SlideShare una empresa de Scribd logo
1 de 82
Descargar para leer sin conexión
Formal Methods Forum


                   Coq
                         @tmiya

                       April 20,2011




@tmiya : Coq   ,                          1
0.


       Coq



               Coq
               Coq
               Coq
                   •
                   • Coq
                   •
                   •




@tmiya : Coq   ,           2
1.                     Coq




               Lightweight
                   •         (   )
                   •
                   •


                   •
                   •
                   •
                   •                      (   )


                   •
                   •
                   •                 or


@tmiya : Coq   ,                                  3
1.                   Coq


Coq

                           INRIA          OCaml
                             CIC = Calculus of Inductive Construction




               tactic

                               tactic



               Coq
               Coq             OCaml, Haskell, Scheme


@tmiya : Coq   ,                                                        4
2. Coq


Coq                           Coqtop, CoqIDE

       CUI           Coqtop        /   :
       % coqtop
       Welcome to Coq 8.3pl1 (December 2010)

       Coq < Eval compute in (2+3).
            = 5
            : nat

       Coq < Quit.
       %


       Coq
       CoqIDE             coqide


@tmiya : Coq   ,                               5
2. Coq


Proof General : emacs



       Proof General                    ~/.emacs
       (load-file "***/ProofGeneral/generic/proof-site.el")


                   proof-site.el
       Coq            (*.v)               Proof General




@tmiya : Coq   ,                                              6
3. Coq




       Coq < Definition x := 1.        (* x        *)
       x is defined                    (*        :=               *)
       Coq < Check x.                  (* x                  *)
       x
             : nat                     (*       nat =             *)
       Coq < Print x.                  (* x                            *)
       x = 1
             : nat
       Coq < Definition x := 2.        (* x             *)
       Error: x already exists         (* -->                     *)


                        Reset x.
                                   Module (                       )



@tmiya : Coq   ,                                                            7
3. Coq




                                                        1       2

       Coq < Definition f x y := x - y. (*        f       *)
       f is defined
       Coq < Check f.
       f
            : nat -> nat -> nat           (* nat->(nat->nat)   *)
       Coq < Definition f’ := f 3.           (* f’ y = f 3 y   *)
       f’ is defined
       Coq < Check f’.
       f’
            : nat -> nat           (* nat           nat         *)
       Coq < Eval compute in (f’ 1).    (* f’ 1 = f 3 1 = 2    *)
            = 2
            : nat

               (
@tmiya : Coq   ,                                                     8
3. Coq




       Coq < Check (fun x => 2 * x).           (*      *)
       fun x : nat => 2 * x
            : nat -> nat

       Coq < Eval compute in ((fun x => 2 * x) 3).
            = 6
            : nat

       Coq < Definition double := (fun x => 2 * x).
       double is defined         (*           double   *)

       Coq                                     .




@tmiya : Coq   ,                                            9
3. Coq




       Coq < Definition twice(f:nat->nat):nat->nat :=
       Coq <   fun x => f (f x).
       twice is defined

       Coq < Definition add5(x:nat) := x + 5.
       add5 is defined

       Coq < Definition twice_add5 := twice add5.
       twice_add5 is defined

       Coq < Eval compute in (twice_add5 2).
            = 12
            : nat


@tmiya : Coq   ,                                        10
3.1.




                                           int, float
                   Coq               nat
               (                                       )
                         Weekday

       Coq < Inductive Weekday : Set :=
       Coq < Sun | Mon | Tue | Wed | Thr | Fri | Sat.

       Coq < Check Sun.
       Sun                         (* Sun        *)
            : Weekday              (* Weekday *)

       Coq < Check Weekday.
       Weekday            (*                    *)
            : Set         (* Set *)

                            Set

@tmiya : Coq   ,                                           11
3.1.




                                              (
                      )

       Coq < Definition nextday d :=
       Coq < match d with
       Coq < | Sun => Mon
                : (*      *)
       Coq < | Sat => Sun
       Coq < end.
       nextday is defined
       Coq < Check nextday.
       nextday (*                       *)
            : Weekday -> Weekday
       Coq < Eval compute in (nextday Mon).
       (*                 *)
                   prevday
@tmiya : Coq   ,                                  12
3.1.


Bool


       Coq < Inductive Bool : Set :=
       Coq < | tru : Bool
       Coq < | fls : Bool.

       Coq     <   Definition And(b1 b2:Bool):Bool :=
       Coq     <   match b1,b2 with
       Coq     <   | tru,tru => tru
       Coq     <   | _,_ => fls
       Coq     <   end.

                      Or, Not                Eval




@tmiya : Coq   ,                                        13
3.1.


                           bool


                               (   ) bool


       Coq     <   Print   bool.
       Coq     <   Print   andb.
       Coq     <   Print   orb.
       Coq     <   Print   negb.
       bool


       Coq < Print unit.




@tmiya : Coq   ,                            14
3.1.


De Morgan                              (1)


       Coq < Theorem De_Morgan_1 : forall b1 b2,
       Coq < Not (And b1 b2) = Or (Not b1) (Not b2).
       1 subgoal

           ============================
            forall b1 b2 : Bool,
            Not (And b1 b2) = Or (Not b1) (Not b2)

       De_Morgan_1 < intros.
       1 subgoal (* b1 b2                 *)

           b1 : Bool
           b2 : Bool
           ============================
            Not (And b1 b2) = Or (Not b1) (Not b2)
@tmiya : Coq   ,                                       15
3.1.


De Morgan                              (2)


       De_Morgan_1 < destruct b1; destruct b2.
       4 subgoals (* b1 b2                               *)

           ============================
            Not (And tru tru) = Or (Not tru) (Not tru)

       subgoal 2   is:
        Not (And   tru fls) = Or (Not tru) (Not fls)
       subgoal 3   is:
        Not (And   fls tru) = Or (Not fls) (Not tru)
       subgoal 4   is:
        Not (And   fls fls) = Or (Not fls) (Not fls)




@tmiya : Coq   ,                                              16
3.1.


De Morgan                               (3)
       De_Morgan_1 < simpl.
       4 subgoals (*                    *)

         ============================
          fls = fls
       (*        *)
       De_Morgan_1 < reflexivity.
       3 subgoals (*      =                              *)

           ============================
            Not (And tru fls) = Or (Not tru) (Not fls)

       subgoal 2   is:
        Not (And   fls tru) = Or (Not fls) (Not tru)
       subgoal 3   is:
        Not (And   fls fls) = Or (Not fls) (Not fls)

@tmiya : Coq   ,                                              17
3.1.


De Morgan                                  (4)

       De_Morgan_1 < simpl; reflexivity.
       De_Morgan_1 < simpl; reflexivity.
       De_Morgan_1 < simpl; reflexivity.
       Proof completed.

       De_Morgan_1 < Qed.
       intros.
       destruct b1; destruct b2.
        simpl in |- *.
        reflexivity.
        simpl in |- *; reflexivity.
        simpl in |- *; reflexivity.
        simpl in |- *; reflexivity.
       De_Morgan_1 is defined

                   Not (Or b1 b2) = And (Not b1) (Not b2)
@tmiya : Coq   ,                                            18
3.1.




          1. Yes, Maybe, No                  Bool3
          2. Bool3         And3, Or3, Not3
          3. ( )                             De Morgan




@tmiya : Coq   ,                                         19
3.2.


                   nat

                   nat                       (               )
       Coq < Print nat.
       Inductive nat : Set :=
         O : nat
       | S : nat -> nat
       O(                O)   0   S         nat                  nat
                                                     Peano


       Coq < Eval compute in (S (S (S O))).
            = 3
            : nat
       S (S (S O))                    Coq        3


@tmiya : Coq   ,                                                       20
3.2.




       nat                                         n


       Coq     < Fixpoint add(n m:nat):nat :=
       Coq     < match n with
       Coq     < | O => m
       Coq     < | S n’ => S (add n’ m)
       Coq     < end.
       add     is recursively defined (decreasing on 1st argument)
                                              Fixpoint                 (
                   O)   0           S         nat           1    nat
                                                         Peano
       Coq < Eval compute in (add (S (S O)) (S O)).
            = 3
            : nat
                            (call-by-value)
@tmiya : Coq   ,                                                           21
3.2.




       nat                                       _,_
                                          OK

       Coq     <   Fixpoint eq_nat(n m:nat):bool :=
       Coq     <   match n,m with
       Coq     <   | O,O => true
       Coq     <   | S n’, S m’ => eq_nat n’ m’
       Coq     <   | _,_ => false
       Coq     <   end.

       Coq < Eval compute in (eq_nat 3 3).

                   le_nat           le_nat n m   n≤m
                                 Coq

       (                                    )


@tmiya : Coq   ,                                       22
3.2.




       Coq                                 (              )



                                       n
       ({struct n}        Coq                  )
       Coq < Fixpoint add’(n m:nat){struct n} :=
       Coq < match n with
       Coq < | O => m
       Coq < | S n’ => S (add’ n’ m)
       Coq < end.
       add’ is recursively defined (decreasing on 1st argument)
               add’ 2 3         add’
         add’ (S (S O)) 3
       = S (add’ (S O) 3)
       = S (S (add’ O 3)) = S (S 3) = 5.

@tmiya : Coq   ,                                                  23
3.2.




                         (
         )
       Coq                                  ( )(
                                 )       Coq
                             (
                   Coq                         )

                                         Coq
                         (                         )
       (Coq                          )
          Coq



@tmiya : Coq   ,                                       24
3.2.




          1.                mul       add
          2. mul                            fact
          3.                sub                          n=0
             sub 0 m = 0
          4.         div3                                      Eval


       Fixpoint div3(n:nat) :=
       match n with
       | S (S (S n’)) => S (div3 n’)
       | _ => O
       end.

                                               sub
               div n m                        Coq
                                  (                  )

@tmiya : Coq    ,                                                     25
3.3.




                           cond c vt vf                c:bool   true
       vt          false        vf        vt, vf          Set     A

       Coq     <   Definition cond{A:Set}(c:bool)(vt vf:A) :=
       Coq     <   match c with
       Coq     <   | true => vt
       Coq     <   | false => vf
       Coq     <   end.

       Coq < Eval compute in (cond true 2 3).
            = 2 : nat
       Coq < Eval compute in (cond false false true).
            = true : bool
       {A:Set}         cond                        A
                               (                   )
       Coq < Eval compute in (@cond nat false 2 3).

@tmiya : Coq   ,                                                       26
3.3.


option
                        (    )                   null
                                      option   (Haskell   Maybe
           )        (       Coq
            sumor                         )
       Coq < Print option.
       Inductive option (A : Type) : Type :=
         Some : A -> option A
       | None : option A

       Definition option_map {A B:Type} (f:A->B)(o:option A) :=
         match o with
           | Some a => Some (f a)
           | None => None
         end.
       Coq < Eval compute in (option_map (fun x => x + 1) (Some 1)).


@tmiya : Coq   ,                                                       27
3.3.


prod                sum
       prod A B           A     B
       prod A B         A * B            ( x , y , .. , z )
                           (pair .. (pair x y) .. z)
       Coq < Check (2,true,3).
       (2, true, 3) : nat * bool * nat
       prod                                          fst, snd

       sum A B                A           B

       Coq     <   Definition test_sum (s:sum nat bool) :=
       Coq     <   match s with
       Coq     <   | inl n => n
       Coq     <   | inr true => 1
       Coq     <   | inr false => 0
       Coq     <   end.
       prod, sum                  Curry-Howard
@tmiya : Coq   ,                                                28
3.3.


List

                                 List         List
                                                ::   cons
                                Type    Set           (Check Set.
                   )
       Coq < Require Import List.
       Coq < Print list.
       Inductive list (A : Type) : Type :=
           nil : list A
         | cons : A -> list A -> list A
       Coq < Check (1::2::nil).
       1 :: 2 :: nil : list nat




@tmiya : Coq   ,                                                    29
3.3.


List
       List                                    List   nil   x::xs


       Coq     <   Fixpoint append{A:Type}(xs ys:list A):=
       Coq     <   match xs with
       Coq     <   | nil => ys
       Coq     <   | x::xs’ => x::(append xs’ ys)
       Coq     <   end.
       Coq     <   Eval compute in (append (1::2::nil) (3::4::nil)).

       Coq     <   Fixpoint olast{A:Type}(xs:list A):option A :=
       Coq     <   match xs with
       Coq     <   | nil => None
       Coq     <   | a::nil => Some a
       Coq     <   | _::xs’ => olast xs’
       Coq     <   end.
       Coq     <   Eval compute in (olast (1::2::3::nil)).

@tmiya : Coq   ,                                                       30
3.3.


                   List

          1.                           len{A:Type}(xs:list A):nat
                      Eval compute in (len (1::2::3::nil)).

          2. list bool                            true     true
               all_true(xs:list bool):bool                    nil
                 true
          3.                   x         Some x
               None             ohead{A:Type}(xs:list A):option A

          4.          s, n        s :: s+1 :: ... :: (s+n-1) :: nil
                        nat_list(s n:nat):list nat
          5.                       reverse{A:Type}(xs:list A):list A
                                 append



@tmiya : Coq   ,                                                       31
4.




               Bool          De Morgan



                         P   Q   ¬(P ∧ Q)   ¬P ∨ ¬Q
                         F   F      T          T
                         F   T      T          T
                         T   F      T          T
                         T   T      F          F

       Bool, nat         Inductive
                                                  (nat          O
       S n                                    )
                   Coq                                   Prop
                                                                (
                                                          )


@tmiya : Coq   ,                                                    32
4.




                                                          P            P      ¬P
                                      (   )


                        ab                                      a, b
                                                                                   √
                              √                                               √     2
          1. a = b =              2            a, b                    ab =       2

                                                               √ √2    √
          2.            ab                    √
                                                           a = √2 , b = 2
                                                                 √
                                                                                        a, b
                                          √        2 √2     √ 2 2 √ 2
                                  ab = ( 2         )      = 2       = 2 =2
                         √
                   √      2
                        2                      (P)             (~P)
                   ab                                         a, b
                                              ab                               a, b




@tmiya : Coq   ,                                                                               33
4.




                                                       (         )

                                                   Modus Ponens
                          A                    A          B
                          B                                  (Γ =    (
           )                                       )
                              Γ   A        Γ A → B (→       )
                                       Γ    B
                   (                          )→


       Coq
       B               Hab : A → B                  apply Hab.       tactic
                                A                                     Ha : A
                           exact Ha.
@tmiya : Coq   ,                                                               34
4.




       Coq                    tactic
                               tactic    assumption.
                   exact H.          trivial.

       ...
       H : A
       ...
       ------------------------
       A
                                                       exact   .



                                      A∈Γ
                                          (       )
                                      Γ A



@tmiya : Coq   ,                                                   35
4.1. →


                        →
                        A → B (CUI            A -> B        )
                    A                           intro Ha.       tactic
                              Ha : A                      B
       Coq


                                            ...
                                        Γ, A B
                                                (→          )
                                       Γ A→B

                        H1 → H2 → · · · → Hn → B           intros H1 H2 ... Hn.
                           intro                         intro.   intros.
               Coq
                               →                         Modus Ponens
                     tactic    apply      .

@tmiya : Coq    ,                                                                 36
4.1. →


               →                            (1)
                               tactic
                         Set                 P                    Prop
                                 P         P        P              p : P
                          (             Set, Prop
       Type                       )
         Section imp_sample.
         Variables P Q R : Prop.
         Theorem imp_sample : (P -> (Q -> R)) -> (P -> Q) -> P -> R.
       1 subgoal

           ============================
            (P -> Q -> R) -> (P -> Q) -> P -> R

                   ===                                         tactic
                                        →           intro(s)


@tmiya : Coq   ,                                                           37
4.1. →


                →                     (2)

               →             intros               tactic
       intro(s)

       imp_sample < intros pqr pq p.
       1 subgoal

           pqr : P -> Q -> R
           pq : P -> Q
           p : P
           ============================
            R

                      R                     pqr
               apply pqr.



@tmiya : Coq    ,                                          38
4.1. →


               →                   (3)
               R            apply pqr.              pqr
       P -> Q ->                   P   Q
       imp_sample < apply pqr.
       2 subgoals

           pqr : P -> Q -> R
           pq : P -> Q
           p : P
           ============================
            P

       subgoal 2 is:
        Q
                    P                      assumption.


@tmiya : Coq   ,                                          39
4.1. →


               →                   (4)

                       P    assumption.   Q


       imp_sample < assumption.
       1 subgoal

           pqr : P -> Q -> R
           pq : P -> Q
           p : P
           ============================
            Q
                   Q




@tmiya : Coq   ,                              40
4.1. →


               →                    (5)

       imp_sample < apply pq.
       1 subgoal

           pqr : P -> Q -> R
           pq : P -> Q
           p : P
           ============================
            P

       imp_sample < assumption.
       Proof completed.

       imp_sample < Qed.

                             Qed.

@tmiya : Coq   ,                          41
4.2. ∧


∧                         (1)
                    P ∧Q                    P     Q
                      pq : P / Q                    destruct pq as [p q].
               tactic               p : P        q : Q
                 destruct pq.                   p,q         Coq

                    P ∧Q                                 P     Q
                    P ∧Q             split.           tactic
               P / Q                    P, Q


       Coq < Variable P Q R:Prop.
       Coq < Theorem and_assoc : (P/Q)/R -> P/(Q/R).
       1 subgoal

           ============================
            (P / Q) / R -> P / Q / R


@tmiya : Coq     ,                                                           42
4.2. ∧


∧                      (2)
               intro         →                  ∧

       and_assoc < intro pqr.
       1 subgoal

         pqr : (P / Q) / R
         ============================
          P / Q / R
       and_assoc < destruct pqr as [[p q] r].
       1 subgoal

           p : P
           q : Q
           r : R
           ============================
            P / Q / R


@tmiya : Coq   ,                                    43
4.2. ∧


∧                        (3)
                                        assumption
           ;    tactic          split
       assumption

       and_assoc < split.
       2 subgoals
         ============================
          P
       subgoal 2 is:
        Q / R
       and_assoc < assumption.
       1 subgoal
         ============================
          Q / R
       and_assoc < split; assumption.
       Proof completed.
       and_assoc < Qed.

@tmiya : Coq   ,                                     44
4.3. ∨


∨                         (1)
                   P ∨Q                P                         Q
                                                             pq : P / Q
                   destruct pq as [pq].—        tactic
       p : P                      q : Q
                     destruct pq.              p,q               Coq

                    P ∨Q                                 P     Q
                       P ∨Q            left.                 right.        tactic
                                       P             Q


       Coq < Variable P Q R:Prop.
       Coq < Theorem or_assoc : (P/Q)/R -> P/(Q/R).
       1 subgoal

           ============================
            (P / Q) / R -> P / Q / R

@tmiya : Coq   ,                                                                    45
4.3. ∨


∨                      (2)

               intro         →                 ∨
       and_assoc < intro pqr.
       or_assoc < destruct pqr as [[p|q]|r].
       3 subgoals

           p : P
           ============================
            P / Q / R

       subgoal     2 is:
        P / Q     / R
       subgoal     3 is:
        P / Q     / R



@tmiya : Coq   ,                                   46
4.3. ∨


∨                  (3)
                                        assumption
       or_assoc < left.
       3 subgoals
         p : P
         ============================
          P
       or_assoc < assumption.
       2 subgoals
         q : Q
         ============================
          P / Q / R
       or_assoc < right; left.
       2 subgoals
         q : Q
         ============================
          Q
                           OK
@tmiya : Coq   ,                                     47
4.4. ¬


¬                        (1)

                        ¬P     P → False               False

       Inductive False : Prop :=


                     ~P          intro p.          p : P
                     False
                   H : False                                   elim H.

                   np : ~P                  elim np.
                   P
                                     (¬¬P   P      )              (
                         )




@tmiya : Coq   ,                                                         48
4.4. ¬


¬                  (2)



       Coq < Theorem neg_sample : ~(P / ~P).
       1 subgoal
         ============================
          ~ (P / ~ P)

       neg_sample < intro.
       1 subgoal
         H : P / ~ P
         ============================
          False




@tmiya : Coq   ,                                49
4.4. ¬


¬                  (3)

       neg_sample < destruct H as [p np].
       1 subgoal
         p : P
         np : ~ P
         ============================
          False

       neg_sample < elim np.
         p : P
         np : ~ P
         ============================
          P

       neg_sample < assumption.
       Proof completed.


@tmiya : Coq   ,                            50
4.4. ¬




       Variable A B C D:Prop.
       Theorem ex4_1 : (A -> C) / (B -> D) / A / B -> C / D.
       Theorem ex4_2 : ~~~A -> ~A.
       Theorem ex4_3 : (A -> B) -> ~B -> ~A.
       Theorem ex4_4 : ((((A -> B) -> A) -> A) -> B) -> B.
       Theorem ex4_5 : ~~(A/~A).




@tmiya : Coq   ,                                                   51
5. Curry-Howard


Curry-Howard                 (1)



       Theorem imp_sample’ : (P -> (Q -> R)) -> (P -> Q) -> P -> R.
       imp_sample’ < intros pqr pq p.
       imp_sample’ < Check pq.
       pq
            : P -> Q
       imp_sample’ < Check (pq p).
       pq p
            : Q

               pq       P -> Q                     P
                    Q                       pq         p
                    Q


@tmiya : Coq   ,                                                      52
5. Curry-Howard


Curry-Howard                (2)
       pqr, pq, p            R
             exact tactic
       imp_sample’ < Check (pqr p (pq p)).
       pqr p (pq p)
            : R

       imp_sample’ < exact (pqr p (pq p)).
       Proof completed.


                                        imp_sample   Print


       Coq < Print imp_sample.
       imp_sample =
       fun (pqr : P -> Q -> R) (pq : P -> Q) (p : P) => pqr p (pq p)
            : (P -> Q -> R) -> (P -> Q) -> P -> R

@tmiya : Coq   ,                                                       53
5. Curry-Howard


Curry-Howard                  (3)


                              P                             P
                             P→Q                          P -> Q
                   Γ   P    ΓP→Q
                                    (→       )               pq p
                         Γ Q
                        Γ, P Q
                                 (→   )                pq (p:P):Q
                       Γ P→Q
                               P ∧Q                  prod { (P,Q)
                                                             inl P
                              P ∨Q                 sum
                                                             inr Q


                                    Curry-Howard
       Curry-Howard
           =
             Coq
@tmiya : Coq   ,                                                     54
5. Curry-Howard


Curry-Howard             (4)
                                  Coq             (           )
                                                Java
       (P → Q → R) → (P → Q) → P → R
       interface Fun<A,B> {
         public B apply(A a);
       }
       public class P {}
       public class Q {}
       public class R {}
       public class Proof {
         public R imp_sample(Fun<P,Fun<Q,R>> pqr, Fun<P,Q> pq, P p) {
           return pqr.apply(p).apply(pq.apply(p));
         }
       }
                                        (Java          prod   sum
                                                  ¬    Java
                   )
@tmiya : Coq   ,                                                    55
6.




                    a:A         P a (∀a : A, P a) : forall (a:A), P a
                   a:A          P a (∃a : A, P a) : exists (a:A), P a

       Coq          P     a:A              P a:Prop
       A -> Prop
       Coq
                    a:A                            P : A → Prop



       Coq < Definition iszero(n:nat):Prop :=
       Coq < match n with
       Coq < | O => True
       Coq < | _ => False
       Coq < end.
       iszero is defined

@tmiya : Coq   ,                                                        56
6.


∀                       (1)
                    forall        intro(s)            forall x:X
               x:X ->
       Coq < Theorem sample_forall : forall (X:Type)(P Q:X->Prop)(x:X),
         P x -> (forall y:X, Q y) -> (P x / Q x).
         ============================
          forall (X : Type) (P Q : X -> Prop) (x : X),
          P x -> (forall y : X, Q y) -> P x / Q x

       sample_forall < intros X P Q x px Hqy.
         X : Type
         P : X -> Prop
         Q : X -> Prop
         x : X
         px : P x
         Hqy : forall y : X, Q y
         ============================
          P x / Q x
@tmiya : Coq    ,                                                   57
6.


∀                        (2)
                   forall y:X         y            X

       sample_forall < split. (*          P x           Q x       *)
       sample_forall < assumption. (* P x              px           *)
       1 subgoal

           X : Type
           P : X -> Prop
           Q : X -> Prop
           x : X
           px : P x
           Hqy : forall y : X, Q y
           ============================
            Q x

       sample_forall < apply (Hqy x).     (* Hqy       y      x          *)
       Proof completed.
@tmiya : Coq   ,                                                              58
6.2. ∃


∃                    (1)

       Coq < Theorem sample_exists : forall (P Q:nat->Prop),
       Coq < (forall n, P n) -> (exists n, Q n) ->
       Coq < (exists n, P n / Q n).

       sample_exists < intros P Q Hpn Hqn.
       1 subgoal

           P : nat -> Prop
           Q : nat -> Prop
           Hpn : forall n : nat, P n
           Hqn : exists n : nat, Q n
           ============================
            exists n : nat, P n / Q n



@tmiya : Coq   ,                                               59
6.2. ∃


∃                           (2)
                   exists             destruct
       sample_exists < intros P Q Hpn Hqn.
         P : nat -> Prop
         Q : nat -> Prop
         Hpn : forall n : nat, P n
         Hqn : exists n : nat, Q n
         ============================
          exists n : nat, P n / Q n

       sample_exists < destruct Hqn as [n’ qn’].
         P : nat -> Prop
         Q : nat -> Prop
         Hpn : forall n : nat, P n
         n’ : nat
         qn’ : Q n’
         ============================
          exists n : nat, P n / Q n
@tmiya : Coq   ,                                   60
6.2. ∃


∃                  (3)
               exists x:X                      x:X
       exists x.
       sample_exists < destruct Hqn as [n’ qn’].
         :
         Hpn : forall n : nat, P n
         n’ : nat
         qn’ : Q n’
         ============================
          exists n : nat, P n / Q n

       sample_exists < exists n’.
         :
         Hpn : forall n : nat, P n
         n’ : nat
         qn’ : Q n’
         ============================
          P n’ / Q n’ (*                 *)
@tmiya : Coq   ,                                     61
6.2. ∃




       Theorem ex5_1 : forall (A:Set)(P:A->Prop),
         (~ exists a, P a) -> (forall a, ~P a).
       Theorem ex5_2 : forall (A:Set)(P Q:A->Prop),
         (exists a, P a / Q a) ->
         (exists a, P a) / (exists a, Q a).
       Theorem ex5_3 : forall (A:Set)(P Q:A->Prop),
         (exists a, P a) / (exists a, Q a) ->
         (exists a, P a / Q a).
       Theorem ex5_4 : forall (A:Set)(R:A->A->Prop),
         (exists x, forall y, R x y) -> (forall y, exists x, R x y).
       Theorem ex5_5 : forall (A:Set)(R:A->A->Prop),
         (forall x y, R x y -> R y x) ->
         (forall x y z, R x y -> R y z -> R x z) ->
         (forall x, exists y, R x y) -> (forall x, R x x).


@tmiya : Coq   ,                                                       62
6.3. =


=                       (1)
                                              eq (=            )
       Inductive eq (A : Type) (x : A) : A -> Prop :=
         refl_equal : x = x
       Coq
                         (nat   bool             )
                                       (nat          O    Sn         )
                                          (S m           Sn    m=n       )



           ============================
            n = n

                          apply (refl_equal n).
       tactic      reflexivity.

@tmiya : Coq   ,                                                             63
6.3. =


=                   (2)
                                     plus          Print plus.
                                 tactic   simpl.
       Coq < Theorem plus_0_l : forall n, 0 + n = n.
       plus_0_l < intro n.
         n : nat
         ============================
          0 + n = n

       plus_0_l < simpl.
         n : nat
         ============================
          n = n

       plus_0_l < reflexivity.
       Proof completed.


@tmiya : Coq   ,                                                 64
6.4.


                   (1)
                   ∀n : nat, n + 0 = n              simpl.


           ============================
            n + 0 = n

       plus_0_r < simpl.
         ============================
          n + 0 = n
                   plus n m     n
                                         n
          1. n = 0            n+0=n
          2. n = n            n+0=n          n=Sn
             n+0=n



@tmiya : Coq   ,                                             65
6.4.


                   (2)
       n                                   induction n as [|n’].
       induction n.             tactic       Coq               nat_ind
                          (P               )

       Coq < Check nat_ind.
       nat_ind : forall P : nat -> Prop, P 0 ->
         (forall n : nat, P n -> P (S n)) ->
         forall n : nat, P n

               nat_ind    nat                 O : nat   S : nat -> nat
                                           Inductive
                   bool         bool_ind
       bool_ind : forall P : bool -> Prop,
         P true -> P false ->
         forall b : bool, P b


@tmiya : Coq   ,                                                         66
6.4.


                   (3)
       induction n as [|n’].               n    0   S n’
                               reflexivity.    OK (simpl.
               )
       Coq < Theorem plus_0_r : forall n:nat, n + 0 = n.
       plus_0_r < induction n as [|n’].
       2 subgoals
         ============================
          0 + 0 = 0
       subgoal 2 is:
        S n’ + 0 = S n’

       plus_0_r < reflexivity.
       1 subgoal
         n’ : nat
         IHn’ : n’ + 0 = n’
         ============================
          S n’ + 0 = S n’
@tmiya : Coq   ,                                            67
6.4.


                   (4)
       n = S n’                n = n’                   IHn’

       S n’ + 0 = S n’                simpl.   plus
       S (n’ + 0)= S n’                 IHn’   n’ + 0     n’
                   rewrite IHn’.    rewrite
           ============================
            S n’ + 0 = S n’

       plus_0_r < simpl.
         IHn’ : n’ + 0 = n’
         ============================
          S (n’ + 0) = S n’

       plus_0_r < rewrite IHn’.
         IHn’ : n’ + 0 = n’
         ============================
          S n’ = S n’
@tmiya : Coq   ,                                               68
6.4.


               :m + n = n + m
                   SearchAbout

       Coq < SearchAbout plus.
       plus_n_O: forall n : nat, n = n + 0
       plus_O_n: forall n : nat, 0 + n = n
       plus_n_Sm: forall n m : nat, S (n + m) = n + S m
       plus_Sn_m: forall n m : nat, S n + m = S (n + m)
       mult_n_Sm: forall n m : nat, n * m + n = n * S m

                                    rewrite               (
       rewrite <- plus_n_Sm n’ m.       rewrite H.            H

       rewrite <- H. )


       Theorem plus_comm : forall m n:nat, m + n = n + m.


@tmiya : Coq   ,                                                  69
6.4.


                   (5)
                                     nat                     list A


       Theorem length_app : forall (A:Type)(l1 l2:list A),
         length (l1 ++ l2) = length l1 + length l2.

       list                cons
       induction l1 as [|a l1’].                     (
       induction l1.)
                                   induction
           (                l2)  intro
          1. intros A l1 l2. induction l1 as [|a l1’].
          2. intros A l1.    induction l1 as [|a l1’].   intro l2.
                              IHl1’
                                            (Coqtop              Undo.
                         )

@tmiya : Coq   ,                                                         70
6.4.


               :                    (1)
       List                          append               reverse

       Require Import List.
       Fixpoint append{A:Type}(l1 l2:list A):=
       match l1 with
       | nil => l2
       | a::l1’ => a::(append l1’ l2)
       end.
       Fixpoint reverse{A:Type}(l:list A):=
       match l with
       | nil => nil
       | a::l’ => append (reverse l’) (a::nil)
       end.


       Theorem reverse_reverse : forall (A:Type)(l:list A),
         reverse (reverse l) = l.

@tmiya : Coq   ,                                                    71
6.4.


               :                    (2)



                                   reverse_reverse
       Lemma append_nil : forall (A:Type)(l:list A),
         append l nil = l.
       Lemma append_assoc : forall (A:Type)(l1 l2 l3:list A),
         append (append l1 l2) l3 = append l1 (append l2 l3).
       Lemma reverse_append : forall (A:Type)(l1 l2:list A),
         reverse (append l1 l2) = append (reverse l2) (reverse l1).




@tmiya : Coq   ,                                                      72
7.


                   (1)

                                     Coq

             nat                           minus(n m:nat)   n≤m
           0
       n−m+m =n                (           )
                         sub
       Definition sub(m n:nat)(H:le n m) : {x:nat|x+n=m}.


          1.         H   n≤m                        n≤m

          2.             x = m−n               x +n = m
                           (
                     )


@tmiya : Coq   ,                                                  73
7.


                   (2)
       Coq
                         nat            Arith
       Require Import Arith. (* Arith              *)
       Definition sub(m n:nat)(H:le n m) : {x:nat|x+n=m}.
       1 subgoal
         m : nat
         n : nat
         H : n <= m
         ============================
          {x : nat | x + n = m}
               m, n       intro             generalize dependent

       sub <   generalize dependent m.
       sub <   generalize dependent n.
         ============================
          forall n m : nat, n <= m -> {x : nat | x + n = m}

@tmiya : Coq   ,                                                   74
7.


                   (3)
                                          eapply, erewrite
                         apply, rewrite           Qed.       Defined.

         induction n as [|n’].
           (* n=0 *)
           intros m H. exists m. eapply plus_0_r.
           (* n=S n’ *)
           induction m as [|m’]; intro H.
             (* m=0 *)
             assert(H’: ~(S n’ <= 0)). eapply le_Sn_0.
             elim H’. assumption.
             (* m=S m’ *)
             assert(H’: n’ <= m’). eapply le_S_n. assumption.
             assert(IH: {x:nat|x+n’=m’}). eapply IHn’. assumption.
             destruct IH as [x IH]. exists x.
             erewrite <- plus_n_Sm. rewrite IH. reflexivity.
       Defined.
@tmiya : Coq   ,                                                        75
7.


                   (4)

                         sub     Print sub.
                               sub     OCaml
                                        minus
       Coq     < Extraction sub.
       (**     val sub : nat -> nat -> nat **)
       let     rec sub m = function
         |     O -> m
         |     S n0 ->
                 (match m with
                    | O -> assert false (* absurd case *)
                    | S n1 -> let iH = sub n1 n0 in Obj.magic iH)

       OCaml                              H




@tmiya : Coq   ,                                                    76
7.


                   (5)


                                        H


       Theorem le_2_5 : le 2 5.
       Proof. repeat eapply le_n_S. repeat constructor. Qed.

       Eval compute in (sub 5 2 le_2_5). (*                 *)
       Eval compute in (proj1_sig (sub 5 2 le_2_5)).
                                                   (* = 3:nat *)
       {x|x+n=m}               x
                         proj1_sig




@tmiya : Coq   ,                                                   77
7.


                   minus
               sub           minus


       Definition sub’(m n:nat)(H:le n m) : {x:nat|x+n=m}.
       Proof.
         (* minus                 *)
       Defined.
       Coq
        1. minus                             minus

          2. minus                          sub’

          3. refine tactic
             (refine                     )
          4. sub


@tmiya : Coq   ,                                             78
8.




                        Coq

                              tactic         (auto, ring, omega   )
                                   (Arith, List, String           )
               Haskell, OCaml
                                 (inversion, refine                   )
               tactic
                              Module




@tmiya : Coq   ,                                                          79
8.




               Interactive Theorem Proving and Program Development. Coq’Art:
               The Calculus of Inductive Constructions, Yves Berrot and Pierre
               Casteran (Springer-Verlag) :              Coq
               Certified Programming with Dependent Types, Adam Chlipala
               (http://adam.chlipala.net/cpdt/) : Coq

                 2010                                III
               (http://www.math.nagoya-u.ac.jp/~garrigue/lecture/
               2010_AW/index.html) :               Garrigue
                  PDF
               Coq in a Hurry, Yves Bertot
               (http://cel.archives-ouvertes.fr/docs/00/47/
               58/07/PDF/coq-hurry.pdf) :
               2nd Asian-Pacific Summer School on Formal Methods
               (http://formes.asia/cms/coqschool/2010) :


@tmiya : Coq   ,                                                                 80
8.


Coq                  ProofCafe


                                                       Coq     CPDT

       Coq                                  IT

       Coq         Ruby, Clojure, Scala, Javascript
                           Coq
                                                      Coq

                     http://coq.g.hatena.ne.jp/keyword/ProofCafe




@tmiya : Coq   ,                                                      81
8.


                        Formal Methods Forum

       Coq                                          (    )
                    (     )
                                                             Google group

       Coq
       2010             Certified Programming with Dependent Types

                                       Coq

                                           Google group
       (http://groups.google.co.jp/group/fm-forum)

                                             Coq




@tmiya : Coq   ,                                                            82

Más contenido relacionado

La actualidad más candente

証明プログラミング超入門
証明プログラミング超入門証明プログラミング超入門
証明プログラミング超入門Kyoko Kadowaki
 
私を SKI に連れてって
私を SKI に連れてって私を SKI に連れてって
私を SKI に連れてってSusisu
 
DockerでCoq インストール
DockerでCoq インストールDockerでCoq インストール
DockerでCoq インストールYoshihiro Mizoguchi
 
自動定理証明の紹介
自動定理証明の紹介自動定理証明の紹介
自動定理証明の紹介Masahiro Sakai
 
Rust、何もわからない...#7 VecDeque再訪
Rust、何もわからない...#7 VecDeque再訪Rust、何もわからない...#7 VecDeque再訪
Rust、何もわからない...#7 VecDeque再訪Yusuke Mori
 
プログラミングコンテストでのデータ構造
プログラミングコンテストでのデータ構造プログラミングコンテストでのデータ構造
プログラミングコンテストでのデータ構造Takuya Akiba
 
証明プログラミング入門2
証明プログラミング入門2証明プログラミング入門2
証明プログラミング入門2Kyoko Kadowaki
 
充足可能性問題のいろいろ
充足可能性問題のいろいろ充足可能性問題のいろいろ
充足可能性問題のいろいろHiroshi Yamashita
 
静的型付け言語Python
静的型付け言語Python静的型付け言語Python
静的型付け言語Pythonkiki utagawa
 
文字列検索のいろいろ
文字列検索のいろいろ文字列検索のいろいろ
文字列検索のいろいろKazuma Mikami
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」Ken'ichi Matsui
 
勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとはTakuya Akiba
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナドYoshihiro Mizoguchi
 
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...Yuya Masumura
 
書くネタがCoqしかない
書くネタがCoqしかない書くネタがCoqしかない
書くネタがCoqしかないMasaki Hara
 
Scala 初心者が米田の補題を Scala で考えてみた
Scala 初心者が米田の補題を Scala で考えてみたScala 初心者が米田の補題を Scala で考えてみた
Scala 初心者が米田の補題を Scala で考えてみたKazuyuki TAKASE
 
数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解くYoshihiro Mizoguchi
 
つくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタつくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタ京大 マイコンクラブ
 
Intoduction to Homotopy Type Therory
Intoduction to Homotopy Type TheroryIntoduction to Homotopy Type Therory
Intoduction to Homotopy Type TheroryJack Fox
 

La actualidad más candente (20)

証明プログラミング超入門
証明プログラミング超入門証明プログラミング超入門
証明プログラミング超入門
 
私を SKI に連れてって
私を SKI に連れてって私を SKI に連れてって
私を SKI に連れてって
 
DockerでCoq インストール
DockerでCoq インストールDockerでCoq インストール
DockerでCoq インストール
 
自動定理証明の紹介
自動定理証明の紹介自動定理証明の紹介
自動定理証明の紹介
 
Rust、何もわからない...#7 VecDeque再訪
Rust、何もわからない...#7 VecDeque再訪Rust、何もわからない...#7 VecDeque再訪
Rust、何もわからない...#7 VecDeque再訪
 
プログラミングコンテストでのデータ構造
プログラミングコンテストでのデータ構造プログラミングコンテストでのデータ構造
プログラミングコンテストでのデータ構造
 
証明プログラミング入門2
証明プログラミング入門2証明プログラミング入門2
証明プログラミング入門2
 
充足可能性問題のいろいろ
充足可能性問題のいろいろ充足可能性問題のいろいろ
充足可能性問題のいろいろ
 
静的型付け言語Python
静的型付け言語Python静的型付け言語Python
静的型付け言語Python
 
π計算
π計算π計算
π計算
 
文字列検索のいろいろ
文字列検索のいろいろ文字列検索のいろいろ
文字列検索のいろいろ
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
 
勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは勉強か?趣味か?人生か?―プログラミングコンテストとは
勉強か?趣味か?人生か?―プログラミングコンテストとは
 
圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド圏論のモナドとHaskellのモナド
圏論のモナドとHaskellのモナド
 
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...
半正定値計画問題と最大カット Sedemifinite Programming and Approximation Algorithm for Maxcu...
 
書くネタがCoqしかない
書くネタがCoqしかない書くネタがCoqしかない
書くネタがCoqしかない
 
Scala 初心者が米田の補題を Scala で考えてみた
Scala 初心者が米田の補題を Scala で考えてみたScala 初心者が米田の補題を Scala で考えてみた
Scala 初心者が米田の補題を Scala で考えてみた
 
数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く数式処理ソフトMathematicaで数学の問題を解く
数式処理ソフトMathematicaで数学の問題を解く
 
つくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタつくってあそぼ ラムダ計算インタプリタ
つくってあそぼ ラムダ計算インタプリタ
 
Intoduction to Homotopy Type Therory
Intoduction to Homotopy Type TheroryIntoduction to Homotopy Type Therory
Intoduction to Homotopy Type Therory
 

Más de tmiya

Coq for ML users
Coq for ML usersCoq for ML users
Coq for ML userstmiya
 
Proofsummit2011a
Proofsummit2011aProofsummit2011a
Proofsummit2011atmiya
 
Coq Tutorial at Proof Summit 2011
Coq Tutorial at Proof Summit 2011Coq Tutorial at Proof Summit 2011
Coq Tutorial at Proof Summit 2011tmiya
 
Typeclass
TypeclassTypeclass
Typeclasstmiya
 
RegExp20110305
RegExp20110305RegExp20110305
RegExp20110305tmiya
 
Coq setoid 20110129
Coq setoid 20110129Coq setoid 20110129
Coq setoid 20110129tmiya
 
Coq Party 20101127
Coq Party 20101127Coq Party 20101127
Coq Party 20101127tmiya
 
Maude20100719
Maude20100719Maude20100719
Maude20100719tmiya
 
Formal methods20100529
Formal methods20100529Formal methods20100529
Formal methods20100529tmiya
 
Coq 20100208a
Coq 20100208aCoq 20100208a
Coq 20100208atmiya
 

Más de tmiya (10)

Coq for ML users
Coq for ML usersCoq for ML users
Coq for ML users
 
Proofsummit2011a
Proofsummit2011aProofsummit2011a
Proofsummit2011a
 
Coq Tutorial at Proof Summit 2011
Coq Tutorial at Proof Summit 2011Coq Tutorial at Proof Summit 2011
Coq Tutorial at Proof Summit 2011
 
Typeclass
TypeclassTypeclass
Typeclass
 
RegExp20110305
RegExp20110305RegExp20110305
RegExp20110305
 
Coq setoid 20110129
Coq setoid 20110129Coq setoid 20110129
Coq setoid 20110129
 
Coq Party 20101127
Coq Party 20101127Coq Party 20101127
Coq Party 20101127
 
Maude20100719
Maude20100719Maude20100719
Maude20100719
 
Formal methods20100529
Formal methods20100529Formal methods20100529
Formal methods20100529
 
Coq 20100208a
Coq 20100208aCoq 20100208a
Coq 20100208a
 

Último

Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 

Último (20)

Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 

Coq Tutorial

  • 1. Formal Methods Forum Coq @tmiya April 20,2011 @tmiya : Coq , 1
  • 2. 0. Coq Coq Coq Coq • • Coq • • @tmiya : Coq , 2
  • 3. 1. Coq Lightweight • ( ) • • • • • • ( ) • • • or @tmiya : Coq , 3
  • 4. 1. Coq Coq INRIA OCaml CIC = Calculus of Inductive Construction tactic tactic Coq Coq OCaml, Haskell, Scheme @tmiya : Coq , 4
  • 5. 2. Coq Coq Coqtop, CoqIDE CUI Coqtop / : % coqtop Welcome to Coq 8.3pl1 (December 2010) Coq < Eval compute in (2+3). = 5 : nat Coq < Quit. % Coq CoqIDE coqide @tmiya : Coq , 5
  • 6. 2. Coq Proof General : emacs Proof General ~/.emacs (load-file "***/ProofGeneral/generic/proof-site.el") proof-site.el Coq (*.v) Proof General @tmiya : Coq , 6
  • 7. 3. Coq Coq < Definition x := 1. (* x *) x is defined (* := *) Coq < Check x. (* x *) x : nat (* nat = *) Coq < Print x. (* x *) x = 1 : nat Coq < Definition x := 2. (* x *) Error: x already exists (* --> *) Reset x. Module ( ) @tmiya : Coq , 7
  • 8. 3. Coq 1 2 Coq < Definition f x y := x - y. (* f *) f is defined Coq < Check f. f : nat -> nat -> nat (* nat->(nat->nat) *) Coq < Definition f’ := f 3. (* f’ y = f 3 y *) f’ is defined Coq < Check f’. f’ : nat -> nat (* nat nat *) Coq < Eval compute in (f’ 1). (* f’ 1 = f 3 1 = 2 *) = 2 : nat ( @tmiya : Coq , 8
  • 9. 3. Coq Coq < Check (fun x => 2 * x). (* *) fun x : nat => 2 * x : nat -> nat Coq < Eval compute in ((fun x => 2 * x) 3). = 6 : nat Coq < Definition double := (fun x => 2 * x). double is defined (* double *) Coq . @tmiya : Coq , 9
  • 10. 3. Coq Coq < Definition twice(f:nat->nat):nat->nat := Coq < fun x => f (f x). twice is defined Coq < Definition add5(x:nat) := x + 5. add5 is defined Coq < Definition twice_add5 := twice add5. twice_add5 is defined Coq < Eval compute in (twice_add5 2). = 12 : nat @tmiya : Coq , 10
  • 11. 3.1. int, float Coq nat ( ) Weekday Coq < Inductive Weekday : Set := Coq < Sun | Mon | Tue | Wed | Thr | Fri | Sat. Coq < Check Sun. Sun (* Sun *) : Weekday (* Weekday *) Coq < Check Weekday. Weekday (* *) : Set (* Set *) Set @tmiya : Coq , 11
  • 12. 3.1. ( ) Coq < Definition nextday d := Coq < match d with Coq < | Sun => Mon : (* *) Coq < | Sat => Sun Coq < end. nextday is defined Coq < Check nextday. nextday (* *) : Weekday -> Weekday Coq < Eval compute in (nextday Mon). (* *) prevday @tmiya : Coq , 12
  • 13. 3.1. Bool Coq < Inductive Bool : Set := Coq < | tru : Bool Coq < | fls : Bool. Coq < Definition And(b1 b2:Bool):Bool := Coq < match b1,b2 with Coq < | tru,tru => tru Coq < | _,_ => fls Coq < end. Or, Not Eval @tmiya : Coq , 13
  • 14. 3.1. bool ( ) bool Coq < Print bool. Coq < Print andb. Coq < Print orb. Coq < Print negb. bool Coq < Print unit. @tmiya : Coq , 14
  • 15. 3.1. De Morgan (1) Coq < Theorem De_Morgan_1 : forall b1 b2, Coq < Not (And b1 b2) = Or (Not b1) (Not b2). 1 subgoal ============================ forall b1 b2 : Bool, Not (And b1 b2) = Or (Not b1) (Not b2) De_Morgan_1 < intros. 1 subgoal (* b1 b2 *) b1 : Bool b2 : Bool ============================ Not (And b1 b2) = Or (Not b1) (Not b2) @tmiya : Coq , 15
  • 16. 3.1. De Morgan (2) De_Morgan_1 < destruct b1; destruct b2. 4 subgoals (* b1 b2 *) ============================ Not (And tru tru) = Or (Not tru) (Not tru) subgoal 2 is: Not (And tru fls) = Or (Not tru) (Not fls) subgoal 3 is: Not (And fls tru) = Or (Not fls) (Not tru) subgoal 4 is: Not (And fls fls) = Or (Not fls) (Not fls) @tmiya : Coq , 16
  • 17. 3.1. De Morgan (3) De_Morgan_1 < simpl. 4 subgoals (* *) ============================ fls = fls (* *) De_Morgan_1 < reflexivity. 3 subgoals (* = *) ============================ Not (And tru fls) = Or (Not tru) (Not fls) subgoal 2 is: Not (And fls tru) = Or (Not fls) (Not tru) subgoal 3 is: Not (And fls fls) = Or (Not fls) (Not fls) @tmiya : Coq , 17
  • 18. 3.1. De Morgan (4) De_Morgan_1 < simpl; reflexivity. De_Morgan_1 < simpl; reflexivity. De_Morgan_1 < simpl; reflexivity. Proof completed. De_Morgan_1 < Qed. intros. destruct b1; destruct b2. simpl in |- *. reflexivity. simpl in |- *; reflexivity. simpl in |- *; reflexivity. simpl in |- *; reflexivity. De_Morgan_1 is defined Not (Or b1 b2) = And (Not b1) (Not b2) @tmiya : Coq , 18
  • 19. 3.1. 1. Yes, Maybe, No Bool3 2. Bool3 And3, Or3, Not3 3. ( ) De Morgan @tmiya : Coq , 19
  • 20. 3.2. nat nat ( ) Coq < Print nat. Inductive nat : Set := O : nat | S : nat -> nat O( O) 0 S nat nat Peano Coq < Eval compute in (S (S (S O))). = 3 : nat S (S (S O)) Coq 3 @tmiya : Coq , 20
  • 21. 3.2. nat n Coq < Fixpoint add(n m:nat):nat := Coq < match n with Coq < | O => m Coq < | S n’ => S (add n’ m) Coq < end. add is recursively defined (decreasing on 1st argument) Fixpoint ( O) 0 S nat 1 nat Peano Coq < Eval compute in (add (S (S O)) (S O)). = 3 : nat (call-by-value) @tmiya : Coq , 21
  • 22. 3.2. nat _,_ OK Coq < Fixpoint eq_nat(n m:nat):bool := Coq < match n,m with Coq < | O,O => true Coq < | S n’, S m’ => eq_nat n’ m’ Coq < | _,_ => false Coq < end. Coq < Eval compute in (eq_nat 3 3). le_nat le_nat n m n≤m Coq ( ) @tmiya : Coq , 22
  • 23. 3.2. Coq ( ) n ({struct n} Coq ) Coq < Fixpoint add’(n m:nat){struct n} := Coq < match n with Coq < | O => m Coq < | S n’ => S (add’ n’ m) Coq < end. add’ is recursively defined (decreasing on 1st argument) add’ 2 3 add’ add’ (S (S O)) 3 = S (add’ (S O) 3) = S (S (add’ O 3)) = S (S 3) = 5. @tmiya : Coq , 23
  • 24. 3.2. ( ) Coq ( )( ) Coq ( Coq ) Coq ( ) (Coq ) Coq @tmiya : Coq , 24
  • 25. 3.2. 1. mul add 2. mul fact 3. sub n=0 sub 0 m = 0 4. div3 Eval Fixpoint div3(n:nat) := match n with | S (S (S n’)) => S (div3 n’) | _ => O end. sub div n m Coq ( ) @tmiya : Coq , 25
  • 26. 3.3. cond c vt vf c:bool true vt false vf vt, vf Set A Coq < Definition cond{A:Set}(c:bool)(vt vf:A) := Coq < match c with Coq < | true => vt Coq < | false => vf Coq < end. Coq < Eval compute in (cond true 2 3). = 2 : nat Coq < Eval compute in (cond false false true). = true : bool {A:Set} cond A ( ) Coq < Eval compute in (@cond nat false 2 3). @tmiya : Coq , 26
  • 27. 3.3. option ( ) null option (Haskell Maybe ) ( Coq sumor ) Coq < Print option. Inductive option (A : Type) : Type := Some : A -> option A | None : option A Definition option_map {A B:Type} (f:A->B)(o:option A) := match o with | Some a => Some (f a) | None => None end. Coq < Eval compute in (option_map (fun x => x + 1) (Some 1)). @tmiya : Coq , 27
  • 28. 3.3. prod sum prod A B A B prod A B A * B ( x , y , .. , z ) (pair .. (pair x y) .. z) Coq < Check (2,true,3). (2, true, 3) : nat * bool * nat prod fst, snd sum A B A B Coq < Definition test_sum (s:sum nat bool) := Coq < match s with Coq < | inl n => n Coq < | inr true => 1 Coq < | inr false => 0 Coq < end. prod, sum Curry-Howard @tmiya : Coq , 28
  • 29. 3.3. List List List :: cons Type Set (Check Set. ) Coq < Require Import List. Coq < Print list. Inductive list (A : Type) : Type := nil : list A | cons : A -> list A -> list A Coq < Check (1::2::nil). 1 :: 2 :: nil : list nat @tmiya : Coq , 29
  • 30. 3.3. List List List nil x::xs Coq < Fixpoint append{A:Type}(xs ys:list A):= Coq < match xs with Coq < | nil => ys Coq < | x::xs’ => x::(append xs’ ys) Coq < end. Coq < Eval compute in (append (1::2::nil) (3::4::nil)). Coq < Fixpoint olast{A:Type}(xs:list A):option A := Coq < match xs with Coq < | nil => None Coq < | a::nil => Some a Coq < | _::xs’ => olast xs’ Coq < end. Coq < Eval compute in (olast (1::2::3::nil)). @tmiya : Coq , 30
  • 31. 3.3. List 1. len{A:Type}(xs:list A):nat Eval compute in (len (1::2::3::nil)). 2. list bool true true all_true(xs:list bool):bool nil true 3. x Some x None ohead{A:Type}(xs:list A):option A 4. s, n s :: s+1 :: ... :: (s+n-1) :: nil nat_list(s n:nat):list nat 5. reverse{A:Type}(xs:list A):list A append @tmiya : Coq , 31
  • 32. 4. Bool De Morgan P Q ¬(P ∧ Q) ¬P ∨ ¬Q F F T T F T T T T F T T T T F F Bool, nat Inductive (nat O S n ) Coq Prop ( ) @tmiya : Coq , 32
  • 33. 4. P P ¬P ( ) ab a, b √ √ √ 2 1. a = b = 2 a, b ab = 2 √ √2 √ 2. ab √ a = √2 , b = 2 √ a, b √ 2 √2 √ 2 2 √ 2 ab = ( 2 ) = 2 = 2 =2 √ √ 2 2 (P) (~P) ab a, b ab a, b @tmiya : Coq , 33
  • 34. 4. ( ) Modus Ponens A A B B (Γ = ( ) ) Γ A Γ A → B (→ ) Γ B ( )→ Coq B Hab : A → B apply Hab. tactic A Ha : A exact Ha. @tmiya : Coq , 34
  • 35. 4. Coq tactic tactic assumption. exact H. trivial. ... H : A ... ------------------------ A exact . A∈Γ ( ) Γ A @tmiya : Coq , 35
  • 36. 4.1. → → A → B (CUI A -> B ) A intro Ha. tactic Ha : A B Coq ... Γ, A B (→ ) Γ A→B H1 → H2 → · · · → Hn → B intros H1 H2 ... Hn. intro intro. intros. Coq → Modus Ponens tactic apply . @tmiya : Coq , 36
  • 37. 4.1. → → (1) tactic Set P Prop P P P p : P ( Set, Prop Type ) Section imp_sample. Variables P Q R : Prop. Theorem imp_sample : (P -> (Q -> R)) -> (P -> Q) -> P -> R. 1 subgoal ============================ (P -> Q -> R) -> (P -> Q) -> P -> R === tactic → intro(s) @tmiya : Coq , 37
  • 38. 4.1. → → (2) → intros tactic intro(s) imp_sample < intros pqr pq p. 1 subgoal pqr : P -> Q -> R pq : P -> Q p : P ============================ R R pqr apply pqr. @tmiya : Coq , 38
  • 39. 4.1. → → (3) R apply pqr. pqr P -> Q -> P Q imp_sample < apply pqr. 2 subgoals pqr : P -> Q -> R pq : P -> Q p : P ============================ P subgoal 2 is: Q P assumption. @tmiya : Coq , 39
  • 40. 4.1. → → (4) P assumption. Q imp_sample < assumption. 1 subgoal pqr : P -> Q -> R pq : P -> Q p : P ============================ Q Q @tmiya : Coq , 40
  • 41. 4.1. → → (5) imp_sample < apply pq. 1 subgoal pqr : P -> Q -> R pq : P -> Q p : P ============================ P imp_sample < assumption. Proof completed. imp_sample < Qed. Qed. @tmiya : Coq , 41
  • 42. 4.2. ∧ ∧ (1) P ∧Q P Q pq : P / Q destruct pq as [p q]. tactic p : P q : Q destruct pq. p,q Coq P ∧Q P Q P ∧Q split. tactic P / Q P, Q Coq < Variable P Q R:Prop. Coq < Theorem and_assoc : (P/Q)/R -> P/(Q/R). 1 subgoal ============================ (P / Q) / R -> P / Q / R @tmiya : Coq , 42
  • 43. 4.2. ∧ ∧ (2) intro → ∧ and_assoc < intro pqr. 1 subgoal pqr : (P / Q) / R ============================ P / Q / R and_assoc < destruct pqr as [[p q] r]. 1 subgoal p : P q : Q r : R ============================ P / Q / R @tmiya : Coq , 43
  • 44. 4.2. ∧ ∧ (3) assumption ; tactic split assumption and_assoc < split. 2 subgoals ============================ P subgoal 2 is: Q / R and_assoc < assumption. 1 subgoal ============================ Q / R and_assoc < split; assumption. Proof completed. and_assoc < Qed. @tmiya : Coq , 44
  • 45. 4.3. ∨ ∨ (1) P ∨Q P Q pq : P / Q destruct pq as [pq].— tactic p : P q : Q destruct pq. p,q Coq P ∨Q P Q P ∨Q left. right. tactic P Q Coq < Variable P Q R:Prop. Coq < Theorem or_assoc : (P/Q)/R -> P/(Q/R). 1 subgoal ============================ (P / Q) / R -> P / Q / R @tmiya : Coq , 45
  • 46. 4.3. ∨ ∨ (2) intro → ∨ and_assoc < intro pqr. or_assoc < destruct pqr as [[p|q]|r]. 3 subgoals p : P ============================ P / Q / R subgoal 2 is: P / Q / R subgoal 3 is: P / Q / R @tmiya : Coq , 46
  • 47. 4.3. ∨ ∨ (3) assumption or_assoc < left. 3 subgoals p : P ============================ P or_assoc < assumption. 2 subgoals q : Q ============================ P / Q / R or_assoc < right; left. 2 subgoals q : Q ============================ Q OK @tmiya : Coq , 47
  • 48. 4.4. ¬ ¬ (1) ¬P P → False False Inductive False : Prop := ~P intro p. p : P False H : False elim H. np : ~P elim np. P (¬¬P P ) ( ) @tmiya : Coq , 48
  • 49. 4.4. ¬ ¬ (2) Coq < Theorem neg_sample : ~(P / ~P). 1 subgoal ============================ ~ (P / ~ P) neg_sample < intro. 1 subgoal H : P / ~ P ============================ False @tmiya : Coq , 49
  • 50. 4.4. ¬ ¬ (3) neg_sample < destruct H as [p np]. 1 subgoal p : P np : ~ P ============================ False neg_sample < elim np. p : P np : ~ P ============================ P neg_sample < assumption. Proof completed. @tmiya : Coq , 50
  • 51. 4.4. ¬ Variable A B C D:Prop. Theorem ex4_1 : (A -> C) / (B -> D) / A / B -> C / D. Theorem ex4_2 : ~~~A -> ~A. Theorem ex4_3 : (A -> B) -> ~B -> ~A. Theorem ex4_4 : ((((A -> B) -> A) -> A) -> B) -> B. Theorem ex4_5 : ~~(A/~A). @tmiya : Coq , 51
  • 52. 5. Curry-Howard Curry-Howard (1) Theorem imp_sample’ : (P -> (Q -> R)) -> (P -> Q) -> P -> R. imp_sample’ < intros pqr pq p. imp_sample’ < Check pq. pq : P -> Q imp_sample’ < Check (pq p). pq p : Q pq P -> Q P Q pq p Q @tmiya : Coq , 52
  • 53. 5. Curry-Howard Curry-Howard (2) pqr, pq, p R exact tactic imp_sample’ < Check (pqr p (pq p)). pqr p (pq p) : R imp_sample’ < exact (pqr p (pq p)). Proof completed. imp_sample Print Coq < Print imp_sample. imp_sample = fun (pqr : P -> Q -> R) (pq : P -> Q) (p : P) => pqr p (pq p) : (P -> Q -> R) -> (P -> Q) -> P -> R @tmiya : Coq , 53
  • 54. 5. Curry-Howard Curry-Howard (3) P P P→Q P -> Q Γ P ΓP→Q (→ ) pq p Γ Q Γ, P Q (→ ) pq (p:P):Q Γ P→Q P ∧Q prod { (P,Q) inl P P ∨Q sum inr Q Curry-Howard Curry-Howard = Coq @tmiya : Coq , 54
  • 55. 5. Curry-Howard Curry-Howard (4) Coq ( ) Java (P → Q → R) → (P → Q) → P → R interface Fun<A,B> { public B apply(A a); } public class P {} public class Q {} public class R {} public class Proof { public R imp_sample(Fun<P,Fun<Q,R>> pqr, Fun<P,Q> pq, P p) { return pqr.apply(p).apply(pq.apply(p)); } } (Java prod sum ¬ Java ) @tmiya : Coq , 55
  • 56. 6. a:A P a (∀a : A, P a) : forall (a:A), P a a:A P a (∃a : A, P a) : exists (a:A), P a Coq P a:A P a:Prop A -> Prop Coq a:A P : A → Prop Coq < Definition iszero(n:nat):Prop := Coq < match n with Coq < | O => True Coq < | _ => False Coq < end. iszero is defined @tmiya : Coq , 56
  • 57. 6. ∀ (1) forall intro(s) forall x:X x:X -> Coq < Theorem sample_forall : forall (X:Type)(P Q:X->Prop)(x:X), P x -> (forall y:X, Q y) -> (P x / Q x). ============================ forall (X : Type) (P Q : X -> Prop) (x : X), P x -> (forall y : X, Q y) -> P x / Q x sample_forall < intros X P Q x px Hqy. X : Type P : X -> Prop Q : X -> Prop x : X px : P x Hqy : forall y : X, Q y ============================ P x / Q x @tmiya : Coq , 57
  • 58. 6. ∀ (2) forall y:X y X sample_forall < split. (* P x Q x *) sample_forall < assumption. (* P x px *) 1 subgoal X : Type P : X -> Prop Q : X -> Prop x : X px : P x Hqy : forall y : X, Q y ============================ Q x sample_forall < apply (Hqy x). (* Hqy y x *) Proof completed. @tmiya : Coq , 58
  • 59. 6.2. ∃ ∃ (1) Coq < Theorem sample_exists : forall (P Q:nat->Prop), Coq < (forall n, P n) -> (exists n, Q n) -> Coq < (exists n, P n / Q n). sample_exists < intros P Q Hpn Hqn. 1 subgoal P : nat -> Prop Q : nat -> Prop Hpn : forall n : nat, P n Hqn : exists n : nat, Q n ============================ exists n : nat, P n / Q n @tmiya : Coq , 59
  • 60. 6.2. ∃ ∃ (2) exists destruct sample_exists < intros P Q Hpn Hqn. P : nat -> Prop Q : nat -> Prop Hpn : forall n : nat, P n Hqn : exists n : nat, Q n ============================ exists n : nat, P n / Q n sample_exists < destruct Hqn as [n’ qn’]. P : nat -> Prop Q : nat -> Prop Hpn : forall n : nat, P n n’ : nat qn’ : Q n’ ============================ exists n : nat, P n / Q n @tmiya : Coq , 60
  • 61. 6.2. ∃ ∃ (3) exists x:X x:X exists x. sample_exists < destruct Hqn as [n’ qn’]. : Hpn : forall n : nat, P n n’ : nat qn’ : Q n’ ============================ exists n : nat, P n / Q n sample_exists < exists n’. : Hpn : forall n : nat, P n n’ : nat qn’ : Q n’ ============================ P n’ / Q n’ (* *) @tmiya : Coq , 61
  • 62. 6.2. ∃ Theorem ex5_1 : forall (A:Set)(P:A->Prop), (~ exists a, P a) -> (forall a, ~P a). Theorem ex5_2 : forall (A:Set)(P Q:A->Prop), (exists a, P a / Q a) -> (exists a, P a) / (exists a, Q a). Theorem ex5_3 : forall (A:Set)(P Q:A->Prop), (exists a, P a) / (exists a, Q a) -> (exists a, P a / Q a). Theorem ex5_4 : forall (A:Set)(R:A->A->Prop), (exists x, forall y, R x y) -> (forall y, exists x, R x y). Theorem ex5_5 : forall (A:Set)(R:A->A->Prop), (forall x y, R x y -> R y x) -> (forall x y z, R x y -> R y z -> R x z) -> (forall x, exists y, R x y) -> (forall x, R x x). @tmiya : Coq , 62
  • 63. 6.3. = = (1) eq (= ) Inductive eq (A : Type) (x : A) : A -> Prop := refl_equal : x = x Coq (nat bool ) (nat O Sn ) (S m Sn m=n ) ============================ n = n apply (refl_equal n). tactic reflexivity. @tmiya : Coq , 63
  • 64. 6.3. = = (2) plus Print plus. tactic simpl. Coq < Theorem plus_0_l : forall n, 0 + n = n. plus_0_l < intro n. n : nat ============================ 0 + n = n plus_0_l < simpl. n : nat ============================ n = n plus_0_l < reflexivity. Proof completed. @tmiya : Coq , 64
  • 65. 6.4. (1) ∀n : nat, n + 0 = n simpl. ============================ n + 0 = n plus_0_r < simpl. ============================ n + 0 = n plus n m n n 1. n = 0 n+0=n 2. n = n n+0=n n=Sn n+0=n @tmiya : Coq , 65
  • 66. 6.4. (2) n induction n as [|n’]. induction n. tactic Coq nat_ind (P ) Coq < Check nat_ind. nat_ind : forall P : nat -> Prop, P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n nat_ind nat O : nat S : nat -> nat Inductive bool bool_ind bool_ind : forall P : bool -> Prop, P true -> P false -> forall b : bool, P b @tmiya : Coq , 66
  • 67. 6.4. (3) induction n as [|n’]. n 0 S n’ reflexivity. OK (simpl. ) Coq < Theorem plus_0_r : forall n:nat, n + 0 = n. plus_0_r < induction n as [|n’]. 2 subgoals ============================ 0 + 0 = 0 subgoal 2 is: S n’ + 0 = S n’ plus_0_r < reflexivity. 1 subgoal n’ : nat IHn’ : n’ + 0 = n’ ============================ S n’ + 0 = S n’ @tmiya : Coq , 67
  • 68. 6.4. (4) n = S n’ n = n’ IHn’ S n’ + 0 = S n’ simpl. plus S (n’ + 0)= S n’ IHn’ n’ + 0 n’ rewrite IHn’. rewrite ============================ S n’ + 0 = S n’ plus_0_r < simpl. IHn’ : n’ + 0 = n’ ============================ S (n’ + 0) = S n’ plus_0_r < rewrite IHn’. IHn’ : n’ + 0 = n’ ============================ S n’ = S n’ @tmiya : Coq , 68
  • 69. 6.4. :m + n = n + m SearchAbout Coq < SearchAbout plus. plus_n_O: forall n : nat, n = n + 0 plus_O_n: forall n : nat, 0 + n = n plus_n_Sm: forall n m : nat, S (n + m) = n + S m plus_Sn_m: forall n m : nat, S n + m = S (n + m) mult_n_Sm: forall n m : nat, n * m + n = n * S m rewrite ( rewrite <- plus_n_Sm n’ m. rewrite H. H rewrite <- H. ) Theorem plus_comm : forall m n:nat, m + n = n + m. @tmiya : Coq , 69
  • 70. 6.4. (5) nat list A Theorem length_app : forall (A:Type)(l1 l2:list A), length (l1 ++ l2) = length l1 + length l2. list cons induction l1 as [|a l1’]. ( induction l1.) induction ( l2) intro 1. intros A l1 l2. induction l1 as [|a l1’]. 2. intros A l1. induction l1 as [|a l1’]. intro l2. IHl1’ (Coqtop Undo. ) @tmiya : Coq , 70
  • 71. 6.4. : (1) List append reverse Require Import List. Fixpoint append{A:Type}(l1 l2:list A):= match l1 with | nil => l2 | a::l1’ => a::(append l1’ l2) end. Fixpoint reverse{A:Type}(l:list A):= match l with | nil => nil | a::l’ => append (reverse l’) (a::nil) end. Theorem reverse_reverse : forall (A:Type)(l:list A), reverse (reverse l) = l. @tmiya : Coq , 71
  • 72. 6.4. : (2) reverse_reverse Lemma append_nil : forall (A:Type)(l:list A), append l nil = l. Lemma append_assoc : forall (A:Type)(l1 l2 l3:list A), append (append l1 l2) l3 = append l1 (append l2 l3). Lemma reverse_append : forall (A:Type)(l1 l2:list A), reverse (append l1 l2) = append (reverse l2) (reverse l1). @tmiya : Coq , 72
  • 73. 7. (1) Coq nat minus(n m:nat) n≤m 0 n−m+m =n ( ) sub Definition sub(m n:nat)(H:le n m) : {x:nat|x+n=m}. 1. H n≤m n≤m 2. x = m−n x +n = m ( ) @tmiya : Coq , 73
  • 74. 7. (2) Coq nat Arith Require Import Arith. (* Arith *) Definition sub(m n:nat)(H:le n m) : {x:nat|x+n=m}. 1 subgoal m : nat n : nat H : n <= m ============================ {x : nat | x + n = m} m, n intro generalize dependent sub < generalize dependent m. sub < generalize dependent n. ============================ forall n m : nat, n <= m -> {x : nat | x + n = m} @tmiya : Coq , 74
  • 75. 7. (3) eapply, erewrite apply, rewrite Qed. Defined. induction n as [|n’]. (* n=0 *) intros m H. exists m. eapply plus_0_r. (* n=S n’ *) induction m as [|m’]; intro H. (* m=0 *) assert(H’: ~(S n’ <= 0)). eapply le_Sn_0. elim H’. assumption. (* m=S m’ *) assert(H’: n’ <= m’). eapply le_S_n. assumption. assert(IH: {x:nat|x+n’=m’}). eapply IHn’. assumption. destruct IH as [x IH]. exists x. erewrite <- plus_n_Sm. rewrite IH. reflexivity. Defined. @tmiya : Coq , 75
  • 76. 7. (4) sub Print sub. sub OCaml minus Coq < Extraction sub. (** val sub : nat -> nat -> nat **) let rec sub m = function | O -> m | S n0 -> (match m with | O -> assert false (* absurd case *) | S n1 -> let iH = sub n1 n0 in Obj.magic iH) OCaml H @tmiya : Coq , 76
  • 77. 7. (5) H Theorem le_2_5 : le 2 5. Proof. repeat eapply le_n_S. repeat constructor. Qed. Eval compute in (sub 5 2 le_2_5). (* *) Eval compute in (proj1_sig (sub 5 2 le_2_5)). (* = 3:nat *) {x|x+n=m} x proj1_sig @tmiya : Coq , 77
  • 78. 7. minus sub minus Definition sub’(m n:nat)(H:le n m) : {x:nat|x+n=m}. Proof. (* minus *) Defined. Coq 1. minus minus 2. minus sub’ 3. refine tactic (refine ) 4. sub @tmiya : Coq , 78
  • 79. 8. Coq tactic (auto, ring, omega ) (Arith, List, String ) Haskell, OCaml (inversion, refine ) tactic Module @tmiya : Coq , 79
  • 80. 8. Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions, Yves Berrot and Pierre Casteran (Springer-Verlag) : Coq Certified Programming with Dependent Types, Adam Chlipala (http://adam.chlipala.net/cpdt/) : Coq 2010 III (http://www.math.nagoya-u.ac.jp/~garrigue/lecture/ 2010_AW/index.html) : Garrigue PDF Coq in a Hurry, Yves Bertot (http://cel.archives-ouvertes.fr/docs/00/47/ 58/07/PDF/coq-hurry.pdf) : 2nd Asian-Pacific Summer School on Formal Methods (http://formes.asia/cms/coqschool/2010) : @tmiya : Coq , 80
  • 81. 8. Coq ProofCafe Coq CPDT Coq IT Coq Ruby, Clojure, Scala, Javascript Coq Coq http://coq.g.hatena.ne.jp/keyword/ProofCafe @tmiya : Coq , 81
  • 82. 8. Formal Methods Forum Coq ( ) ( ) Google group Coq 2010 Certified Programming with Dependent Types Coq Google group (http://groups.google.co.jp/group/fm-forum) Coq @tmiya : Coq , 82