (1)
Material de estudo_pra_mecânica_dos_sólidos_ii (1)
 
Aula 17 - Torção.pdf
Aula 17 - Torção.pdfAula 17 - Torção.pdf
Aula 17 - Torção.pdf
 
Mecanismos
MecanismosMecanismos
Mecanismos
 
Ita2001 parte 001
Ita2001 parte 001Ita2001 parte 001
Ita2001 parte 001
 
3 torcao
3 torcao3 torcao
3 torcao
 
F128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_aF128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_a
 
Eds
EdsEds
Eds
 
trocao Cap1 v4
trocao Cap1 v4trocao Cap1 v4
trocao Cap1 v4
 
Equipamento estáticos
Equipamento estáticosEquipamento estáticos
Equipamento estáticos
 
Analise de forca engrenagens
Analise de forca   engrenagensAnalise de forca   engrenagens
Analise de forca engrenagens
 
Aula 36 engrenagens v
Aula 36   engrenagens vAula 36   engrenagens v
Aula 36 engrenagens v
 
Dimensionamento de eixos
Dimensionamento de eixosDimensionamento de eixos
Dimensionamento de eixos
 
Cálculos movimento circular
Cálculos movimento circularCálculos movimento circular
Cálculos movimento circular
 
Aula 35 engrenagens iv
Aula 35   engrenagens ivAula 35   engrenagens iv
Aula 35 engrenagens iv
 
Rotaçao 11
Rotaçao 11Rotaçao 11
Rotaçao 11
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001
 
trigonometria
trigonometriatrigonometria
trigonometria
 
Física - 700 Questões de Vestibular - soluções
Física  - 700 Questões de Vestibular - soluçõesFísica  - 700 Questões de Vestibular - soluções
Física - 700 Questões de Vestibular - soluções
 
Resolução da flexão composta normal e oblíqua por meio de ábacos
Resolução da flexão composta normal e oblíqua por meio de ábacosResolução da flexão composta normal e oblíqua por meio de ábacos
Resolução da flexão composta normal e oblíqua por meio de ábacos
 

Último

HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxLuizHenriquedeAlmeid6
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasCassio Meira Jr.
 
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...LizanSantos1
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfIedaGoethe
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasRicardo Diniz campos
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasRosalina Simão Nunes
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirIedaGoethe
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
A experiência amorosa e a reflexão sobre o Amor.pptx
A experiência amorosa e a reflexão sobre o Amor.pptxA experiência amorosa e a reflexão sobre o Amor.pptx
A experiência amorosa e a reflexão sobre o Amor.pptxfabiolalopesmartins1
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 anoandrealeitetorres
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniCassio Meira Jr.
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundonialb
 

Último (20)

HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades Motoras
 
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdf
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecas
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimir
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
A experiência amorosa e a reflexão sobre o Amor.pptx
A experiência amorosa e a reflexão sobre o Amor.pptxA experiência amorosa e a reflexão sobre o Amor.pptx
A experiência amorosa e a reflexão sobre o Amor.pptx
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 ano
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundo
 

Deformação por torção de eixo circular

  • 1. Deformação por torção de um eixo circular • Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. • Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados. Torção 1
  • 2. Cisalhamento por torção • BD=ρ dφ = dx γ • γ = ρ dφ/dx (dφ/dx = para todos os elementos na seção transversal na posição x) então a deformação por cisalhamento é proporcional a ρ • Como dφ/dx = γ / ρ = γmax / c então: γ = (ρ / c) γmax Torção 2 ߛ = ߨ 2 − lim ஻,஼→஺ ߠ´ γ = (ρ / c) γmax
  • 3. A fórmula da torção • Se o material for linear elástico, então a lei de Hooke se aplica τ=Gγ. • Uma variação linear na deformação por cisalhamento γ resulta em uma variação linear na tensão de cisalhamento ττττ correspondente, ao longo de qualquer linha radial na seção transversal. Portanto, igual que no caso da deformação por cisalhamento, τ variará de zero a τmax J T J Tc ρ ττ == oumáx = tensão de cisalhamento máxima no eixo = deformação por cisalhamento à distância ρ = torque interno resultante (método das seções!) = momento polar de inércia da área da seção transversal = raio externo do eixo = distância intermediária máxτ τ T J c ρ 3 τ = (ρ / c) τ max Para qualquer elemento de área dA localizado em ρ teremos uma força F = τ dA. O torque produzido por F será dT = ρ τdA e para toda a seção teremos: ܶ = න ߩ߬݀‫ܣ‬ = න ߩ ߩ ܿ ߬௠௔௫݀‫ܣ‬ = ߬௠௔௫ ܿ஺஺ න ߩଶ ݀‫ܣ‬ ஺
  • 4. • Se o eixo tiver uma seção transversal circular maciça, utilizamos um anel diferencial de área de espessura dρ portanto dA = 2πρdρ e a integral (0 a c) fica: • Se o eixo tiver uma seção transversal tubular, 4 2 cJ π = ( )44 2 io ccJ −= π 4 Como calcular o J (momento polar de inércia)?
  • 5. O eixo maciço de raio c é submetido a um torque T. Determine a fração de T à qual resiste o material contido no interior da região externa do eixo, que tem raio interno c/2 e raio externo c. Solução: ( ) ( ) ( )ρπρτρρτρ dcdAdT 2' máx== ( ) máxτρτ c= Para toda a área sombreada mais clara, o torque é (1) 32 152 ' 3 máx 2/ 3máx cd c T c c τ π ρρ πτ == ∫ A tensão no eixo varia linearmente, tal que . O torque no anel (área) localizado no interior da região sombreada mais clara é Exemplo 1 5Qual o valor de τmax em função do torque interno resultante T?
  • 6. Usando a fórmula de torção para determinar a tensão máxima no eixo, temos (Resposta) 16 15 ' TT = ( ) 3máx 4máx 2 2 c T c Tc J Tc π τ π τ = == Substituindo essa expressão na Equação 1, 6
  • 7. O eixo está apoiado em dois mancais e sujeito a três torques. Determine a tensão de cisalhamento desenvolvida nos pontos A e B localizados na seção a–a do eixo. Exemplo 2 7
  • 8. Solução: Pelo diagrama de corpo livre do segmento esquerdo determinamos o torque interno resultante na seção: ( ) mm1097,475 2 74 ×== π J mmkN250.10000.3250.4;0 ⋅=⇒=−−=∑ TTMx O momento polar de inércia para o eixo é Visto que A se encontra em ρ = c = 75 mm, utilizando a fórmula da torção... ( )( ) (Resposta)MPa89,1 1097,4 75250.1 7 = × == J Tc Aτ Da mesma forma, para B, em ρ =15 mm, temos ( )( ) (Resposta)MPa377,0 1097,4 15250.1 7 = × == J Tc Bτ 8
  • 9. Transmissão de potência • Potência é definida como o trabalho realizado por unidade de tempo. • Para um eixo rotativo com torque, a potência é: • Visto que , a equação para a potência é • Se conhecemos o torque T e τadm, para o projeto do eixo, o parâmetro de projeto ou parâmetro geométrico sai de: dtdTP /éeixodoangularevelocidadaonde θωω == fπωπ 2rad2ciclo1 =⇒= fTP π2= admτ T c J = 9
  • 10. Um eixo maciço de aço AB será usado para transmitir 3.750 W do motor M ao qual está acoplado. Se o eixo girar a ω = 175 rpm e o aço tiver uma tensão de cisalhamento admissível τadm = 100 MPa, determine o diâmetro exigido para o eixo com precisão de mm. Exemplo 3 10
  • 11. Solução: O torque no eixo é Nm6,204 60 2175 750.3 =⇒      × = = TT TP π ω Assim, o parâmetro geométrico é: ( )( ) ( ) mm92,10 100 000.16,20422 2 3/13/1 adm adm 4 =      =      = == ππτ τ π T c T c c c J Visto que 2c = 21,84 mm, selecione um eixo com diâmetro 22 mm. 11
  • 12. Exercícios 1. O tubo da figura é submetido a um torque de 750 Nm. Determine a parcela desse torque à qual a seção sombreada cinza resiste. Resolva o problema de duas maneiras: (a) usando a fórmula da torção e (b) determinando a resultante da distribuição da tensão de cisalhamento (5.4) 12
  • 13. 2. O eixo maciço de 30mm de diâmetro é usado para transmitir os torques aplicados às engrenagens. Determine a tensão de cisalhamento máxima (em valores absolutos) no eixo. (5.5) 13
  • 14. 3. O eixo maciço tem conicidade linear rA em uma extremidade e rB na outra extremidade. Deduza uma equação que dê a tensão de cisalhamento máxima no eixo em uma localização x ao longo da linha central do eixo. (5.30) 14
  • 15. 4. O projeto de um automóvel prevê que o eixo de transmissão AB será um tubo com parede fina. O motor transmite 125 kW quando o eixo está girando a 1500 rev/min. Determine a espessura mínima da parede do eixo se o diâmetro externo for 62,5 mm. A tensão de cisalhamento admissível do material é τadm = 50 Mpa. (5.33) 15
  • 16. Ângulo de torção - φφφφ • Integrando em todo o comprimento L do eixo, temos • Por exemplo, se o material é homogêneo, com seção, T e G constantes.... • A convenção de sinal é determinada pela regra da mão direita. ( ) ( )∫= L GxJ dxxT 0 φ Φ = ângulo de torção T(x) = torque interno J(x) = momento polar de inércia do eixo G = módulo de elasticidade ao cisalhamento JG TL =φ 16 Para o disco diferencial de espessura dx localizado em x o torque em geral será T(x). Sendo dφ o deslocamento relativo de uma face em relação à outra já sabemos que a uma distância ρ do eixo teremos γ = ρ dφ/dx. Como τ =Gγ e como τ = Tρ/J teremos: γ = T(x) ρ/J(x)G substituindo teremos: ݀߶ = ܶ(‫)ݔ‬ ‫ܬ‬ ‫ݔ‬ ‫ܩ‬ ݀‫ݔ‬
  • 17. Os dois eixos maciços de aço estão interligados por meio das engrenagens. Determine o ângulo de torção da extremidade A do eixo AB quando é aplicado o torque 45 Nm. Considere G = 80 GPa. O eixo AB é livre para girar dentro dos mancais E e F, enquanto o eixo DC é fixo em D. Cada eixo tem diâmetro de 20 mm. Exemplo 4 17
  • 18. Solução: Do diagrama de corpo livre, nas engrenagens teremos uma F e um T: ( ) ( ) Nm5,22075,0300 N30015,0/45 == == xDT F 1. O ângulo de torção da engrenagem C é ( )( ) ( )( ) ( )[ ] rad0269,0 1080001,02 5,15,22 94 += + == π φ JG LT DC C Visto que as engrenagens na extremidade estão relacionadas (r⋅θ = cte), ( ) ( )( ) rad0134,0075,00269,015,0 ⇒=Bφ 18 Agora determinaremos o ângulo de torção da extremidade A em relação à extremidade B.
  • 19. O ângulo na extremidade A em relação ao extremo B do eixo AB causada pelo torque de 45 Nm, ( )( ) ( )( ) ( )[ ] rad0716,0 1080010,02 245 94/ += + == π φ JG LT ABAB BA A rotação total da extremidade A é portanto (Resposta)rad0850,00716,00134,0/ +=+=+= BABA φφφ 19
  • 20. O eixo cônico mostrado abaixo é feito de um material com módulo de cisalhamento G. Determine o ângulo de torção de sua extremidade B quando submetido ao torque T. Exemplo 5 20
  • 21. Solução: Do diagrama de corpo livre, o torque interno é T e o raio c(x) é:       − −=⇒ − = − L cc xcc x cc L cc 12 2 212 Assim, em x teremos um J(x): ( ) 4 12 2 2             − −= L cc xcxJ π O ângulo de torção será: (Resposta) 3 22 3 2 3 1 2 121 2 2 0 4 12 2       ++ =             − − = ∫ cc cccc G TL L cc xc dx G T L ππ φ 21 ( ) ( )∫= L GxJ dxxT 0 φ
  • 22. 5. Um eixo é submetido a um torque T. Compare a efetividade da utilização do tubo mostrado na figura com a de uma seção maciça de raio c. Para isso calcule o aumento percentual na tensão de torção e no ângulo de torção por unidade de comprimento para o tubo em comparação com o da seção maciça (5.45) 22 Exercícios
  • 23. 6. O eixo de aço A-36 de 20 mm de diâmetro é submetido aos torques mostrados. Determine o ângulo de torção da extremidade B (5.51) 23 Exercícios
  • 24. 7. O eixo maciço de 60 mm de diâmetro de aço A-36 é submetido aos carregamentos de torção distribuídos e concentrados mostrados na figura. Determine o ângulo de torção na extremidade livre A devido a esses carregamentos (5.62) 24 Exercícios
  • 25. Elementos estaticamente indeterminados carregados com torque ෍ ‫ܯ‬௫ = 0 ܶ − ܶ‫ܣ‬ − ܶ‫ܤ‬ = 0 ‫݅݀݊݋ܥ‬çã‫)ݏ݁ݐ݊ܽ ݁ݑݍ ݈ܽݑ݃݅( ݈ܾ݁݀ܽ݀݅݅݅ݐܽ݌݉݋ܿ ݁݀ ݋‬ O ângulo de torção da extremidade A em relação à outra (B) deve ser = 0 φ‫ܤܣ‬ = 0 Portanto: ்ಲ௅ಲ಴ ௃ீ − ்ಳ௅ಳ಴ ௃ீ = 0 Como L = LAB+LBC obtemos: ܶ‫ܣ‬ = ܶ ‫ܮ‬஻஼ ‫ܮ‬ ܶ‫ܤ‬ = ܶ ‫ܮ‬஺஼ ‫ܮ‬
  • 26. O eixo maciço de aço mostrado na figura abaixo tem diâmetro de 20 mm. Se for submetido aos dois torques, determine as reações nos apoios fixos A e B. Solução: Examinando o diagrama de corpo livre, (1)0500800;0 =−−+−=∑ Abx TTM Visto que as extremidades do eixo são fixas, .0/ =BAφ Para as três regiões (método das seções), usando a convenção de sinal (para fora + ver figura ao lado): ( ) ( )( ) ( ) (2)7502,08,1 0 3,05,15002,0 −=− =+ + + − BA AAB TT JG T JG T JG T Resolvendo as equações 1 e 2, obtemos TA = –345 Nm e TB = 645 Nm. Exemplo 6 26 Utilizando a relação para as 3 regiões: JG TL =φ
  • 27. 8. O eixo de aço é composto por dois segmentos: AC, com diâmetro de 12 mm e CB, com diâmetro de 25 mm. Se estiver preso em suas extremidades A e B e for submetido a um torque de 750 Nm, determine a tensão de cisalhamento máxima no eixo. Gaço = 75 Gpa (5.76) 27 Exercícios