SlideShare una empresa de Scribd logo
1 de 14
• Liquefaction-Coal-To-Liquids
• Coal can be converted into liquid fuels like gasoline or diesel by several
different processes. The Fischer-Tropsch process of indirect synthesis of
liquid hydrocarbons was used in Nazi Germany for many years and is today
used by Sasol in South Africa. Coal would be gasified to make syngas (a
balanced purified mixture of CO and H2 gas) and the syngas condensed
using Fischer-Tropsch catalysts to make light hydrocarbons which are
further processed into gasoline and diesel. Syngas can also be converted
to methanol which can be used as a fuel, fuel additive, or further
processed into gasoline via the Mobil M-gas process. A direct liquefaction
process called Bergius process (liquefaction by hydrogenation) is also
available but has not been used outside Germany, where such processes
where operated both during WW1 and WW2. Sasol South Africa has
experimented with direct hydrogenation. Several other direct liquefaction
processes have been developed, among these being the SRC-1 & SRC-2
(solvent refined coal) developed by Gulf Oil and implemented as pilot
plants in the US in the 1960`s & 1970`s
• Fischer-Tropsch process
The Fischer–Tropsch process (or Fischer–Tropsch
Synthesis) is a set of chemical reactions that convert a
mixture of carbon monoxide and hydrogen into liquid
hydrocarbons. The process, a key component of gas to
liquids technology, produces a petroleum substitute,
typically from coal, natural gas, or biomass for use as
synthetic lubrication oil and as synthetic fuel. The F-T
process has received intermittent attention as a source
of low-sulfur diesel fuel and to address the supply or
cost of petroleum-derived hydrocarbons.
• History
• Since the invention of the original process by Franz Fischer
and Hans Tropsch, working at the Kaiser Wilhelm Institute
in the 1920s, many refinements and adjustments have
been made. The term "Fischer-Tropsch" now applies to a
wide variety of similar processes (Fischer-Tropsch synthesis
or Fischer-Tropsch chemistry). Fischer and Tropsch filed a
number of patents, e.g., US patent no. 1,746,464, applied
1926, published 1930. It was commercialized in Germany in
1936. Being petroleum-poor but coal-rich, in Germany the
FT-process was used by Nazi Germany and Japan during
World War II to produce ersatz (German: substitute) fuels.
F-T production accounted for an estimated 9% of German
war production of fuels and 25% of the automobile fuel.
• The United States Bureau of Mines, in a program initiated by the Synthetic Liquid
Fuels Act, employed seven Operation Paperclip synthetic fuel scientists in a
Fischer-Tropsch plant in Louisiana, Missouri in 1946.[10][9]
• In Britain, Alfred August Aicher obtained several patents for improvements to the
process in the 1930s and 1940s.[11] Aicher's company was named Synthetic Oils Ltd.
(Now based in Canada.)
• Commercialization
• Fluidized bed gasification with FT-pilot in Güssing, Burgenland, Austria
• The F-T process has been applied on a large scale in some industrial sectors,
although its popularity is hampered by high capital costs, high operation and
maintenance costs, the uncertain and volatile price of crude oil, and
environmental concerns. In particular, the use of natural gas as a feedstock only
becomes practical when using "stranded gas", i.e. sources of natural gas far from
major cities which are impractical to exploit with conventional gas pipelines and
LNG technology; otherwise, the direct sale of natural gas to consumers would
become much more profitable. Several companies are developing the process to
enable practical exploitation of so-called stranded gas reserves.
• Sasol
• The largest scale implementation of F-T technology are in a series of plants
operated by Sasol in South Africa, a country with large coal reserves but
lacking in oil. Sasol uses coal and now natural gas as feedstocks and
produces a variety of synthetic petroleum products, including most of the
country's diesel fuel. Generally it is one of the companies which deals in
mining, energy, synthetic fuels and chemicals. They are a key player in the
South African oil industry producing a large variety of primary,
intermediate and final chemical products. They are involved in the
extraction of crude petroleum, support activities for petroleum and
natural gas extraction and manufacture of basic chemicals.
• Sasol, South Africa has a number of big factories at Secunda and
Sasolburg.It has started construction of projects in Nigeria, Qatar and Iraq.
It was set up in 1950 by the South African Apartheid government. Today
Sasol is one of the leading petrochemical industries and its influence can
be felt in the global market. It is making its presence felt in the US, Europe
and Asia.
• Process chemistry
• The Fischer–Tropsch process involves a series of chemical reactions
that lead to a variety of hydrocarbons. Useful reactions give
alkanes:
• (2n+1) H2 + n CO → CnH(2n+2) + n H2O
• where 'n' is a positive integer. The formation of methane (n = 1) is
generally unwanted. Most of the alkanes produced tend to be
straight-chain alkanes, although some branched alkanes are also
formed. In addition to alkane formation, competing reactions
result in the formation ofalkenes, as well as alcohols and other
oxygenated hydrocarbons. Usually, only relatively small quantities
of these non-alkane products are formed, although catalysts
favoring some of these products have been developed.
• Other reactions relevant to the F-T process
• Several reactions are required to obtain the gaseous
reactants required for F-T catalysis. First, reactant gases
entering a F-T reactor must first be desulfurized to protect
the catalysts that are readily poisoned. The other major
classes of reactions are employed to adjust the H2/CO ratio:
• water gas shift reaction provides a source of hydrogen:
• H2O + CO → H2 + CO2
• For F-T plants that start with methane, another important
reaction is steam reforming, which converts the methane
into CO and H2:
• H2O + CH4 → CO + 3 H2
• Chemical mechanisms
• The conversion of CO to alkanes involves net hydrogenation of CO,
the hydrogenolysis of C-O bonds, and the formation of C-C bonds.
Such reactions are assumed to proceed via initial formation of
surface-bound metal carbonyls. The CO ligand is speculated to
undergo dissociation, possibly into oxide and carbide ligands.Other
potential intermediates are various C-1 fragments including formyl
(CHO), hydroxycarbene (HCOH), hydroxymethyl (CH2OH), methyl
(CH3), methylene (CH2), methylidyne (CH), and hydroxymethylidyne
(COH). Furthermore, and critical to the production of liquid fuels,
are reactions that form C-C bonds, such as migratory insertion.
Many related stoichiometric reactions have been
• simulated on discrete metal clusters, but homogeneous F-T
catalysts are poorly developed and of no commercial importance.
• Process conditions
• Generally, the Fischer–Tropsch process is operated in the temperature
range of 150–300 °C (302–572 °F). Higher temperatures lead to faster
reactions and higher conversion rates but also tend to favor methane
production. As a result, the temperature is usually maintained at the low
to middle part of the range. Increasing the pressure leads to higher
conversion rates and also favors formation of long-chained alkanes both of
which are desirable. Typical pressures range from one to several tens of
atmospheres. Even higher pressures would be favorable, but the benefits
may not justify the additional costs of high-pressure equipment.
• A variety of synthesis gas compositions can be used. For cobalt-based
catalysts the optimal H2:CO ratio is around 1.8-2.1. Iron-based catalysts
promote the water-gas-shift reaction and thus can tolerate significantly
lower ratios. This reactivity can be important for synthesis gas derived
from coal or biomass, which tend to have relatively low H2:CO ratios (<1).
• Fischer-Tropsch catalysts
• A variety of catalysts can be used for the Fischer–Tropsch process, but the most common are the transition metals
cobalt, iron, and ruthenium. Nickel can also be used, but tends to favor methane formation ("methanation").
• Cobalt-based catalysts are highly active, although iron may be more suitable for low-hydrogen-content synthesis
gases such as those derived from coal due to its promotion of the water-gas-shift reaction. In addition to the
active metal the catalysts typically contain a number of "promoters," including potassium and copper. Group 1
alkali metals, including potassium, is a poison for cobalt catalysts but is a promoter for iron catalysts. Catalysts are
supported on high-surface-area binders/supports such as silica, alumina, or zeolites Cobalt catalysts are more
active for Fischer-Tropsch synthesis when the feedstock is natural gas. Natural gas has a high hydrogen to carbon
ratio, so the water-gas-shift is not needed for cobalt catalysts. Iron catalysts are preferred for lower quality
feedstocks such as coal or biomass.
• Unlike the other metals used for this process (Co, Ni, Ru), which remain in the metallic state during synthesis, iron
catalysts tend to form a number of phases, including various oxides and carbides during the reaction. Control of
these phase transformations can be important in maintaining catalytic activity and preventing breakdown of the
catalyst particles.
• Fischer-Tropsch catalysts are sensitive to poisoning by sulfur-containing compounds. The sensitivity of the catalyst
to sulfur is greater for cobalt-based catalysts than for their iron counterparts.
• Promotors also have an important influence on activity. Alkali metal oxides and copper are common promotors,
but the formulation depends on the primary metal, iron vs cobalt. Alkali oxides on cobalt catalysts generally cause
activity to drop severely even with very low alkali loadings. C5+ and CO2 selectivity increase while methane and
C2-C4 selectivity decrease. In addition, the olefin to parafin ratio increases.
• LTFT and HTFT
• High-Temperature Fischer-Tropsch (or HTFT) is
operated at temperatures of 330C-350C and uses
an iron-based catalyst. This process was used
extensively by Sasol in their Coal-to-Liquid plants
(CTL). Low-Temperature Fischer-Tropsch (LTFT) is
operated at lower temperatures and uses a
cobalt based catalyst. This process is best known
for being used in the first integrated Gas-to-Liquid
(GTL) plant operated and built by Shell in Bintulu,
Malaysia.
• Gasification
• F-T plants associated with coal or related solid feedstocks
(sources of carbon) must first convert the solid fuel into
gaseous reactants, i.e. CO, H2, and alkanes. This conversion
is called gasification. Synthesis gas obtained from coal
gasification tends to have a H2/CO ratio of ~0.7 compared
to the ideal ratio of ~2. This ratio is adjusted via the water-
gas shift reaction. Gasification is a dirty and expensive
(endergonic) process. Coal-based Fischer–Tropsch plants
can produce significant amounts of CO2, in part due to the
high energy demands of the gasification process. Ongoing
research aims to combine biomass gasification (BG) and
Fischer-Tropsch (FT) synthesis to produce renewable
transportation fuels (biofuels).
Coal

Más contenido relacionado

La actualidad más candente

Chapter 6c -_ht_design_consideration_-_latest
Chapter 6c -_ht_design_consideration_-_latestChapter 6c -_ht_design_consideration_-_latest
Chapter 6c -_ht_design_consideration_-_latestHelena Francis
 
Presentazione
PresentazionePresentazione
Presentazioneinokysan
 
Polymerization of gasoline
Polymerization of gasolinePolymerization of gasoline
Polymerization of gasolineFertiglobe
 
Chapter 6b -_hydrotreating_hds_catalyst
Chapter 6b -_hydrotreating_hds_catalystChapter 6b -_hydrotreating_hds_catalyst
Chapter 6b -_hydrotreating_hds_catalystHelena Francis
 
Sylhet field work 2019
Sylhet field work 2019Sylhet field work 2019
Sylhet field work 2019Srimontorumpa
 
Case study sulfuric acid alkylation
Case study sulfuric acid alkylationCase study sulfuric acid alkylation
Case study sulfuric acid alkylationabakshi2011
 
Petroleum processing
Petroleum processingPetroleum processing
Petroleum processingmadan lal
 
Catalysis Today(1997) Sugioka Et.Al
Catalysis Today(1997) Sugioka Et.AlCatalysis Today(1997) Sugioka Et.Al
Catalysis Today(1997) Sugioka Et.AlLebong Andalaluna
 
Chapter 6 -_comparison_ht_hc
Chapter 6 -_comparison_ht_hcChapter 6 -_comparison_ht_hc
Chapter 6 -_comparison_ht_hcHelena Francis
 
Rht Sulfuric Acid Alkylation Rht Presentation Revision 1
Rht Sulfuric Acid Alkylation Rht Presentation Revision 1Rht Sulfuric Acid Alkylation Rht Presentation Revision 1
Rht Sulfuric Acid Alkylation Rht Presentation Revision 1abakshi2011
 
61 lrgcc norman_ok_feb2011
61 lrgcc norman_ok_feb201161 lrgcc norman_ok_feb2011
61 lrgcc norman_ok_feb2011BCS LLC
 
Forensic Chemistry - Petroleum products
Forensic Chemistry - Petroleum productsForensic Chemistry - Petroleum products
Forensic Chemistry - Petroleum productsjeremiah_justus
 
CATALYTIC ALKYLATION
CATALYTIC ALKYLATIONCATALYTIC ALKYLATION
CATALYTIC ALKYLATIONtranslateds
 
fractional distillation and refining of petroleum
fractional distillation and refining of petroleumfractional distillation and refining of petroleum
fractional distillation and refining of petroleumAfzal Zubair
 
Design and Production of Heterogeneous Catalysts
Design and Production of Heterogeneous CatalystsDesign and Production of Heterogeneous Catalysts
Design and Production of Heterogeneous CatalystsGerard B. Hawkins
 
Catalyst deactivation and regeneration
Catalyst deactivation and regenerationCatalyst deactivation and regeneration
Catalyst deactivation and regenerationSonamVSancheti
 

La actualidad más candente (20)

Chapter 6c -_ht_design_consideration_-_latest
Chapter 6c -_ht_design_consideration_-_latestChapter 6c -_ht_design_consideration_-_latest
Chapter 6c -_ht_design_consideration_-_latest
 
Presentazione
PresentazionePresentazione
Presentazione
 
Polymerization of gasoline
Polymerization of gasolinePolymerization of gasoline
Polymerization of gasoline
 
Alkylation
AlkylationAlkylation
Alkylation
 
Chapter 6b -_hydrotreating_hds_catalyst
Chapter 6b -_hydrotreating_hds_catalystChapter 6b -_hydrotreating_hds_catalyst
Chapter 6b -_hydrotreating_hds_catalyst
 
Alkylation
AlkylationAlkylation
Alkylation
 
Sylhet field work 2019
Sylhet field work 2019Sylhet field work 2019
Sylhet field work 2019
 
Case study sulfuric acid alkylation
Case study sulfuric acid alkylationCase study sulfuric acid alkylation
Case study sulfuric acid alkylation
 
Petroleum processing
Petroleum processingPetroleum processing
Petroleum processing
 
Catalysis Today(1997) Sugioka Et.Al
Catalysis Today(1997) Sugioka Et.AlCatalysis Today(1997) Sugioka Et.Al
Catalysis Today(1997) Sugioka Et.Al
 
Chapter 6 -_comparison_ht_hc
Chapter 6 -_comparison_ht_hcChapter 6 -_comparison_ht_hc
Chapter 6 -_comparison_ht_hc
 
Crude oil
Crude oilCrude oil
Crude oil
 
Rht Sulfuric Acid Alkylation Rht Presentation Revision 1
Rht Sulfuric Acid Alkylation Rht Presentation Revision 1Rht Sulfuric Acid Alkylation Rht Presentation Revision 1
Rht Sulfuric Acid Alkylation Rht Presentation Revision 1
 
61 lrgcc norman_ok_feb2011
61 lrgcc norman_ok_feb201161 lrgcc norman_ok_feb2011
61 lrgcc norman_ok_feb2011
 
Crude Oil Refining
Crude Oil RefiningCrude Oil Refining
Crude Oil Refining
 
Forensic Chemistry - Petroleum products
Forensic Chemistry - Petroleum productsForensic Chemistry - Petroleum products
Forensic Chemistry - Petroleum products
 
CATALYTIC ALKYLATION
CATALYTIC ALKYLATIONCATALYTIC ALKYLATION
CATALYTIC ALKYLATION
 
fractional distillation and refining of petroleum
fractional distillation and refining of petroleumfractional distillation and refining of petroleum
fractional distillation and refining of petroleum
 
Design and Production of Heterogeneous Catalysts
Design and Production of Heterogeneous CatalystsDesign and Production of Heterogeneous Catalysts
Design and Production of Heterogeneous Catalysts
 
Catalyst deactivation and regeneration
Catalyst deactivation and regenerationCatalyst deactivation and regeneration
Catalyst deactivation and regeneration
 

Similar a Coal

A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...
A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...
A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...Farhan Munir
 
Sulfuric_Acid-2008 (1).PPT
Sulfuric_Acid-2008 (1).PPTSulfuric_Acid-2008 (1).PPT
Sulfuric_Acid-2008 (1).PPTMsRenuJuneja
 
Chapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_iChapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_iHelena Francis
 
Conference for Catalysis Webinar 2021: "The Key Role of Catalysts and Adsorb...
Conference for Catalysis Webinar 2021:  "The Key Role of Catalysts and Adsorb...Conference for Catalysis Webinar 2021:  "The Key Role of Catalysts and Adsorb...
Conference for Catalysis Webinar 2021: "The Key Role of Catalysts and Adsorb...Dr. Meritxell Vila
 
Lecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionLecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionnewarqadir51
 
Lecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionLecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionnewarqadir51
 
1 s2.0-s1877705816004434-main
1 s2.0-s1877705816004434-main1 s2.0-s1877705816004434-main
1 s2.0-s1877705816004434-mainAbderrahim Nadifi
 
Chapter 9 Natural Gas.pptx
Chapter 9 Natural Gas.pptxChapter 9 Natural Gas.pptx
Chapter 9 Natural Gas.pptxAkramMusa5
 
Lecture 7 Coal Conversion Technologies.pptx
Lecture 7 Coal Conversion Technologies.pptxLecture 7 Coal Conversion Technologies.pptx
Lecture 7 Coal Conversion Technologies.pptxMaluguJohn
 
Introduction to chemical process industry.pptx
Introduction to chemical process industry.pptxIntroduction to chemical process industry.pptx
Introduction to chemical process industry.pptxIngridTalla1
 
Gas Processing and Conditioning SLIDE Master DAY ONE.ppt
Gas Processing and Conditioning  SLIDE  Master DAY ONE.pptGas Processing and Conditioning  SLIDE  Master DAY ONE.ppt
Gas Processing and Conditioning SLIDE Master DAY ONE.pptTemitopeBello6
 
petroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-pptpetroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-pptKrishna Peshivadiya
 

Similar a Coal (20)

A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...
A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...
A STUDY OF MOLYBDENUM CARBIDE CATALYST FOR FISCHER-TROPSCH SYNTHESIS-MEngSc P...
 
GTL
GTLGTL
GTL
 
An article on fuel
An article on fuelAn article on fuel
An article on fuel
 
Fischer-Trops_69___V1.0.pptx
Fischer-Trops_69___V1.0.pptxFischer-Trops_69___V1.0.pptx
Fischer-Trops_69___V1.0.pptx
 
Fischer-Trops_69___V1.0.pptx
Fischer-Trops_69___V1.0.pptxFischer-Trops_69___V1.0.pptx
Fischer-Trops_69___V1.0.pptx
 
Sulfuric_Acid-2008 (1).PPT
Sulfuric_Acid-2008 (1).PPTSulfuric_Acid-2008 (1).PPT
Sulfuric_Acid-2008 (1).PPT
 
Chapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_iChapter 5c -hydrocracking_i
Chapter 5c -hydrocracking_i
 
Conference for Catalysis Webinar 2021: "The Key Role of Catalysts and Adsorb...
Conference for Catalysis Webinar 2021:  "The Key Role of Catalysts and Adsorb...Conference for Catalysis Webinar 2021:  "The Key Role of Catalysts and Adsorb...
Conference for Catalysis Webinar 2021: "The Key Role of Catalysts and Adsorb...
 
Coal gasify
Coal gasifyCoal gasify
Coal gasify
 
Lecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionLecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and description
 
Lecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and descriptionLecture 4 (H2SO4), it is manufacturing and description
Lecture 4 (H2SO4), it is manufacturing and description
 
1 s2.0-s1877705816004434-main
1 s2.0-s1877705816004434-main1 s2.0-s1877705816004434-main
1 s2.0-s1877705816004434-main
 
Chapter 9 Natural Gas.pptx
Chapter 9 Natural Gas.pptxChapter 9 Natural Gas.pptx
Chapter 9 Natural Gas.pptx
 
ECM
ECMECM
ECM
 
Lecture 7 Coal Conversion Technologies.pptx
Lecture 7 Coal Conversion Technologies.pptxLecture 7 Coal Conversion Technologies.pptx
Lecture 7 Coal Conversion Technologies.pptx
 
Introduction to chemical process industry.pptx
Introduction to chemical process industry.pptxIntroduction to chemical process industry.pptx
Introduction to chemical process industry.pptx
 
HYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OIL
HYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OILHYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OIL
HYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OIL
 
Gas Processing and Conditioning SLIDE Master DAY ONE.ppt
Gas Processing and Conditioning  SLIDE  Master DAY ONE.pptGas Processing and Conditioning  SLIDE  Master DAY ONE.ppt
Gas Processing and Conditioning SLIDE Master DAY ONE.ppt
 
petroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-pptpetroleum refining,crackin and synthetic petrol-ppt
petroleum refining,crackin and synthetic petrol-ppt
 
Coal to Liquid Market.pptx
Coal to Liquid Market.pptxCoal to Liquid Market.pptx
Coal to Liquid Market.pptx
 

Último

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607dollysharma2066
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyotictsugar
 
Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!
Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!
Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!Doge Mining Website
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfRbc Rbcua
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024Adnet Communications
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCRashishs7044
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Pereraictsugar
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchirictsugar
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfJos Voskuil
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Anamaria Contreras
 
International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...ssuserf63bd7
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Riya Pathan
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africaictsugar
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdfKhaled Al Awadi
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607dollysharma2066
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy Verified Accounts
 
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxThe-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxmbikashkanyari
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationAnamaria Contreras
 

Último (20)

FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
 
Investment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy CheruiyotInvestment in The Coconut Industry by Nancy Cheruiyot
Investment in The Coconut Industry by Nancy Cheruiyot
 
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCREnjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
 
Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!
Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!
Unlocking the Future: Explore Web 3.0 Workshop to Start Earning Today!
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdf
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024
 
8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR8447779800, Low rate Call girls in Saket Delhi NCR
8447779800, Low rate Call girls in Saket Delhi NCR
 
Kenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith PereraKenya Coconut Production Presentation by Dr. Lalith Perera
Kenya Coconut Production Presentation by Dr. Lalith Perera
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 
Marketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent ChirchirMarketplace and Quality Assurance Presentation - Vincent Chirchir
Marketplace and Quality Assurance Presentation - Vincent Chirchir
 
Digital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdfDigital Transformation in the PLM domain - distrib.pdf
Digital Transformation in the PLM domain - distrib.pdf
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.
 
International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...International Business Environments and Operations 16th Global Edition test b...
International Business Environments and Operations 16th Global Edition test b...
 
Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737Independent Call Girls Andheri Nightlaila 9967584737
Independent Call Girls Andheri Nightlaila 9967584737
 
Kenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby AfricaKenya’s Coconut Value Chain by Gatsby Africa
Kenya’s Coconut Value Chain by Gatsby Africa
 
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdfNewBase  19 April  2024  Energy News issue - 1717 by Khaled Al Awadi.pdf
NewBase 19 April 2024 Energy News issue - 1717 by Khaled Al Awadi.pdf
 
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
(Best) ENJOY Call Girls in Faridabad Ex | 8377087607
 
Buy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail AccountsBuy gmail accounts.pdf Buy Old Gmail Accounts
Buy gmail accounts.pdf Buy Old Gmail Accounts
 
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxThe-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement Presentation
 

Coal

  • 1. • Liquefaction-Coal-To-Liquids • Coal can be converted into liquid fuels like gasoline or diesel by several different processes. The Fischer-Tropsch process of indirect synthesis of liquid hydrocarbons was used in Nazi Germany for many years and is today used by Sasol in South Africa. Coal would be gasified to make syngas (a balanced purified mixture of CO and H2 gas) and the syngas condensed using Fischer-Tropsch catalysts to make light hydrocarbons which are further processed into gasoline and diesel. Syngas can also be converted to methanol which can be used as a fuel, fuel additive, or further processed into gasoline via the Mobil M-gas process. A direct liquefaction process called Bergius process (liquefaction by hydrogenation) is also available but has not been used outside Germany, where such processes where operated both during WW1 and WW2. Sasol South Africa has experimented with direct hydrogenation. Several other direct liquefaction processes have been developed, among these being the SRC-1 & SRC-2 (solvent refined coal) developed by Gulf Oil and implemented as pilot plants in the US in the 1960`s & 1970`s
  • 2.
  • 3. • Fischer-Tropsch process The Fischer–Tropsch process (or Fischer–Tropsch Synthesis) is a set of chemical reactions that convert a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. The process, a key component of gas to liquids technology, produces a petroleum substitute, typically from coal, natural gas, or biomass for use as synthetic lubrication oil and as synthetic fuel. The F-T process has received intermittent attention as a source of low-sulfur diesel fuel and to address the supply or cost of petroleum-derived hydrocarbons.
  • 4. • History • Since the invention of the original process by Franz Fischer and Hans Tropsch, working at the Kaiser Wilhelm Institute in the 1920s, many refinements and adjustments have been made. The term "Fischer-Tropsch" now applies to a wide variety of similar processes (Fischer-Tropsch synthesis or Fischer-Tropsch chemistry). Fischer and Tropsch filed a number of patents, e.g., US patent no. 1,746,464, applied 1926, published 1930. It was commercialized in Germany in 1936. Being petroleum-poor but coal-rich, in Germany the FT-process was used by Nazi Germany and Japan during World War II to produce ersatz (German: substitute) fuels. F-T production accounted for an estimated 9% of German war production of fuels and 25% of the automobile fuel.
  • 5. • The United States Bureau of Mines, in a program initiated by the Synthetic Liquid Fuels Act, employed seven Operation Paperclip synthetic fuel scientists in a Fischer-Tropsch plant in Louisiana, Missouri in 1946.[10][9] • In Britain, Alfred August Aicher obtained several patents for improvements to the process in the 1930s and 1940s.[11] Aicher's company was named Synthetic Oils Ltd. (Now based in Canada.) • Commercialization • Fluidized bed gasification with FT-pilot in Güssing, Burgenland, Austria • The F-T process has been applied on a large scale in some industrial sectors, although its popularity is hampered by high capital costs, high operation and maintenance costs, the uncertain and volatile price of crude oil, and environmental concerns. In particular, the use of natural gas as a feedstock only becomes practical when using "stranded gas", i.e. sources of natural gas far from major cities which are impractical to exploit with conventional gas pipelines and LNG technology; otherwise, the direct sale of natural gas to consumers would become much more profitable. Several companies are developing the process to enable practical exploitation of so-called stranded gas reserves.
  • 6. • Sasol • The largest scale implementation of F-T technology are in a series of plants operated by Sasol in South Africa, a country with large coal reserves but lacking in oil. Sasol uses coal and now natural gas as feedstocks and produces a variety of synthetic petroleum products, including most of the country's diesel fuel. Generally it is one of the companies which deals in mining, energy, synthetic fuels and chemicals. They are a key player in the South African oil industry producing a large variety of primary, intermediate and final chemical products. They are involved in the extraction of crude petroleum, support activities for petroleum and natural gas extraction and manufacture of basic chemicals. • Sasol, South Africa has a number of big factories at Secunda and Sasolburg.It has started construction of projects in Nigeria, Qatar and Iraq. It was set up in 1950 by the South African Apartheid government. Today Sasol is one of the leading petrochemical industries and its influence can be felt in the global market. It is making its presence felt in the US, Europe and Asia.
  • 7. • Process chemistry • The Fischer–Tropsch process involves a series of chemical reactions that lead to a variety of hydrocarbons. Useful reactions give alkanes: • (2n+1) H2 + n CO → CnH(2n+2) + n H2O • where 'n' is a positive integer. The formation of methane (n = 1) is generally unwanted. Most of the alkanes produced tend to be straight-chain alkanes, although some branched alkanes are also formed. In addition to alkane formation, competing reactions result in the formation ofalkenes, as well as alcohols and other oxygenated hydrocarbons. Usually, only relatively small quantities of these non-alkane products are formed, although catalysts favoring some of these products have been developed.
  • 8. • Other reactions relevant to the F-T process • Several reactions are required to obtain the gaseous reactants required for F-T catalysis. First, reactant gases entering a F-T reactor must first be desulfurized to protect the catalysts that are readily poisoned. The other major classes of reactions are employed to adjust the H2/CO ratio: • water gas shift reaction provides a source of hydrogen: • H2O + CO → H2 + CO2 • For F-T plants that start with methane, another important reaction is steam reforming, which converts the methane into CO and H2: • H2O + CH4 → CO + 3 H2
  • 9. • Chemical mechanisms • The conversion of CO to alkanes involves net hydrogenation of CO, the hydrogenolysis of C-O bonds, and the formation of C-C bonds. Such reactions are assumed to proceed via initial formation of surface-bound metal carbonyls. The CO ligand is speculated to undergo dissociation, possibly into oxide and carbide ligands.Other potential intermediates are various C-1 fragments including formyl (CHO), hydroxycarbene (HCOH), hydroxymethyl (CH2OH), methyl (CH3), methylene (CH2), methylidyne (CH), and hydroxymethylidyne (COH). Furthermore, and critical to the production of liquid fuels, are reactions that form C-C bonds, such as migratory insertion. Many related stoichiometric reactions have been • simulated on discrete metal clusters, but homogeneous F-T catalysts are poorly developed and of no commercial importance.
  • 10. • Process conditions • Generally, the Fischer–Tropsch process is operated in the temperature range of 150–300 °C (302–572 °F). Higher temperatures lead to faster reactions and higher conversion rates but also tend to favor methane production. As a result, the temperature is usually maintained at the low to middle part of the range. Increasing the pressure leads to higher conversion rates and also favors formation of long-chained alkanes both of which are desirable. Typical pressures range from one to several tens of atmospheres. Even higher pressures would be favorable, but the benefits may not justify the additional costs of high-pressure equipment. • A variety of synthesis gas compositions can be used. For cobalt-based catalysts the optimal H2:CO ratio is around 1.8-2.1. Iron-based catalysts promote the water-gas-shift reaction and thus can tolerate significantly lower ratios. This reactivity can be important for synthesis gas derived from coal or biomass, which tend to have relatively low H2:CO ratios (<1).
  • 11. • Fischer-Tropsch catalysts • A variety of catalysts can be used for the Fischer–Tropsch process, but the most common are the transition metals cobalt, iron, and ruthenium. Nickel can also be used, but tends to favor methane formation ("methanation"). • Cobalt-based catalysts are highly active, although iron may be more suitable for low-hydrogen-content synthesis gases such as those derived from coal due to its promotion of the water-gas-shift reaction. In addition to the active metal the catalysts typically contain a number of "promoters," including potassium and copper. Group 1 alkali metals, including potassium, is a poison for cobalt catalysts but is a promoter for iron catalysts. Catalysts are supported on high-surface-area binders/supports such as silica, alumina, or zeolites Cobalt catalysts are more active for Fischer-Tropsch synthesis when the feedstock is natural gas. Natural gas has a high hydrogen to carbon ratio, so the water-gas-shift is not needed for cobalt catalysts. Iron catalysts are preferred for lower quality feedstocks such as coal or biomass. • Unlike the other metals used for this process (Co, Ni, Ru), which remain in the metallic state during synthesis, iron catalysts tend to form a number of phases, including various oxides and carbides during the reaction. Control of these phase transformations can be important in maintaining catalytic activity and preventing breakdown of the catalyst particles. • Fischer-Tropsch catalysts are sensitive to poisoning by sulfur-containing compounds. The sensitivity of the catalyst to sulfur is greater for cobalt-based catalysts than for their iron counterparts. • Promotors also have an important influence on activity. Alkali metal oxides and copper are common promotors, but the formulation depends on the primary metal, iron vs cobalt. Alkali oxides on cobalt catalysts generally cause activity to drop severely even with very low alkali loadings. C5+ and CO2 selectivity increase while methane and C2-C4 selectivity decrease. In addition, the olefin to parafin ratio increases.
  • 12. • LTFT and HTFT • High-Temperature Fischer-Tropsch (or HTFT) is operated at temperatures of 330C-350C and uses an iron-based catalyst. This process was used extensively by Sasol in their Coal-to-Liquid plants (CTL). Low-Temperature Fischer-Tropsch (LTFT) is operated at lower temperatures and uses a cobalt based catalyst. This process is best known for being used in the first integrated Gas-to-Liquid (GTL) plant operated and built by Shell in Bintulu, Malaysia.
  • 13. • Gasification • F-T plants associated with coal or related solid feedstocks (sources of carbon) must first convert the solid fuel into gaseous reactants, i.e. CO, H2, and alkanes. This conversion is called gasification. Synthesis gas obtained from coal gasification tends to have a H2/CO ratio of ~0.7 compared to the ideal ratio of ~2. This ratio is adjusted via the water- gas shift reaction. Gasification is a dirty and expensive (endergonic) process. Coal-based Fischer–Tropsch plants can produce significant amounts of CO2, in part due to the high energy demands of the gasification process. Ongoing research aims to combine biomass gasification (BG) and Fischer-Tropsch (FT) synthesis to produce renewable transportation fuels (biofuels).